1
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
Cui G, Moustafa DA, Zhao S, Cegla AV, Lyles JT, Goldberg JB, Chandler JD, McCarty NA. Chronic hyperglycemia aggravates lung function in a Scnn1b-Tg murine model. Am J Physiol Lung Cell Mol Physiol 2024; 327:L473-L486. [PMID: 39010826 PMCID: PMC11482466 DOI: 10.1152/ajplung.00279.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/02/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Cystic fibrosis-related diabetes (CFRD), the most common comorbidity in cystic fibrosis (CF), leads to increased mortality by accelerating the decline in lung function. Scnn1b-Tg transgenic mice overexpressing the epithelial sodium channel β subunit exhibit spontaneous CF-like lung disease, including airway mucus obstruction and chronic inflammation. Here, we established a chronic CFRD-like model using Scnn1b-Tg mice made diabetic by injection of streptozotocin (STZ). In Ussing chamber recordings of the trachea, Scnn1b-Tg mice exhibited larger amiloride-sensitive currents and forskolin-activated currents, without a difference in adenosine triphosphate (ATP)-activated currents compared with wild-type (WT) littermates. Both diabetic WT (WT-D) and diabetic Scnn1b-Tg (Scnn1b-Tg-D) mice on the same genetic background exhibited substantially elevated blood glucose at 8 wk; glucose levels also were elevated in bronchoalveolar lavage fluid (BALF). Bulk lung RNA-seq data showed significant differences between WT-D and Scnn1b-Tg-D mice. Neutrophil counts in BALF were substantially increased in Scnn1b-Tg-D lungs compared with controls (Scnn1b-Tg-con) and compared with WT-D lungs. Lung histology data showed enhanced parenchymal destruction, alveolar wall thickening, and neutrophilic infiltration in Scnn1b-Tg-D mice compared with WT-D mice, consistent with the development of a spontaneous lung infection. We intranasally administered Pseudomonas aeruginosa to induce lung infection in these mice for 24 h, which led to severe lung leukocytic infiltration and an increase in pro-inflammatory cytokine levels in the BALF. In summary, we established a chronic CFRD-like lung mouse model using the Scnn1b-Tg mice. The model can be used for future studies toward understanding the mechanisms underlying the lung pathophysiology associated with CFRD and developing novel therapeutics.NEW & NOTEWORTHY We established a chronic CFRD-like mouse model using the Scnn1b-Tg transgenic mice overexpressing the epithelial sodium channel β subunit made diabetic by injection of streptozotocin. The results underscore the urgent need to develop novel therapeutics for CF lung disease.
Collapse
Affiliation(s)
- Guiying Cui
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Dina A Moustafa
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Analia Vazquez Cegla
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - James T Lyles
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Joanna B Goldberg
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Joshua D Chandler
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Nael A McCarty
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Zhu W, Ou Y, Wang C, An R, Lai J, Shen Y, Ye X, Wang H. A neutrophil elastase inhibitor, sivelestat, attenuates sepsis-induced acute kidney injury by inhibiting oxidative stress. Heliyon 2024; 10:e29366. [PMID: 38638960 PMCID: PMC11024609 DOI: 10.1016/j.heliyon.2024.e29366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024] Open
Abstract
Background Sivelestat, a selective inhibitor of neutrophil elastase (NE), can mitigate sepsis-related acute lung injury. However, the role of sivelestat in inhibiting oxidative stress and attenuating sepsis-related acute kidney injury (AKI) remains unclear. Here, we reported the effects of sivelestat against oxidative stress-induced AKI by suppressing the production of oxidative stress indicators. Materials and methods A male Sprague-Dawley rat model of sepsis was established by cecal ligation and puncture (CLP). Sivelestat or normal saline was administered into jugular vein with a sustained-release drug delivery system. Indicators of inflammation and AKI, including white blood cells (WBC), neutrophils, lymphocytes, C-reactive proteins (CRP), procalcitonin (PCT), blood urea nitrogen (BUN), creatinine (Cr) and uric acid (UA), were assessed at 24 h post-sivelestat treatment. Indicators of liver injury, including direct bilirubin (DBIL), indirect bilirubin (IBIL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), were also assessed at 24 h post-sivelestat treatment. Indicators of oxidative stress, including superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), were assessed at 12 h and 24 h post-sivelestat treatment. At 24 h post-sivelestat treatment, H&E staining of kidney and liver tissue was performed to observe pathological alterations. Results At 24 h post normal saline or sivelestat (0.2 g/kg body weight) treatment, WBC, neutrophil, CRP, PCT, MDA, BUN, Cr, UA, AST, ALT, DBIL and IBIL were increased, while SOD and GSH-Px were decreased, in septic rats treated with normal saline compared with that in non-septic rats treated with normal saline (all p < 0.05). The changes of these indicators were reversed in septic rats treated with sivelestat compared with that in septic rats treated with normal saline (all p < 0.05). Similar results were found regarding the levels of oxidative stress indicators at 12 h post-sivelestat treatment. The degenerative histopathological changes in both kidney and liver tissues were ameliorated upon sivelestat treatment. Conclusions Sivelestat plays a protective role in sepsis-related AKI by inhibiting oxidative stress. Our study reveals a possible therapeutic potential of sivelestat for oxidative stress-induced AKI.
Collapse
Affiliation(s)
- Wei Zhu
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yingwei Ou
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Chunnian Wang
- Ningbo Clinical Pathology Diagnosis Center, Ningbo 315000, Zhejiang, China
| | - Rongcheng An
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Junmei Lai
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Ye Shen
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Xiangming Ye
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Haochu Wang
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
5
|
Roy R, Mahmud F, Zayas J, Kuzel TM, Reiser J, Shafikhani SH. Reduced Bioactive Microbial Products (Pathogen-Associated Molecular Patterns) Contribute to Dysregulated Immune Responses and Impaired Healing in Infected Wounds in Mice with Diabetes. J Invest Dermatol 2024; 144:387-397.e11. [PMID: 37619833 PMCID: PMC10840742 DOI: 10.1016/j.jid.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Diabetic chronic ulcers are plagued with persistent nonresolving inflammation. However, diabetic wound environment early after injury suffers from inadequate inflammatory responses due to reductions in proinflammatory cytokines levels. Diabetic neutrophils have known impairments in bactericidal functions. We hypothesized that reduced bacterial killing by diabetic neutrophils, due to their bactericidal functional impairments, results in reduced bioactive bacterial products, known as pathogen-associated molecular patterns, which in turn contribute to reduced signaling through toll-like receptors, leading to inadequate production of proinflammatory cytokines in infected diabetic wound early after injury. We tested our hypothesis in db/db type 2 obese diabetic mouse wound infection model with Pseudomonas aeruginosa. Our data indicate that despite substantially higher levels of infection, toll-like receptor 4-mediated signaling is reduced in diabetic wounds early after injury owing to reduced bioactive levels of lipopolysaccharide. We further demonstrate that topical treatment with lipopolysaccharide enhances toll-like receptor 4 signaling, increases proinflammatory cytokine production, restores leukocyte trafficking, reduces infection burden, and stimulates healing in diabetic wounds. We posit that lipopolysaccharide may be a viable therapeutic option for the treatment of diabetic foot ulcers if it is applied topically after the surgical debridement process, which is intended to reset chronic ulcers into acute fresh wounds.
Collapse
Affiliation(s)
- Ruchi Roy
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Foyez Mahmud
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Janet Zayas
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Timothy M Kuzel
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Cancer Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Jochen Reiser
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Sasha H Shafikhani
- Division of Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA; Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA; Cancer Center, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
6
|
Kumar N, Pestrak MJ, Wu Q, Ahumada OS, Dellos-Nolan S, Saljoughian N, Shukla RK, Mitchem CF, Nagareddy PR, Ganesan LP, William LP, Wozniak DJ, Rajaram MVS. Pseudomonas aeruginosa pulmonary infection results in S100A8/A9-dependent cardiac dysfunction. PLoS Pathog 2023; 19:e1011573. [PMID: 37624851 PMCID: PMC10484443 DOI: 10.1371/journal.ppat.1011573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/07/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P.a.) infection accounts for nearly 20% of all cases of hospital acquired pneumonia with mortality rates >30%. P.a. infection induces a robust inflammatory response, which ideally enhances bacterial clearance. Unfortunately, excessive inflammation can also have negative effects, and often leads to cardiac dysfunction with associated morbidity and mortality. However, it remains unclear how P.a. lung infection causes cardiac dysfunction. Using a murine pneumonia model, we found that P.a. infection of the lungs led to severe cardiac left ventricular dysfunction and electrical abnormalities. More specifically, we found that neutrophil recruitment and release of S100A8/A9 in the lungs activates the TLR4/RAGE signaling pathways, which in turn enhance systemic inflammation and subsequent cardiac dysfunction. Paradoxically, global deletion of S100A8/A9 did not improve but aggravated cardiac dysfunction and mortality likely due to uncontrolled bacterial burden in the lungs and heart. Our results indicate that P.a. infection induced release of S100A8/9 is double-edged, providing increased risk for cardiac dysfunction yet limiting P.a. growth.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Matthew J. Pestrak
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Qian Wu
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Omar Santiagonunez Ahumada
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Sheri Dellos-Nolan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Noushin Saljoughian
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Rajni Kant Shukla
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Cortney F. Mitchem
- Department of Microbiology, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Prabhakara R. Nagareddy
- Department of Surgery, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Latha P. Ganesan
- Department of Internal Medicine, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Lafuse P. William
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|
7
|
Smith ET, Kruppa M, Johnson DA, Van Haeften J, Chen X, Leahy D, Peake J, Harris JM. High yield expression in Pichia pastoris of human neutrophil elastase fused to cytochrome B5. Protein Expr Purif 2023; 206:106255. [PMID: 36822453 PMCID: PMC10118287 DOI: 10.1016/j.pep.2023.106255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Recombinant human neutrophil elastase (rHNE), a serine protease, was expressed in Pichia pastoris. Glycosylation sites were removed via bioengineering to prevent hyper-glycosylation (a common problem with this system) and the cDNA was codon optimized for translation in Pichia pastoris. The zymogen form of rHNE was secreted as a fusion protein with an N-terminal six histidine tag followed by the heme binding domain of Cytochrome B5 (CytB5) linked to the N-terminus of the rHNE sequence via an enteropeptidase cleavage site. The CytB5 fusion balanced the very basic rHNE (pI = 9.89) to give a colored fusion protein (pI = 6.87), purified via IMAC. Active rHNE was obtained via enteropeptidase cleavage, and purified via cation exchange chromatography, resulting in a single protein band on SDS PAGE (Mr = 25 KDa). Peptide mass fingerprinting analysis confirmed the rHNE amino acid sequence, the absence of glycosylation and the absence of an 8 amino acid C-terminal peptide as opposed to the 20 amino acids usually missing from the C-terminus of native enzyme. The yield of active rHNE was 0.41 mg/L of baffled shaker flask culture medium. Active site titration with alpha-1 antitrypsin, a potent irreversible elastase inhibitor, quantified the concentration of purified active enzyme. The Km of rHNE with methoxy-succinyl-AAPVpNA was identical with that of the native enzyme within the assay's limit of accuracy. This is the first report of full-length rHNE expression at high yields and low cost facilitating further studies on this major human neutrophil enzyme.
Collapse
Affiliation(s)
- Eliot T Smith
- Departments of Biomedical Sciences and Medical Education, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, Tennessee, USA
| | - Michael Kruppa
- Departments of Biomedical Sciences and Medical Education, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, Tennessee, USA
| | - David A Johnson
- Departments of Biomedical Sciences and Medical Education, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, Tennessee, USA.
| | - Jessica Van Haeften
- Queensland University of Technology, Molecular Simulation Group, Institute of Health and Biomedical Innovation, Corner Blamey Street & Musk Avenue, Kelvin Grove Urban Village, Queensland, 4059, Australia
| | - Xingchen Chen
- Queensland University of Technology, Molecular Simulation Group, Institute of Health and Biomedical Innovation, Corner Blamey Street & Musk Avenue, Kelvin Grove Urban Village, Queensland, 4059, Australia
| | - Darren Leahy
- Queensland University of Technology, Molecular Simulation Group, Institute of Health and Biomedical Innovation, Corner Blamey Street & Musk Avenue, Kelvin Grove Urban Village, Queensland, 4059, Australia
| | - Jonathan Peake
- Queensland University of Technology, Molecular Simulation Group, Institute of Health and Biomedical Innovation, Corner Blamey Street & Musk Avenue, Kelvin Grove Urban Village, Queensland, 4059, Australia
| | - Jonathan M Harris
- Queensland University of Technology, Molecular Simulation Group, Institute of Health and Biomedical Innovation, Corner Blamey Street & Musk Avenue, Kelvin Grove Urban Village, Queensland, 4059, Australia
| |
Collapse
|
8
|
Roszkowiak J, McClean S, Mirończuk AM, Augustyniak D. The Direct Anti-Virulence but Not Bactericidal Activity of Human Neutrophil Elastase against Moraxella catarrhalis. Int J Mol Sci 2023; 24:ijms24076607. [PMID: 37047578 PMCID: PMC10094786 DOI: 10.3390/ijms24076607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Neutrophil elastase (NE) contributes to innate antibacterial defense at both the intracellular (phagocytosis) and extracellular (degranulation, NETosis) levels. Moraxella catarrhalis, a human respiratory pathogen, can exist in an inflammatory milieu which contains NE. No data are available on the action of NE against M. catarrhalis or on the counteraction of NE-dependent host defenses by this pathogen. Using time-kill assays we found that bacteria are able to survive and replicate in the presence of NE. Transmission electron microscopy and flow cytometry studies with NE-treated bacteria revealed that while NE admittedly destabilizes the outer membrane leaflet, it does not cause cytoplasmic membrane rupture, suggesting that the enzyme does not target components that are essential for cell integrity. Using LC-MS/MS spectroscopy we determined that NE cleaved at least three virulent surface proteins in outer membrane vesicles (OMVs) of M. catarrhalis, including OMP CD, McaP, and TbpA. The cleavage of OMP CD contributes to the significant decrease in resistance to serum complement in the complement-resistant strain Mc6. The cleavage of McaP did not cause any sensitization to erythromycin nor did NE disturb its drug action. Identifying NE as a novel but subtle anti-virulence agent together with its extracellularly not-efficient bactericidal activity against M. catarrhalis may facilitate the pathogen’s existence in the airways under inflammation.
Collapse
Affiliation(s)
- Justyna Roszkowiak
- Department of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Aleksandra M. Mirończuk
- Laboratory for Biosustainability, Institute of Environmental Biology, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
| | - Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| |
Collapse
|
9
|
Montero‐Blay A, Blanco JD, Rodriguez‐Arce I, Lastrucci C, Piñero‐Lambea C, Lluch‐Senar M, Serrano L. Bacterial expression of a designed single-chain IL-10 prevents severe lung inflammation. Mol Syst Biol 2023; 19:e11037. [PMID: 36598022 PMCID: PMC9834763 DOI: 10.15252/msb.202211037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 01/05/2023] Open
Abstract
Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is active as a swapped domain dimer and is used in bacterial therapy of gut inflammation. IL-10 can be used as treatment of a wide range of pulmonary diseases. Here we have developed a non-pathogenic chassis (CV8) of the human lung bacterium Mycoplasma pneumoniae (MPN) to treat lung diseases. We find that IL-10 expression by MPN has a limited impact on the lung inflammatory response in mice. To solve these issues, we rationally designed a single-chain IL-10 (SC-IL10) with or without surface mutations, using our protein design software (ModelX and FoldX). As compared to the IL-10 WT, the designed SC-IL10 molecules increase the effective expression in MPN four-fold, and the activity in mouse and human cell lines between 10 and 60 times, depending on the cell line. The SC-IL10 molecules expressed in the mouse lung by CV8 in vivo have a powerful anti-inflammatory effect on Pseudomonas aeruginosa lung infection. This rational design strategy could be used to other molecules with immunomodulatory properties used in bacterial therapy.
Collapse
Affiliation(s)
- Ariadna Montero‐Blay
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Javier Delgado Blanco
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Irene Rodriguez‐Arce
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Claire Lastrucci
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carlos Piñero‐Lambea
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
10
|
Sabo P, Makaryan V, Dicken Y, Povodovski L, Rockah L, Bar T, Gabay M, Elinger D, Segal E, Haimov O, Antoshvili M, Drori AL, Poulsen T, Herman A, Emmanuel R, Dale DC. Mutant allele knockout with novel CRISPR nuclease promotes myelopoiesis in ELANE neutropenia. Mol Ther Methods Clin Dev 2022; 26:119-131. [PMID: 35795780 PMCID: PMC9240714 DOI: 10.1016/j.omtm.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
Severe congenital neutropenia (SCN) is a life-threatening marrow failure disorder, usually caused by heterozygous mutations in ELANE. Potential genetic treatment strategies include biallelic knockout or gene correction via homology-directed repair (HDR). Such strategies, however, involve the potential loss of the essential function of the normal allele product or limited coverage of diverse monogenic mutations within the patient population, respectively. As an alternative, we have developed a novel CRISPR-based monoallelic knockout strategy that precisely targets the heterozygous sites of single-nucleotide polymorphisms (SNPs) associated with most ELANE mutated alleles. In vitro studies demonstrate that patients' unedited hematopoietic CD34+ cells have significant abnormalities in differentiation and maturation, consistent with the hematopoietic defect in SCN patients. Selective knockout of the mutant ELANE allele alleviated these cellular abnormalities and resulted in about 50%-70% increase in normally functioning neutrophils (p < 0.0001). Genomic analysis confirmed that ELANE knockout was specific to the mutant allele and involved no off-targets. These results demonstrate the therapeutic potential of selective allele editing that may be applicable to SCN and other autosomal dominant disorders.
Collapse
Affiliation(s)
- Peter Sabo
- Department of Medicine, University of Washington, Box 356422, 1959 NE Pacific Street, Room AA522, Seattle, WA 98195, USA
| | - Vahagn Makaryan
- Department of Medicine, University of Washington, Box 356422, 1959 NE Pacific Street, Room AA522, Seattle, WA 98195, USA
| | - Yosef Dicken
- EmendoBio, Inc., 400 W 61 Street, #2330, New York NY 10069, USA
| | | | - Liat Rockah
- EmendoBio, Inc., 400 W 61 Street, #2330, New York NY 10069, USA
| | - Tzlil Bar
- EmendoBio, Inc., 400 W 61 Street, #2330, New York NY 10069, USA
| | - Matan Gabay
- EmendoBio, Inc., 400 W 61 Street, #2330, New York NY 10069, USA
| | - Dalia Elinger
- EmendoBio, Inc., 400 W 61 Street, #2330, New York NY 10069, USA
| | - Ella Segal
- EmendoBio, Inc., 400 W 61 Street, #2330, New York NY 10069, USA
| | - Ora Haimov
- EmendoBio, Inc., 400 W 61 Street, #2330, New York NY 10069, USA
| | - Maya Antoshvili
- EmendoBio, Inc., 400 W 61 Street, #2330, New York NY 10069, USA
| | | | - Tanoya Poulsen
- Department of Medicine, University of Washington, Box 356422, 1959 NE Pacific Street, Room AA522, Seattle, WA 98195, USA
| | - Asael Herman
- EmendoBio, Inc., 400 W 61 Street, #2330, New York NY 10069, USA
| | - Rafi Emmanuel
- EmendoBio, Inc., 400 W 61 Street, #2330, New York NY 10069, USA
| | - David C. Dale
- Department of Medicine, University of Washington, Box 356422, 1959 NE Pacific Street, Room AA522, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Goetz RL, Vijaykumar K, Solomon GM. Mucus Clearance Strategies in Mechanically Ventilated Patients. Front Physiol 2022; 13:834716. [PMID: 35399263 PMCID: PMC8984116 DOI: 10.3389/fphys.2022.834716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 12/01/2022] Open
Abstract
The use of airway clearance strategies as supplementary treatment in respiratory disease has been best investigated in patients with cystic fibrosis (CF) and non-cystic fibrosis bronchiectasis (NCFBE), conditions which are traditionally characterized by excessive mucus stasis and mucociliary dysfunction. A variety of airway clearance therapies both pharmacological and non-pharmacological have been shown to ameliorate disease progression in this population and have hence been assimilated into routine respiratory care. This self-propagating cycle of mucus retention and airway damage leading to chronic inflammation and infections can also be applied to patients with respiratory failure requiring mechanical ventilation. Furthermore, excessive trachea-bronchial secretions have been associated with extubation failure presenting an opportunity for intervention. Evidence for the use of adjunctive mucoactive agents and other therapies to facilitate secretion clearance in these patients are not well defined, and this subgroup still remains largely underrepresented in clinical trials. In this review, we discuss the role of mucus clearance techniques with a proven benefit in patients with CF and NCFBE, and their potential role in patients requiring mechanical ventilation while highlighting the need for standardization and adoption of mucus clearance strategies in these patient populations.
Collapse
Affiliation(s)
- Ryan L. Goetz
- Department of Medicine, Tinsley Harrison Internal Medicine Residency Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kadambari Vijaykumar
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - George M. Solomon
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: George M. Solomon,
| |
Collapse
|
12
|
McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease. Int J Mol Sci 2021; 22:5018. [PMID: 34065111 PMCID: PMC8125985 DOI: 10.3390/ijms22095018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| |
Collapse
|
13
|
Rydzynska Z, Pawlik B, Krzyzanowski D, Mlynarski W, Madzio J. Neutrophil Elastase Defects in Congenital Neutropenia. Front Immunol 2021; 12:653932. [PMID: 33968054 PMCID: PMC8100030 DOI: 10.3389/fimmu.2021.653932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a rare hematological condition with heterogenous genetic background. Neutrophil elastase (NE) encoded by ELANE gene is mutated in over half of the SCN cases. The role of NE defects in myelocytes maturation arrest in bone marrow is widely investigated; however, the mechanism underlying this phenomenon has still remained unclear. In this review, we sum up the studies exploring mechanisms of neutrophil deficiency, biological role of NE in neutrophil and the effects of ELANE mutation and neutropenia pathogenesis. We also explain the hypotheses presented so far and summarize options of neutropenia therapy.
Collapse
Affiliation(s)
- Zuzanna Rydzynska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Bartlomiej Pawlik
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Damian Krzyzanowski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.,Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
14
|
Renieris G, Droggiti DE, Katrini K, Koufargyris P, Gkavogianni T, Karakike E, Antonakos N, Damoraki G, Karageorgos A, Sabracos L, Katsouda A, Jentho E, Weis S, Wang R, Bauer M, Szabo C, Platoni K, Kouloulias V, Papapetropoulos A, Giamarellos-Bourboulis EJ. Host cystathionine-γ lyase derived hydrogen sulfide protects against Pseudomonas aeruginosa sepsis. PLoS Pathog 2021; 17:e1009473. [PMID: 33770141 PMCID: PMC8051778 DOI: 10.1371/journal.ppat.1009473] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/16/2021] [Accepted: 03/12/2021] [Indexed: 11/18/2022] Open
Abstract
Hydrogen sulfide (H2S) has recently been recognized as a novel gaseous transmitter with several anti-inflammatory properties. The role of host- derived H2S in infections by Pseudomonas aeruginosa was investigated in clinical and mouse models. H2S concentrations and survival was assessed in septic patients with lung infection. Animal experiments using a model of severe systemic multidrug-resistant P. aeruginosa infection were performed using mice with a constitutive knock-out of cystathionine-γ lyase (Cse) gene (Cse-/-) and wild-type mice with a physiological expression (Cse+/+). Experiments were repeated in mice after a) treatment with cyclophosphamide; b) bone marrow transplantation (BMT) from a Cse+/+ donor; c) treatment with H2S synthesis inhibitor aminooxyacetic acid (ΑΟΑΑ) or propargylglycine (PAG) and d) H2S donor sodium thiosulfate (STS) or GYY3147. Bacterial loads and myeloperoxidase activity were measured in tissue samples. The expression of quorum sensing genes (QS) was determined in vivo and in vitro. Cytokine concentration was measured in serum and incubated splenocytes. Patients survivors at day 28 had significantly higher serum H2S compared to non-survivors. A cut- off point of 5.3 μΜ discriminated survivors with sensitivity 92.3%. Mortality after 28 days was 30.9% and 93.7% in patients with H2S higher and less than 5.3 μΜ (p = 7 x 10-6). In mice expression of Cse and application of STS afforded protection against infection with multidrug-resistant P. aeruginosa. Cyclophosphamide pretreatment eliminated the survival benefit of Cse+/+ mice, whereas BMT increased the survival of Cse-/- mice. Cse-/- mice had increased pathogen loads compared to Cse+/+ mice. Phagocytic activity of leukocytes from Cse-/- mice was reduced but was restored after H2S supplementation. An H2S dependent down- regulation of quorum sensing genes of P.aeruginosa could be demonstrated in vivo and in vitro. Endogenous H2S is a potential independent parameter correlating with the outcome of P. aeruginosa. H2S provides resistance to infection by MDR bacterial pathogens.
Collapse
Affiliation(s)
- Georgios Renieris
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dionysia-Eirini Droggiti
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Konstantina Katrini
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Panagiotis Koufargyris
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Theologia Gkavogianni
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Eleni Karakike
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Nikolaos Antonakos
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Georgia Damoraki
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Athanasios Karageorgos
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Labros Sabracos
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Antonia Katsouda
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elisa Jentho
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Rui Wang
- Department of Biology, York University, Toronto, Canada
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
| | - Csaba Szabo
- Department of Anaesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Kalliopi Platoni
- 2 Department of Radiology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Vasilios Kouloulias
- 2 Department of Radiology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Andreas Papapetropoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | |
Collapse
|
15
|
Tran NT, Graf R, Wulf-Goldenberg A, Stecklum M, Strauß G, Kühn R, Kocks C, Rajewsky K, Chu VT. CRISPR-Cas9-Mediated ELANE Mutation Correction in Hematopoietic Stem and Progenitor Cells to Treat Severe Congenital Neutropenia. Mol Ther 2020; 28:2621-2634. [PMID: 32822592 PMCID: PMC7704744 DOI: 10.1016/j.ymthe.2020.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023] Open
Abstract
Severe congenital neutropenia (SCN) is a monogenic disorder. SCN patients are prone to recurrent life-threatening infections. The main causes of SCN are autosomal dominant mutations in the ELANE gene that lead to a block in neutrophil differentiation. In this study, we use CRISPR-Cas9 ribonucleoproteins and adeno-associated virus (AAV)6 as a donor template delivery system to repair the ELANEL172P mutation in SCN patient-derived hematopoietic stem and progenitor cells (HSPCs). We used a single guide RNA (sgRNA) specifically targeting the mutant allele, and an sgRNA targeting exon 4 of ELANE. Using the latter sgRNA, ∼34% of the known ELANE mutations can in principle be repaired. We achieved gene correction efficiencies of up to 40% (with sgELANE-ex4) and 56% (with sgELANE-L172P) in the SCN patient-derived HSPCs. Gene repair restored neutrophil differentiation in vitro and in vivo upon HSPC transplantation into humanized mice. Mature edited neutrophils expressed normal elastase levels and behaved normally in functional assays. Thus, we provide a proof of principle for using CRISPR-Cas9 to correct ELANE mutations in patient-derived HSPCs, which may translate into gene therapy for SCN.
Collapse
Affiliation(s)
- Ngoc Tung Tran
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Robin Graf
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | | | | | | | - Ralf Kühn
- iPS Cell Based Disease Modeling, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Christine Kocks
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; Transgenics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
| | - Van Trung Chu
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; iPS Cell Based Disease Modeling, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
| |
Collapse
|
16
|
Reihill J, Moffitt K, Douglas L, Stuart Elborn J, Jones A, Lorraine Martin S. Sputum trypsin-like protease activity relates to clinical outcome in cystic fibrosis. J Cyst Fibros 2020; 19:647-653. [DOI: 10.1016/j.jcf.2019.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
|
17
|
Mice Lacking γδ T Cells Exhibit Impaired Clearance of Pseudomonas aeruginosa Lung Infection and Excessive Production of Inflammatory Cytokines. Infect Immun 2020; 88:IAI.00171-20. [PMID: 32229615 PMCID: PMC7240087 DOI: 10.1128/iai.00171-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic and life-threatening infections in immunocompromised patients. A better understanding of the role that innate immunity plays in the control of P. aeruginosa infection is crucial for therapeutic development. Specifically, the role of unconventional immune cells like γδ T cells in the clearance of P. aeruginosa lung infection is not yet well characterized. Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic and life-threatening infections in immunocompromised patients. A better understanding of the role that innate immunity plays in the control of P. aeruginosa infection is crucial for therapeutic development. Specifically, the role of unconventional immune cells like γδ T cells in the clearance of P. aeruginosa lung infection is not yet well characterized. In this study, the role of γδ T cells was examined in an acute mouse model of P. aeruginosa lung infection. In the absence of γδ T cells, mice displayed impaired bacterial clearance and decreased survival, outcomes which were associated with delayed neutrophil recruitment and impaired recruitment of other immune cells (macrophages, T cells, natural killer cells, and natural killer T [NKT] cells) into the airways. Despite reduced NKT cell recruitment in the airways of mice lacking γδ T cells, NKT cell-deficient mice exhibited wild-type level control of P. aeruginosa infection. Proinflammatory cytokines were also altered in γδ T cell-deficient mice, with increased production of interleukin-1β, interleukin-6, and tumor necrosis factor. γδ T cells did not appear to contribute significantly to the production of interleukin-17A or the chemokines CXCL1 and CXCL2. Importantly, host survival could be improved by inhibiting tumor necrosis factor signaling with the soluble receptor construct etanercept in γδ cell-deficient mice. These findings demonstrate that γδ T cells play a protective role in coordinating the host response to P. aeruginosa lung infection, both in contributing to early immune cell recruitment and by limiting inflammation.
Collapse
|
18
|
McKelvey MC, Weldon S, McAuley DF, Mall MA, Taggart CC. Targeting Proteases in Cystic Fibrosis Lung Disease. Paradigms, Progress, and Potential. Am J Respir Crit Care Med 2020; 201:141-147. [PMID: 31626562 DOI: 10.1164/rccm.201906-1190pp] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany; and.,German Center for Lung Research, Berlin, Germany
| | | |
Collapse
|
19
|
Hagner M, Frey DL, Guerra M, Dittrich AS, Halls VS, Wege S, Herth FJF, Schultz C, Mall MA. New method for rapid and dynamic quantification of elastase activity on sputum neutrophils from patients with cystic fibrosis using flow cytometry. Eur Respir J 2020; 55:13993003.02355-2019. [PMID: 32139467 DOI: 10.1183/13993003.02355-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/20/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Matthias Hagner
- Dept of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), Heidelberg, Germany.,German Center for Lung Research (DZL), Germany.,Equal contribution
| | - Dario L Frey
- Dept of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), Heidelberg, Germany.,German Center for Lung Research (DZL), Germany.,Equal contribution
| | - Matteo Guerra
- Translational Lung Research Center (TLRC), Heidelberg, Germany.,German Center for Lung Research (DZL), Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany.,EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany.,Equal contribution
| | - A Susanne Dittrich
- Dept of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC), Heidelberg, Germany.,German Center for Lung Research (DZL), Germany.,Dept of Pulmonology and Critical Care Medicine, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany
| | - Victoria S Halls
- Dept of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Sabine Wege
- Translational Lung Research Center (TLRC), Heidelberg, Germany.,German Center for Lung Research (DZL), Germany.,Dept of Pulmonology and Critical Care Medicine, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany
| | - Felix J F Herth
- Translational Lung Research Center (TLRC), Heidelberg, Germany.,German Center for Lung Research (DZL), Germany.,Dept of Pulmonology and Critical Care Medicine, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany
| | - Carsten Schultz
- Translational Lung Research Center (TLRC), Heidelberg, Germany.,German Center for Lung Research (DZL), Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany.,Dept of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA.,Equal contribution as senior author
| | - Marcus A Mall
- Dept of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany .,Translational Lung Research Center (TLRC), Heidelberg, Germany.,German Center for Lung Research (DZL), Germany.,Dept of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Equal contribution as senior author
| |
Collapse
|
20
|
León DL, Matthey P, Fellay I, Blanchard M, Martinvalet D, Mantel PY, Filgueira L, Walch M. Granzyme B Attenuates Bacterial Virulence by Targeting Secreted Factors. iScience 2020; 23:100932. [PMID: 32151975 PMCID: PMC7063247 DOI: 10.1016/j.isci.2020.100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Pathogenic bacteria secrete virulence factors that interact with the human host to establish infections. The human immune system evolved multiple mechanisms to fight bacterial invaders, including immune proteases that were demonstrated to contribute crucially to antibacterial defense. Here we show that granzyme B degrades multiple secreted virulence mediators from Listeria monocytogenes, Salmonella typhimurium, and Mycobacteria tuberculosis. Pathogenic bacteria, when infected in the presence of granzyme B or granzyme-secreting killer cells, fail to grow in human macrophages and epithelial cells owing to their crippled virulence. A granzyme B-uncleavable mutant form of the major Listeria virulence factor, listeriolysin O, rescued the virulence defect in response to granzyme treatment. Hence, we link the degradation of a single factor with the observed decrease in virulent bacteria growth. Overall, we reveal here an innate immune barrier function of granzyme B by disrupting bacterial virulence to facilitate bacteria clearance by bystander immune and non-immune cells.
Collapse
Affiliation(s)
- Diego López León
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Patricia Matthey
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Isabelle Fellay
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Marianne Blanchard
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Denis Martinvalet
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Pierre-Yves Mantel
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Luis Filgueira
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Michael Walch
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland.
| |
Collapse
|
21
|
Ueno K, Yanagihara N, Otani Y, Shimizu K, Kinjo Y, Miyazaki Y. Neutrophil-mediated antifungal activity against highly virulent Cryptococcus gattii strain R265. Med Mycol 2020; 57:1046-1054. [PMID: 30668754 DOI: 10.1093/mmy/myy153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 01/08/2023] Open
Abstract
Vaccine-induced immune responses, including neutrophil, macrophage, and T-cell responses, ameliorate cryptococcosis caused by Cryptococcus gattii. However, whether neutrophils can exert fungicidal activity against C. gattii remains to be elucidated. Therefore, in this study, we investigated the neutrophil-mediated fungicidal effect against C. gattii R265 in vitro and compared it to the related fungal pathogen, Cryptococcus neoformans standard strain H99. We found that neutrophils recognized, phagocytosed, and killed C. gattii R265 in the presence of fresh mouse serum. This antifungal effect required phagocytosis and serine protease activity but not nicotinamide adenine dinucleotide phosphate oxidase activity. We also demonstrated that C. gattii R265 was more resistant to oxidative and nitrosative stress than C. neoformans H99. Together, these findings indicate that neutrophils can exert fungicidal activity against highly virulent C. gattii, at least under in vitro conditions.
Collapse
Affiliation(s)
- Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nao Yanagihara
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yoshiko Otani
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.,Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.,Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
22
|
Birch GP, Campbell T, Bradley M, Dhaliwal K. Optical Molecular Imaging of Inflammatory Cells in Interventional Medicine-An Emerging Strategy. Front Oncol 2019; 9:882. [PMID: 31572676 PMCID: PMC6751259 DOI: 10.3389/fonc.2019.00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
The optical molecular imaging of inflammation is an emerging strategy for interventional medicine and diagnostics. The host's inflammatory response and adaptation to acute and chronic diseases provides unique signatures that have the potential to guide interventions. Thus, there are emerging a suite of molecular imaging and sensing approaches for a variety of targets in this area. This review will focus on two key cellular orchestrators that dominate this area, neutrophils and macrophages, with recent developments in molecular probes and approaches discussed.
Collapse
Affiliation(s)
- Gavin P Birch
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Thane Campbell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Bradley
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Pushing beyond the Envelope: the Potential Roles of OprF in Pseudomonas aeruginosa Biofilm Formation and Pathogenicity. J Bacteriol 2019; 201:JB.00050-19. [PMID: 31010902 DOI: 10.1128/jb.00050-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability of Pseudomonas aeruginosa to form biofilms, which are communities of cells encased in a self-produced extracellular matrix, protects the cells from antibiotics and the host immune response. While some biofilm matrix components, such as exopolysaccharides and extracellular DNA, are relatively well characterized, the extracellular matrix proteins remain understudied. Multiple proteomic analyses of the P. aeruginosa soluble biofilm matrix and outer membrane vesicles, which are a component of the matrix, have identified OprF as an abundant matrix protein. To date, the few reports on the effects of oprF mutations on biofilm formation are conflicting, and little is known about the potential role of OprF in the biofilm matrix. The majority of OprF studies focus on the protein as a cell-associated porin. As a component of the outer membrane, OprF assumes dual conformations and is involved in solute transport, as well as cell envelope integrity. Here, we review the current literature on OprF in P. aeruginosa, discussing how the structure and function of the cell-associated and matrix-associated protein may affect biofilm formation and pathogenesis in order to inform future research on this understudied matrix protein.
Collapse
|
24
|
Dickerhof N, Isles V, Pattemore P, Hampton MB, Kettle AJ. Exposure of Pseudomonas aeruginosa to bactericidal hypochlorous acid during neutrophil phagocytosis is compromised in cystic fibrosis. J Biol Chem 2019; 294:13502-13514. [PMID: 31341024 DOI: 10.1074/jbc.ra119.009934] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloperoxidase is a major neutrophil antimicrobial protein, but its role in immunity is often overlooked because individuals deficient in this enzyme are usually in good health. Within neutrophil phagosomes, myeloperoxidase uses superoxide generated by the NADPH oxidase to oxidize chloride to the potent bactericidal oxidant hypochlorous acid (HOCl). In this study, using phagocytosis assays and LC-MS analyses, we monitored GSH oxidation in Pseudomonas aeruginosa to gauge their exposure to HOCl inside phagosomes. Doses of reagent HOCl that killed most of the bacteria oxidized half the cells' GSH, producing mainly glutathione disulfide (GSSG) and other low-molecular-weight disulfides. Glutathione sulfonamide (GSA), a HOCl-specific product, was also formed. When neutrophils phagocytosed P. aeruginosa, half of the bacterial GSH was lost. Bacterial GSA production indicated that HOCl had reacted with the bacterial cells, oxidized their GSH, and was sufficient to be solely responsible for bacterial killing. Inhibition of NADPH oxidase and myeloperoxidase lowered GSA formation in the bacterial cells, but the bacteria were still killed, presumably by compensatory nonoxidative mechanisms. Of note, bacterial GSA formation in neutrophils from patients with cystic fibrosis (CF) was normal during early phagocytosis, but it was diminished at later time points, which was mirrored by a small decrease in bacterial killing. In conclusion, myeloperoxidase generates sufficient HOCl within neutrophil phagosomes to kill ingested bacteria. The unusual kinetics of phagosomal HOCl production in CF neutrophils confirm a role for the cystic fibrosis transmembrane conductance regulator in maintaining HOCl production in neutrophil phagosomes.
Collapse
Affiliation(s)
- Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand.
| | - Vivienne Isles
- Children's Outreach Nursing Service, Christchurch Hospital, Christchurch 8011, New Zealand
| | - Philip Pattemore
- Department of Paediatrics, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand
| |
Collapse
|
25
|
Jones-Nelson O, Hilliard JJ, DiGiandomenico A, Warrener P, Alfaro A, Cheng L, Stover CK, Cohen TS, Sellman BR. The Neutrophilic Response to Pseudomonas Damages the Airway Barrier, Promoting Infection by Klebsiella pneumoniae. Am J Respir Cell Mol Biol 2019; 59:745-756. [PMID: 30109945 DOI: 10.1165/rcmb.2018-0107oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa and Klebsiella pneumoniae are two common gram-negative pathogens that are associated with bacterial pneumonia and can often be isolated from the same patient. We used a mixed-pathogen pneumonia infection model in which mice were infected with sublethal concentrations of P. aeruginosa and K. pneumoniae, resulting in significant lethality, outgrowth of both bacteria in the lung, and systemic dissemination of K. pneumoniae. Inflammation, induced by P. aeruginosa activation of Toll-like receptor 5, results in prolonged neutrophil recruitment to the lung and increased levels of neutrophil elastase in the airway, resulting in lung damage and epithelial barrier dysfunction. Live P. aeruginosa was not required to potentiate K. pneumoniae infection, and flagellin alone was sufficient to induce lethality when delivered along with Klebsiella. Prophylaxis with an anti-Toll-like receptor 5 antibody or Sivelestat, a neutrophil elastase inhibitor, reduced neutrophil influx, inflammation, and mortality. Furthermore, pathogen-specific monoclonal antibodies targeting P. aeruginosa or K. pneumoniae prevented the outgrowth of both bacteria and reduced host inflammation and lethality. These findings suggest that coinfection with P. aeruginosa may enable the outgrowth and dissemination of K. pneumoniae, and that a pathogen- or host-specific prophylactic approach targeting P. aeruginosa may prevent or limit the severity of such infections by reducing neutrophil-induced lung damage.
Collapse
Affiliation(s)
| | | | | | | | - Alex Alfaro
- 2 Department of Laboratory Animal Research, and
| | - Lily Cheng
- 3 Department of Translational Science, MedImmune, LLC, Gaithersburg, Maryland
| | | | | | | |
Collapse
|
26
|
Pasquevich KA, Carabajal MV, Guaimas FF, Bruno L, Roset MS, Coria LM, Rey Serrantes DA, Comerci DJ, Cassataro J. Omp19 Enables Brucella abortus to Evade the Antimicrobial Activity From Host's Proteolytic Defense System. Front Immunol 2019; 10:1436. [PMID: 31297115 PMCID: PMC6607954 DOI: 10.3389/fimmu.2019.01436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/07/2019] [Indexed: 01/18/2023] Open
Abstract
Pathogenic microorganisms confront several proteolytic events in the molecular interplay with their host, highlighting that proteolysis and its regulation play an important role during infection. Microbial inhibitors, along with their target endogenous/exogenous enzymes, may directly affect the host's defense mechanisms and promote infection. Omp19 is a Brucella spp. conserved lipoprotein anchored by the lipid portion in the Brucella outer membrane. Previous work demonstrated that purified unlipidated Omp19 (U-Omp19) has protease inhibitor activity against gastrointestinal and lysosomal proteases. In this work, we found that a Brucella omp19 deletion mutant is highly attenuated in mice when infecting by the oral route. This attenuation can be explained by bacterial increased susceptibility to host proteases met by the bacteria during establishment of infection. Omp19 deletion mutant has a cell division defect when exposed to pancreatic proteases that is linked to cell-cycle arrest in G1-phase, Omp25 degradation on the cell envelope and CtrA accumulation. Moreover, Omp19 deletion mutant is more susceptible to killing by macrophage derived microsomes than wt strain. Preincubation with gastrointestinal proteases led to an increased susceptibility of Omp19 deletion mutant to macrophage intracellular killing. Thus, in this work, we describe for the first time a physiological function of B. abortus Omp19. This activity enables Brucella to better thrive in the harsh gastrointestinal tract, where protection from proteolytic degradation can be a matter of life or death, and afterwards invade the host and bypass intracellular proteases to establish the chronic infection.
Collapse
Affiliation(s)
- Karina A Pasquevich
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Marianela V Carabajal
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Francisco F Guaimas
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Laura Bruno
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Mara S Roset
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Lorena M Coria
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Diego A Rey Serrantes
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Diego J Comerci
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Juliana Cassataro
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| |
Collapse
|
27
|
Ghadiri M, Young PM, Traini D. Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics 2019; 11:pharmaceutics11030113. [PMID: 30861990 PMCID: PMC6470976 DOI: 10.3390/pharmaceutics11030113] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
New therapeutic agents such as proteins, peptides, and nucleic acid-based agents are being developed every year, making it vital to find a non-invasive route such as nasal or pulmonary for their administration. However, a major concern for some of these newly developed therapeutic agents is their poor absorption. Therefore, absorption enhancers have been investigated to address this major administration problem. This paper describes the basic concepts of transmucosal administration of drugs, and in particular the use of the pulmonary or nasal routes for administration of drugs with poor absorption. Strategies for the exploitation of absorption enhancers for the improvement of pulmonary or nasal administration are discussed, including use of surfactants, cyclodextrins, protease inhibitors, and tight junction modulators, as well as application of carriers such as liposomes and nanoparticles.
Collapse
Affiliation(s)
- Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
28
|
PepN is a non-essential, cell wall-localized protein that contributes to neutrophil elastase-mediated killing of Streptococcus pneumoniae. PLoS One 2019; 14:e0211632. [PMID: 30707714 PMCID: PMC6358159 DOI: 10.1371/journal.pone.0211632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is an asymptomatic colonizer of the human nasopharynx but can also cause disease in the inner ear, meninges, lung and blood. Although various mechanisms contribute to the effective clearance of Spn, opsonophagocytosis by neutrophils is perhaps most critical. Upon phagocytosis, Spn is exposed to various degradative molecules, including a family of neutrophil serine proteases (NSPs) that are stored within intracellular granules. Despite the critical importance of NSPs in killing Spn, the bacterial proteins that are degraded by NSPs leading to Spn death are still unknown. In this report, we identify a 90kDa protein in a purified cell wall (CW) preparation, aminopeptidase N (PepN) that is degraded by the NSP neutrophil elastase (NE). Since PepN lacked a canonical signal sequence or LPxTG motif, we created a mutant expressing a FLAG tagged version of the protein and confirmed its localization to the CW compartment. We determined that not only is PepN a CW-localized protein, but also is a substrate of NE in the context of intact Spn cells. Furthermore, in comparison to wild-type TIGR4 Spn, a mutant strain lacking PepN demonstrated a significant hyper-resistance phenotype in vitro in the presence of purified NE as well as in opsonophagocytic assays with purified human neutrophils ex vivo. Taken together, this is the first study to demonstrate that PepN is a CW-localized protein and a substrate of NE that contributes to the effective killing of Spn by NSPs and human neutrophils.
Collapse
|
29
|
Lehman SM, Mearns G, Rankin D, Cole RA, Smrekar F, Branston SD, Morales S. Design and Preclinical Development of a Phage Product for the Treatment of Antibiotic-Resistant Staphylococcus aureus Infections. Viruses 2019; 11:E88. [PMID: 30669652 PMCID: PMC6356596 DOI: 10.3390/v11010088] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages, viruses that only kill specific bacteria, are receiving substantial attention as nontraditional antibacterial agents that may help alleviate the growing antibiotic resistance problem in medicine. We describe the design and preclinical development of AB-SA01, a fixed-composition bacteriophage product intended to treat Staphylococcus aureus infections. AB-SA01 contains three naturally occurring, obligately lytic myoviruses related to Staphylococcus phage K. AB-SA01 component phages have been sequenced and contain no identifiable bacterial virulence or antibiotic resistance genes. In vitro, AB-SA01 killed 94.5% of 401 clinical Staphylococcus aureus isolates, including methicillin-resistant and vancomycin-intermediate ones for a total of 95% of the 205 known multidrug-resistant isolates. The spontaneous frequency of resistance to AB-SA01 was ≤3 × 10-9, and resistance emerging to one component phage could be complemented by the activity of another component phage. In both neutropenic and immunocompetent mouse models of acute pneumonia, AB-SA01 reduced lung S. aureus populations equivalently to vancomycin. Overall, the inherent characteristics of AB-SA01 component phages meet regulatory and generally accepted criteria for human use, and the preclinical data presented here have supported production under good manufacturing practices and phase 1 clinical studies with AB-SA01.
Collapse
|
30
|
Mouse LIMR3/CD300f is a negative regulator of the antimicrobial activity of neutrophils. Sci Rep 2018; 8:17406. [PMID: 30479367 PMCID: PMC6258681 DOI: 10.1038/s41598-018-35699-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 11/06/2018] [Indexed: 01/26/2023] Open
Abstract
Leukocyte mono-immunoglobulin-like receptor (LMIR)/CD300 proteins comprise a family of immunoglobulin-like receptors that are widely expressed on the immune cell surface in humans and mice. In general, LMIR3/CD300f suppresses the inflammatory response, but it can occasionally promote it. However, the precise roles of LMIR3 in the function of neutrophils remain to be elucidated. In the present study, we investigated LMIR3 expression in mature and immature neutrophils, and evaluated the effects of LMIR3 deficiency in mouse neutrophils. Our results indicated that bone marrow (BM) neutrophils expressed LMIR3 on their cell surface during cell maturation and that surface LMIR3 expression increased in response to Pseudomonas aeruginosa infection in a TLR4/MyD88-dependent manner. LMIR3-knockout (KO) neutrophils displayed significantly increased hypochlorous acid production, and elastase release, as well as significantly augmented cytotoxic activity against P. aeruginosa and Candida albicans; meanwhile, inhibitors of elastase and myeloperoxidase offset this enhanced antimicrobial activity. Furthermore, LMIR3-KO mice were significantly more resistant to Pseudomonas peritonitis and systemic candidiasis, although this may not be entirely due to the enhanced activity of neutrophils. These results demonstrate that LMIR3/CD300f deficiency augments the antimicrobial activity of mouse neutrophils.
Collapse
|
31
|
Chang S, Kim YH, Kim YJ, Kim YW, Moon S, Lee YY, Jung JS, Kim Y, Jung HE, Kim TJ, Cheong TC, Moon HJ, Cho JA, Kim HR, Han D, Na Y, Seok SH, Cho NH, Lee HC, Nam EH, Cho H, Choi M, Minato N, Seong SY. Taurodeoxycholate Increases the Number of Myeloid-Derived Suppressor Cells That Ameliorate Sepsis in Mice. Front Immunol 2018; 9:1984. [PMID: 30279688 PMCID: PMC6153344 DOI: 10.3389/fimmu.2018.01984] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
Bile acids (BAs) control metabolism and inflammation by interacting with several receptors. Here, we report that intravenous infusion of taurodeoxycholate (TDCA) decreases serum pro-inflammatory cytokines, normalizes hypotension, protects against renal injury, and prolongs mouse survival during sepsis. TDCA increases the number of granulocytic myeloid-derived suppressor cells (MDSCLT) distinctive from MDSCs obtained without TDCA treatment (MDSCL) in the spleen of septic mice. FACS-sorted MDSCLT cells suppress T-cell proliferation and confer protection against sepsis when adoptively transferred better than MDSCL. Proteogenomic analysis indicated that TDCA controls chromatin silencing, alternative splicing, and translation of the immune proteome of MDSCLT, which increases the expression of anti-inflammatory molecules such as oncostatin, lactoferrin and CD244. TDCA also decreases the expression of pro-inflammatory molecules such as neutrophil elastase. These findings suggest that TDCA globally edits the proteome to increase the number of MDSCLT cells and affect their immune-regulatory functions to resolve systemic inflammation during sepsis.
Collapse
Affiliation(s)
- Sooghee Chang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Youn-Hee Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Joo Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Young-Woo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Sungyoon Moon
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Yong Yook Lee
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Jin Sun Jung
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hi-Eun Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-Joo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Taek-Chin Cheong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye-Jung Moon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Ah Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yirang Na
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Hyeok Seok
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hai-Chon Lee
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Eun-Hee Nam
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| | - Hyosuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seung-Yong Seong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Super-silent FRET Sensor Enables Live Cell Imaging and Flow Cytometric Stratification of Intracellular Serine Protease Activity in Neutrophils. Sci Rep 2018; 8:13490. [PMID: 30201982 PMCID: PMC6131393 DOI: 10.1038/s41598-018-31391-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Serine proteases are released by neutrophils to act primarily as antimicrobial proteins but excessive and unbalanced serine protease activity results in serious host tissue damage. Here the synthesis of a novel chemical sensor based on a multi-branched fluorescence quencher is reported. It is super-silent, exhibiting no fluorescence until de-quenched by the exemplar serine protease human neutrophil elastase, rapidly enters human neutrophils, and is inhibited by serine protease inhibitors. This sensor allows live imaging of intracellular serine protease activity within human neutrophils and demonstrates that the unique combination of a multivalent scaffold combined with a FRET peptide represents a novel and efficient strategy to generate super-silent sensors that permit the visualisation of intracellular proteases and may enable point of care whole blood profiling of neutrophils.
Collapse
|
33
|
Hochscherf J, Pietsch M, Tieu W, Kuan K, Abell AD, Gütschow M, Niefind K. Crystal structure of highly glycosylated human leukocyte elastase in complex with an S2' site binding inhibitor. Acta Crystallogr F Struct Biol Commun 2018; 74:480-489. [PMID: 30084397 PMCID: PMC6096481 DOI: 10.1107/s2053230x1800537x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/05/2018] [Indexed: 11/10/2022] Open
Abstract
Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3-thiazolidine-2,4-dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small-molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate-recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2' site is blocked that normally binds the second side chain at the C-terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N-glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures.
Collapse
Affiliation(s)
- Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, Universität zu Köln, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Markus Pietsch
- Centre of Pharmacology, Medical Faculty, Universität zu Köln, Gleueler Str. 24, 50931 Cologne, Germany
| | - William Tieu
- Department of Chemistry and Centre for Nanoscale BioPhotonics (CNBP), The University of Adelaide, North Terrace, Adelaide 5005, Australia
| | - Kevin Kuan
- Department of Chemistry and Centre for Nanoscale BioPhotonics (CNBP), The University of Adelaide, North Terrace, Adelaide 5005, Australia
| | - Andrew D. Abell
- Department of Chemistry and Centre for Nanoscale BioPhotonics (CNBP), The University of Adelaide, North Terrace, Adelaide 5005, Australia
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, Universität zu Köln, Zülpicher Str. 47, 50674 Cologne, Germany
| |
Collapse
|
34
|
Domon H, Nagai K, Maekawa T, Oda M, Yonezawa D, Takeda W, Hiyoshi T, Tamura H, Yamaguchi M, Kawabata S, Terao Y. Neutrophil Elastase Subverts the Immune Response by Cleaving Toll-Like Receptors and Cytokines in Pneumococcal Pneumonia. Front Immunol 2018; 9:732. [PMID: 29922273 PMCID: PMC5996908 DOI: 10.3389/fimmu.2018.00732] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Excessive activation of neutrophils results in the release of neutrophil elastase (NE), which leads to lung injury in severe pneumonia. Previously, we demonstrated a novel immune subversion mechanism involving microbial exploitation of this NE ability, which eventually promotes disruption of the pulmonary epithelial barrier. In the present study, we investigated the effect of NE on host innate immune response. THP-1-derived macrophages were stimulated with heat-killed Streptococcus pneumoniae or lipopolysaccharide in the presence or absence of NE followed by analysis of toll-like receptor (TLR) and cytokine expression. Additionally, the biological significance of NE was confirmed in an in vivo mouse intratracheal infection model. NE downregulated the gene transcription of multiple cytokines in THP-1-derived macrophages through the cleavage of TLRs and myeloid differentiation factor 2. Additionally, NE cleaved inflammatory cytokines and chemokines. In a mouse model of intratracheal pneumococcal challenge, administration of an NE inhibitor significantly increased proinflammatory cytokine levels in bronchoalveolar lavage fluid, enhanced bacterial clearance, and improved survival rates. Our work indicates that NE subverts the innate immune response and that inhibition of this enzyme may constitute a novel therapeutic option for the treatment of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Nagai
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daisuke Yonezawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Wataru Takeda
- Faculty of Dentistry, Niigata University, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
35
|
Dittrich AS, Kühbandner I, Gehrig S, Rickert-Zacharias V, Twigg M, Wege S, Taggart CC, Herth F, Schultz C, Mall MA. Elastase activity on sputum neutrophils correlates with severity of lung disease in cystic fibrosis. Eur Respir J 2018; 51:13993003.01910-2017. [PMID: 29545279 DOI: 10.1183/13993003.01910-2017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/14/2018] [Indexed: 01/06/2023]
Abstract
Neutrophil elastase (NE) is a key risk factor for severity of cystic fibrosis (CF) lung disease. Recent studies identified increased NE activity on the surface of airway neutrophils from CF-like mice and patients with CF. However, the role of surface-bound NE in CF lung disease remains unknown. We determined the relationship between surface-bound NE activity and severity of lung disease in CF.Surface-bound NE activity was measured on sputum neutrophils from 35 CF patients and eight healthy controls using novel lipidated Förster resonance energy transfer reporters and correlated with free NE activity, neutrophil counts, interleukin-8, myeloperoxidase and antiproteases in sputum supernatant, and with lung function parameters.Surface-bound NE activity was increased in CF compared to healthy controls (p<0.01) and correlated with free NE activity (p<0.05) and other inflammation markers (p<0.001). Surface-bound and free NE activity correlated with forced expiratory volume in 1 s % predicted (p<0.01 and p<0.05), but only surface-bound NE activity correlated with plethysmographic functional residual capacity % pred (p<0.01) in patients with CF.We demonstrate that surface-bound NE activity on airway neutrophils correlates with severity of lung disease in patients with CF. Our results suggest that surface-bound NE activity may play an important role in the pathogenesis and serve as novel biomarker in CF lung disease.
Collapse
Affiliation(s)
- A Susanne Dittrich
- Dept of Translational Pulmonology and Division of Paediatric Pulmonology and Allergy and Cystic Fibrosis Centre, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), Heidelberg, Germany.,Dept of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Iris Kühbandner
- Dept of Translational Pulmonology and Division of Paediatric Pulmonology and Allergy and Cystic Fibrosis Centre, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), Heidelberg, Germany.,Dept of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
| | - Stefanie Gehrig
- Dept of Translational Pulmonology and Division of Paediatric Pulmonology and Allergy and Cystic Fibrosis Centre, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Verena Rickert-Zacharias
- Dept of Translational Pulmonology and Division of Paediatric Pulmonology and Allergy and Cystic Fibrosis Centre, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Matthew Twigg
- Airway Innate Immunity Group (AiIR), Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Sabine Wege
- Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), Heidelberg, Germany.,Dept of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
| | - Clifford C Taggart
- Airway Innate Immunity Group (AiIR), Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Felix Herth
- Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), Heidelberg, Germany.,Dept of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Schultz
- Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marcus A Mall
- Dept of Translational Pulmonology and Division of Paediatric Pulmonology and Allergy and Cystic Fibrosis Centre, University of Heidelberg, Heidelberg, Germany .,Translational Lung Research Centre Heidelberg (TLRC), German Centre for Lung Research (DZL), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.,Dept of Paediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
36
|
Effects of Estrogen on Bacterial Clearance and Neutrophil Response After Combined Burn Injury and Wound Infection. J Burn Care Res 2018; 37:328-33. [PMID: 27058581 DOI: 10.1097/bcr.0000000000000340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Females have a higher rate of mortality following burn injury, largely due to differences in sepsis-related mortality. The present study seeks to understand the underpinnings of the estrogen's immunomodulatory effects in a murine model of burn injury and infection. Gonad-intact and ovariectomized female mice were subjected to a 15% total BSA scald injury and then inoculated with 3000 CFU of Pseudomonas aeruginosa by topical application to the wound. Animals were killed at 1, 2, or 7 days after injury. Tissue and whole blood were collected. Cultures were performed of all tissues to assess for bacteria content. Lungs were examined for histologic appearance and homogenates were analyzed for chemokines and myeloperoxidase activity. Mortality reached 95% by 3 days after injury for gonad intact mice, whereas in ovariectomized mice it was 76% at 7 days. Blood and tissue samples from gonad intact mice had significantly higher levels of P. aeruginosa compared with ovariectomized mice. Histologic assessment of lungs demonstrated a similar overall cellularity in ovariectomized mice relative to gonad intact mice 1 day after injury, but increased neutrophil count in gonad intact mice. This correlated with chemotactic signaling as lung homogenates had lower levels of KC in ovariectomized mice (128.0 ± 19.8 vs 48.3 ± 5.7 pg/mg protein). Also, myeloperoxidase was significantly lower in lung homogenates of ovariectomized mice (1.12 ± 0.34 vs 0.56 ± 0.08 units/mg protein). Ovariectomy confers an early, but brief survival advantage in female mice after burn injury and wound infection. This appears to be secondary to enhanced bacterial clearance.
Collapse
|
37
|
Neutrophil Fates in Bronchiectasis and Alpha-1 Antitrypsin Deficiency. Ann Am Thorac Soc 2018; 13 Suppl 2:S123-9. [PMID: 27115946 DOI: 10.1513/annalsats.201512-805kv] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The neutrophil is a powerful cellular defender of the vulnerable interface between the environment and pulmonary tissues. This cell's potent weapons are carefully calibrated in the healthy state to maximize effectiveness in fighting pathogens while minimizing tissue damage and allowing for repair of what damage does occur. The three related chronic airway disorders of cystic fibrosis, non-cystic fibrosis bronchiectasis, and alpha-1 antitrypsin deficiency all demonstrate significant derangements of this homeostatic system that result in their respective pathologies. An important shared feature among them is the inefficient resolution of chronic inflammation that serves as a central means for neutrophil-driven lung damage resulting in disease progression. Examining the commonalities and divergences between these diseases in the light of their immunopathology is informative and may help guide us toward future therapeutics designed to modulate the neutrophil's interplay with the pulmonary environment.
Collapse
|
38
|
Bacterial Nucleotidyl Cyclase Inhibits the Host Innate Immune Response by Suppressing TAK1 Activation. Infect Immun 2017; 85:IAI.00239-17. [PMID: 28652310 DOI: 10.1128/iai.00239-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Exoenzyme Y (ExoY) is a type III secretion system effector found in 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY is a soluble nucleotidyl cyclase that increases the cytoplasmic levels of nucleoside 3',5'-cyclic monophosphates (cNMPs) to mediate endothelial Tau phosphorylation and permeability, its functional role in the innate immune response is still poorly understood. Transforming growth factor β-activated kinase 1 (TAK1) is critical for mediating Toll-like receptor (TLR) signaling and subsequent activation of NF-κB and AP-1, which are transcriptional activators of innate immunity. Here, we report that ExoY inhibits proinflammatory cytokine production through suppressing the activation of TAK1 as well as downstream NF-κB and mitogen-activated protein (MAP) kinases. Mice infected with ExoY-deficient P. aeruginosa had higher levels of tumor necrosis factor (TNF) and interleukin-6 (IL-6), more neutrophil recruitment, and a lower bacterial load in lung tissue than mice infected with wild-type P. aeruginosa Taken together, our findings identify a previously unknown mechanism by which P. aeruginosa ExoY inhibits the host innate immune response.
Collapse
|
39
|
Loke I, Østergaard O, Heegaard NHH, Packer NH, Thaysen-Andersen M. Paucimannose-Rich N-glycosylation of Spatiotemporally Regulated Human Neutrophil Elastase Modulates Its Immune Functions. Mol Cell Proteomics 2017; 16:1507-1527. [PMID: 28630087 PMCID: PMC5546201 DOI: 10.1074/mcp.m116.066746] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/04/2017] [Indexed: 12/22/2022] Open
Abstract
Human neutrophil elastase (HNE) is an important N-glycosylated serine protease in the innate immune system, but the structure and immune-modulating functions of HNE N-glycosylation remain undescribed. Herein, LC-MS/MS-based glycan, glycopeptide and glycoprotein profiling were utilized to first determine the heterogeneous N-glycosylation of HNE purified from neutrophil lysates and then from isolated neutrophil granules of healthy individuals. The spatiotemporal expression of HNE during neutrophil activation and the biological importance of its N-glycosylation were also investigated using immunoblotting, cell surface capture, native MS, receptor interaction, protease inhibition, and bacteria growth assays. Site-specific HNE glycoprofiling demonstrated that unusual paucimannosidic N-glycans, particularly Manα1,6Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAcβ, predominantly occupied Asn124 and Asn173. The equally unusual core fucosylated monoantenna complex-type N-sialoglycans also decorated these two fully occupied sites. In contrast, the mostly unoccupied Asn88 carried nonfucosylated paucimannosidic N-glycans probably resulting from low glycosylation site solvent accessibility. Asn185 was not glycosylated. Subcellular- and site-specific glycoprofiling showed highly uniform N-glycosylation of HNE residing in distinct neutrophil compartments. Stimulation-induced cell surface mobilization demonstrated a spatiotemporal regulation, but not cell surface-specific glycosylation signatures, of HNE in activated human neutrophils. The three glycosylation sites of HNE were located distal to the active site indicating glycan functions other than interference with HNE enzyme activity. Functionally, the paucimannosidic HNE glycoforms displayed preferential binding to human mannose binding lectin compared with the HNE sialoglycoforms, suggesting a glycoform-dependent involvement of HNE in complement activation. The heavily N-glycosylated HNE protease inhibitor, α1-antitrypsin, displayed concentration-dependent complex formation and preferred glycoform-glycoform interactions with HNE. Finally, both enzymatically active HNE and isolated HNE N-glycans demonstrated low micromolar concentration-dependent growth inhibition of clinically-relevant Pseudomonas aeruginosa, suggesting some bacteriostatic activity is conferred by the HNE N-glycans. Taken together, these observations support that the unusual HNE N-glycosylation, here reported for the first time, is involved in modulating multiple immune functions central to inflammation and infection.
Collapse
Affiliation(s)
- Ian Loke
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ole Østergaard
- §Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Niels H H Heegaard
- §Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Nicolle H Packer
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia;
| |
Collapse
|
40
|
Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis. Pathogens 2017; 6:pathogens6010010. [PMID: 28282951 PMCID: PMC5371898 DOI: 10.3390/pathogens6010010] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa.
Collapse
|
41
|
Montgomery ST, Mall MA, Kicic A, Stick SM. Hypoxia and sterile inflammation in cystic fibrosis airways: mechanisms and potential therapies. Eur Respir J 2016; 49:13993003.00903-2016. [DOI: 10.1183/13993003.00903-2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
Cystic fibrosis is one of the most common autosomal recessive genetic diseases in Caucasian populations. Diagnosisvianewborn screening and targeted nutritional and antibiotic therapy have improved outcomes, however respiratory failure remains the key cause of morbidity and mortality. Progressive respiratory disease in cystic fibrosis is characterised by chronic neutrophilic airway inflammation associated with structural airway damage leading to bronchiectasis and decreased lung function. Mucus obstruction is a characteristic early abnormality in the cystic fibrosis airway, associated with neutrophilic inflammation often in the absence of detectable infection. Recent studies have suggested a link between hypoxic cell death and sterile neutrophilic inflammation in cystic fibrosis and other diseasesviathe IL-1 signalling pathway. In this review, we consider recent evidence regarding the cellular responses to respiratory hypoxia as a potential driver of sterile neutrophilic inflammation in the lung, current knowledge on hypoxia as a pathogenic mechanism in cystic fibrosis and the potential for current and future therapies to alleviate hypoxia-driven sterile inflammation.
Collapse
|
42
|
Wagner CJ, Schultz C, Mall MA. Neutrophil elastase and matrix metalloproteinase 12 in cystic fibrosis lung disease. Mol Cell Pediatr 2016; 3:25. [PMID: 27456476 PMCID: PMC4960106 DOI: 10.1186/s40348-016-0053-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/14/2016] [Indexed: 01/08/2023] Open
Abstract
Chronic lung disease remains the major cause of morbidity and mortality in patients with cystic fibrosis (CF). Recent studies in young children with CF diagnosed by newborn screening identified neutrophil elastase (NE), a major product released from neutrophils in inflamed airways, as a key risk factor for the onset and early progression of CF lung disease. However, the understanding of how NE and potentially other proteases contribute to the complex in vivo pathogenesis of CF lung disease remains limited. In this review, we summarize recent progress in this area based on studies in βENaC-overexpressing (βENaC-Tg) mice featuring CF-like lung disease and novel protease-specific Förster resonance energy transfer (FRET) sensors for localization and quantification of protease activity in the lung. These studies demonstrated that NE is implicated in several key features of CF lung disease such as neutrophilic airway inflammation, mucus hypersecretion, and structural lung damage in vivo. Furthermore, these studies identified macrophage elastase (matrix metalloproteinase 12 (MMP12)) as an additional protease contributing to early lung damage in βENaC-Tg mice. Collectively, these results suggest that NE and MMP12 released from activated neutrophils and macrophages in mucus-obstructed airways play important pathogenetic roles and may serve as potential therapeutic targets to prevent and/or delay irreversible structural lung damage in patients with CF.
Collapse
Affiliation(s)
- Claudius J Wagner
- Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carsten Schultz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
43
|
Boxio R, Wartelle J, Nawrocki-Raby B, Lagrange B, Malleret L, Hirche T, Taggart C, Pacheco Y, Devouassoux G, Bentaher A. Neutrophil elastase cleaves epithelial cadherin in acutely injured lung epithelium. Respir Res 2016; 17:129. [PMID: 27751187 PMCID: PMC5067913 DOI: 10.1186/s12931-016-0449-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/10/2016] [Indexed: 01/05/2023] Open
Abstract
Background In acutely injured lungs, massively recruited polymorphonuclear neutrophils (PMNs) secrete abnormally neutrophil elastase (NE). Active NE creates a localized proteolytic environment where various host molecules are degraded leading to impairment of tissue homeostasis. Among the hallmarks of neutrophil-rich pathologies is a disrupted epithelium characterized by the loss of cell-cell adhesion and integrity. Epithelial-cadherin (E-cad) represents one of the most important intercellular junction proteins. E-cad exhibits various functions including its role in maintenance of tissue integrity. While much interest has focused on the expression and role of E-cad in different physio- and physiopathological states, proteolytic degradation of this structural molecule and ensuing potential consequences on host lung tissue injury are not completely understood. Methods NE capacity to cleave E-cad was determined in cell-free and lung epithelial cell culture systems. The impact of such cleavage on epithelial monolayer integrity was then investigated. Using mice deficient in NE in a clinically relevant experimental model of acute pneumonia, we examined whether degraded E-cad is associated with lung inflammation and injury and whether NE contributes to E-cad cleavage. Finally, we checked for the presence of both degraded E-cad and NE in bronchoalveolar lavage samples obtained from patients with exacerbated COPD, a clinical manifestation characterised by a neutrophilic inflammatory response. Results We show that NE is capable of degrading E-cad in vitro and in cultured cells. NE-mediated degradation of E-cad was accompanied with loss of epithelial monolayer integrity. Our in vivo findings provide evidence that NE contributes to E-cad cleavage that is concomitant with lung inflammation and injury. Importantly, we observed that the presence of degraded E-cad coincided with the detection of NE in diseased human lungs. Conclusions Active NE has the capacity to cleave E-cad and interfere with its cell-cell adhesion function. These data suggest a mechanism by which unchecked NE participates potentially to the pathogenesis of neutrophil-rich lung inflammatory and tissue-destructive diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0449-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachel Boxio
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Julien Wartelle
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | | | - Brice Lagrange
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Laurette Malleret
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Timothee Hirche
- Department of Pulmonary Medicine, German Clinic for Diagnostics (DKD), Wiesbaden, Germany
| | - Clifford Taggart
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Yves Pacheco
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France.,CHU Croix-Rousse, Lyon, France
| | - Abderrazzaq Bentaher
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France.
| |
Collapse
|
44
|
The neutrophil elastase inhibitor, sivelestat, attenuates sepsis-related kidney injury in rats. Int J Mol Med 2016; 38:767-75. [PMID: 27430552 PMCID: PMC4990314 DOI: 10.3892/ijmm.2016.2665] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/24/2016] [Indexed: 12/18/2022] Open
Abstract
Sepsis-induced acute kidney injury (AKI) represents a major cause of mortality in intensive care units. Sivelestat, a selective inhibitor of neutrophil elastase (NE), can attenuate sepsis-related acute lung injury. However, whether sivelestat can preserve kidney function during sepsis remains unclear. In this study, we thus examined the effects of sivelestat on sepsis-related AKI. Cecal ligation and puncture (CLP) was performed to induce multiple bacterial infection in male Sprague-Dawley rats, and subsequently, 50 or 100 mg/kg sivelestat were administered by intraperitoneal injection immediately after the surgical procedure. In the untreated rats with sepsis, the mean arterial pressure (MAP) and glomerular filtration rate (GFR) were decreased, whereas serum blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels were increased. We found that sivelestat promoted the survival of the rats with sepsis, restored the impairment of MAP and GFR, and inhibited the increased BUN and NGAL levels; specifically, the higher dose was more effective. In addition, sivelestat suppressed the CLP-induced macrophage infiltration, the overproduction of pro-inflammatory mediators (tumor necrosis factor-α, interleukin-1β, high-mobility group box 1 and inducible nitric oxide synthase) and serine/threonine kinase (Akt) pathway activation in the rats. Collectively, our data suggest that the inhibition of NE activity with the inhibitor, sivelestat, is beneficial in ameliorating sepsis-related kidney injury.
Collapse
|
45
|
Toll-Like Receptor 4 Agonistic Antibody Promotes Host Defense against Chronic Pseudomonas aeruginosa Lung Infection in Mice. Infect Immun 2016; 84:1986-1993. [PMID: 27091927 DOI: 10.1128/iai.01384-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
Chronic lower respiratory tract infection with Pseudomonas aeruginosa is difficult to treat due to enhanced antibiotic resistance and decreased efficacy of drug delivery to destroyed lung tissue. To determine the potential for restorative immunomodulation therapies, we evaluated the effect of Toll-like receptor 4 (TLR4) stimulation on the host immune response to Pseudomonas infection in mice. We implanted sterile plastic tubes precoated with P. aeruginosa in the bronchi of mice, administered the TLR4/MD2 agonistic monoclonal antibody UT12 intraperitoneally every week, and subsequently analyzed the numbers of viable bacteria and inflammatory cells and the levels of cytokines. We also performed flow cytometry-based phagocytosis and opsonophagocytic killing assays in vitro using UT12-treated murine peritoneal neutrophils. UT12-treated mice showed significantly enhanced bacterial clearance, increased numbers of Ly6G(+) neutrophils, and increased concentrations of macrophage inflammatory protein 2 (MIP-2) in the lungs (P < 0.05). Depletion of CD4(+) T cells eliminated the ability of the UT12 treatment to improve bacterial clearance and promote neutrophil recruitment and MIP-2 production. Additionally, UT12-pretreated peritoneal neutrophils exhibited increased opsonophagocytic killing activity via activation of the serine protease pathway, specifically neutrophil elastase activity, in a TLR4-dependent manner. These data indicated that UT12 administration significantly augmented the innate immune response against chronic bacterial infection, in part by promoting neutrophil recruitment and bactericidal function.
Collapse
|
46
|
Zang S, Ma X, Zhuang Z, Liu J, Bian D, Xun Y, Zhang Q, Zhao F, Yang W, Liu J, Luo Y, Liu Y, Ye B, Ye D, Shi J. Increased ratio of neutrophil elastase toα1-antitrypsin is closely associated with liver inflammation in patients with nonalcoholic steatohepatitis. Clin Exp Pharmacol Physiol 2015; 43:13-21. [PMID: 26444279 DOI: 10.1111/1440-1681.12499] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/02/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Shufei Zang
- Department of Endocrinology; Hangzhou Normal University Affiliated Hospital; Hangzhou Zhejiang China
- Second Clinical Medical College; Zhejiang Chinese Medical University; Hangzhou Zhejiang China
| | - Xiaojie Ma
- Second Clinical Medical College; Zhejiang Chinese Medical University; Hangzhou Zhejiang China
| | - Zhenjie Zhuang
- Centre for Translational Medicine; Hangzhou Normal University Affiliated Hospital; Hangzhou Zhejiang China
| | - Jing Liu
- Second Clinical Medical College; Zhejiang Chinese Medical University; Hangzhou Zhejiang China
| | - Dongxue Bian
- Second Clinical Medical College; Zhejiang Chinese Medical University; Hangzhou Zhejiang China
| | - Yunhao Xun
- Department of Liver Diseases; Xixi Hospital of Hangzhou; Hangzhou Zhejiang China
| | - Qiuling Zhang
- Department of Endocrinology; Hangzhou Normal University Affiliated Hospital; Hangzhou Zhejiang China
| | - Falin Zhao
- Department of Health Management; School of Medicine; Hangzhou Normal University; Hangzhou Zhejiang China
| | - Wenjun Yang
- Department of Pathology; Hangzhou Normal University Affiliated Hospital; Hangzhou Zhejiang China
| | - Juan Liu
- Department of Pathology; Hangzhou Normal University Affiliated Hospital; Hangzhou Zhejiang China
| | - Yan Luo
- Centre for Translational Medicine; Hangzhou Normal University Affiliated Hospital; Hangzhou Zhejiang China
| | - Yinlan Liu
- Centre for Translational Medicine; Hangzhou Normal University Affiliated Hospital; Hangzhou Zhejiang China
| | - Bei Ye
- Centre for Translational Medicine; Hangzhou Normal University Affiliated Hospital; Hangzhou Zhejiang China
| | - Dewei Ye
- Department of Medicine; Faculty of Medicine; The University of Hong Kong; Hong Kong China
| | - Junping Shi
- Centre for Translational Medicine; Hangzhou Normal University Affiliated Hospital; Hangzhou Zhejiang China
| |
Collapse
|
47
|
Stapels DAC, Kuipers A, von Köckritz-Blickwede M, Ruyken M, Tromp AT, Horsburgh MJ, de Haas CJC, van Strijp JAG, van Kessel KPM, Rooijakkers SHM. Staphylococcus aureus protects its immune-evasion proteins against degradation by neutrophil serine proteases. Cell Microbiol 2015; 18:536-45. [PMID: 26418545 DOI: 10.1111/cmi.12528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022]
Abstract
Neutrophils store large quantities of neutrophil serine proteases (NSPs) that contribute, via multiple mechanisms, to antibacterial immune defences. Even though neutrophils are indispensable in fighting Staphylococcus aureus infections, the importance of NSPs in anti-staphylococcal defence is yet unknown. However, the fact that S. aureus produces three highly specific inhibitors for NSPs [the extracellular adherence proteins (EAPs) Eap, EapH1 and EapH2], suggests that these proteases are important for host defences against this bacterium. In this study we demonstrate that NSPs can inactivate secreted virulence factors of S. aureus and that EAP proteins function to prevent this degradation. Specifically, we find that a large group of S. aureus immune-evasion proteins is vulnerable to proteolytic inactivation by NSPs. In most cases, NSP cleavage leads to functional inactivation of virulence proteins. Interestingly, proteins with similar immune-escape functions appeared to have differential cleavage sensitivity towards NSPs. Using targeted mutagenesis and complementation analyses in S. aureus, we demonstrate that all EAP proteins can protect other virulence factors from NSP degradation in complex bacterial supernatants. These findings show that NSPs inactivate S. aureus virulence factors. Moreover, the protection by EAP proteins can explain why this antibacterial function of NSPs was masked in previous studies. Furthermore, our results indicate that therapeutic inactivation of EAP proteins can help to restore the natural host immune defences against S. aureus.
Collapse
Affiliation(s)
- D A C Stapels
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A Kuipers
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - M Ruyken
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A T Tromp
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M J Horsburgh
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - C J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - K P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - S H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
48
|
Lecaille F, Lalmanach G, Andrault PM. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases. Biochimie 2015; 122:151-68. [PMID: 26341472 DOI: 10.1016/j.biochi.2015.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Lung antimicrobial proteins and peptides (AMPs) are major sentinels of innate immunity by preventing microbial colonization and infection. Nevertheless bactericidal activity of AMPs against Gram-positive and Gram-negative bacteria is compromised in patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and asthma. Evidence is accumulating that expression of harmful human serine proteases, matrix metalloproteases and cysteine cathepsins is markedely increased in these chronic lung diseases. The local imbalance between proteases and protease inhibitors compromises lung tissue integrity and function, by not only degrading extracellular matrix components, but also non-matrix proteins. Despite the fact that AMPs are somewhat resistant to proteolytic degradation, some human proteases cleave them efficiently and impair their antimicrobial potency. By contrast, certain AMPs may be effective as antiproteases. Host proteases participate in concert with bacterial proteases in the degradation of key innate immunity peptides/proteins and thus may play immunomodulatory activities during chronic lung diseases. In this context, the present review highlights the current knowledge and recent discoveries on the ability of host enzymes to interact with AMPs, providing a better understanding of the role of human proteases in innate host defense.
Collapse
Affiliation(s)
- Fabien Lecaille
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France.
| | - Gilles Lalmanach
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| | - Pierre-Marie Andrault
- INSERM, UMR 1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Centre d'Etude des Pathologies Respiratoires, Equipe 2: « Mécanismes Protéolytiques dans l'Inflammation », Université François Rabelais, F-37032 Tours cedex, France
| |
Collapse
|
49
|
Thrombospondin-1 restrains neutrophil granule serine protease function and regulates the innate immune response during Klebsiella pneumoniae infection. Mucosal Immunol 2015; 8:896-905. [PMID: 25492474 PMCID: PMC4465063 DOI: 10.1038/mi.2014.120] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/31/2014] [Indexed: 02/04/2023]
Abstract
Neutrophil elastase (NE) and cathepsin G (CG) contribute to intracellular microbial killing but, if left unchecked and released extracellularly, promote tissue damage. Conversely, mechanisms that constrain neutrophil serine protease activity protect against tissue damage but may have the untoward effect of disabling the microbial killing arsenal. The host elaborates thrombospondin-1 (TSP-1), a matricellular protein released during inflammation, but its role during neutrophil activation following microbial pathogen challenge remains uncertain. Mice deficient in TSP-1 (thbs1(-/-)) showed enhanced lung bacterial clearance, reduced splenic dissemination, and increased survival compared with wild-type (WT) controls during intrapulmonary Klebsiella pneumoniae infection. More effective pathogen containment was associated with reduced burden of inflammation in thbs1(-/-) mouse lungs compared with WT controls. Lung NE activity was increased in thbs1(-/-) mice following K. pneumoniae challenge, and thbs1(-/-) neutrophils showed enhanced intracellular microbial killing that was abrogated with recombinant TSP-1 administration or WT serum. Thbs1(-/-) neutrophils exhibited enhanced NE and CG enzymatic activity, and a peptide corresponding to amino-acid residues 793-801 within the type-III repeat domain of TSP-1 bridled neutrophil proteolytic function and microbial killing in vitro. Thus, TSP-1 restrains proteolytic action during neutrophilic inflammation elicited by K. pneumoniae, providing a mechanism that may regulate the microbial killing arsenal.
Collapse
|
50
|
Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J Cyst Fibros 2015; 14:419-30. [PMID: 25814049 DOI: 10.1016/j.jcf.2015.03.003] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/08/2015] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
Abstract
Lung disease is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). Although CF lung disease is primarily an infectious disorder, the associated inflammation is both intense and ineffective at clearing pathogens. Persistent high-intensity inflammation leads to permanent structural damage of the CF airways and impaired lung function that eventually results in respiratory failure and death. Several defective inflammatory responses have been linked to cystic fibrosis transmembrane conductance regulator (CFTR) deficiency including innate and acquired immunity dysregulation, cell membrane lipid abnormalities, various transcription factor signaling defects, as well as altered kinase and toll-like receptor responses. The inflammation of the CF lung is dominated by neutrophils that release oxidants and proteases, particularly elastase. Neutrophil elastase in the CF airway secretions precedes the appearance of bronchiectasis, and correlates with lung function deterioration and respiratory exacerbations. Anti-inflammatory therapies are therefore of particular interest for CF lung disease but must be carefully studied to avoid suppressing critical elements of the inflammatory response and thus worsening infection. This review examines the role of inflammation in the pathogenesis of CF lung disease, summarizes the results of past clinical trials and explores promising new anti-inflammatory options.
Collapse
Affiliation(s)
- André M Cantin
- Pulmonary Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada.
| | - Dominik Hartl
- CF Center, Children's Hospital of the University of Tübingen, Tübingen, Germany
| | - Michael W Konstan
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|