1
|
Vergnolle N. Thrombin stories in the gut. Biochimie 2024; 226:107-112. [PMID: 38521125 DOI: 10.1016/j.biochi.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Many studies have demonstrated the involvement of proteases in gut physiology and pathophysiology over the recent years. Among them, thrombin has appeared for a long time as an old player only involved in blood clotting upon tissue injury. The fact that thrombin receptors (Protease-Activated Receptors-1 and -4) are expressed and functional in almost all cell types of the gut, contributing to barrier, immune or motility functions, suggested that thrombin could actually be at the crossroad of intestinal physiology. Recent work has unraveled the constitutive release of active thrombin by intestinal epithelial cells, opening new research avenues on the role of thrombin in the gut. These roles are considered in the present review, as well as the regulation of thrombin in the gut. The potential of thrombin as a target for treatments of intestinal pathologies is also discussed here.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), CS60039, Toulouse, Cedex 03, 31024, France; Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Ab T2N 4N1, Canada.
| |
Collapse
|
2
|
Ma J, Hermans L, Dierick M, Van der Weken H, Cox E, Devriendt B. Enterotoxigenic Escherichia coli heat labile enterotoxin affects neutrophil effector functions via cAMP/PKA/ERK signaling. Gut Microbes 2024; 16:2399215. [PMID: 39284098 PMCID: PMC11407407 DOI: 10.1080/19490976.2024.2399215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 09/19/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal illness in humans and animals, induced by enterotoxins produced by these pathogens. Despite the crucial role of neutrophils in combatting bacterial infections, our understanding of how enterotoxins impact neutrophil function is limited. To address this knowledge gap, we used heat-labile enterotoxin (LT) and heat-stable enterotoxin a (STa) to investigate their impact on the effector functions of neutrophils. Our study reveals that pSTa does not exert any discernible effect on the function of neutrophils. In contrast, LT altered the migration and phagocytosis of neutrophils and induced the production of inflammatory factors via activation of cAMP/PKA and ERK1/2 signaling. LT also attenuated the release of neutrophil extracellular traps by neutrophils via the PKA signaling pathway. Our findings provide novel insights into the impact of LT on neutrophil function, shedding light on the underlying mechanisms that govern its immunoregulatory effects. This might help ETEC in subverting the immune system and establishing infection.
Collapse
Affiliation(s)
- Jinglin Ma
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leen Hermans
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Matthias Dierick
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans Van der Weken
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Han LL, Lu QQ, Zheng WW, Li YL, Song YY, Zhang XZ, Long SR, Liu RD, Wang ZQ, Cui J. A novel trypsin of Trichinella spiralis mediates larval invasion of gut epithelium via binding to PAR2 and activating ERK1/2 pathway. PLoS Negl Trop Dis 2024; 18:e0011874. [PMID: 38166153 PMCID: PMC10786404 DOI: 10.1371/journal.pntd.0011874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Proteases secreted by Trichinella spiralis intestinal infective larvae (IIL) play an important role in larval invasion and pathogenesis. However, the mechanism through which proteases mediate larval invasion of intestinal epithelial cells (IECs) remains unclear. A novel T. spiralis trypsin (TsTryp) was identified in IIL excretory/secretory (ES) proteins. It was an early and highly expressed protease at IIL stage, and had the potential as an early diagnostic antigen. The aim of this study was to investigate the biological characteristics of this novel TsTryp, its role in larval invasion of gut epithelium, and the mechanisms involved. METHODOLOGY/PRINCIPAL FINDING TsTryp with C-terminal domain was cloned and expressed in Escherichia coli BL21 (DE3), and the rTsTryp had the enzymatic activity of natural trypsin, but it could not directly degrade gut tight junctions (TJs) proteins. qPCR and western blotting showed that TsTryp was highly expressed at the invasive IIL stage. Immunofluorescence assay (IFA), ELISA and Far Western blotting revealed that rTsTryp specifically bound to IECs, and confocal microscopy showed that the binding of rTsTryp with IECs was mainly localized in the cytomembrane. Co-immunoprecipitation (Co-IP) confirmed that rTsTryp bound to protease activated receptors 2 (PAR2) in Caco-2 cells. rTsTryp binding to PAR2 resulted in decreased expression levels of ZO-1 and occludin and increased paracellular permeability in Caco-2 monolayers by activating the extracellular regulated protein kinases 1/2 (ERK1/2) pathway. rTsTryp decreased TJs expression and increased epithelial permeability, which could be abrogated by the PAR2 antagonist AZ3451 and ERK1/2 inhibitor PD98059. rTsTryp facilitated larval invasion of IECs, and anti-rTsTryp antibodies inhibited invasion. Both inhibitors impeded larval invasion and alleviated intestinal inflammation in vitro and in vivo. CONCLUSIONS TsTryp binding to PAR2 activated the ERK1/2 pathway, decreased the expression of gut TJs proteins, disrupted epithelial integrity and barrier function, and consequently mediated larval invasion of the gut mucosa. Therefore, rTsTryp could be regarded as a potential vaccine target for blocking T. spiralis invasion and infection.
Collapse
Affiliation(s)
- Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Wen Wen Zheng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yang Li Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Yakupu A, Zhang D, Guan H, Jiang M, Dong J, Niu Y, Tang J, Liu Y, Ma X, Lu S. Single-cell analysis reveals melanocytes may promote inflammation in chronic wounds through cathepsin G. Front Genet 2023; 14:1072995. [PMID: 36755572 PMCID: PMC9900029 DOI: 10.3389/fgene.2023.1072995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
During acute wound (AW) healing, a series of proper communications will occur between different epidermal cells at precise temporal stages to restore the integrity of the skin. However, it is still unclear what variation happened in epidermal cell interaction in the chronic wound environment. To provide new insights into chronic wound healing, we reconstructed the variations in the epidermal cell-cell communication network that occur in chronic wound healing via single-cell RNA-seq (scRNA-seq) data analysis. We found that the intricate cellular and molecular interactions increased in pressure ulcer (PU) compared to AW, especially the PARs signaling pathways were significantly upregulated. It shows that the PARs signaling pathways' main source was melanocytes and the CTSG-F2RL1 ligand-receptor pairs were its main contributor. Cathepsin G (CatG or CTSG) is a serine protease mainly with trypsin- and chymotrypsin-like specificity. It is synthesized and secreted by some immune or non-immune cells. Whereas, it has not been reported that melanocytes can synthesize and secrete the CTSG. F2R Like Trypsin Receptor 1 (F2RL1) is a member of proteinase-activated receptors (PARs) that are irreversibly activated by proteolytic cleavage and its stimulation can promote inflammation and inflammatory cell infiltration. In this study, we found that melanocytes increased in pressure ulcers, melanocytes can synthesize and secrete the CTSG and may promote inflammation in chronic wounds through CTSG-F2RL1 pairs, which may be a novel potential target and a therapeutic strategy in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Aobuliaximu Yakupu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haonan Guan
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minfei Jiang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaoyun Dong
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiwen Niu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiajun Tang
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingkai Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xian Ma
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xian Ma, ; Shuliang Lu,
| | - Shuliang Lu
- Department of Burn, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Wound Healing Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xian Ma, ; Shuliang Lu,
| |
Collapse
|
5
|
Deraison C, Bonnart C, Langella P, Roget K, Vergnolle N. Elafin and its precursor trappin-2: What is their therapeutic potential for intestinal diseases? Br J Pharmacol 2023; 180:144-160. [PMID: 36355635 PMCID: PMC10098471 DOI: 10.1111/bph.15985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2021] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Elafin and its precursor trappin-2 are known for their contribution to the physiological mucosal shield against luminal microbes. Such a contribution seems to be particularly relevant in the gut, where the exposure of host tissues to heavy loads of microbes is constant and contributes to mucosa-associated pathologies. The expression of trappin-2/elafin has been shown to be differentially regulated in diseases associated with gut inflammation. Accumulating evidence has demonstrated the protective effects of trappin-2/elafin in gut intestinal disorders associated with acute or chronic inflammation, or with gluten sensitization disorders. The protective effects of trappin-2/elafin in the gut are discussed in terms of their pleiotropic modes of action: acting as protease inhibitors, transglutaminase substrates, antimicrobial peptides or as a regulator of pro-inflammatory transcription factors. Further, the question of the therapeutic potential of trappin-2/elafin delivery at the intestinal mucosa surface is raised. Whether trappin-2/elafin mucosal delivery should be considered to ensure intestinal tissue repair is also discussed.
Collapse
Affiliation(s)
- Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Chrystelle Bonnart
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Philippe Langella
- Université Paris-Saclay, AgroParisTech, Micalis Institute, INRAE, Jouy-en-Josas, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103:717-785. [PMID: 35901239 PMCID: PMC9662810 DOI: 10.1152/physrev.00044.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2021] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022] Open
Abstract
Proteases are signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation; from immune, inflammatory epithelial, and cancer cells; as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure, and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Collapse
Affiliation(s)
- Chloe J Peach
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Department of Neuroscience and Physiology and Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, New York
| |
Collapse
|
7
|
Leppkes M, Lindemann A, Gößwein S, Paulus S, Roth D, Hartung A, Liebing E, Zundler S, Gonzalez-Acera M, Patankar JV, Mascia F, Scheibe K, Hoffmann M, Uderhardt S, Schauer C, Foersch S, Neufert C, Vieth M, Schett G, Atreya R, Kühl AA, Bleich A, Becker C, Herrmann M, Neurath MF. Neutrophils prevent rectal bleeding in ulcerative colitis by peptidyl-arginine deiminase-4-dependent immunothrombosis. Gut 2022; 71:2414-2429. [PMID: 34862250 PMCID: PMC9667856 DOI: 10.1136/gutjnl-2021-324725] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/22/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Bleeding ulcers and erosions are hallmarks of active ulcerative colitis (UC). However, the mechanisms controlling bleeding and mucosal haemostasis remain elusive. DESIGN We used high-resolution endoscopy and colon tissue samples of active UC (n = 36) as well as experimental models of physical and chemical mucosal damage in mice deficient for peptidyl-arginine deiminase-4 (PAD4), gnotobiotic mice and controls. We employed endoscopy, histochemistry, live-cell microscopy and flow cytometry to study eroded mucosal surfaces during mucosal haemostasis. RESULTS Erosions and ulcerations in UC were covered by fresh blood, haematin or fibrin visible by endoscopy. Fibrin layers rather than fresh blood or haematin on erosions were inversely correlated with rectal bleeding in UC. Fibrin layers contained ample amounts of neutrophils coaggregated with neutrophil extracellular traps (NETs) with detectable activity of PAD. Transcriptome analyses showed significantly elevated PAD4 expression in active UC. In experimentally inflicted wounds, we found that neutrophils underwent NET formation in a PAD4-dependent manner hours after formation of primary blood clots, and remodelled clots to immunothrombi containing citrullinated histones, even in the absence of microbiota. PAD4-deficient mice experienced an exacerbated course of dextrane sodium sulfate-induced colitis with markedly increased rectal bleeding (96 % vs 10 %) as compared with controls. PAD4-deficient mice failed to remodel blood clots on mucosal wounds eliciting impaired healing. Thus, NET-associated immunothrombi are protective in acute colitis, while insufficient immunothrombosis is associated with rectal bleeding. CONCLUSION Our findings uncover that neutrophils induce secondary immunothrombosis by PAD4-dependent mechanisms. Insufficient immunothrombosis may favour rectal bleeding in UC.
Collapse
Affiliation(s)
- Moritz Leppkes
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany .,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Aylin Lindemann
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Stefanie Gößwein
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Susanne Paulus
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Dominik Roth
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Anne Hartung
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Eva Liebing
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Sebastian Zundler
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Jay V Patankar
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Fabrizio Mascia
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Kristina Scheibe
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Markus Hoffmann
- Medical Clinic 3, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Stefan Uderhardt
- Deutsches Zentrum Immuntherapie, Erlangen, Germany,Medical Clinic 3, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Christine Schauer
- Medical Clinic 3, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | | | - Clemens Neufert
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Michael Vieth
- Friedrich Alexander University, Institute of Pathology, Klinikum Bayreuth, Erlangen, Germany
| | - Georg Schett
- Deutsches Zentrum Immuntherapie, Erlangen, Germany,Medical Clinic 3, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Raja Atreya
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Christoph Becker
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Martin Herrmann
- Medical Clinic 3, University Clinic, Friedrich Alexander University, Erlangen, Germany
| | - Markus F Neurath
- Medical Clinic 1, University Clinic, Friedrich Alexander University, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| |
Collapse
|
8
|
Cannon AR, Shim EH, Kuprys PV, Choudhry MA. IL-22 and Lactobacillus delbrueckii mitigate alcohol-induced exacerbation of DSS-induced colitis. J Leukoc Biol 2022; 112:1471-1484. [PMID: 35916052 PMCID: PMC9701151 DOI: 10.1002/jlb.4a0122-068r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2022] [Revised: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Ulcerative colitis (UC) is characterized by cycles of active disease flare and inactive disease remission. During UC remission, IL-22 is up-regulated, acting as a hallmark of entrance into UC remission. Recently, we found that in our mouse model of binge alcohol and dextran sodium sulfate (DSS)-induced colitis, alcohol increases severity of UC pathology. In this study, we assessed not only whether alcohol influenced IL-22 expression and thereby perpetuates UC, but also whether recombinant IL-22 (rIL-22) or treatment with a probiotic could alleviate exacerbated symptoms of UC. Levels of large intestine IL-22 were significantly decreased ∼6.9-fold in DSS ethanol compared with DSS vehicle. Examination of lamina propria (LP) cells in the large intestine revealed IL-22+ γδ T cells in DSS vehicle-treated mice were significantly increased, while IL-22+ γδ T cells in DSS ethanol mice were unable to mount this IL-22 response. We administered rIL-22 and found it restored weight loss of DSS ethanol-treated mice. Colonic shortening and increased Enterobacteriaceae were also attenuated. Administration of Lactobacillus delbrueckii attenuated weight loss (p < 0.01), colon length (p < 0.001), mitigated increases in Enterobacteriaceae, increased levels of IL-22, and increased levels of p-STAT3 back to that of DSS vehicle group in DSS ethanol mice. In contrast, sole administration of L. delbrueckii supernatant was not sufficient to reduce UC exacerbation following alcohol. Our findings suggest L. delbrueckii contributes to repair mechanisms by increasing levels of IL-22, resulting in phosphorylation of STAT3, thus attenuating the alcohol-induced increases in intestinal damage after colitis.
Collapse
Affiliation(s)
- Abigail R. Cannon
- Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL 60153, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Campus, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL 60153, USA
| | - Esther H. Shim
- Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL 60153, USA
| | - Paulius V. Kuprys
- Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL 60153, USA
| | - Mashkoor A. Choudhry
- Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL 60153, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Campus, Maywood, IL 60153, USA
- Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL 60153, USA
- Department of Microbiology and Immunology, Loyola University Chicago Health Sciences Campus, Maywood, IL 60153, USA
| |
Collapse
|
9
|
Chen KJ, Huang YL, Kuo LM, Chen YT, Hung CF, Hsieh PW. Protective role of casuarinin from Melastoma malabathricum against a mouse model of 5-fluorouracil-induced intestinal mucositis: Impact on inflammation and gut microbiota dysbiosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154092. [PMID: 35430483 DOI: 10.1016/j.phymed.2022.154092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/08/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND 5-FU-induced intestinal mucositis (FUIIM) is a common gastrointestinal side effect of chemotherapy, leading to gastric pain in clinical cancer patients. In a previous study, we demonstrated that neutrophil elastase (NE) inhibitors could alleviate FUIIM and manipulate the homeostasis of the gut microbiota. The root of Melastoma malabathricum, also called Ye-Mu-Dan, has been used as a traditional Chinese medicine for gastrointestinal disease. Water extract of the roots of M. malabathricum exhibits an inhibitory effect on NE, with an IC50 value of 9.13 μg/ml. PURPOSE In this study, we aimed to isolate an anti-NE compound from the root of M. malabathricum and to determine the protective effect of the bioactive component on a mouse model of FUIIM with respect to tissue damage, inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. METHODS A water extract of the roots of M. malabathricum was prepared and its major bioactive compound, was identified using bioactivity-guided fractionation. The effects of samples on the inhibition of NE activity were evaluated using enzymatic assays. To evaluate the effects of the bioactive compound in an FUIIM animal model, male C57BL/6 mice treated with or without casuarinin (50 and 100 mg/kg/day, p.o.), and then received of 5-fluorouracil (50 mg/kg/day) intraperitoneally for 5 days to induce FUIIM. Histopathological staining was used to monitor the tissue damage, proliferation of intestinal crypts, and expression of tight junction proteins. The inflammation score was estimated by determining the levels of oxidative stress, neutrophil-related proteases, and proinflammatory cytokines in tissue and serum. The ecology of the gut microbiota was evaluated using 16S rRNA gene sequencing. RESULTS Casuarinin had the most potent and selective effect against NE, with an IC50 value of 2.79 ± 0.07 μM. Casuarinin (100 mg/kg/day, p.o.) significantly improved 5-FU-induced body weight loss together with food intake reduction, and it also significantly reversed villus atrophy, restored the proliferative activity of the intestinal crypts, and suppressed inflammation and intestinal barrier dysfunction in the mouse model of FUIIM. Casuarinin also reversed 5-FU-induced gut microbiota dysbiosis, particularly the abundance of Actinobacteria, Candidatus Arthromitus, and Lactobacillus murinus, and the Firmicutes-to-Bacteroidetes ratio. CONCLUSION This study firstly showed that casuarinin isolated from the root part of M. malabathricum could be used as a NE inhibitor, whereas it could improve FUIIM by modulating inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. In summary, exploring anti-NE natural product may provide a way to find candidate for improvement of FUIIM.
Collapse
Affiliation(s)
- Kung-Ju Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Yu-Ling Huang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Liang-Mou Kuo
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan; Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Jacenik D, Fichna J, Małecka-Wojciesko E, Mokrowiecka A. Protease-Activated Receptors - Key Regulators of Inflammatory Bowel Diseases Progression. J Inflamm Res 2022; 14:7487-7497. [PMID: 35002281 PMCID: PMC8721023 DOI: 10.2147/jir.s335502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis and course of inflammatory bowel diseases are related to both immune system disorders and dysfunction of colon permeability. Moreover, co-existing diseases in patients with Crohn's disease and ulcerative colitis are identified. Currently, there are some therapeutic strategies that affect the function of cytokine/s causing inflammation in the intestinal wall. However, additional approaches which target other components of inflammatory bowel diseases pathogenesis are still needed. Accumulating evidence suggests that proteases and protease-activated receptors seem to be responsible for colitis progression. Experimental and observational studies showed alteration of protease-activated receptors expression in the colon of patients with Crohn's disease and ulcerative colitis. Furthermore, it was suggested that the expression of protease-activated receptors correlated with inflammatory bowel diseases activity. Moreover, regulation of protease-activated receptors seems to be responsible for the modulation of colitis and clinical manifestation of inflammatory bowel diseases. In this review, we present the current state of knowledge about the contribution of protease-activated receptors to Crohn's disease and ulcerative colitis and its implications for diagnosis and treatment.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Anna Mokrowiecka
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Parkos CA. LEUKOCYTE-EPITHELIAL INTERACTIONS: A DOUBLE-EDGED SWORD THAT PROTECTS AND INJURES DURING HEALTH AND DISEASE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2022; 132:22-33. [PMID: 36196189 PMCID: PMC9480551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
Neutrophils (PMNs) play a critical role in innate immunity, yet many pathologic conditions are associated with dysregulated infiltration of PMNs into tissues. In the gut, robust PMN accumulation and migration across the intestinal epithelium closely correlates with clinical symptoms in conditions such as ulcerative colitis. While much is known about how PMNs migrate out of blood vessels, far less is understood about how PMNs traverse epithelial barriers. Until fairly recently, in vitro models of PMN transepithelial migration (TEpM) across cultured intestinal epithelial cell lines provided many of the insights into the molecular basis of TEpM. However, innovative animal models have provided new avenues for investigating in vivo mechanisms regulating PMN TEpM. This report will highlight molecular insights gained from studies on PMN TEpM and provide a rationale for developing tissue targeted strategies directed at reducing pathologic consequences of dysregulated PMN trafficking in the gut.
Collapse
|
12
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Motta JP, Deraison C, Le Grand S, Le Grand B, Vergnolle N. PAR-1 Antagonism to Promote Gut Mucosa Healing in Crohn's Disease Patients: A New Avenue for CVT120165. Inflamm Bowel Dis 2021; 27:S33-S37. [PMID: 34791291 DOI: 10.1093/ibd/izab244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/28/2021] [Indexed: 12/17/2022]
Abstract
A new paradigm has been added for the treatment of inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. In addition to resolving symptoms and inflammatory cell activation, the objective of tissue repair and mucosal healing is also now considered a primary goal. In the search of mediators that would be responsible for delayed mucosal healing, protease-activated receptor-1 (PAR-1) has emerged as a most interesting target. Indeed, in Crohn's disease, the endogenous PAR-1 agonist thrombin is drastically activated. Activation of PAR-1 is known to be associated with epithelial dysfunctions that hamper mucosal homeostasis. This review gathers the scientific evidences of a potential role for PAR-1 in mucosal damage and mucosal dysfunctions associated with chronic intestinal inflammation. The potential clinical benefits of PAR-1 antagonism to promote mucosal repair in CD patients are discussed. Targeted local delivery of a PAR-1 antagonist molecule such as CVT120165, a formulated version of the FDA-approved PAR-1 antagonist vorapaxar, at the mucosa of Crohn's disease patients could be proposed as a new indication for IBD that could be rapidly tested in clinical trials.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France.,CVasThera, Arobase Castres-Mazamet, Castres, France
| | - Celine Deraison
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France
| | | | | | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France.,Departments of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Nolan E, Malanchi I. Connecting the dots: Neutrophils at the interface of tissue regeneration and cancer. Semin Immunol 2021; 57:101598. [PMID: 35221216 PMCID: PMC9232712 DOI: 10.1016/j.smim.2022.101598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/05/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
Knowledge about neutrophil biology has exponentially grown over the past decades. A high volume of investigations focusing on the characterization of their initially unappreciated multifaceted functions have grown in parallel with the immunity and the cancer fields. This has led to a significant gain in knowledge about their functions not only in tissue defence against pathogens and the collateral damage their overactivation can cause, but also their role in tissue repair and regeneration especially in the context of sterile injuries. On the other hand, the cancer field has also intensively focused its attention on neutrophil engagement in the many steps of the tumorigenic process. This review aims to draw the readers' attention to the similar functions described for neutrophils in tissue repair and in cancer. By bridging the two fields, we provide support for the hypothesis that the underlying program driving cancer-dependent exploitation of neutrophils is rooted in their physiologic tissue protection functions. In this view, cross-fertilization between the two fields will expedite the discovery of therapeutic interventions based on neutrophil targeting or their manipulation.
Collapse
Affiliation(s)
- Emma Nolan
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Ilaria Malanchi
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom.
| |
Collapse
|
15
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Solà Tapias N, Denadai-Souza A, Rolland-Fourcade C, Quaranta-Nicaise M, Blanpied C, Marcellin M, Edir A, Rolland C, Cirillo C, Dietrich G, Alric L, Portier G, Kirzin S, Bonnet D, Mas E, Burlet-Schiltz O, Deraison C, Bonnart C, Vergnolle N, Barreau F. Colitis Linked to Endoplasmic Reticulum Stress Induces Trypsin Activity Affecting Epithelial Functions. J Crohns Colitis 2021; 15:1528-1541. [PMID: 33609354 DOI: 10.1093/ecco-jcc/jjab035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Intestinal epithelial cells [IECs] from inflammatory bowel disease [IBD] patients exhibit an excessive induction of endoplasmic reticulum stress [ER stress] linked to altered intestinal barrier function and inflammation. Colonic tissues and the luminal content of IBD patients are also characterized by increased serine protease activity. The possible link between ER stress and serine protease activity in colitis-associated epithelial dysfunctions is unknown. We aimed to study the association between ER stress and serine protease activity in enterocytes and its impact on intestinal functions. METHODS The impact of ER stress induced by Thapsigargin on serine protease secretion was studied using either human intestinal cell lines or organoids. Moreover, treating human intestinal cells with protease-activated receptor antagonists allowed us to investigate ER stress-resulting molecular mechanisms that induce proteolytic activity and alter intestinal epithelial cell biology. RESULTS Colonic biopsies from IBD patients exhibited increased epithelial trypsin-like activity associated with elevated ER stress. Induction of ER stress in human intestinal epithelial cells displayed enhanced apical trypsin-like activity. ER stress-induced increased trypsin activity destabilized intestinal barrier function by increasing permeability and by controlling inflammatory mediators such as C-X-C chemokine ligand 8 [CXCL8]. The deleterious impact of ER stress-associated trypsin activity was specifically dependent on the activation of protease-activated receptors 2 and 4. CONCLUSIONS Excessive ER stress in IECs caused an increased release of trypsin activity that, in turn, altered intestinal barrier function, promoting the development of inflammatory process.
Collapse
Affiliation(s)
- Núria Solà Tapias
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | | | | | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anissa Edir
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Carla Cirillo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Laboratory for Enteric NeuroScience (LENS), TARGID, University of Leuven, Leuven, Belgium
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | | | | | - Emmanuel Mas
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Pole Digestif, CHU, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Frédérick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
17
|
Ozaka S, Sonoda A, Ariki S, Kamiyama N, Hidano S, Sachi N, Ito K, Kudo Y, Minata M, Saechue B, Dewayani A, Chalalai T, Soga Y, Takahashi Y, Fukuda C, Mizukami K, Okumura R, Kayama H, Murakami K, Takeda K, Kobayashi T. Protease inhibitory activity of secretory leukocyte protease inhibitor ameliorates murine experimental colitis by protecting the intestinal epithelial barrier. Genes Cells 2021; 26:807-822. [PMID: 34379860 DOI: 10.1111/gtc.12888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestine, and the dysfunction of intestinal epithelial barrier (IEB) may trigger the onset of IBD. Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that has been implicated in the tissue-protective effect in the skin and lung. We found that SLPI was induced in lipopolysaccharides-treated colon carcinoma cell line and in the colon of dextran sulfate sodium (DSS)-treated mice. SLPI-deficient mice were administered DSS to induce colitis and sustained severe inflammation compared with wild-type mice. The colonic mucosa of SLPI-deficient mice showed more severe inflammation with neutrophil infiltration and higher levels of proinflammatory cytokines compared with control mice. Moreover, neutrophil elastase (NE) activity in SLPI-deficient mice was increased and IEB function was severely impaired in the colon, accompanied with the increased number of apoptotic cells. Importantly, we demonstrated that DSS-induced colitis was ameliorated by administration of protease inhibitor SSR69071 and recombinant SLPI. These results suggest that the protease inhibitory activity of SLPI protects from colitis by preventing IEB dysfunction caused by excessive NE activity, which provides insight into the novel function of SLPI in the regulation of gut homeostasis and therapeutic approaches for IBD.
Collapse
Affiliation(s)
- Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shimpei Ariki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kanako Ito
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoko Kudo
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Mizuki Minata
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Benjawan Saechue
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Astri Dewayani
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Thanyakorn Chalalai
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yasuhiro Soga
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuya Takahashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Chiaki Fukuda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
18
|
Chen KJ, Chen YL, Ueng SH, Hwang TL, Kuo LM, Hsieh PW. Neutrophil elastase inhibitor (MPH-966) improves intestinal mucosal damage and gut microbiota in a mouse model of 5-fluorouracil-induced intestinal mucositis. Biomed Pharmacother 2021; 134:111152. [PMID: 33373916 DOI: 10.1016/j.biopha.2020.111152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU)-based chemotherapy is first-line chemotherapy for colorectal cancer. However, 5-FU-induced intestinal mucositis (FUIIM) is a common adverse effect that severely impairs drug tolerance and results in poor patient health. METHODS Male C57BL/6 mice were given 5-FU (50 mg/kg/day, i.p.) and treated with MPH-966 (5 and 7.5 mg/kg/day, p.o.) for five days. The body weight loss and the amount of food intake, and histopathological findings were recorded and analyzed. In addition, the neutrophil infiltration, levels of neutrophil serine proteases and pro-inflammatory cytokines, and tight junction proteins expression in intestinal tissues were determined. The ecology of gut microbiota was performed through next-generation sequencing technologies. RESULTS Neutrophil elastase (NE) overexpression is a key feature in FUIIM. This study showed that treatment with the specific NE inhibitor MPH-966 (7.5 mg/kg/day, p.o.) significantly reversed 5-FU-induced loss in body weight and food intake; reversed villous atrophy; significantly suppressed myeloperoxidase, NE, and proteinase 3 activity; and reduced pro-inflammatory cytokine expression in an FUIIM mouse model. In addition, MPH-966 prevented 5-FU-induced intestinal barrier dysfunction, as indicated by the modulated expression of the tight junction proteins zonula occludin-1 and occludin. MPH-966 also reversed 5-FU-induced changes in gut microbiota diversity and abundances, specifically the Firmicutes-to-Bacteroidetes ratio; Muribaculaceae, Ruminococcaceae, and Eggerthellaceae abundances at the family level; and Candidatus Arthromitus abundance at the genus level. CONCLUSION These data indicate that NE inhibitor is a key treatment candidate to alleviate FUIIM by regulating abnormal inflammatory responses, intestinal barrier dysfunction, and gut microbiota imbalance.
Collapse
Affiliation(s)
- Kung-Ju Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Li Chen
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shir-Hwa Ueng
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Liang-Mou Kuo
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan.
| | - Pei-Wen Hsieh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Chao G, Wang Z, Yang C, Qian Y, Zhang S. Teprenone ameliorates diclofenac-induced small intestinal injury via inhibiting protease activated receptors 1 and 2 activity. Biomarkers 2020; 26:38-44. [PMID: 33176506 DOI: 10.1080/1354750x.2020.1849405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aimed to investigate specific protein expression of injured intestinal mucosa induced by diclofenac, and explore the protective effects of teprenone on it. METHODS Intestinal damage of Sprague Dawley male rats was gradually induced by the intragastric administration of diclofenac. After the last drug administration, the intestinal mucosa was taken off with an interval of 24 h, subsequently, its general histological injury and ultrastructure were observed and analysed by a transmission electron microscope. The expression levels of PAR1 and PAR2 protein were detected by immunohistochemistry and real-time polymerase chain reaction (PCR). RESULTS The Reuter and Chiu scores of small intestinal damage were 5.63 ± 1.30 and 4.25 ± 0.70 respectively in the model group, which could be protected by teprenone (100 mg/kg⋅day) with the degree of 55.7% and 44%. Optical microscopy and transmission electron microscope showed that intestinal mucosa and ultrastructure were severely damaged. Distributed in the cytoplasm or aligned with the nucleus, the expression of PAR1 and PAR2 was significantly upregulated after the administration of diclofenac, while it was relieved after the treatment of teprenone. CONCLUSION Our study presents a new view that teprenone might protect NSAIDs-induced (diclofenac) intestinal injury via suppressing the expression of PAR1 and PAR2.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of Family Medicine, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Zhaojun Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Chaoyu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Yanna Qian
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| |
Collapse
|
20
|
Motta JP, Palese S, Giorgio C, Chapman K, Denadai-Souza A, Rousset P, Sagnat D, Guiraud L, Edir A, Seguy C, Alric L, Bonnet D, Bournet B, Buscail L, Gilletta C, Buret AG, Wallace JL, Hollenberg MD, Oswald E, Barocelli E, Le Grand S, Le Grand B, Deraison C, Vergnolle N. Increased Mucosal Thrombin is Associated with Crohn's Disease and Causes Inflammatory Damage through Protease-activated Receptors Activation. J Crohns Colitis 2020; 15:787-799. [PMID: 33201214 PMCID: PMC8095389 DOI: 10.1093/ecco-jcc/jjaa229] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Thrombin levels in the colon of Crohn's disease patients have recently been found to be elevated 100-fold compared with healthy controls. Our aim was to determine whether and how dysregulated thrombin activity could contribute to local tissue malfunctions associated with Crohn's disease. METHODS Thrombin activity was studied in tissues from Crohn's disease patients and healthy controls. Intracolonic administration of thrombin to wild-type or protease-activated receptor-deficient mice was used to assess the effects and mechanisms of local thrombin upregulation. Colitis was induced in rats and mice by the intracolonic administration of trinitrobenzene sulphonic acid. RESULTS Active forms of thrombin were increased in Crohn's disease patient tissues. Elevated thrombin expression and activity were associated with intestinal epithelial cells. Increased thrombin activity and expression were also a feature of experimental colitis in rats. Colonic exposure to doses of active thrombin comparable to what is found in inflammatory bowel disease tissues caused mucosal damage and tissue dysfunctions in mice, through a mechanism involving both protease-activated receptors -1 and -4. Intracolonic administration of the thrombin inhibitor dabigatran, as well as inhibition of protease-activated receptor-1, prevented trinitrobenzene sulphonic acid-induced colitis in rodent models. CONCLUSIONS Our data demonstrated that increased local thrombin activity, as it occurs in the colon of patients with inflammatory bowel disease, causes mucosal damage and inflammation. Colonic thrombin and protease-activated receptor-1 appear as possible mechanisms involved in mucosal damage and loss of function and therefore represent potential therapeutic targets for treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Jean-Paul Motta
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,CVasThera, Arobase Castres-Mazamet, Castres, France
| | - Simone Palese
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,Università di Parma, Dipartimento di Scienze degli Alimenti e del Farmaco, Parma, Italia
| | - Carmine Giorgio
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,Università di Parma, Dipartimento di Scienze degli Alimenti e del Farmaco, Parma, Italia
| | - Kevin Chapman
- Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | | | - Perrine Rousset
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - David Sagnat
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Laura Guiraud
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Anissa Edir
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Carine Seguy
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, CHU Toulouse, Toulouse, France,Pole Digestif, CHU Toulouse, Toulouse, France,Faculty of Medicine, Paul Sabatier University, Toulouse, France
| | - Delphine Bonnet
- Department of Internal Medicine and Digestive Diseases, CHU Toulouse, Toulouse, France,Pole Digestif, CHU Toulouse, Toulouse, France
| | - Barbara Bournet
- Pole Digestif, CHU Toulouse, Toulouse, France,Faculty of Medicine, Paul Sabatier University, Toulouse, France
| | - Louis Buscail
- Pole Digestif, CHU Toulouse, Toulouse, France,Faculty of Medicine, Paul Sabatier University, Toulouse, France
| | | | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - John L Wallace
- Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Elisabetta Barocelli
- Università di Parma, Dipartimento di Scienze degli Alimenti e del Farmaco, Parma, Italia
| | | | | | - Celine Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada,Corresponding author: Dr Nathalie Vergnolle, PhD, Institut de Recherche en Santé Digestive [IRSD], INSERM UMR-1220, Purpan Hospital, CS60039, 31024 Toulouse cedex 03, France. Tel.: 33-5-62-74-45-00; fax: 33-5-62-74-45-58;
| |
Collapse
|
21
|
Boucher AA, Rosenfeldt L, Mureb D, Shafer J, Sharma BK, Lane A, Crowther RR, McKell MC, Whitt J, Alenghat T, Qualls J, Antoniak S, Mackman N, Flick MJ, Steinbrecher KA, Palumbo JS. Cell type-specific mechanisms coupling protease-activated receptor-1 to infectious colitis pathogenesis. J Thromb Haemost 2020; 18:91-103. [PMID: 31539206 PMCID: PMC7026906 DOI: 10.1111/jth.14641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2019] [Revised: 08/29/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Protease-activated receptor-1 (PAR-1) plays a major role in multiple disease processes, including colitis. Understanding the mechanisms coupling PAR-1 to disease pathogenesis is complicated by the fact that PAR-1 is broadly expressed across multiple cell types. OBJECTIVE Determine the specific contributions of PAR-1 expressed by macrophages and colonic enterocytes to infectious colitis. METHODS Mice carrying a conditional PAR-1 allele were generated and bred to mice expressing Cre recombinase in a myeloid- (PAR-1ΔM ) or enterocyte-specific (PAR-1ΔEPI ) fashion. Citrobacter rodentium colitis pathogenesis was analyzed in mice with global PAR-1 deletion (PAR-1-/- ) and cell type-specific deletions. RESULTS Constitutive deletion of PAR-1 had no significant impact on weight loss, crypt hypertrophy, crypt abscess formation, or leukocyte infiltration in Citrobacter colitis. However, colonic shortening was significantly blunted in infected PAR-1-/- mice, and these animals exhibited decreased local levels of IL-1β, IL-22, IL-6, and IL-17A. In contrast, infected PAR-1ΔM mice lost less weight and had fewer crypt abscesses relative to controls. PAR-1ΔM mice had diminished CD3+ T cell infiltration into colonic tissue, but macrophage and CD4+ T cell infiltration were similar to controls. Also contrasting results in global knockouts, PAR-1ΔM mice exhibited lower levels of IL-1β, but not Th17-related cytokines (ie, IL-22, IL-6, IL-17A). Infected PAR-1ΔEPI mice exhibited increased crypt hypertrophy and crypt abscess formation, but local cytokine elaboration was similar to controls. CONCLUSIONS These studies reveal complex, cell type-specific roles for PAR-1 in modulating the immune response to Citrobacter colitis that are not readily apparent in analyses limited to mice with global PAR-1 deficiency.
Collapse
Affiliation(s)
- Alexander A. Boucher
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Leah Rosenfeldt
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Duaa Mureb
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jessica Shafer
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bal Krishan Sharma
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Adam Lane
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rebecca R. Crowther
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Melanie C. McKell
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jordan Whitt
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joseph Qualls
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kris A. Steinbrecher
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joseph S. Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
22
|
Huang H, Zhang H, Onuma AE, Tsung A. Neutrophil Elastase and Neutrophil Extracellular Traps in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:13-23. [PMID: 32588320 PMCID: PMC11770835 DOI: 10.1007/978-3-030-44518-8_2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Tumor-associated neutrophils (TANs) play a major role during cancer development and progression in the tumor microenvironment. Neutrophil elastase (NE) is a serine protease normally expressed in neutrophil primary granules. Formation of neutrophil extracellular traps (NETs), a mechanism used by neutrophils, has been traditionally associated with the capture and killing of bacteria. However, there are recent discoveries suggesting that NE secretion and NETs formation are also involved in the tumor microenvironment. Here, we focus on how NE and NETs play a key regulatory function in the tumor microenvironment, such as tumor proliferation, distant metastasis, tumor-associated thrombosis, and antitumor activity. Additionally, the potential use of NETs, NE, or associated molecules as potential disease activity biomarkers or therapeutic targets will be introduced.
Collapse
Affiliation(s)
- Hai Huang
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Hongji Zhang
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Amblessed E Onuma
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Allan Tsung
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
23
|
Daines M, Zhu L, Pereira R, Zhou X, Bondy C, Pryor BM, Zhou J, Chen Y. Alternaria induces airway epithelial cytokine expression independent of protease-activated receptor. Respirology 2019; 25:502-510. [PMID: 31430011 DOI: 10.1111/resp.13675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2019] [Revised: 04/24/2019] [Accepted: 07/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVE A novel fungal allergen, Alternaria (Alt), has been previously shown to associate with the pathogenesis of allergic rhinitis and bronchial asthma, particularly in arid and semi-arid regions. Airway epithelial cells are among the first to encounter Alt, and epithelial cytokine production and subsequent airway inflammation are early events in the response to Alt exposure. However, the underlying mechanism is unclear. As protease-activated receptor 2 (PAR2) has been implicated in most of the Alt-induced biological events, we investigated the regulation of airway inflammation and epithelial cytokine expression by PAR2. METHODS Wild-type (WT) and Par2 knockout (Par2-KO) mice were used to evaluate the in vivo role of PAR2. Primary human and mouse airway epithelial cells were used to examine the mechanistic basis of epithelial cytokine regulation in vitro. RESULTS Surprisingly, Par2 deficiency had no negative impact on the change of lung function, inflammation and cytokine production in the mouse model of Alt-induced asthma. Alt-induced cytokine production in murine airway epithelial cells from Par2-KO mice was not significantly different from the WT cells. Consistently, PAR2 knockdown in human cells also had no effect on cytokine expression. In contrast, the cytokine expressions induced by synthetic PAR2 agonist or other asthma-related allergens (e.g. cockroach extracts) were indeed mediated via a PAR2-dependent mechanism. Finally, we found that EGFR pathway was responsible for Alt-induced epithelial cytokine expression. CONCLUSION The activation of EGFR, but not PAR2, was likely to drive the airway inflammation and epithelial cytokine production induced by Alt.
Collapse
Affiliation(s)
- Michael Daines
- Department of Internal Medicine, School of Medicine, University of Arizona, Tucson, AZ, USA.,Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Lingxiang Zhu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Rhea Pereira
- Department of Internal Medicine, School of Medicine, University of Arizona, Tucson, AZ, USA
| | - Xu Zhou
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Cheryl Bondy
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Barry M Pryor
- School of Plant Science, University of Arizona, Tucson, AZ, USA
| | - Jin Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, University of Arizona, Tucson, AZ, USA
| | - Yin Chen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
24
|
Phillipson M, Kubes P. The Healing Power of Neutrophils. Trends Immunol 2019; 40:635-647. [PMID: 31160208 DOI: 10.1016/j.it.2019.05.001] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 11/28/2022]
Abstract
Neutrophils promptly accumulate in large numbers at sites of tissue injury. Injuries to the skin or mucosae disrupt barriers against the external environment, and the bactericidal actions of neutrophils are important in preventing microbial invasion. Neutrophils have also been associated with exacerbated inflammation, for example in non-healing wounds or in conditions such as inflammatory bowel disease (IBD). However, additional neutrophil functions important for angiogenesis and tissue restoration have been uncovered in models of sterile and ischemic injury, as well as in tumors. These functions are also relevant in healing skin and mucosal wounds, and can be impaired in conditions associated with non-healing wounds, such as diabetes. Here, we discuss our current understanding of neutrophil contributions to healing, and how the latter can be compromised in disease.
Collapse
Affiliation(s)
- Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Paul Kubes
- Snyder Institute of Infection, Immunity, and Inflammation, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
25
|
Henehan M, De Benedetto A. Update on protease‐activated receptor 2 in cutaneous barrier, differentiation, tumorigenesis and pigmentation, and its role in related dermatologic diseases. Exp Dermatol 2019; 28:877-885. [DOI: 10.1111/exd.13936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2018] [Revised: 03/03/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Mason Henehan
- Department of Dermatology College of Medicine University of Florida Gainesville Florida
| | - Anna De Benedetto
- Department of Dermatology College of Medicine University of Florida Gainesville Florida
| |
Collapse
|
26
|
Edwinson AL, Grover M. Measurement of novel intestinal secretory and barrier pathways and effects of proteases. Neurogastroenterol Motil 2019; 31:e13547. [PMID: 30843358 PMCID: PMC6407641 DOI: 10.1111/nmo.13547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/28/2018] [Revised: 12/02/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
The epithelial lining of the gastrointestinal (GI) tract in conjunction with the enteric nervous system (ENS) plays an important role in mediating solute absorption and secretion. A dysregulated ionic movement across the epithelium can result in GI diseases that manifest as either watery diarrhea or constipation. Hirschsprung disease is an example of an ENS disorder characterized by absence of enteric ganglia in distal gut resulting in obstructive phenotype. Receptor rearranged during transfection (RET) gene variants are the most commonly recognized genetic associations with Hirschsprung disease. In this issue of Neurogastroenterology and Motility, Russell et al demonstrate that RET mediates colonic ion transport through modulation of cholinergic nerves. They go on to show inhibition of RET can attenuate accelerated transit in a rat model. Normalizing secretory and absorptive defects has been an attractive therapeutic strategy. In addition to the intrinsic regulation of secretory processes, luminal mediators like bile acids, short-chain fatty acids, and proteases can affect both secretion and barrier function of the intestinal epithelium. Elevated levels of proteases have been identified in a wide range of GI diseases including irritable bowel syndrome. Proteases are known to cause visceral hypersensitivity and barrier disruption in vitro and in animal models. The goals of this review are to describe fundamental concepts related to intestinal epithelial secretion, the utility of Ussing chambers to measure ionic mechanisms and to discuss examples of novel signaling pathways; namely the RET signaling cascade in secretomotor neurons and effects of luminal proteases on barrier and ionic secretion.
Collapse
Affiliation(s)
- Adam L. Edwinson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Madhusudan Grover
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA,Correspondence: Madhusudan Grover, MD, Assistant Professor of Medicine and Physiology, Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA, Tel: 507-284-2478, Fax: 507-266-0350,
| |
Collapse
|
27
|
Small DM, Brown RR, Doherty DF, Abladey A, Zhou-Suckow Z, Delaney RJ, Kerrigan L, Dougan CM, Borensztajn KS, Holsinger L, Booth R, Scott CJ, López-Campos G, Elborn JS, Mall MA, Weldon S, Taggart CC. Targeting of cathepsin S reduces cystic fibrosis-like lung disease. Eur Respir J 2019; 53:13993003.01523-2018. [PMID: 30655278 DOI: 10.1183/13993003.01523-2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2018] [Accepted: 12/27/2018] [Indexed: 11/05/2022]
Abstract
Cathepsin S (CatS) is upregulated in the lungs of patients with cystic fibrosis (CF). However, its role in CF lung disease pathogenesis remains unclear.In this study, β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice, a model of CF-like lung disease, were crossed with CatS null (CatS-/-) mice or treated with the CatS inhibitor VBY-999.Levels of active CatS were elevated in the lungs of βENaC-Tg mice compared with wild-type (WT) littermates. CatS-/-βENaC-Tg mice exhibited decreased pulmonary inflammation, mucus obstruction and structural lung damage compared with βENaC-Tg mice. Pharmacological inhibition of CatS resulted in a significant decrease in pulmonary inflammation, lung damage and mucus plugging in the lungs of βENaC-Tg mice. In addition, instillation of CatS into the lungs of WT mice resulted in inflammation, lung remodelling and upregulation of mucin expression. Inhibition of the CatS target, protease-activated receptor 2 (PAR2), in βENaC-Tg mice resulted in a reduction in airway inflammation and mucin expression, indicating a role for this receptor in CatS-induced lung pathology.Our data indicate an important role for CatS in the pathogenesis of CF-like lung disease mediated in part by PAR2 and highlight CatS as a therapeutic target.
Collapse
Affiliation(s)
- Donna M Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Ryan R Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Declan F Doherty
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Anthony Abladey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Zhe Zhou-Suckow
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Rebecca J Delaney
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Lauren Kerrigan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Caoifa M Dougan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Keren S Borensztajn
- INSERM UMRS_933, Université Pierre et Marie Curie, Hôpital Trousseau, Paris, France
| | | | | | - Christopher J Scott
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Guillermo López-Campos
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Marcus A Mall
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Dept of Pediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
28
|
Sébert M, Sola-Tapias N, Mas E, Barreau F, Ferrand A. Protease-Activated Receptors in the Intestine: Focus on Inflammation and Cancer. Front Endocrinol (Lausanne) 2019; 10:717. [PMID: 31708870 PMCID: PMC6821688 DOI: 10.3389/fendo.2019.00717] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/09/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Protease-activated receptors (PARs) belong to the G protein-coupled receptor (GPCR) family. Compared to other GPCRs, the specificity of the four PARs is the lack of physiologically soluble ligands able to induce their activation. Indeed, PARs are physiologically activated after proteolytic cleavage of their N-terminal domain by proteases. The resulting N-terminal end becomes a tethered activation ligand that interact with the extracellular loop 2 domain and thus induce PAR signal. PARs expression is ubiquitous and these receptors have been largely described in chronic inflammatory diseases and cancer. In this review, after describing their discovery, structure, mechanisms of activation, we then focus on the roles of PARs in the intestine and the two main diseases affecting the organ, namely inflammatory bowel diseases and cancer.
Collapse
|
29
|
Rolland-Fourcade C, Denadai-Souza A, Cirillo C, Lopez C, Jaramillo JO, Desormeaux C, Cenac N, Motta JP, Larauche M, Taché Y, Berghe PV, Neunlist M, Coron E, Kirzin S, Portier G, Bonnet D, Alric L, Vanner S, Deraison C, Vergnolle N. Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut 2017; 66:1767-1778. [PMID: 28096305 PMCID: PMC5595105 DOI: 10.1136/gutjnl-2016-312094] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/18/2016] [Accepted: 12/26/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Proteases are key mediators of pain and altered enteric neuronal signalling, although the types and sources of these important intestinal mediators are unknown. We hypothesised that intestinal epithelium is a major source of trypsin-like activity in patients with IBS and this activity signals to primary afferent and enteric nerves and induces visceral hypersensitivity. DESIGN Trypsin-like activity was determined in tissues from patients with IBS and in supernatants of Caco-2 cells stimulated or not. These supernatants were also applied to cultures of primary afferents. mRNA isoforms of trypsin (PRSS1, 2 and 3) were detected by reverse transcription-PCR, and trypsin-3 protein expression was studied by western blot analysis and immunohistochemistry. Electrophysiological recordings and Ca2+ imaging in response to trypsin-3 were performed in mouse primary afferent and in human submucosal neurons, respectively. Visceromotor response to colorectal distension was recorded in mice administered intracolonically with trypsin-3. RESULTS We showed that stimulated intestinal epithelial cells released trypsin-like activity specifically from the basolateral side. This activity was able to activate sensory neurons. In colons of patients with IBS, increased trypsin-like activity was associated with the epithelium. We identified that trypsin-3 was the only form of trypsin upregulated in stimulated intestinal epithelial cells and in tissues from patients with IBS. Trypsin-3 was able to signal to human submucosal enteric neurons and mouse sensory neurons, and to induce visceral hypersensitivity in vivo, all by a protease-activated receptor-2-dependent mechanism. CONCLUSIONS In IBS, the intestinal epithelium produces and releases the active protease trypsin-3, which is able to signal to enteric neurons and to induce visceral hypersensitivity.
Collapse
Affiliation(s)
| | | | - Carla Cirillo
- Laboratory for Enteric Neuroscience (LENS), TARGID, University of Leuven, Leuven, Belgium
| | - Cintya Lopez
- Gastrointestinal Diseases Research Unit, , General Hospital, Queen's University School of Medicine, Kingston, Ontario, Canada
| | - Josue Obed Jaramillo
- Gastrointestinal Diseases Research Unit, , General Hospital, Queen's University School of Medicine, Kingston, Ontario, Canada
| | - Cleo Desormeaux
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Jean-Paul Motta
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Muriel Larauche
- Oppenheimer Family Center for Neurobiology of Stress and Resilience and CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Yvette Taché
- Oppenheimer Family Center for Neurobiology of Stress and Resilience and CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), TARGID, University of Leuven, Leuven, Belgium
| | - Michel Neunlist
- Inserm, UMR913, Nantes, France,Nantes University, Nantes, France,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - Emmanuel Coron
- Inserm, UMR913, Nantes, France,Nantes University, Nantes, France,Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - Sylvain Kirzin
- Department of Internal Medicine and Digestive Diseases, Pole Digestif, CHU Toulouse, Toulouse, France
| | - Guillaume Portier
- Department of Internal Medicine and Digestive Diseases, Pole Digestif, CHU Toulouse, Toulouse, France
| | - Delphine Bonnet
- Department of Internal Medicine and Digestive Diseases, Pole Digestif, CHU Toulouse, Toulouse, France
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, Pole Digestif, CHU Toulouse, Toulouse, France
| | - Stephen Vanner
- Gastrointestinal Diseases Research Unit, , General Hospital, Queen's University School of Medicine, Kingston, Ontario, Canada
| | - Celine Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Abstract
Polymorphonuclear neutrophils (PMNs) are innate immune system cells that play an essential role in eradicating invading pathogens. PMN migration to sites of infection/inflammation requires exiting the microcirculation and subsequent crossing of epithelial barriers in mucosa-lined organs such as the lungs and intestines. Although these processes usually occur without significant damage to surrounding host tissues, dysregulated/excessive PMN transmigration and resultant bystander-tissue damage are characteristic of numerous mucosal inflammatory disorders. Mechanisms controlling PMN extravasation have been well characterized, but the molecular details regarding regulation of PMN migration across mucosal epithelia are poorly understood. Given that PMN migration across mucosal epithelia is strongly correlated with disease symptoms in many inflammatory mucosal disorders, enhanced understanding of the mechanisms regulating PMN transepithelial migration should provide insights into clinically relevant tissue-targeted therapies aimed at ameliorating PMN-mediated bystander-tissue damage. This review will highlight current understanding of the molecular interactions between PMNs and mucosal epithelia and the associated functional consequences.
Collapse
Affiliation(s)
- Jennifer C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Gordon SM, Remaley AT. High density lipoproteins are modulators of protease activity: Implications in inflammation, complement activation, and atherothrombosis. Atherosclerosis 2017; 259:104-113. [PMID: 28242049 PMCID: PMC5391047 DOI: 10.1016/j.atherosclerosis.2016.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/13/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
High density lipoproteins (HDL) represent a compositionally diverse population of particles in the circulation, containing a wide variety of lipids and proteins. Gene ontology functional analysis of the 96 commonly identified HDL binding proteins reveals that almost half of these proteins are either proteases or have known roles in protease regulation. Here, we discuss the activities of some of these proteins in regard to their roles in regulating proteases involved in inflammation, coagulation, and complement activation, particularly in the context of atherosclerosis. The overall goal of this review is to discuss potential functional roles of HDL in protease regulatory pathways based on current literature and known functions of HDL binding proteins and to promote the consideration of HDL as a global modulator of proteolytic equilibrium.
Collapse
Affiliation(s)
- Scott M Gordon
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
| | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
32
|
Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, Lambeir AM, De Meester I, De Man JG, De Winter BY. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol 2017; 23:2106-2123. [PMID: 28405139 PMCID: PMC5374123 DOI: 10.3748/wjg.v23.i12.2106] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.
Collapse
|
33
|
Domínguez-Hüttinger E, Boon NJ, Clarke TB, Tanaka RJ. Mathematical Modeling of Streptococcus pneumoniae Colonization, Invasive Infection and Treatment. Front Physiol 2017; 8:115. [PMID: 28303104 PMCID: PMC5332394 DOI: 10.3389/fphys.2017.00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2016] [Accepted: 02/13/2017] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae (Sp) is a commensal bacterium that normally resides on the upper airway epithelium without causing infection. However, factors such as co-infection with influenza virus can impair the complex Sp-host interactions and the subsequent development of many life-threatening infectious and inflammatory diseases, including pneumonia, meningitis or even sepsis. With the increased threat of Sp infection due to the emergence of new antibiotic resistant Sp strains, there is an urgent need for better treatment strategies that effectively prevent progression of disease triggered by Sp infection, minimizing the use of antibiotics. The complexity of the host-pathogen interactions has left the full understanding of underlying mechanisms of Sp-triggered pathogenesis as a challenge, despite its critical importance in the identification of effective treatments. To achieve a systems-level and quantitative understanding of the complex and dynamically-changing host-Sp interactions, here we developed a mechanistic mathematical model describing dynamic interplays between Sp, immune cells, and epithelial tissues, where the host-pathogen interactions initiate. The model serves as a mathematical framework that coherently explains various in vitro and in vitro studies, to which the model parameters were fitted. Our model simulations reproduced the robust homeostatic Sp-host interaction, as well as three qualitatively different pathogenic behaviors: immunological scarring, invasive infection and their combination. Parameter sensitivity and bifurcation analyses of the model identified the processes that are responsible for qualitative transitions from healthy to such pathological behaviors. Our model also predicted that the onset of invasive infection occurs within less than 2 days from transient Sp challenges. This prediction provides arguments in favor of the use of vaccinations, since adaptive immune responses cannot be developed de novo in such a short time. We further designed optimal treatment strategies, with minimal strengths and minimal durations of antibiotics, for each of the three pathogenic behaviors distinguished by our model. The proposed mathematical framework will help to design better disease management strategies and new diagnostic markers that can be used to inform the most appropriate patient-specific treatment options.
Collapse
Affiliation(s)
- Elisa Domínguez-Hüttinger
- Department of Bioengineering, Imperial College LondonLondon, UK; Instituto de Ecología, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Neville J Boon
- Department of Bioengineering, Imperial College London London, UK
| | | | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London London, UK
| |
Collapse
|
34
|
Shen Y, Zhou M, Yan J, Gong Z, Xiao Y, Zhang C, Du P, Chen Y. miR-200b inhibits TNF-α-induced IL-8 secretion and tight junction disruption of intestinal epithelial cells in vitro. Am J Physiol Gastrointest Liver Physiol 2017; 312:G123-G132. [PMID: 27979826 DOI: 10.1152/ajpgi.00316.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/31/2016] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 01/31/2023]
Abstract
UNLABELLED Inflammatory bowel diseases (IBDs) are chronic, inflammatory disorders of the gastrointestinal tract with unclear etiologies. Intestinal epithelial cells (IECs), containing crypt and villus enterocytes, occupy a critical position in the pathogenesis of IBDs and are a major producer of immunoregulatory cytokines and a key component of the intact epithelial barrier. Previously, we have reported that miR-200b is involved in the progression of IBDs and might maintain the integrity of the intestinal epithelial barrier via reducing the loss of enterocytes. In this study, we further investigated the impact of miR-200b on intestinal epithelial inflammation and tight junctions in two distinct differentiated states of Caco-2 cells after TNF-α treatment. We demonstrated that TNF-α-enhanced IL-8 expression was decreased by microRNA (miR)-200b in undifferentiated IECs. Simultaneously, miR-200b could alleviate TNF-α-induced tight junction (TJ) disruption in well-differentiated IECs by reducing the reduction in the transepithelial electrical resistance (TEER), inhibiting the increase in paracellular permeability, and preventing the morphological redistribution of the TJ proteins claudin 1 and ZO-1. The expression levels of the JNK/c-Jun/AP-1 and myosin light chain kinase (MLCK)/phosphorylated myosin light chain (p-MLC) pathways were attenuated in undifferentiated and differentiated enterocytes, respectively. Furthermore, a dual-luciferase reporter gene detection system provided direct evidence that c-Jun and MLCK were the specific targets of miR-200b. Collectively, our results highlighted that miR-200b played a positive role in IECs via suppressing intestinal epithelial IL-8 secretion and attenuating TJ damage in vitro, which suggested that miR-200b might be a promising strategy for IBD therapy. NEW & NOTEWORTHY This was the first time that the inhibitory role of miR-200b on intestinal epithelial inflammation and paracellular permeability has been reported. Moreover, we further divided the intestinal epithelial cells (IECs) into two differentiated conditions and investigated the distinct impacts of miR-200b. Finally, we put forward and proved that myosin light chain kinase (MLCK) was a novel target of miR-200b.
Collapse
Affiliation(s)
- Yujie Shen
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhou
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junkai Yan
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| | - Zizhen Gong
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| | - Yongtao Xiao
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| | - Cong Zhang
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Du
- Department of Colorectal Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingwei Chen
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; .,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; and
| |
Collapse
|
35
|
Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology 2016; 151:616-32. [PMID: 27436072 PMCID: PMC5317033 DOI: 10.1053/j.gastro.2016.07.008] [Citation(s) in RCA: 374] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/02/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte-epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation.
Collapse
Affiliation(s)
- Anny-Claude Luissint
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
36
|
Ramachandran R, Altier C, Oikonomopoulou K, Hollenberg MD. Proteinases, Their Extracellular Targets, and Inflammatory Signaling. Pharmacol Rev 2016; 68:1110-1142. [PMID: 27677721 DOI: 10.1124/pr.115.010991] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Given that over 2% of the human genome codes for proteolytic enzymes and their inhibitors, it is not surprising that proteinases serve many physiologic-pathophysiological roles. In this context, we provide an overview of proteolytic mechanisms regulating inflammation, with a focus on cell signaling stimulated by the generation of inflammatory peptides; activation of the proteinase-activated receptor (PAR) family of G protein-coupled receptors (GPCR), with a mechanism in common with adhesion-triggered GPCRs (ADGRs); and by proteolytic ion channel regulation. These mechanisms are considered in the much wider context that proteolytic mechanisms serve, including the processing of growth factors and their receptors, the regulation of matrix-integrin signaling, and the generation and release of membrane-tethered receptor ligands. These signaling mechanisms are relevant for inflammatory, neurodegenerative, and cardiovascular diseases as well as for cancer. We propose that the inflammation-triggering proteinases and their proteolytically generated substrates represent attractive therapeutic targets and we discuss appropriate targeting strategies.
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Christophe Altier
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Katerina Oikonomopoulou
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology & Pharmacology (R.R., C.A., M.D.H.) and Department of Medicine (M.D.H.),University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine, Toronto Western Hospital, Toronto, Ontario, Canada (K.O.); and Department of Physiology and Pharmacology, Western University, London, Ontario, Canada (R.R.)
| |
Collapse
|
37
|
Ronaghan NJ, Shang J, Iablokov V, Zaheer R, Colarusso P, Dion S, Désilets A, Leduc R, Turner JR, MacNaughton WK. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol 2016; 311:G466-79. [PMID: 27492333 PMCID: PMC5076006 DOI: 10.1152/ajpgi.00441.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/11/2015] [Accepted: 07/28/2016] [Indexed: 01/31/2023]
Abstract
Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism.
Collapse
Affiliation(s)
- Natalie J. Ronaghan
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Judie Shang
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Vadim Iablokov
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Raza Zaheer
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Pina Colarusso
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Sébastien Dion
- 2Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Antoine Désilets
- 2Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Richard Leduc
- 2Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Jerrold R. Turner
- 3Departments of Pathology and Medicine (GI), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wallace K. MacNaughton
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| |
Collapse
|
38
|
Sumagin R, Brazil JC, Nava P, Nishio H, Alam A, Luissint AC, Weber DA, Neish AS, Nusrat A, Parkos CA. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing. Mucosal Immunol 2016; 9:1151-62. [PMID: 26732677 PMCID: PMC4935657 DOI: 10.1038/mi.2015.135] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2015] [Accepted: 11/06/2015] [Indexed: 02/04/2023]
Abstract
A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. Although epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 has an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing.
Collapse
Affiliation(s)
- R Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - J C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - P Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico, Mexico
| | - H Nishio
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - A Alam
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - A C Luissint
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - D A Weber
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - A S Neish
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - A Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - C A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
Szabo R, Lantsman T, Peters DE, Bugge TH. Delineation of proteolytic and non-proteolytic functions of the membrane-anchored serine protease prostasin. Development 2016; 143:2818-28. [PMID: 27385010 DOI: 10.1242/dev.137968] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2016] [Accepted: 06/14/2016] [Indexed: 11/20/2022]
Abstract
The membrane-anchored serine proteases prostasin (PRSS8) and matriptase (ST14) initiate a cell surface proteolytic pathway essential for epithelial function. Mice expressing only catalytically inactive prostasin are viable, unlike prostasin null mice, indicating that at least some prostasin functions are non-proteolytic. Here we used knock-in mice expressing catalytically inactive prostasin (Prss8(Ki/Ki)) to show that the physiological and pathological functions of prostasin vary in their dependence on its catalytic activity. Whereas prostasin null mice exhibited partial embryonic and complete perinatal lethality, Prss8(Ki/Ki) mice displayed normal prenatal and postnatal survival. Unexpectedly, catalytically inactive prostasin caused embryonic lethality in mice lacking its cognate inhibitors HAI-1 (SPINT1) or HAI-2 (SPINT2). Proteolytically inactive prostasin, unlike the wild-type protease, was unable to activate matriptase during placentation. Surprisingly, all essential functions of prostasin in embryonic and postnatal development were compensated for by loss of HAI-1, indicating that prostasin is only required for mouse development and overall viability in the presence of this inhibitor. This study expands our knowledge of non-proteolytic functions of membrane-anchored serine proteases and provides unexpected new data on the mechanistic interactions between matriptase and prostasin in the context of epithelial development.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taliya Lantsman
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diane E Peters
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02110, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
Abstract
The GI tract is the most exposed organ to proteases, both in physiological and pathophysiological conditions. For digestive purposes, the lumen of the upper GI tract contains large amounts of pancreatic proteases, but studies have also demonstrated increased proteolytic activity into mucosal tissues (both in the upper and lower GI tract), associated with pathological conditions. This review aims at outlining the evidences for dysregulated proteolytic homeostasis in GI diseases and the pathogenic mechanisms of increased proteolytic activity. The therapeutic potential of protease inhibition in GI diseases is discussed, with a particular focus on IBDs, functional GI disorders and colorectal cancer.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- Inserm, U1220, Toulouse, France,Université de Toulouse, Université Paul Sabatier, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France,Inra, U1416, Toulouse, France,Ecole Nationale Vétérinaire de Toulouse (ENVT), France,Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Parkos CA. Neutrophil-Epithelial Interactions: A Double-Edged Sword. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1404-16. [PMID: 27083514 DOI: 10.1016/j.ajpath.2016.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/09/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
Abstract
In recent years, it has become clear that innate immune cells termed neutrophils act as double-edged swords by playing essential roles in clearing infection but also causing tissue damage, yet being critical for wound healing. Neutrophil recruitment to sites of injured tissue or infection has been well studied, and many of the molecular events that regulate passage of leukocytes out of the microcirculation are now understood. However, after exiting the circulation, the molecular details that regulate neutrophil passage to end targets, such mucosal surfaces, are just beginning to be appreciated. Given that migration of neutrophils across mucosal epithelia is associated with disease symptoms and disruption of critical barrier function in disorders such as inflammatory bowel disease, there has been long-standing interest in understanding the molecular basis and functional consequences of neutrophil-epithelial interactions. It is a great honor that my work was recognized by the Rous-Whipple Award this past year, giving me the opportunity to summarize what we have learned during the past few decades about leukocyte interactions with epithelial cells.
Collapse
Affiliation(s)
- Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
42
|
Cellular Barriers after Extravasation: Leukocyte Interactions with Polarized Epithelia in the Inflamed Tissue. Mediators Inflamm 2016; 2016:7650260. [PMID: 26941485 PMCID: PMC4749818 DOI: 10.1155/2016/7650260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
During the inflammatory response, immune cells egress from the circulation and follow a chemotactic and haptotactic gradient within the tissue, interacting with matrix components in the stroma and with parenchymal cells, which guide them towards the sites of inflammation. Polarized epithelial cells compartmentalize tissue cavities and are often exposed to inflammatory challenges such as toxics or infections in non-lymphoid tissues. Apicobasal polarity is critical to the specialized functions of these epithelia. Indeed, a common feature of epithelial dysfunction is the loss of polarity. Here we review evidence showing that apicobasal polarity regulates the inflammatory response: various polarized epithelia asymmetrically secrete chemotactic mediators and polarize adhesion receptors that dictate the route of leukocyte migration within the parenchyma. We also discuss recent findings showing that the loss of apicobasal polarity increases leukocyte adhesion to epithelial cells and the consequences that this could have for the inflammatory response towards damaged, infected or transformed epithelial cells.
Collapse
|
43
|
Liu X, Wang J, Zhang H, Zhan M, Chen H, Fang Z, Xu C, Chen H, He S. Induction of Mast Cell Accumulation by Tryptase via a Protease Activated Receptor-2 and ICAM-1 Dependent Mechanism. Mediators Inflamm 2016; 2016:6431574. [PMID: 27378825 PMCID: PMC4917695 DOI: 10.1155/2016/6431574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2016] [Accepted: 05/10/2016] [Indexed: 02/05/2023] Open
Abstract
Mast cells are primary effector cells of allergy, and recruitment of mast cells in involved tissue is one of the key events in allergic inflammation. Tryptase is the most abundant secretory product of mast cells, but little is known of its influence on mast cell accumulation. Using mouse peritoneal model, cell migration assay, and flow cytometry analysis, we investigated role of tryptase in recruiting mast cells. The results showed that tryptase induced up to 6.7-fold increase in mast cell numbers in mouse peritoneum following injection. Inhibitors of tryptase, an antagonist of PAR-2 FSLLRY-NH2, and pretreatment of mice with anti-ICAM-1, anti-CD11a, and anti-CD18 antibodies dramatically diminished tryptase induced mast cell accumulation. On the other hand, PAR-2 agonist peptides SLIGRL-NH2 and tc-LIGRLO-NH2 provoked mast cell accumulation following injection. These implicate that tryptase induced mast cell accumulation is dependent on its enzymatic activity, activation of PAR-2, and interaction between ICAM-1 and LFA-1. Moreover, induction of trans-endothelium migration of mast cells in vitro indicates that tryptase acts as a chemoattractant. In conclusion, provocation of mast cell accumulation by mast cell tryptase suggests a novel self-amplification mechanism of mast cell accumulation. Mast cell stabilizers as well as PAR-2 antagonist agents may be useful for treatment of allergic reactions.
Collapse
Affiliation(s)
- Xin Liu
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Junling Wang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Huiyun Zhang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Mengmeng Zhan
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Hanqiu Chen
- Allergy and Inflammation Research Institute, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou 515031, China
| | - Zeman Fang
- Allergy and Inflammation Research Institute, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou 515031, China
| | - Chiyan Xu
- Allergy and Inflammation Research Institute, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou 515031, China
| | - Huifang Chen
- Allergy and Inflammation Research Institute, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou 515031, China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- *Shaoheng He:
| |
Collapse
|
44
|
José RJ, Williams AE, Mercer PF, Sulikowski MG, Brown JS, Chambers RC. Regulation of neutrophilic inflammation by proteinase-activated receptor 1 during bacterial pulmonary infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:6024-34. [PMID: 25948816 PMCID: PMC4456635 DOI: 10.4049/jimmunol.1500124] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/20/2015] [Accepted: 04/06/2015] [Indexed: 12/24/2022]
Abstract
Neutrophils are key effector cells of the innate immune response to pathogenic bacteria, but excessive neutrophilic inflammation can be associated with bystander tissue damage. The mechanisms responsible for neutrophil recruitment to the lungs during bacterial pneumonia are poorly defined. In this study, we focus on the potential role of the major high-affinity thrombin receptor, proteinase-activated receptor 1 (PAR-1), during the development of pneumonia to the common lung pathogen Streptococcus pneumoniae. Our studies demonstrate that neutrophils were indispensable for controlling S. pneumoniae outgrowth but contributed to alveolar barrier disruption. We further report that intra-alveolar coagulation (bronchoalveolar lavage fluid thrombin-antithrombin complex levels) and PAR-1 immunostaining were increased in this model of bacterial lung infection. Functional studies using the most clinically advanced PAR-1 antagonist, SCH530348, revealed a key contribution for PAR-1 signaling in influencing neutrophil recruitment to lung airspaces in response to both an invasive and noninvasive strain of S. pneumoniae (D39 and EF3030) but that PAR-1 antagonism did not impair the ability of the host to control bacterial outgrowth. PAR-1 antagonist treatment significantly decreased pulmonary levels of IL-1β, CXCL1, CCL2, and CCL7 and attenuated alveolar leak. Ab neutralization studies further demonstrated a nonredundant role for IL-1β, CXCL1, and CCL7 in mediating neutrophil recruitment in response to S. pneumoniae infection. Taken together, these data demonstrate a key role for PAR-1 during S. pneumoniae lung infection that is mediated, at least in part, by influencing multiple downstream inflammatory mediators.
Collapse
Affiliation(s)
- Ricardo J José
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Andrew E Williams
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Paul F Mercer
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Michal G Sulikowski
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
45
|
Enterococcus faecalis Gelatinase Mediates Intestinal Permeability via Protease-Activated Receptor 2. Infect Immun 2015; 83:2762-70. [PMID: 25916983 DOI: 10.1128/iai.00425-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022] Open
Abstract
Microbial protease-mediated disruption of the intestinal epithelium is a potential mechanism whereby a dysbiotic enteric microbiota can lead to disease. This mechanism was investigated using the colitogenic, protease-secreting enteric microbe Enterococcus faecalis. Caco-2 and T-84 epithelial cell monolayers and the mouse colonic epithelium were exposed to concentrated conditioned media (CCM) from E. faecalis V583 and E. faecalis lacking the gelatinase gene (gelE). The flux of fluorescein isothiocyanate (FITC)-labeled dextran across monolayers or the mouse epithelium following exposure to CCM from parental or mutant E. faecalis strains indicated paracellular permeability. A protease-activated receptor 2 (PAR2) antagonist and PAR2-deficient (PAR2(-/-)) mice were used to investigate the role of this receptor in E. faecalis-induced permeability. Gelatinase (GelE) purified from E. faecalis V583 was used to confirm the ability of this protease to induce epithelial cell permeability and activate PAR2. The protease-mediated permeability of colonic epithelia from wild-type (WT) and PAR2(-/-) mice by fecal supernatants from ulcerative colitis patients was assessed. Secreted E. faecalis proteins induced permeability in epithelial cell monolayers, which was reduced in the absence of gelE or by blocking PAR2 activity. Secreted E. faecalis proteins induced permeability in the colonic epithelia of WT mice that was absent in tissues from PAR2(-/-) mice. Purified GelE confirmed the ability of this protease to induce epithelial cell permeability via PAR2 activation. Fecal supernatants from ulcerative colitis patients induced permeability in the colonic epithelia of WT mice that was reduced in tissues from PAR2(-/-) mice. Our investigations demonstrate that GelE from E. faecalis can regulate enteric epithelial permeability via PAR2.
Collapse
|
46
|
Sumagin R, Parkos CA. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration. Tissue Barriers 2015; 3:e969100. [PMID: 25838976 DOI: 10.4161/21688362.2014.969100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022] Open
Abstract
Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function.
Collapse
Key Words
- AJs, adherens junctions
- CAR, coxsackie and adenovirus receptor
- CLMP, CAR-like protein
- CTLs, cytotoxic T lymphocytes
- CTX, thymocyte Xenopus
- DMs, Desmosomes
- Dsc-2, desmocollin-2
- Dsg-2, desmoglein-2
- E-cadherin, epithelial cadherin
- EGFR, Epithelial growth factor receptor
- EMT, epithelial-mesenchymal transition
- EpCAM, epithelial cell adhesion molecule
- IBD, inflammatory bowel diseases
- ICAM-1, intercellular adhesion molecule-1
- IECs, intestinal epithelial cells
- JAM, junctional adhesion molecules
- LAD, leukocyte adhesion deficiency
- LTB-4, lipid leukotriene B4
- MIP1 α, macrophage inflammatory protein 1 alpha
- MLCK, myosin light chain kinase
- MMPs, matrix metalloproteases
- NF-κB, nuclear factor kappa B
- NO, nitric oxide
- PARS, protease-activated receptors
- PI3K, phosphatidylinositol 3-kinase
- PMN, polymorphonuclear cells
- SGD, specific granule deficiency
- SIRPa, signal regulatory protein alpha
- TEM, transepithelial migration
- TGF-β, transforming growth factor beta
- TIAM1, metastasis-inducing protein 1
- TJs, tight junctions
- TSP-1, thrombospondin-1
- adhesion molecules
- barrier
- cell migration
- epithelial cells
- neutrophils
- sLea, sialyl Lewis A
Collapse
Affiliation(s)
- Ronen Sumagin
- Department of Pathology and Laboratory Medicine; Epithelial Pathobiology and Mucosal Inflammation Unit; Emory University ; Atlanta, GA USA
| | - Charles A Parkos
- Department of Pathology and Laboratory Medicine; Epithelial Pathobiology and Mucosal Inflammation Unit; Emory University ; Atlanta, GA USA
| |
Collapse
|
47
|
Early-life dietary spray-dried plasma influences immunological and intestinal injury responses to later-life Salmonella typhimurium challenge. Br J Nutr 2015; 113:783-93. [PMID: 25671331 DOI: 10.1017/s000711451400422x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
Increasing evidence supports the concept that early-life environmental influences, including nutrition and stress, have an impact on long-term health outcomes and disease susceptibility. The objective of the present study was to determine whether dietary spray-dried plasma (SDP), fed during the first 2 weeks post-weaning (PW), influences subsequent immunological and intestinal injury responses to Salmonella typhimurium challenge. A total of thirty-two piglets (age 16-17 d) were weaned onto nursery diets containing 0, 2·5 % SDP (fed for 7 d PW) or 5 % SDP (fed for 14 d PW), and were then fed control diets (without SDP), for the remainder of the experiment. At 34 d PW (age 50 d), pigs were challenged with 3 × 10⁹ colony-forming units of S. typhimurium. A control group (non-challenged) that was fed 0 % SDP in the nursery was included. At 2 d post-challenge, the distal ileum was harvested for the measurement of inflammatory, histological and intestinal physiological parameters. S. typhimurium challenge induced elevated ileal histological scores, myeloperoxidase (MPO), IL-8 and TNF, and increased intestinal permeability (indicated by reduced transepithelial voltage (potential difference) and elevated 4 kDa fluorescein isothiocyanate dextran (FD4) flux rates). Compared with S. typhimurium-challenged controls (0 % SDP), pigs fed the 5 % SDP-14 d diet exhibited reduced ileal histological scores, MPO levels, IL-8 levels and FD4 flux rates. Pigs fed the 5 % SDP-14 d nursery diet exhibited increased levels of plasma and ileal TNF-α in response to the challenge, compared with the other treatments. These results indicate that inclusion of SDP in PW diets can have an influence on subsequent immunological and intestinal injury responses induced by later-life S. typhimurium challenge.
Collapse
|
48
|
Hallstrom KN, Srikanth CV, Agbor TA, Dumont CM, Peters KN, Paraoan L, Casanova JE, Boll EJ, McCormick BA. PERP, a host tetraspanning membrane protein, is required for Salmonella-induced inflammation. Cell Microbiol 2015; 17:843-59. [PMID: 25486861 PMCID: PMC4915744 DOI: 10.1111/cmi.12406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2014] [Revised: 11/12/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
Salmonella enterica
Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from Salmonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast‐two‐hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP‐22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface.
Collapse
Affiliation(s)
- Kelly N Hallstrom
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - C V Srikanth
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Terence A Agbor
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christopher M Dumont
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kristen N Peters
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Luminita Paraoan
- Eye and Vision Science Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Erik J Boll
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
49
|
Weber DA, Sumagin R, McCall IC, Leoni G, Neumann PA, Andargachew R, Brazil JC, Medina-Contreras O, Denning TL, Nusrat A, Parkos CA. Neutrophil-derived JAML inhibits repair of intestinal epithelial injury during acute inflammation. Mucosal Immunol 2014; 7:1221-32. [PMID: 24621992 PMCID: PMC4340686 DOI: 10.1038/mi.2014.12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2013] [Revised: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 02/04/2023]
Abstract
Neutrophil transepithelial migration (TEM) during acute inflammation is associated with mucosal injury. Using models of acute mucosal injury in vitro and in vivo, we describe a new mechanism by which neutrophils infiltrating the intestinal mucosa disrupt epithelial homeostasis. We report that junctional adhesion molecule-like protein (JAML) is cleaved from neutrophil surface by zinc metalloproteases during TEM. Neutrophil-derived soluble JAML binds to the epithelial tight junction protein coxsackie-adenovirus receptor (CAR) resulting in compromised barrier and inhibition of wound repair, through decreased epithelial proliferation. The deleterious effects of JAML on barrier and wound repair are reversed with an anti-JAML monoclonal antibody that inhibits JAML-CAR binding. JAML released from transmigrating neutrophils across inflamed epithelia may thus promote recruitment of leukocytes and aid in clearance of invading microorganisms. However, sustained release of JAML under pathologic conditions associated with persistence of large numbers of infiltrated neutrophils would compromise intestinal barrier and inhibit mucosal healing. Thus, targeting JAML-CAR interactions may improve mucosal healing responses under conditions of dysregulated neutrophil recruitment.
Collapse
Affiliation(s)
- Dominique A. Weber
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Ronen Sumagin
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Ingrid C. McCall
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Giovanna Leoni
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Philipp A. Neumann
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Rakieb Andargachew
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Jennifer C. Brazil
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Oscar Medina-Contreras
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Timothy L. Denning
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine
| | - Charles A. Parkos
- Epithelial Pathobiology and Mucosal Inflammation Unit, Department of Pathology and Laboratory Medicine,Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
50
|
Szabo R, Peters DE, Kosa P, Camerer E, Bugge TH. Regulation of feto-maternal barrier by matriptase- and PAR-2-mediated signaling is required for placental morphogenesis and mouse embryonic survival. PLoS Genet 2014; 10:e1004470. [PMID: 25078604 PMCID: PMC4117450 DOI: 10.1371/journal.pgen.1004470] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2014] [Accepted: 05/14/2014] [Indexed: 11/19/2022] Open
Abstract
The development of eutherian mammalian embryos is critically dependent on the selective bi-directional transport of molecules across the placenta. Here, we uncover two independent and partially redundant protease signaling pathways that include the membrane-anchored serine proteases, matriptase and prostasin, and the G protein-coupled receptor PAR-2 that mediate the establishment of a functional feto-maternal barrier. Mice with a combined matriptase and PAR-2 deficiency do not survive to term and the survival of matriptase-deficient mice heterozygous for PAR-2 is severely diminished. Embryos with the combined loss of PAR-2 and matriptase or PAR-2 and the matriptase partner protease, prostasin, uniformly die on or before embryonic day 14.5. Despite the extensive co-localization of matriptase, prostasin, and PAR-2 in embryonic epithelia, the overall macroscopic and histological analysis of the double-deficient embryos did not reveal any obvious developmental abnormalities. In agreement with this, the conditional deletion of matriptase from the embryo proper did not affect the prenatal development or survival of PAR-2-deficient mice, indicating that the critical redundant functions of matriptase/prostasin and PAR-2 are limited to extraembryonic tissues. Indeed, placentas of the double-deficient animals showed decreased vascularization, and the ability of placental epithelium to establish a functional feto-maternal barrier was severely diminished. Interestingly, molecular analysis suggested that the barrier defect was associated with a selective deficiency in the expression of the tight junction protein, claudin-1. Our results reveal unexpected complementary roles of matriptase-prostasin- and PAR-2-dependent proteolytic signaling in the establishment of placental epithelial barrier function and overall embryonic survival. Development of mammalian embryos is dependent on an efficient exchange of nutrients, oxygen, and waste products between the mother and the embryo. The interface between the two systems is provided by the placenta in a form of a specialized epithelium that both facilitates the transport of molecules between the mother and the embryo and screens the substances that can pass between the maternal and fetal tissues. We now show that two independent signaling pathways that include the serine proteases, matriptase and prostasin, and a G protein-coupled receptor PAR-2, are critical for the establishment of a functional feto-maternal interface by specifically regulating the barrier properties of the placental epithelium. Because aberrant formation of epithelial barriers is an underlying feature of a great variety of human developmental abnormalities, the identification of the two protease-dependent signaling pathways critical for the barrier formation in embryonic tissues may help pinpoint molecular mechanisms involved in the etiology of these conditions.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Diane E. Peters
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Kosa
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France
- Université Paris-Descartes, Paris, France
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|