1
|
Valério-Bolas A, Meunier M, Palma-Marques J, Rodrigues A, Santos AM, Nunes T, Ferreira R, Armada A, Alves JC, Antunes W, Cardoso I, Mesquita-Gabriel S, Lobo L, Alexandre-Pires G, Marques L, Pereira da Fonseca I, Santos-Gomes G. Exploiting Leishmania-Primed Dendritic Cells as Potential Immunomodulators of Canine Immune Response. Cells 2024; 13:445. [PMID: 38474410 DOI: 10.3390/cells13050445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Dendritic cells (DCs) capture pathogens and process antigens, playing a crucial role in activating naïve T cells, bridging the gap between innate and acquired immunity. However, little is known about DC activation when facing Leishmania parasites. Thus, this study investigates in vitro activity of canine peripheral blood-derived DCs (moDCs) exposed to L. infantum and L. amazonensis parasites and their extracellular vesicles (EVs). L. infantum increased toll-like receptor 4 gene expression in synergy with nuclear factor κB activation and the generation of pro-inflammatory cytokines. This parasite also induced the expression of class II molecules of major histocompatibility complex (MHC) and upregulated co-stimulatory molecule CD86, which, together with the release of chemokine CXCL16, can attract and help in T lymphocyte activation. In contrast, L. amazonensis induced moDCs to generate a mix of pro- and anti-inflammatory cytokines, indicating that this parasite can establish a different immune relationship with DCs. EVs promoted moDCs to express class I MHC associated with the upregulation of co-stimulatory molecules and the release of CXCL16, suggesting that EVs can modulate moDCs to attract cytotoxic CD8+ T cells. Thus, these parasites and their EVs can shape DC activation. A detailed understanding of DC activation may open new avenues for the development of advanced leishmaniasis control strategies.
Collapse
Affiliation(s)
- Ana Valério-Bolas
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Mafalda Meunier
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Joana Palma-Marques
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Armanda Rodrigues
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Ana Margarida Santos
- Divisão de Medicina Veterinária, Guarda Nacional Republicana, 1200-771 Lisbon, Portugal
| | - Telmo Nunes
- Microscopy Center, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Rui Ferreira
- Banco de Sangue Animal (BSA), 4100-462 Porto, Portugal
| | - Ana Armada
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - João Carlos Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana, 1200-771 Lisbon, Portugal
| | - Wilson Antunes
- Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), 1849-012 Lisbon, Portugal
| | - Inês Cardoso
- Banco de Sangue Animal (BSA), 4100-462 Porto, Portugal
| | - Sofia Mesquita-Gabriel
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Lis Lobo
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Graça Alexandre-Pires
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1200-771 Lisbon, Portugal
| | - Luís Marques
- BioSystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon-FCUL-BioISI Ce3CE, 1749-016 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1200-771 Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| |
Collapse
|
2
|
He J, Huang F, Liao X, Zhang J, Wei S, Xiao Y, Zheng X, Zhu Z, Chen D, Chen J. TLR9 agonist CpG ODN 2395 promotes the immune response against Leishmania donovani in obesity and undernutrition mice. Acta Trop 2023; 242:106921. [PMID: 37030488 DOI: 10.1016/j.actatropica.2023.106921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
As important immunomodulators, CpG ODNs have broad application prospects in the treatment and prevention of leishmaniasis. In order to explore the immunomodulatory effect of CpG ODNs on mice infected with Leishmania parasites in different nutritional status, TLR9 agonist CpG ODN 2395 or TLR9 antagonist CpG ODN 2088 was injected into normal, obesity and undernutrition BALB/c mice infected with Leishmania donovani, respectively. Subsequently, spleen and liver parasite loads, spleen and liver immune gene expression, spleen T cell subsets proportion and PD-1 expression, serum lipids, serum cytokines, and anti-Leishmania antibodies were measured to assess the immune response of mice with different nutritional status. The results displayed that at the 8th week after infection, the spleen parasite load of obesity and undernutrition mice was significantly higher than that of normal mice, but the liver parasite load showed no statistical difference among the three groups. The treatment of CpG ODN 2395 or CpG ODN 2088 significantly reduced the spleen parasite load of obesity and undernutrition infected mice, but did not reduce that of normal infected mice. In obesity infected mice, CpG ODN 2395 promoted the up-regulation of TCR, ICOS and TLR4 in spleen, promoted the secretion of IFN-γ and anti-Leishmania total IgG and IgG1 antibodies, and increased the content of serum HDL-C. In undernutrition infected mice, CpG ODN 2395 promoted the up-regulation of spleen CD28 and TLR9, increased the proportion of spleen CD3+ T cells, and decreased the content of serum IL-10. Our results demonstrated that CpG ODN 2395 enhanced the immune response and clearance of Leishmania parasites in obesity and undernutrition mice, which might be used as a therapeutic agent for obesity and undernutrition leishmaniasis patients in the future.
Collapse
Affiliation(s)
- Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Fan Huang
- First Surgical Department, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shulan Wei
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoting Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zheying Zhu
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Bhattacharya P, Gannavaram S, Ismail N, Saxena A, Dagur PK, Akue A, KuKuruga M, Nakhasi HL. Toll-like Receptor-9 (TLR-9) Signaling Is Crucial for Inducing Protective Immunity following Immunization with Genetically Modified Live Attenuated Leishmania Parasites. Pathogens 2023; 12:pathogens12040534. [PMID: 37111420 PMCID: PMC10143410 DOI: 10.3390/pathogens12040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
No human vaccine is available for visceral leishmaniasis (VL). Live attenuated centrin gene-deleted L. donovani (LdCen−/−) parasite vaccine has been shown to induce robust innate immunity and provide protection in animal models. Toll-like receptors (TLRs) are expressed in innate immune cells and are essential for the early stages of Leishmania infection. Among TLRs, TLR-9 signaling has been reported to induce host protection during Leishmania infection. Importantly, TLR-9 ligands have been used as immune enhancers for non-live vaccination strategies against leishmaniasis. However, the function of TLR-9 in the generation of a protective immune response in live attenuated Leishmania vaccines remains unknown. In this study, we investigated the function of TLR-9 during LdCen−/− infection and found that it increased the expression of TLR-9 on DCs and macrophages from ear-draining lymph nodes and spleen. The increase in TLR-9 expression resulted in changes in downstream signaling in DCs mediated through signaling protein myeloid differentiation primary response 88 (MyD88), resulting in activation and nuclear translocation of nuclear factor-κB (NF-κB). This process resulted in an increase in the DC’s proinflammatory response, activation, and DC-mediated CD4+T cell proliferation. Further, LdCen−/− immunization in TLR-9−/− mice resulted in a significant loss of protective immunity. Thus, LdCen−/− vaccine naturally activates the TLR-9 signaling pathway to elicit protective immunity against virulent L. donovani challenge.
Collapse
Affiliation(s)
- Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
- Correspondence: (P.B.); (H.L.N.); Tel.: +1-240-402-8209 (H.L.N.)
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Ankit Saxena
- Immune Monitoring Shared Resource, Rutgers, Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Pradeep K. Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adovi Akue
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mark KuKuruga
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD 20993, USA
- Correspondence: (P.B.); (H.L.N.); Tel.: +1-240-402-8209 (H.L.N.)
| |
Collapse
|
4
|
Martinković F, Popović M, Smolec O, Mrljak V, Eckersall PD, Horvatić A. Data Independent Acquisition Reveals In-Depth Serum Proteome Changes in Canine Leishmaniosis. Metabolites 2023; 13:metabo13030365. [PMID: 36984805 PMCID: PMC10059658 DOI: 10.3390/metabo13030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Comprehensive profiling of serum proteome provides valuable clues of health status and pathophysiological processes, making it the main strategy in biomarker discovery. However, the high dynamic range significantly decreases the number of detectable proteins, obstructing the insights into the underlying biological processes. To circumvent various serum enrichment methods, obtain high-quality proteome wide information using the next-generation proteomic, and study host response in canine leishmaniosis, we applied data-independent acquisition mass spectrometry (DIA-MS) for deep proteomic profiling of clinical samples. The non-depleted serum samples of healthy and naturally Leishmania-infected dogs were analyzed using the label-free 60-min gradient sequential window acquisition of all theoretical mass spectra (SWATH-MS) method. As a result, we identified 554 proteins, 140 of which differed significantly in abundance. Those were included in lipid metabolism, hematological abnormalities, immune response, and oxidative stress, providing valuable information about the complex molecular basis of the clinical and pathological landscape in canine leishmaniosis. Our results show that DIA-MS is a method of choice for understanding complex pathophysiological processes in serum and serum biomarker development.
Collapse
Affiliation(s)
- Franjo Martinković
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Marin Popović
- Department of Safety and Protection, Karlovac University of Applied Sciences, Trg Josipa Juraja Strossmayera 9, HR-47000 Karlovac, Croatia
| | - Ozren Smolec
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Peter David Eckersall
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, University of Murcia, 30100 Murcia, Spain
| | - Anita Horvatić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
5
|
Jha A, Ahad A, Mishra GP, Sen K, Smita S, Minz AP, Biswas VK, Tripathy A, Senapati S, Gupta B, Acha-Orbea H, Raghav SK. SMRT and NCoR1 fine-tune inflammatory versus tolerogenic balance in dendritic cells by differentially regulating STAT3 signaling. Front Immunol 2022; 13:910705. [PMID: 36238311 PMCID: PMC9552960 DOI: 10.3389/fimmu.2022.910705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cell (DC) fine-tunes inflammatory versus tolerogenic responses to protect from immune-pathology. However, the role of co-regulators in maintaining this balance is unexplored. NCoR1-mediated repression of DC immune-tolerance has been recently reported. Here we found that depletion of NCoR1 paralog SMRT (NCoR2) enhanced cDC1 activation and expression of IL-6, IL-12 and IL-23 while concomitantly decreasing IL-10 expression/secretion. Consequently, co-cultured CD4+ and CD8+ T-cells depicted enhanced Th1/Th17 frequency and cytotoxicity, respectively. Comparative genomic and transcriptomic analysis demonstrated differential regulation of IL-10 by SMRT and NCoR1. SMRT depletion represses mTOR-STAT3-IL10 signaling in cDC1 by down-regulating NR4A1. Besides, Nfkbia and Socs3 were down-regulated in Ncor2 (Smrt) depleted cDC1, supporting increased production of inflammatory cytokines. Moreover, studies in mice showed, adoptive transfer of SMRT depleted cDC1 in OVA-DTH induced footpad inflammation led to increased Th1/Th17 and reduced tumor burden after B16 melanoma injection by enhancing oncolytic CD8+ T-cell frequency, respectively. We also depicted decreased Ncor2 expression in Rheumatoid Arthritis, a Th1/Th17 disease.
Collapse
Affiliation(s)
- Atimukta Jha
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Abdul Ahad
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Gyan Prakash Mishra
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Kaushik Sen
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Haryana, India
| | - Shuchi Smita
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Aliva Prity Minz
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
| | - Viplov Kumar Biswas
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Archana Tripathy
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Shantibhushan Senapati
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
| | - Bhawna Gupta
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Hans Acha-Orbea
- Department of Biochemistry Center of Immunity and Infection Lausanne (CIIL), University of Lausanne (UNIL), Epalinges, Switzerland
| | - Sunil Kumar Raghav
- Immuno-genomics & Systems Biology laboratory, Institute of Life Sciences (ILS), Bhubaneswar, OR, India
- Manipal Academy of Higher Education, Manipal, KA, India
- *Correspondence: Sunil Kumar Raghav, ;
| |
Collapse
|
6
|
Immune Responses in Leishmaniases: An Overview. Trop Med Infect Dis 2022; 7:tropicalmed7040054. [PMID: 35448829 PMCID: PMC9029249 DOI: 10.3390/tropicalmed7040054] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a parasitic, widespread, and neglected disease that affects more than 90 countries in the world. More than 20 Leishmania species cause different forms of leishmaniasis that range in severity from cutaneous lesions to systemic infection. The diversity of leishmaniasis forms is due to the species of parasite, vector, environmental and social factors, genetic background, nutritional status, as well as immunocompetence of the host. Here, we discuss the role of the immune system, its molecules, and responses in the establishment, development, and outcome of Leishmaniasis, focusing on innate immune cells and Leishmania major interactions.
Collapse
|
7
|
Montakhab-Yeganeh H, Shafiei R, Najm M, Masoori L, Aspatwar A, Badirzadeh A. Immunogenic properties of empty pcDNA3 plasmid against zoonotic cutaneous leishmaniasis in mice. PLoS One 2022; 17:e0263993. [PMID: 35167596 PMCID: PMC8846536 DOI: 10.1371/journal.pone.0263993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Leishmania (L) parasite, the causative agent of zoonotic cutaneous leishmaniasis (ZCL), effectively stimulates the mammalian cells to mount strong humoral responses by enhancing T-helper-2 (Th2)-associated cytokines for its survival. The best strategy to decrease the intensity of infection in the host is induction of cellular immunity. Methods We evaluated the effects of the empty bacterial pcDNA3 plasmid on mice infected with L. major and quantified the immune mediators including IFN-γ, IL-4, IL-10, IgG2a, IgG1, arginase activity and nitric oxide (NO) in the mice. Moreover, the footpad lesion size and parasite load were assessed. Results We observed that pcDNA3 could modulate the immune responses in favor of host cells and decrease the disease severity. Th2- associated mediators, including arginase, IL-4, and IL-10 are downregulated, while cellular responses are upregulated in line with an increase in the levels of nitric oxide (NO) and interfero-gamma (IFN-γ). Interestingly, pcDNA3 induced specific Th1-associated antibodies, IgG2a isotype; however, it suppressed the production of humoral IgG1. The stimulation of the immune response by the empty pcDNA3 is able to shift the immune function to predominant cellular responses caused by Th1, and it had a positive effect on the treatment of zoonotic cutaneous leishmaniasis (ZCL). Conclusions Altogether, we introduced the pcDNA3 as a potential interfering factor in the modulation of the immune system against ZCL. Since this vector has been widely used as a control group in different studies, we suggest that the potential function of the empty vector should be deeply assessed, as it exerts anti-parasitic effects on mice infected with L. major.
Collapse
Affiliation(s)
- Hossein Montakhab-Yeganeh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Najm
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Masoori
- Department of Laboratory Sciences, School of Allied Medical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
8
|
Bamigbola IE, Ali S. Paradoxical immune response in leishmaniasis: the role of toll-like receptors in disease progression. Parasite Immunol 2022; 44:e12910. [PMID: 35119120 PMCID: PMC9285711 DOI: 10.1111/pim.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
Toll-like receptors (TLRs), members of pattern recognition receptors, are expressed on many cells of the innate immune system and their engagements with antigens regulates specific immune responses. TLRs signalling influences species-specific immune responses during Leishmania infection, thus, TLRs play a decisive role towards elimination or exacerbation of Leishmania infection. To date, there is no single therapeutic or prophylactic approach that fully effective against Leishmaniasis. An in-depth understanding of the mechanisms by which Leishmania species evade, or exploit host immune machinery could lead to the development of novel therapeutic approaches for the prevention and management of leishmaniasis. In this review, the role of TLRs in the induction of a paradoxical immune response in leishmaniasis was discussed. This review focuses on highlighting the novel interplay of TLR2/TLR9 driven resistance or susceptibility to 5 clinically important Leishmania species in human. The activation of TLR2/TLR9 can induce a diverse anti-Leishmania activities depending on the species of infecting Leishmania parasite. Infection with L. infantum and L. mexicana initiate TLR2/9 activation leading to host protective immune response while infection with L. major, L. donovani, and L. amazonensis trigger either a TLR2/9 related protective or non-protective immune responses. These findings suggest that TLR2 and TLR9 are targets worth pursuing either for modulation or blockage to trigger host protective immune response towards leishmaniasis.
Collapse
Affiliation(s)
- Ifeoluwa E Bamigbola
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Selman Ali
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
9
|
The c-MET receptor tyrosine kinase contributes to neutrophil-driven pathology in cutaneous leishmaniasis. PLoS Pathog 2022; 18:e1010247. [PMID: 35041723 PMCID: PMC8797216 DOI: 10.1371/journal.ppat.1010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/28/2022] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
Neutrophils are the first line of defence against invading pathogens. Although neutrophils are well-known professional killers, some pathogens including Leishmania (L.) parasites survive in neutrophils, using these cells to establish infection. Manipulation of neutrophil recruitment to the infection site is therefore of interest in this cutaneous disease. The c-MET tyrosine kinase receptor was shown to promote neutrophil migration to inflamed sites. Here, we investigated the importance of c-MET expression on neutrophils in their recruitment to the infection site and the role of c-Met expression in the pathology of leishmaniasis. Following infection with L. mexicana, mice with conditional deletion of c-MET in neutrophils controlled significantly better their lesion development and parasite burden compared to similarly infected wild type mice. Our data reveal a specific role for c-MET activation in Leishmania-induced neutrophil infiltration, a process correlating with their negative role in the pathology of the diseases. We further show that c-MET phosphorylation is observed in established cutaneous lesions. Exposure to L. mexicana upregulated c-Met expression predominantly in infected neutrophils and c-Met expression influenced ROS release by neutrophils. In addition, pharmacological inhibition of c-MET, administrated once the lesion is established, induced a significant decrease in lesion size associated with diminished infiltration of neutrophils. Both genetic ablation of c-MET in neutrophils and systemic inhibition of c-MET locally resulted in higher levels of CD4+T cells producing IFNγ, suggesting a crosstalk between neutrophils and these cells. Collectively, our data show that c-MET activation in neutrophils contributes to their recruitment following infection, and that L. mexicana induction of c-MET on neutrophils impacts the local pathology associated with this disease. Our results suggest a potential use for this inhibitor in the control of the cutaneous lesion during this parasitic infection.
Collapse
|
10
|
Bettadapura M, Roys H, Bowlin A, Venugopal G, Washam CL, Fry L, Murdock S, Wanjala H, Byrum SD, Weinkopff T. HIF-α Activation Impacts Macrophage Function during Murine Leishmania major Infection. Pathogens 2021; 10:pathogens10121584. [PMID: 34959539 PMCID: PMC8706659 DOI: 10.3390/pathogens10121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmanial skin lesions are characterized by inflammatory hypoxia alongside the activation of hypoxia-inducible factors, HIF-1α and HIF-2α, and subsequent expression of the HIF-α target VEGF-A during Leishmania major infection. However, the factors responsible for HIF-α activation are not known. We hypothesize that hypoxia and proinflammatory stimuli contribute to HIF-α activation during infection. RNA-Seq of leishmanial lesions revealed that transcripts associated with HIF-1α signaling were induced. To determine whether hypoxia contributes to HIF-α activation, we followed the fate of myeloid cells infiltrating from the blood and into hypoxic lesions. Recruited myeloid cells experienced hypoxia when they entered inflamed lesions, and the length of time in lesions increased their hypoxic signature. To determine whether proinflammatory stimuli in the inflamed tissue can also influence HIF-α activation, we subjected macrophages to various proinflammatory stimuli and measured VEGF-A. While parasites alone did not induce VEGF-A, and proinflammatory stimuli only modestly induced VEGF-A, HIF-α stabilization increased VEGF-A during infection. HIF-α stabilization did not impact parasite entry, growth, or killing. Conversely, the absence of ARNT/HIF-α signaling enhanced parasite internalization. Altogether, these findings suggest that HIF-α is active during infection, and while macrophage HIF-α activation promotes lymphatic remodeling through VEGF-A production, HIF-α activation does not impact parasite internalization or control.
Collapse
Affiliation(s)
- Manjunath Bettadapura
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Hayden Roys
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Anne Bowlin
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Gopinath Venugopal
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.W.); (S.D.B.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Lucy Fry
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Steven Murdock
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Humphrey Wanjala
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.W.); (S.D.B.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
- Correspondence: ; Tel.: +1-501-686-5518
| |
Collapse
|
11
|
Regli IB, Passelli K, Martínez-Salazar B, Amore J, Hurrell BP, Müller AJ, Tacchini-Cottier F. TLR7 Sensing by Neutrophils Is Critical for the Control of Cutaneous Leishmaniasis. Cell Rep 2020; 31:107746. [DOI: 10.1016/j.celrep.2020.107746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
|
12
|
Tiwari RK, Gupta CL, Bajpai P. Impelling TLR9: Road to perspective vaccine for visceral leishmaniasis. Drug Dev Res 2020; 83:222-224. [PMID: 32216115 DOI: 10.1002/ddr.21662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 11/06/2022]
Abstract
Recent trends in immunotherapy have shown enthusiasm in exploring Toll-like receptors (TLRs) for designing therapeutical interventions against numerous deadly diseases. TLRs are subfamily of pathogen recognition receptor playing pivotal role in innate immunity. TLR9 is one such critical member belonging to intracellular TLRs which is associated with mounting inflammatory response in response to intruders. Explorative studies have shown CG motifs from the prokaryotic origin as activators of TLR9 culminating in the expression of NFκB. These CG rich short stranded DNA sequences have been further delineated into different classes based on their structural specificities and immunomodulatory properties. Here we discuss the progress of how activation of TLR9 can be utilized with novel parasitic CpG islands to function as potential adjuvants specifically against protozoan parasitic diseases primarily visceral leishmaniasis caused by Leishmania donovani.
Collapse
Affiliation(s)
- Rohit Kumar Tiwari
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Preeti Bajpai
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Abstract
Trichomonas vaginalis is an extracellular parasite that colonizes the human urogenital tract leading to trichomoniasis, the most common sexually-transmitted non-viral disease worldwide. The immune response plays a critical role in the host defense against this parasite. Trichomonas' DNA contains unmethylated CpG motifs (CpGDNA) that in other microorganisms act as modulators of the immune response. However, the molecular mechanisms responsible for CpGDNA immune modulation are still unclear. As macrophages participate in the first line of defense against infection, we investigated the type of immune response of murine macrophages to T. vaginalis DNA (TvDNA). We observed high expression of the proinflammatory cytokines IL-6 and IL-12p40 in macrophages stimulated with TvDNA. In contrast, the anti-inflammatory response, assessed by IL-10 and IL-13 mRNA expression was delayed. This suggests that the immune response induced by TvDNA is modulated through cytokine production, mediated partly by NADPH-oxidase activity, as TvDNA induced reactive species of oxygen production and a rounded morphology in macrophages indicative of an M1 phenotype. Furthermore, infected mice pretreated with TvDNA displayed persistent vulvar inflammation and decreased parasite viability consistent with higher proinflammatory cytokine levels during infection compared to untreated mice. Overall, our findings suggest that TvDNA pretreatment modulates the immune response favouring parasite elimination.
Collapse
|
14
|
Sauter IP, Madrid KG, de Assis JB, Sá-Nunes A, Torrecilhas AC, Staquicini DI, Pasqualini R, Arap W, Cortez M. TLR9/MyD88/TRIF signaling activates host immune inhibitory CD200 in Leishmania infection. JCI Insight 2019; 4:126207. [PMID: 31092731 DOI: 10.1172/jci.insight.126207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Virulent protozoans named Leishmania in tropical and subtropical areas produce devastating diseases by exploiting host immune responses. Amastigotes of Leishmania amazonensis stimulate macrophages to express CD200, an immunomodulatory ligand, which binds to its cognate receptor (CD200R) and inhibits the inducible nitric oxide synthase and nitric oxide (iNOS/NO) signaling pathways, thereby promoting intracellular survival. However, the mechanisms underlying CD200 induction in macrophages remain largely unknown. Here, we show that phagocytosis-mediated internalization of L. amazonensis amastigotes following activation of endosomal TLR9/MyD88/TRIF signaling is critical for inducing CD200 in infected macrophages. We also demonstrate that Leishmania microvesicles containing DNA fragments activate TLR9-dependent CD200 expression, which inhibits the iNOS/NO pathway and modulates the course of L. amazonensis infection in vivo. These findings demonstrate that Leishmania exploits TLR-signaling pathways not only to inhibit macrophage microbicidal function, but also to evade host systemic immune responses, which has many implications in the severity of the disease.
Collapse
Affiliation(s)
| | | | - Josiane B de Assis
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C Torrecilhas
- Department of Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela I Staquicini
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey and Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | |
Collapse
|
15
|
Rossi M, Fasel N. How to master the host immune system? Leishmania parasites have the solutions! Int Immunol 2019; 30:103-111. [PMID: 29294040 PMCID: PMC5892169 DOI: 10.1093/intimm/dxx075] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
Infection by protozoan parasites of the genus Leishmania results in the development of leishmaniasis, an increasingly prevalent group of diseases affecting over 12 million people worldwide. Leishmaniasis can have very different outcomes ranging from cutaneous lesions, mucosal lesions to visceralization depending on the species of the infecting parasite and on the immune response developed by the host. As an obligate intracellular parasite, residing within macrophages, Leishmania evolved in strict contact with the host immune system, developing different mechanisms to evade or modulate the immune response. Various types of immune responses are observed during different Leishmania spp. infections, resulting in parasite clearance but also contributing to the pathogenesis, thus increasing the complexity of the course of the disease. Interestingly, depending on the type of leishmaniasis developed, opposite treatment strategies, which either boost or inhibit the inflammatory response, have shown efficacy. In this review, we summarize the contribution of different immune cell types to the development of the anti-leishmanial immune response and the parasite strategies to evade and modulate host immunity. Further, we discuss the involvement of co-infecting pathogens in the determination of the outcome of leishmaniasis and on the effectiveness of treatment and the implication of the immune response for treatment and vaccine development.
Collapse
Affiliation(s)
- Matteo Rossi
- Department of Biochemistry, University of Lausanne, Epalinges, Lausanne, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Lausanne, Switzerland
| |
Collapse
|
16
|
Pratti JES, da Fonseca Martins AM, da Silva JP, Ramos TD, Pereira JC, Firmino-Cruz L, Oliveira-Maciel D, Vieira TSDS, Lacerda LL, Vale AM, Freire-de-Lima CG, Gomes DCO, Saraiva EM, Rossi-Bergmann B, de Matos Guedes HL. The role of TLR9 on Leishmania amazonensis infection and its influence on intranasal LaAg vaccine efficacy. PLoS Negl Trop Dis 2019; 13:e0007146. [PMID: 30802247 PMCID: PMC6405171 DOI: 10.1371/journal.pntd.0007146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 03/07/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Leishmania (L.) amazonensis is one of the etiological agents of cutaneous leishmaniasis (CL) in Brazil. Currently, there is no vaccine approved for human use against leishmaniasis, although several vaccine preparations are in experimental stages. One of them is Leishvacin, or LaAg, a first-generation vaccine composed of total L. amazonensis antigens that has consistently shown an increase of mouse resistance against CL when administered intranasally (i.n.). Since Toll-like receptor 9 (TLR9) is highly expressed in the nasal mucosa and LaAg is composed of TLR9-binding DNA CpG motifs, in this study we proposed to investigate the role of TLR9 in both L. amazonensis infection and in LaAg vaccine efficacy in C57BL/6 (WT) mice and TLR9-/- mice. First, we evaluated, the infection of macrophages by L. amazonensis in vitro, showing no significant difference between macrophages from WT and TLR9-/- mice in terms of both infection percentage and total number of intracellular amastigotes, as well as NO production. In addition, neutrophils from WT and TLR9-/- mice had similar capacity to produce neutrophil extracellular traps (NETs) in response to L. amazonensis. L. amazonensis did not activate dendritic cells from WT and TLR9-/- mice, analysed by MHCII and CD86 expression. However, in vivo, TLR9-/- mice were slightly more susceptible to L. amazonensis infection than WT mice, presenting a larger lesion and an increased parasite load at the peak of infection and in the chronic phase. The increased TLR9-/- mice susceptibility was accompanied by an increased IgG and IgG1 production; a decrease of IFN-γ in infected tissue, but not IL-4 and IL-10; and a decreased number of IFN-γ producing CD8+ T cells, but not CD4+ T cells in the lesion-draining lymph nodes. Also, TLR9-/- mice could not control parasite growth following i.n. LaAg vaccination unlike the WT mice. This protection failure was associated with a reduction of the hypersensitivity response induced by immunization. The TLR9-/- vaccinated mice failed to respond to antigen stimulation and to produce IFN-γ by lymph node cells. Together, these results suggest that TLR9 contributes to C57BL/6 mouse resistance against L. amazonensis, and that the TLR9-binding LaAg comprising CpG motifs may be important for intranasal vaccine efficacy against CL.
Collapse
Affiliation(s)
| | - Alessandra Marcia da Fonseca Martins
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana Paiva da Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tadeu Diniz Ramos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joyce Carvalho Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luan Firmino-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Oliveira-Maciel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago Soares de Souza Vieira
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leandra Linhares Lacerda
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andre Macedo Vale
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celio G. Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel C. Oliveira Gomes
- Laboratório de Imunobiologia, Núcleo de Doenças Infecciosas/ Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, ES, Brazil
| | - Elvira M. Saraiva
- Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Núcleo Multidisciplinar de Pesquisa UFRJ–Xerém em Biologia (NUMPEX-BIO), Campus Duque de Caxias Professor Geraldo Cidade (Polo Avançado de Xerém), Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil
| |
Collapse
|
17
|
El Hajj R, Bou Youness H, Lachaud L, Bastien P, Masquefa C, Bonnet PA, El Hajj H, Khalifeh I. EAPB0503: An Imiquimod analog with potent in vitro activity against cutaneous leishmaniasis caused by Leishmania major and Leishmania tropica. PLoS Negl Trop Dis 2018; 12:e0006854. [PMID: 30462645 PMCID: PMC6248897 DOI: 10.1371/journal.pntd.0006854] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Cutaneous Leishmaniasis (CL) is a parasitic infection classified by the WHO as one of the most uncontrolled spreading neglected diseases. Syria is endemic for Leishmania tropica and Leishmania major, causing CL in the Eastern Mediterranean. The large-scale displacement of Syrian refugees exacerbated the spread of CL into neighboring countries. Therapeutic interventions against CL include local, systemic and physical treatments. The high risk for drug-resistance to current treatments stresses the need for new therapies. Imiquimod is an immunomodulatory drug with a tested efficacy against L. major species. Yet, Imiquimod efficacy against L. tropica and the molecular mechanisms dictating its potency are still underexplored. In this study, we characterized the effect of Imiquimod against L. tropica and L. major, and characterized the molecular mechanisms dictating its anti-leishmanial efficacy against both strains. We also investigated the potency and molecular mechanisms of an Imiquimod analog, EAPB0503, against these two strains. We have tested the effect of Imiquimod and EAPB0503 on macrophages infected with either L. major, L. tropica strains, or patient-derived freshly isolated L. tropica parasites. The anti-amastigote activity of either drugs was assessed by quantitative real time PCR (RT-PCR) using kinetoplast specific primers, confocal microscopy using the Glycoprotein 63 (Gp63) Leishmania amastigote antibody or by histology staining. The mechanism of action of either drugs on the canonical nuclear factor kappa- B (NF-κB) pathway was determined by western blot, and confocal microscopy. The immune production of cytokines upon treatment of infected macrophages with either drugs was assessed by ELISA. Both drugs reduced amastigote replication. EAPB0503 proved more potent, particularly on the wild type L. tropica amastigotes. Toll-Like Receptor-7 was upregulated, mainly by Imiquimod, and to a lesser extent by EAPB0503. Both drugs activated the NF-κB canonical pathway triggering an immune response and i-NOS upregulation in infected macrophages. Our findings establish Imiquimod as a strong candidate for treating L. tropica and show the higher potency of its analog EAPB0503 against CL. Cutaneous Leishmaniasis (CL) is a parasitic infection caused by Leishmania (L.) parasites. In the Old World and the Near East, CL is mainly caused by L. major and L. tropica. The ongoing Syrian war and the resulting massive population displacement led to an alarming increase in the incidence of CL, in Syria and its surrounding countries. Current therapies against CL lead to partial or complete cure in L. major infections but are less effective against L. tropica. These therapies associate with several limitations, including patients’age, immune system, repetitive painful injections, high cost, poor availability, and mainly systemic toxicity. Therefore, it is of high interest to seek for novel drugs against CL. We assessed the activity of an immunomodulatory drug and its analog against L. major and L. tropica parasites and showed their potency. Importantly, the analog proved more efficient against the wild type L. tropica strain. These results highlight the promising efficacy of immuno-modulatory drugs against CL.
Collapse
Affiliation(s)
- Rana El Hajj
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Hanady Bou Youness
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Laurence Lachaud
- Centre Hospitalo-Universitaire, Université de Montpellier, Montpellier, France
| | - Patrick Bastien
- Centre Hospitalo-Universitaire, Université de Montpellier, Montpellier, France
| | - Carine Masquefa
- Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | | | - Hiba El Hajj
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
- * E-mail: (HEH); (IK)
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
- * E-mail: (HEH); (IK)
| |
Collapse
|
18
|
Toll-like receptors 2, 4, and 9 expressions over the entire clinical and immunopathological spectrum of American cutaneous leishmaniasis due to Leishmania(V.) braziliensis and Leishmania (L.) amazonensis. PLoS One 2018; 13:e0194383. [PMID: 29543867 PMCID: PMC5854399 DOI: 10.1371/journal.pone.0194383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/03/2018] [Indexed: 11/20/2022] Open
Abstract
Leishmania (V.) braziliensis and Leishmania(L.) amazonensis are the most pathogenic agents of American Cutaneous Leishmaniasis in Brazil, causing a wide spectrum of clinical and immunopathological manifestations, including: localized cutaneous leishmaniasis (LCLDTH+/++), borderline disseminated cutaneous leishmaniasis (BDCLDTH±), anergic diffuse cutaneous leishmaniasis (ADCLDTH-), and mucosal leishmaniasis (MLDTH++++). It has recently been demonstrated, however, that while L. (V.) braziliensis shows a clear potential to advance the infection from central LCL (a moderate T-cell hypersensitivity form) towards ML (the highest T-cell hypersensitivity pole), L. (L.) amazonensis drives the infection in the opposite direction to ADCL (the lowest T-cell hypersensitivity pole). This study evaluated by immunohistochemistry the expression of Toll-like receptors (TLRs) 2, 4, and 9 and their relationships with CD4 and CD8 T-cells, and TNF-α, IL-10, and TGF-β cytokines in that disease spectrum. Biopsies of skin and mucosal lesions from 43 patients were examined: 6 cases of ADCL, 5 of BDCL, and 11 of LCL caused byL. (L.) amazonensis; as well as 10 cases of LCL, 4 of BDCL, and 6 of ML caused byL. (V.) braziliensis. CD4+ T-cells demonstrated their highest expression in ML and, in contrast, their lowest in ADCL. CD8+ T-cells also showed their lowest expression in ADCL as compared to the other forms of the disease. TNF-α+showed increased expression from ADCL to ML, while IL-10+and TGF-β+ showed increased expression in the opposite direction, from ML to ADCL. With regards to TLR2, 4, and 9 expressions, strong interactions of TLR2 and 4 with clinical forms associated with L. (V.) braziliensis were observed, while TLR9, in contrast, showed a strong interaction with clinical forms linked to L. (L.) amazonensis. These findings strongly suggest the ability of L. (V.) braziliensis and L. (L.) amazonensis to interact with those TLRs to promote a dichotomous T-cell immune response in ACL.
Collapse
|
19
|
von Stebut E, Tenzer S. Cutaneous leishmaniasis: Distinct functions of dendritic cells and macrophages in the interaction of the host immune system with Leishmania major. Int J Med Microbiol 2017; 308:206-214. [PMID: 29129568 DOI: 10.1016/j.ijmm.2017.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/30/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is transmitted by sand flies leading to parasite inoculation into skin. In the mammalian host, the parasite primarily resides in skin macrophages (MΦ) and dendritic cells (DC). MΦ are silently invaded by the parasite eliciting a stress response, whereas DC become activated, release IL-12, and prime antigen-specific T cells. Here we review the basics of the immune response against this human pathogen and elucidate the role and function DC and MΦ for establishment of protective immunity against leishmaniasis. We focus on cell type-specific differences in parasite uptake, phagocyte activation and processing of parasite antigens to facilitate an understanding how their respective function may be modulated e.g. under therapeutic considerations.
Collapse
Affiliation(s)
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
20
|
Chauhan P, Shukla D, Chattopadhyay D, Saha B. Redundant and regulatory roles for Toll-like receptors in Leishmania infection. Clin Exp Immunol 2017; 190:167-186. [PMID: 28708252 PMCID: PMC5629438 DOI: 10.1111/cei.13014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2017] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLRs) are germline-encoded, non-clonal innate immune receptors, which are often the first receptors to recognize the molecular patterns on pathogens. Therefore, the immune response initiated by TLRs has far-reaching consequences on the outcome of an infection. As soon as the cell surface TLRs and other receptors recognize a pathogen, the pathogen is phagocytosed. Inclusion of TLRs in the phagosome results in quicker phagosomal maturation and stronger adaptive immune response, as TLRs influence co-stimulatory molecule expression and determinant selection by major histocompatibility complex (MHC) class II and MHC class I for cross-presentation. The signals delivered by the TCR-peptide-MHC complex and co-stimulatory molecules are indispensable for optimal T cell activation. In addition, the cytokines induced by TLRs can skew the differentiation of activated T cells to different effector T cell subsets. However, the potential of TLRs to influence adaptive immune response into different patterns is severely restricted by multiple factors: gross specificity for the molecular patterns, lack of receptor rearrangements, sharing of limited number of adaptors that assemble signalling complexes and redundancy in ligand recognition. These features of apparent redundancy and regulation in the functioning of TLRs characterize them as important and probable contributory factors in the resistance or susceptibility to an infection.
Collapse
Affiliation(s)
- P. Chauhan
- Pathogenesis and Cellular Response Division, National Centre for Cell ScienceGaneshkhind, PuneIndia
| | - D. Shukla
- Pathogenesis and Cellular Response Division, National Centre for Cell ScienceGaneshkhind, PuneIndia
| | | | - B. Saha
- National Institute of Traditional MedicineBelagaviIndia
| |
Collapse
|
21
|
TLR Specific Immune Responses against Helminth Infections. J Parasitol Res 2017; 2017:6865789. [PMID: 29225962 PMCID: PMC5684585 DOI: 10.1155/2017/6865789] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 01/07/2023] Open
Abstract
Despite marked improvement in the quality of lives across the globe, more than 2 million individuals in socioeconomically disadvantaged environments remain infected by helminth (worm) parasites. Owing to the longevity of the worms and paucity of immunologic controls, these parasites survive for long periods within the bloodstream, lymphatics, and gastrointestinal tract resulting in pathologic conditions such as anemia, cirrhosis, and lymphatic filariasis. Despite infection, an asymptomatic state may be maintained by the host immunoregulatory environment, which involves multiple levels of regulatory cells and cytokines; a breakdown of this regulation is observed in pathological disease. The role of TLR expression and function in relation to intracellular parasites has been documented but limited studies are available for multicellular helminth parasites. In this review, we discuss the unique and shared host effector mechanisms elicited by systemic helminth parasites and their derived products, including the role of TLRs and sphingolipids. Understanding and exploiting the interactions between these parasites and the host regulatory network are likely to highlight new strategies to control both infectious and immunological diseases.
Collapse
|
22
|
Halliday A, Bates PA, Chance ML, Taylor MJ. Toll-like receptor 2 (TLR2) plays a role in controlling cutaneous leishmaniasis in vivo, but does not require activation by parasite lipophosphoglycan. Parasit Vectors 2016; 9:532. [PMID: 27716391 PMCID: PMC5053327 DOI: 10.1186/s13071-016-1807-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 09/21/2016] [Indexed: 01/27/2023] Open
Abstract
Background Leishmaniasis is a neglected tropical disease affecting millions of individuals worldwide. Despite several studies reporting involvement of the innate immune receptor Toll-like receptor 2 (TLR2) in the recognition of surface glycolipids from Leishmania parasites in vitro, the role of TLR2 and its co-receptors during cutaneous leishmaniasis infection in vivo is unknown. Methods To explore the role of TLR2 and its co-receptors in cutaneous leishmaniasis, mice deficient in either TLR2, 4, 1 or 6, or wild-type (WT) controls, were infected with either Leishmania major promastigotes, L. mexicana promastigotes, L. mexicana amastigotes, or LPG1−/−L. mexicana promastigotes. For each infection, lesion sizes were monitored and parasite burden was assessed at various time points. To assess immune responses, draining lymph node (DLN) cells were re-stimulated with parasite antigens and the production of cytokines and parasite-specific antibody isotypes in blood was determined by ELISA. Results Mice deficient in TLR2 and TLR4 presented with larger lesions and higher parasite burdens than WT controls. Mice lacking TLR2 co-receptors TLR1 or TLR6 did not show exacerbated infection, suggesting that TLR2 does not require either co-receptor in the recognition of Leishmania infection. Furthermore, it appears that lipophosphoglycan (LPG) is not the major mediator of TLR2 activation during infection with L. mexicana, as parasites lacking LPG (axenic amastigotes and LPG1−/− promastigotes) also resulted in exacerbated disease in TLR2−/− mice. Infected TLR2−/− mice show a skewed Th2 immune response to Leishmania parasites, as demonstrated by elevated IL-4, IL-13 and IL-10 production by DLN cells from L. mexicana infected mice in response to antigen. Furthermore, L. major infected TLR2−/− mice have elevated antigen-specific IgG1 antibodies. Conclusions TLR2 deficiency leads to exacerbation of disease and parasite burden through promotion of Th2 immunity. TLR2 activation in vivo occurs independently of parasite LPG, suggesting other parasite ligands are involved in TLR2 recognition of Leishmania. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1807-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alice Halliday
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Paul A Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Furness Building, Lancaster University, Bailrigg, Lancaster, LA1 4YG, UK
| | - Michael L Chance
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Mark J Taylor
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
23
|
Rasid O, Mériaux V, Khan EM, Borde C, Ciulean IS, Fitting C, Manoury B, Cavaillon JM, Doyen N. Cathepsin B-Deficient Mice Resolve Leishmania major Inflammation Faster in a T Cell-Dependent Manner. PLoS Negl Trop Dis 2016; 10:e0004716. [PMID: 27182703 PMCID: PMC4868322 DOI: 10.1371/journal.pntd.0004716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
A critical role for intracellular TLR9 has been described in recognition and host resistance to Leishmania parasites. As TLR9 requires endolysosomal proteolytic cleavage to achieve signaling functionality, we investigated the contribution of different proteases like asparagine endopeptidase (AEP) or cysteine protease cathepsins B (CatB), L (CatL) and S (CatS) to host resistance during Leishmania major (L. major) infection in C57BL/6 (WT) mice and whether they would impact on TLR9 signaling. Unlike TLR9-/-, which are more susceptible to infection, AEP-/-, CatL-/- and CatS-/- mice are as resistant to L. major infection as WT mice, suggesting that these proteases are not individually involved in TLR9 processing. Interestingly, we observed that CatB-/- mice resolve L. major lesions significantly faster than WT mice, however we did not find evidence for an involvement of CatB on either TLR9-dependent or independent cytokine responses of dendritic cells and macrophages or in the innate immune response to L. major infection. We also found no difference in antigen presenting capacity. We observed a more precocious development of T helper 1 responses accompanied by a faster decline of inflammation, resulting in resolution of footpad inflammation, reduced IFNγ levels and decreased parasite burden. Adoptive transfer experiments into alymphoid RAG2-/-γc-/- mice allowed us to identify CD3+ T cells as responsible for the immune advantage of CatB-/- mice towards L. major. In vitro data confirmed the T cell intrinsic differences between CatB-/- mice and WT. Our study brings forth a yet unappreciated role for CatB in regulating T cell responses during L. major infection.
Collapse
Affiliation(s)
- Orhan Rasid
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
- * E-mail: (OR); (ND)
| | - Véronique Mériaux
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Erin M. Khan
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Chloé Borde
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Ioana S. Ciulean
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
- Cantacuzino National Research Institute, Bucharest, Romania
| | - Catherine Fitting
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Noëlle Doyen
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
- * E-mail: (OR); (ND)
| |
Collapse
|
24
|
Moreira ML, Costa-Pereira C, Alves MLR, Marteleto BH, Ribeiro VM, Peruhype-Magalhães V, Giunchetti RC, Martins-Filho OA, Araújo MSS. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes. Vet Parasitol 2016; 220:33-45. [PMID: 26995719 DOI: 10.1016/j.vetpar.2016.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
Abstract
Visceral leishmaniasis (VL) is transmitted by phlebotomine sandfly vectors and domestic dogs serve as a reservoir. The elimination of seropositive dogs has been a recommended strategy for managing the disease in Brazil. A protective canine vaccine would be an important tool for controlling the disease, reducing the parasites available to sandfly vectors and, consequently, reducing the number of human VL cases. Leishmune(®) is an anti-canine Leishmaniosis (VL Canine) vaccine produced by Zoetis (Pfizer, Brazil) that was commercially available in Brazil until 2014. The main goal of the present study was to investigate the protective immunological events induced by vaccination with Leishmune(®) in the time frame of one year. Healthy, non-vaccinated dogs and dogs of 1, 6 and 10 months post-vaccination were evaluated. Results showed that Leishmune(®) induced an increase in phagocytic activity of neutrophils and monocytes and also increased NO production. Immunological events were correlated with functional responses, as high levels of IgG and an increase of the receptor Fcγ were detected. Vaccination induced an increased expression of TLR (2, 4, 5, 9), integrin (CD29, CD49f), activation (MHCII) and co-stimulatory (CD80, CD81) molecules by neutrophils and monocytes. Vaccination led to decrease of IL-4 and an increase of IL-8 production by monocytes and higher IFN-γ and IL-17 production by T-cells. The results suggested that Leishmune(®) was able to induce a long-lasting change in immune response, mediated by supportive immunological events that may be participating in protective immunity against CL.
Collapse
Affiliation(s)
- Marcela L Moreira
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Christiane Costa-Pereira
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Marina Luiza Rodrigues Alves
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Bruno H Marteleto
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Vitor M Ribeiro
- Clínica Veterinária Santo Agostinho, Belo Horizonte, Minas Gerais, Brazil.
| | - Vanessa Peruhype-Magalhães
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Rodolfo C Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Olindo A Martins-Filho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| | - Márcio S S Araújo
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou/FIOCRUZ -MG, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
25
|
Morais EA, Chame DF, Melo EM, de Carvalho Oliveira JA, de Paula ACC, Peixoto AC, da Silva Santos L, Gomes DA, Russo RC, de Goes AM. TLR 9 involvement in early protection induced by immunization with rPb27 against Paracoccidioidomycosis. Microbes Infect 2015; 18:137-47. [PMID: 26597327 DOI: 10.1016/j.micinf.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
Paracoccidioidomycosis is caused by fungi of the Paracoccidioides genus and constitutes the most prevalent deep mycosis in Latin America. Toll-like receptors promote immune response against infectious agents. Recently, it was reported that TLR9 is crucial for mice survival during the first 48 h of P. brasiliensis infection. In this study, we used CPG oligodeoxynucleotide motif as an adjuvant with and without rPb27 to immunize mice against Paracoccidioidomycosis. CPG adjuvant induced differential recruitment of lymphocytes in the inflammatory process and a lower recruitment of neutrophils. In addition, CPG induced the production of pro-inflammatory cytokines such as IL-1β, TNF-α, IL-6 and IL-12; increased phagocytic ability and microbicidal activity by macrophages; and induced differential production of lgG2a and lgG2b, subtypes of Ig. Knockout mice for TLR9 and IL-12 showed higher fungal loads and rates of mortality compared to control mice after 30 days of infection. The association between CPG and rPb27 induced a high level of protection against Paracoccidioidomycosis after the first 30 days of infection but not at 60 days. Our findings demonstrate that TLR 9 plays a role in the protection induced by immunization with rPb27 and confirms the importance of TLR9 in the initial protection against Paracoccidioidomycosis.
Collapse
Affiliation(s)
- Elis Araujo Morais
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniela Ferreira Chame
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eliza Mathias Melo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ana Cláudia Chagas de Paula
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andiara Cardoso Peixoto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alfredo Miranda de Goes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
26
|
Tong C, Lin Y, Zhang C, Shi J, Qi H, Zhao K. Transcriptome-wide identification, molecular evolution and expression analysis of Toll-like receptor family in a Tibet fish, Gymnocypris przewalskii. FISH & SHELLFISH IMMUNOLOGY 2015; 46:334-345. [PMID: 26102458 DOI: 10.1016/j.fsi.2015.06.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
Toll-like receptors (TLR) are key components of innate immunity that play significant roles in immune defense against pathogens invasion. Recent frequent outbreaks of the "white spot disease" caused by parasitic infection in farmed Tibetan fishes had resulted in great economic losses. However, to our knowledge, the roles of TLRs in mediating immune response to parasitic infection in Tibetan fishes remain to be determined. Here, we performed data-mining on a widely-farmed Tibetan fish (Gymnocypris przewalskii or Gp) transcriptome to determine the genetic variation and expression pattern of TLRs. We totally obtained 14 GpTLRs and identified 5 with a complete coding sequence. Phylogenetic analysis verified their identities and supported the classification of TLRs into six families as in other vertebrates. The TLR family motifs, such as leucine rich repeat (LRR) and Toll/interleukin (IL)-1 receptor (TIR) domain, are conserved in GpTLR1-5. Selective pressure test demonstrated that all known GpTLRs are under purifying selection, except GpTLR4 underwent positive selection. Further, site model analysis suggested that 11 positively selected sites are found in LRR domain of GpTLR4. Three positively selected sites are located on outside surface of TLR4 3D structure, indicating that function of GpTLR4 may be affected. Tissue specific expression analysis showed all GpTLRs are present in gill, head-kidney and spleen but the relative abundance varied among tissues. In response to parasite Ichthyophthirius multifiliis infection, 5 GpTLR (GpTLR1, -2, -4, -9 and -20) expressions were induced. Intriguingly, GpTLR4 was significantly up-regulated in gills, while GpTLR19 and GpTLR21 unexpectedly showed no any change. In summary, these results revealed the first genomic resources of TLR family and several parasitic infection responsive TLRs in Tibetan fish. These findings provide key information for future studies aiming to understand the molecular mechanisms underlying the immune response to pathogen invasion in Tibetan fishes.
Collapse
Affiliation(s)
- Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiu Lin
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, China
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Jianquan Shi
- The Rescues Center of Qinghai-Lake Naked Carp, Xining, 810016, China
| | - Hongfang Qi
- The Rescues Center of Qinghai-Lake Naked Carp, Xining, 810016, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
27
|
Toll-like receptor 9 signaling in dendritic cells regulates neutrophil recruitment to inflammatory foci following Leishmania infantum infection. Infect Immun 2015; 83:4604-16. [PMID: 26371124 DOI: 10.1128/iai.00975-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/06/2015] [Indexed: 11/20/2022] Open
Abstract
Leishmania infantum is a protozoan parasite that causes visceral leishmaniasis (VL). This infection triggers dendritic cell (DC) activation through the recognition of microbial products by Toll-like receptors (TLRs). Among the TLRs, TLR9 is required for DC activation by different Leishmania species. We demonstrated that TLR9 is upregulated in vitro and in vivo during infection. We show that C57BL/6 mice deficient in TLR9 expression (TLR9(-/-) mice) are more susceptible to infection and display higher parasite numbers in the spleen and liver. The increased susceptibility of TLR9(-/-) mice was due to the impaired recruitment of neutrophils to the infection foci associated with reduced levels of neutrophil chemoattractants released by DCs in the target organs. Moreover, both Th1 and Th17 cells were also committed in TLR9(-/-) mice. TLR9-dependent neutrophil recruitment is mediated via the MyD88 signaling pathway but is TIR domain-containing adapter-inducing interferon beta (TRIF) independent. Furthermore, L. infantum failed to activate both plasmacytoid and myeloid DCs from TLR9(-/-) mice, which presented reduced surface costimulatory molecule expression and chemokine release. Interestingly, neutrophil chemotaxis was affected both in vitro and in vivo when DCs were derived from TLR9(-/-) mice. Our results suggest that TLR9 plays a critical role in neutrophil recruitment during the protective response against L. infantum infection that could be associated with DC activation.
Collapse
|
28
|
Babiker DT, Bakhiet SM, Mukhtar MM. Leishmania donovaniinfluenced cytokines and Toll-like receptors expression among Sudanese visceral leishmaniasis patients. Parasite Immunol 2015; 37:417-25. [DOI: 10.1111/pim.12202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/06/2015] [Indexed: 12/18/2022]
Affiliation(s)
- D. T. Babiker
- Institute of Endemic Diseases; University of Khartoum; Khartoum Sudan
| | - S. M. Bakhiet
- Institute of Endemic Diseases; University of Khartoum; Khartoum Sudan
| | - M. M. Mukhtar
- Institute of Endemic Diseases; University of Khartoum; Khartoum Sudan
| |
Collapse
|
29
|
Pandey SP, Doyen N, Mishra GC, Saha B, Chandel HS. TLR9-deficiency reduces TLR1, TLR2 and TLR3 expressions in Leishmania major-infected macrophages. Exp Parasitol 2015; 154:82-6. [PMID: 25911242 DOI: 10.1016/j.exppara.2015.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 01/22/2023]
Abstract
The parasite Leishmania major counteractively modulates TLR2 and TLR9 expression and their functions. Although TLR1, TLR3, TLR4, and TLR7 are also implicated in Leishmania infection, whether their expression was altered in TLR2 or TLR9 deficiency remained unknown. Therefore, we examined TLR1, TLR3, TLR4 and TLR7 expression in L. major infection in TLR2-deficient or TLR9-deficient macrophages. We observed that TLR9-deficiency reduced TLR1, TLR2 and TLR3 but not TLR7 expression in the macrophages treated with live or killed L. major promastigotes. TLR2-deficiency had little effects by comparison. TLR9-deficient macrophages had reduced CD40 expression and less IL-12 and TNF-α expression. Thus, we report that TLR9 modulates TLR1, TLR2 and TLR3, but not TLR7, expression in L. major-infected macrophages.
Collapse
Affiliation(s)
| | - Noelle Doyen
- Pasteur Institute, 25-28 Rue de Docteur, Paris, France
| | - Gyan C Mishra
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | |
Collapse
|
30
|
|
31
|
Graustein AD, Horne DJ, Arentz M, Bang ND, Chau TTH, Thwaites GE, Caws M, Thuong NTT, Dunstan SJ, Hawn TR. TLR9 gene region polymorphisms and susceptibility to tuberculosis in Vietnam. Tuberculosis (Edinb) 2015; 95:190-6. [PMID: 25616954 PMCID: PMC4573533 DOI: 10.1016/j.tube.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 01/13/2023]
Abstract
Humans exposed to Mycobacterium tuberculosis (Mtb) show variation in susceptibility to infection and differences in tuberculosis (TB) disease outcome. Toll-like receptor 9 (TLR9) is a pattern recognition receptor that mediates recognition of Mtb and modulates Mtb-specific T-cell responses. Using a case-population design, we evaluated whether single nucleotide polymorphisms (SNPs) in the TLR9 gene region are associated with susceptibility to pulmonary or meningeal TB as well as neurologic presentation and mortality in the meningeal TB group. In a discovery cohort (n = 352 cases, 382 controls), three SNPs were associated with TB (all forms, p < 0.05) while three additional SNPs neared significance (0.05 < p < 0.1). When these six SNPs were evaluated in a validation cohort (n = 339 cases, 367 controls), one was significant (rs352142) while another neared significance (rs352143). When the cohorts were combined, rs352142 was most strongly associated with meningeal tuberculosis (dominant model; p = 0.0002, OR 2.36, CI 1.43-3.87) while rs352143 was associated with pulmonary tuberculosis (recessive model; p = 0.006, OR 5.3, CI 1.26-31.13). None of the SNPs were associated with mortality. This is the first demonstration of an association between a TLR9 gene region SNP and tuberculous meningitis. In addition, this extends previous findings that support associations of TLR9 SNPs with pulmonary tuberculosis.
Collapse
Affiliation(s)
| | - D J Horne
- Univ. of Washington, Seattle, WA, USA
| | - M Arentz
- Univ. of Washington, Seattle, WA, USA
| | - N D Bang
- Pham Ngoc Thach Hospital for Tuberculosis & Lung Disease, HCMC, Viet Nam
| | - T T H Chau
- Hospital for Tropical Diseases, HCMC, Viet Nam
| | - G E Thwaites
- Oxford Univ. Clinical Research Unit, Hospital for Tropical Diseases, HCMC, Viet Nam; Nuffield Dept. of Clinical Medicine, Centre for Tropical Medicine, Oxford Univ., UK
| | - M Caws
- Oxford Univ. Clinical Research Unit, Hospital for Tropical Diseases, HCMC, Viet Nam; Liverpool School of Tropical Medicine, Pembroke Place, UK
| | - N T T Thuong
- Oxford Univ. Clinical Research Unit, Hospital for Tropical Diseases, HCMC, Viet Nam; Nuffield Dept. of Clinical Medicine, Centre for Tropical Medicine, Oxford Univ., UK
| | - S J Dunstan
- Oxford Univ. Clinical Research Unit, Hospital for Tropical Diseases, HCMC, Viet Nam; Nuffield Dept. of Clinical Medicine, Centre for Tropical Medicine, Oxford Univ., UK; The Nossal Institute for Global Health, The University of Melbourne, Australia
| | - T R Hawn
- Univ. of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Gupta CL, Akhtar S, Waye A, Pandey NR, Pathak N, Bajpai P. Cross talk between Leishmania donovani CpG DNA and Toll-like receptor 9: an immunoinformatics approach. Biochem Biophys Res Commun 2015; 459:424-9. [PMID: 25735984 DOI: 10.1016/j.bbrc.2015.02.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/21/2015] [Indexed: 11/17/2022]
Abstract
The precise and potential contribution of Toll-like receptors (TLRs) signaling pathways in fighting parasitic infections of Leishmania spp., an intracellular protozoan parasite, has gained significant attention during the last decades. Although it is well established that TLR9 recognizes CpG motifs in microbial genomes, the specificity of the CpG DNA pattern of Leishmania parasite interacting with endosomal TLR9 is still unknown. Hence in our study to identify the CpG DNA pattern of Leishmania donovani acting as ligand for TLR9, consecutive homology searches were performed using known CpG ODN 2216 as initial template until a consistent CpG pattern in L. donovani was found. A reliable model of TLR9 ectodomains (ECDs) as well as CpG DNA patterns was predicted to develop the 3D structural complexes of TLR9 ECD-CpG DNA utilizing molecular modeling and docking approaches. The results revealed the preferential specificity of L. donovani CpG DNA to TLR9 compared to control ODN and other CpG patterns. The interface between TLR9 and L. donovani CpG DNA was also found to be geometrically complementary with the LRR11 region of TLR9, acting as the critical region for ligand recognition. The L. donovani CpG pattern identified can be employed to derive a platform for development of an innate immunomodulatory agent for deadly disease.
Collapse
Affiliation(s)
- Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, 226026, UP, India
| | - Andrew Waye
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, ON, K1N 6N5, Canada; Medipure Pharmaceuticals Inc., Maple Ridge, BC, V2X 2Z3, Canada
| | - Nihar R Pandey
- Center for Stroke Recovery, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Medipure Pharmaceuticals Inc., Maple Ridge, BC, V2X 2Z3, Canada
| | - Neelam Pathak
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India
| | - Preeti Bajpai
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India.
| |
Collapse
|
33
|
Chowdhury BP, Bandyopadhyay S, Das S, Majumder S, Jha MK, Majumdar SB, Saha B, Majumdar S. The host-protective effect of arabinosylated lipoarabinomannan against Leishmania donovani infection is associated with restoration of IFN-γ responsiveness. PLoS One 2015; 10:e0117247. [PMID: 25658110 PMCID: PMC4319725 DOI: 10.1371/journal.pone.0117247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/22/2014] [Indexed: 12/20/2022] Open
Abstract
Visceral leishmaniasis (VL), which is endemic as a major infectious disease in the tropical and subtropical countries, is caused by a protozoan parasite Leishmania donovani. At present, restricted treatment options and lack of vaccines intensify the problem of controlling VL. Therefore, finding a novel immunoprophylactic or therapeutic principle is a pressing need. Here, we report that arabinosylated lipoarabinomannan (Ara-LAM), a TLR2-ligand isolated from Mycobacterium smegmatis, exhibits a strong immunomodulatory property that conferred protection against L. donovani infection. Although, Ara-LAM modulates TLR2 and MAPK signaling, it is not known whether Ara-LAM involves IFN-γ signaling for effective parasite clearance. Because, it is reported that IFN-γ signaling, a principle mediator of NO generation and macrophage and Tcell activation, is hampered during leishmanial pathogenesis. Ara-LAM increases IFN-γ receptor expression and potentiates IFN-γ receptor signaling through JAK-STAT pathway. Moreover, Ara-LAM reciprocally modulates IRF4 and IRF8 expression and reinstates anti-leishmanial Th1 response that eventuates in significantly reduced parasite load in spleen and liver of L. donovani-infected BALB/c mice. IFN-γRα silencing resulted in the suppression of these host-protective mechanisms affected by Ara-LAM. Thus, Ara-LAM-mediated restoration of IFN-γ responsiveness is a novel immuno-modulatory principle for protection against L. donovani susceptible host.
Collapse
Affiliation(s)
| | | | - Shibali Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Saikat Majumder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Mukesh Kumar Jha
- Laboratory-V, National Centre for Cell Science (NCCS), Pune, Maharashtra, India
| | | | - Bhaskar Saha
- Laboratory-V, National Centre for Cell Science (NCCS), Pune, Maharashtra, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
34
|
Das S, Ghosh AK, Singh S, Saha B, Ganguly A, Das P. Unmethylated CpG motifs in the L. donovani DNA regulate TLR9-dependent delay of programmed cell death in macrophages. J Leukoc Biol 2014; 97:363-78. [PMID: 25473100 DOI: 10.1189/jlb.4a0713-378rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Regulation of macrophage PCD plays an important role in pathogenesis of leishmaniasis. However, the precise involvement of any parasite molecule in this process remains uncertain. In the current study, in silico wide analysis demonstrated that genes in the Leishmania donovani genome are highly enriched for CpG motifs, with sequence frequency of 8.7%. Here, we show that unmethylated species-specific CpG motifs in LdDNA significantly (P = 0.01) delay macrophage PCD by endosomal interaction with TLR9 via the adaptor protein MyD88. Importantly, LdDNA triggered high levels of luciferase activity (P = 0.001) under NF-κB-dependent transcription in HEK-TLR9 cells. Furthermore, the activation of caspases in macrophages was inhibited (P = 0.001) in the presence of LdDNA. Notably, the delay of PCD was mediated by modulation of the antiapoptotic proteins, Mcl-1 and Bfl-1, and impairment of loss of Δψm in macrophages through the neutralization of oxidative and nitrosative stress. The inhibition of caspase activation and up-regulation of Mcl-1 by LdDNA were TLR9 dependent. Analysis of the targets of LdDNA identified an early activation of the TLR9-dependent PI3K/Akt and SFK pathways, which were required for the observation of the antiapoptotic effects in macrophages. Moreover, we demonstrate that LdDNA modulates the TLR9-IκB-α pathway by promoting the tyrosine phosphorylation of TLR9 and the TLR9-mediated recruitment of Syk kinase. The results have identified a novel, TLR9-dependent antiapoptotic function of LdDNA, which will provide new opportunities for discovering and evaluating molecular targets for drug and vaccine designing against VL.
Collapse
Affiliation(s)
- Sushmita Das
- *Department of Microbiology, All-India Institute of Medical Sciences, Patna, India; Rajendra Memorial Research Institute of Medical Sciences, Patna, India; Institute of Microbial Technology, Chandigarh, India; and National Centre for Cell Science, Pune, India
| | - Ayan Kumar Ghosh
- *Department of Microbiology, All-India Institute of Medical Sciences, Patna, India; Rajendra Memorial Research Institute of Medical Sciences, Patna, India; Institute of Microbial Technology, Chandigarh, India; and National Centre for Cell Science, Pune, India
| | - Shikha Singh
- *Department of Microbiology, All-India Institute of Medical Sciences, Patna, India; Rajendra Memorial Research Institute of Medical Sciences, Patna, India; Institute of Microbial Technology, Chandigarh, India; and National Centre for Cell Science, Pune, India
| | - Bhaskar Saha
- *Department of Microbiology, All-India Institute of Medical Sciences, Patna, India; Rajendra Memorial Research Institute of Medical Sciences, Patna, India; Institute of Microbial Technology, Chandigarh, India; and National Centre for Cell Science, Pune, India
| | - Ashish Ganguly
- *Department of Microbiology, All-India Institute of Medical Sciences, Patna, India; Rajendra Memorial Research Institute of Medical Sciences, Patna, India; Institute of Microbial Technology, Chandigarh, India; and National Centre for Cell Science, Pune, India
| | - Pradeep Das
- *Department of Microbiology, All-India Institute of Medical Sciences, Patna, India; Rajendra Memorial Research Institute of Medical Sciences, Patna, India; Institute of Microbial Technology, Chandigarh, India; and National Centre for Cell Science, Pune, India
| |
Collapse
|
35
|
Cañeda-Guzmán IC, Salaiza-Suazo N, Fernández-Figueroa EA, Carrada-Figueroa G, Aguirre-García M, Becker I. NK cell activity differs between patients with localized and diffuse cutaneous leishmaniasis infected with Leishmania mexicana: a comparative study of TLRs and cytokines. PLoS One 2014; 9:e112410. [PMID: 25397678 PMCID: PMC4232367 DOI: 10.1371/journal.pone.0112410] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/15/2014] [Indexed: 12/24/2022] Open
Abstract
Leishmania mexicana causes localized (LCL) or diffuse cutaneous leishmaniasis (DCL). The cause of dissemination in DCL remains unknown, yet NK cells possibly play a role in activating leishmanicidal mechanisms during innate and adaptive immune responses. We had previously shown that Leishmania lipophosphoglycan (LPG) is a ligand for TLR2, activating human NK cells. We have now analyzed NK cells in LCL and DCL patients. NK numbers and effector mechanisms differed drastically between both groups of patients: DCL patients showed reduced NK cell numbers; diminished IFN-γ and TNF-α production; and lower TLR2, TLR1, and TLR6 expression as compared to LCL patients. The altered protein expression found in NK cells of DCL patients correlated with their down-regulation of IFN-γ gene expression in LPG-stimulated and non-stimulated cells as compared to LCL patients. NK cell response was further analyzed according to gender, age, and disease evolution in LCL patients showing that female patients produced higher IFN-γ levels throughout the disease progression, whereas TLR2 expression diminished in both genders with prolonged disease evolution and age. We furthermore show the activation pathway of LPG binding to TLR2 and demonstrated that TLR2 forms immunocomplexes with TLR1 and TLR6. In addition to the reduced NK cell numbers in peripheral blood, DCL patients also showed reduced NK cell numbers in the lesions. They were randomly scattered within the lesions, showing diminished cytokine production, which contrasts with those of LCL lesions, where NK cells produced IFN-γ and TNF-α and were found within organized granulomas. We conclude that in DCL patients the reduced NK-cell numbers and their diminished activity, evidenced by low TLR expression and low cytokine production, are possibly involved in the severity of the disease. Our results provide new information on the contribution of NK cells in Leishmania infections of the human host.
Collapse
Affiliation(s)
- Isabel Cristina Cañeda-Guzmán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, México, D.F., México
| | - Norma Salaiza-Suazo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, México, D.F., México
| | - Edith A. Fernández-Figueroa
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, México, D.F., México
| | | | - Magdalena Aguirre-García
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, México, D.F., México
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, México, D.F., México
- * E-mail:
| |
Collapse
|
36
|
Khan ME, Borde C, Rocha EP, Mériaux V, Maréchal V, Escoll P, Goyard S, Cavaillon JM, Manoury B, Doyen N. TLR9 activation is triggered by the excess of stimulatory versus inhibitory motifs present in Trypanosomatidae DNA. PLoS Negl Trop Dis 2014; 8:e3308. [PMID: 25392997 PMCID: PMC4230925 DOI: 10.1371/journal.pntd.0003308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
DNA sequences purified from distinct organisms, e.g. non vertebrate versus vertebrate ones, were shown to differ in their TLR9 signalling properties especially when either mouse bone marrow-derived- or human dendritic cells (DCs) are probed as target cells. Here we found that the DC-targeting immunostimulatory property of Leishmania major DNA is shared by other Trypanosomatidae DNA, suggesting that this is a general trait of these eukaryotic single-celled parasites. We first documented, in vitro, that the low level of immunostimulatory activity by vertebrate DNA is not due to its limited access to DCs' TLR9. In addition, vertebrate DNA inhibits the activation induced by the parasite DNA. This inhibition could result from the presence of competing elements for TLR9 activation and suggests that DNA from different species can be discriminated by mouse and human DCs. Second, using computational analysis of genomic DNA sequences, it was possible to detect the presence of over-represented inhibitory and under-represented stimulatory sequences in the vertebrate genomes, whereas L. major genome displays the opposite trend. Interestingly, this contrasting features between L. major and vertebrate genomes in the frequency of these motifs are shared by other Trypanosomatidae genomes (Trypanosoma cruzi, brucei and vivax). We also addressed the possibility that proteins expressed in DCs could interact with DNA and promote TLR9 activation. We found that TLR9 is specifically activated with L. major HMGB1-bound DNA and that HMGB1 preferentially binds to L. major compared to mouse DNA. Our results highlight that both DNA sequence and vertebrate DNA-binding proteins, such as the mouse HMGB1, allow the TLR9-signaling to be initiated and achieved by Trypanosomatidae DNA.
Collapse
Affiliation(s)
- Mélissa Erin Khan
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Chloé Borde
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Eduardo P.C. Rocha
- Institut Pasteur, Département Génomes et Génétique, Unité de Génomique Evolutive des Microbes, Paris, France
- CNRS UMR3525, Paris, France
| | - Véronique Mériaux
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | - Vincent Maréchal
- Sorbonne Universités, UPMC Université Paris 6, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI), Persistent Viral Infections (PVI) Team, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Département Génomes et Génétique, Unité de Biologie des Bactéries intracellulaires, Paris, France
| | - Sophie Goyard
- Institut Pasteur, Département Infection et Epidémiologie, Laboratoire des Processus Infectieux à Trypanosomatidés, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
| | | | - Noëlle Doyen
- Institut Pasteur, Département Infection et Epidémiologie, Unité Cytokines & Inflammation, Paris, France
- * E-mail:
| |
Collapse
|
37
|
Das S, Rani M, Rabidas V, Pandey K, Sahoo GC, Das P. TLR9 and MyD88 are crucial for the maturation and activation of dendritic cells by paromomycin-miltefosine combination therapy in visceral leishmaniasis. Br J Pharmacol 2014; 171:1260-74. [PMID: 24670148 DOI: 10.1111/bph.12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 10/30/2013] [Accepted: 11/08/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE The combination of paromomycin-miltefosine is a successful anti-leishmanial therapy in visceral leishmaniasis (VL). This encouraged us to study its effect on Toll-like receptor (TLR)-mediated immunomodulation of dendritic cells (DC), as DC maturation and activation is crucial for anti-leishmanial activity. EXPERIMENTAL APPROACH In silico protein-ligand interaction and biophysical characterization of TLR9-drug interaction was performed. Interaction assays of HEK293 cells with different concentrations of miltefosine and/or paromomycin were performed, and NF-κB promoter activity measured. The role of TLR9 and MyD88 in paromomycin/miltefosine-induced maturation and activation of DCs was evaluated through RNA interference techniques. The effect of drugs on DCs was measured in terms of counter-regulatory production of IL-12 over IL-10, and characterized by chromatin immunoprecipitation assay at the molecular level. KEY RESULTS Computational and biophysical studies revealed that paromomycin/miltefosine interact with TLR9. Both drugs, as a monotherapy/combination, induced TLR9-dependent NF-κB promoter activity through MyD88. Moreover, the drug combination induced TLR9/MyD88-dependent functional maturation of DCs, evident as an up-regulation of co-stimulatory markers, enhanced antigen presentation by increasing MHC II expression, and increased stimulation of naive T-cells to produce IFN-γ. Both drugs, by modifying histone H3 at the promoter level, increased the release of IL-12, but down-regulated IL-10 in a TLR9-dependent manner. CONCLUSIONS AND IMPLICATIONS These results provide the first evidence that the combination of paromomycin-miltefosine critically modifies the maturation, activation and development of host DCs through a mechanism dependent on TLR9 and MyD88. This has implications for evaluating the success of other combination anti-leishmanial therapies that act by targeting host DCs.
Collapse
Affiliation(s)
- Sushmita Das
- Department of Molecular Parasitology, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Bihar, India
| | | | | | | | | | | |
Collapse
|
38
|
Pandey SP, Chandel HS, Srivastava S, Selvaraj S, Jha MK, Shukla D, Ebensen T, Guzman CA, Saha B. Pegylated bisacycloxypropylcysteine, a diacylated lipopeptide ligand of TLR6, plays a host-protective role against experimental Leishmania major infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:3632-43. [PMID: 25194056 DOI: 10.4049/jimmunol.1400672] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TLRs recognize pathogen-expressed Ags and elicit host-protective immune response. Although TLR2 forms heterodimers with TLR1 or TLR6, recognizing different ligands, differences in the functions of these heterodimers remain unknown. In this study, we report that in Leishmania major-infected macrophages, the expression of TLR1 and TLR2, but not TLR6, increased; TLR2-TLR2 association increased, but TLR2-TLR6 association diminished. Lentivirus-expressed TLR1-short hairpin RNA (shRNA) or TLR2-shRNA administration reduced, but TLR6-shRNA increased L. major infection in BALB/c mice. Corroboratively, Pam3CSK4 (TLR1-TLR2 ligand) and peptidoglycan (TLR2 ligand) increased L. major infection but reduced TLR9 expression, whereas pegylated bisacycloxypropylcysteine (BPPcysMPEG; TLR2-TLR6 ligand) reduced L. major number in L. major-infected macrophages, accompanied by increased TLR9 expression, higher IL-12 production, and inducible NO synthase expression. Whereas MyD88, Toll/IL-1R adaptor protein, and TNFR-α-associated factor 6 recruitments to TLR2 were not different in Pam3CSK4-, peptidoglycan-, or BPPcysMPEG-treated macrophages, only BPPcysMPEG enhanced p38MAPK and activating transcription factor 2 activation. BPPcysMPEG conferred antileishmanial functions to L. major-infected BALB/c-derived T cells in a macrophage-T cell coculture and in BALB/c mice; the protection was TLR6 dependent and IL-12 dependent, and it was accompanied by reduced regulatory T cell number. BPPcysMPEG administration during the priming with fixed L. major protected BALB/c mice against challenge L. major infection; the protection was accompanied by low IL-4 and IL-10, but high IFN-γ productions and reduced regulatory T cells. Thus, BPPcysMPEG, a novel diacylated lipopeptide ligand for TLR2-TLR6 heterodimer, induces IL-12-dependent, inducible NO synthase-dependent, T-reg-sensitive antileishmanial protection. The data reveal a novel dimerization partner-dependent duality in TLR2 function.
Collapse
Affiliation(s)
| | | | - Sunit Srivastava
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| | | | - Mukesh Kumar Jha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| | - Divanshu Shukla
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, 38124 Braunschweig, Germany
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, 38124 Braunschweig, Germany
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| |
Collapse
|
39
|
Hartley MA, Drexler S, Ronet C, Beverley SM, Fasel N. The immunological, environmental, and phylogenetic perpetrators of metastatic leishmaniasis. Trends Parasitol 2014; 30:412-22. [PMID: 24954794 DOI: 10.1016/j.pt.2014.05.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 02/07/2023]
Abstract
Cutaneous leishmaniases have persisted for centuries as chronically disfiguring parasitic infections affecting millions of people across the subtropics. Symptoms range from the more prevalent single, self-healing cutaneous lesion to a persistent, metastatic disease, where ulcerations and granulomatous nodules can affect multiple secondary sites of the skin and delicate facial mucosa, even sometimes diffusing throughout the cutaneous system as a papular rash. The basis for such diverse pathologies is multifactorial, ranging from parasite phylogeny to host immunocompetence and various environmental factors. Although complex, these pathologies often prey on weaknesses in the innate immune system and its pattern recognition receptors. This review explores the observed and potential associations among the multifactorial perpetrators of infectious metastasis and components of the innate immune system.
Collapse
Affiliation(s)
- Mary-Anne Hartley
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Stefan Drexler
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Catherine Ronet
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
40
|
Zhao F, Li YW, Pan HJ, Shi CB, Luo XC, Li AX, Wu SQ. TAK1-binding proteins (TAB1 and TAB2) in grass carp (Ctenopharyngodon idella): identification, characterization, and expression analysis after infection with Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2014; 38:389-399. [PMID: 24747054 DOI: 10.1016/j.fsi.2014.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Transforming growth factor-β activated kinase-1 (TAK1) is a key regulatory molecule in toll-like receptor (TLR), interleukin-1 (IL-1), and tumor necrosis factor (TNF) signaling pathways. The activation of TAK1 is specifically regulated by two TAK1-binding proteins, TAB1 and TAB2. However, the roles of TAB1 and TAB2 in fish have not been reported to date. In the present study, TAB1 (CiTAB1) and TAB2 (CiTAB2) in grass carp (Ctenopharyngodon idella) were identified and characterized, and their expression profiles were analyzed after fish were infected with the pathogenic ciliate Ichthyophthirius multifiliis. The full-length CiTAB1 cDNA is 1949 bp long with an open reading frame (ORF) of 1497 bp that encodes a putative protein of 498 amino acids containing a typical PP2Cc domain. The full-length CiTAB2 cDNA is 2967 bp long and contains an ORF of 2178 bp encoding a putative protein of 725 amino acids. Protein structure analysis revealed that CiTAB2 consists of three main structural domains: an N-terminal CUE domain, a coiled-coil domain, and a C-terminal ZnF domain. Multiple sequence alignment showed that CiTAB1 and CiTAB2 share high sequence identity with other known TAB1 and TAB2 proteins, and several conserved phosphorylation sites and an O-GlcNAc site were deduced in CiTAB1. Phylogenetic tree analysis demonstrated that CiTAB1 and CiTAB2 have the closest evolutionary relationship with TAB1 and TAB2 of Danio rerio, respectively. CiTAB1 and CiTAB2 were both widely expressed in all examined tissues with the highest levels in the heart and liver, respectively. After infection with I. multifiliis, the expressions of CiTAB1 and CiTAB2 were both significantly up-regulated in all tested tissues at most time points, which indicates that these proteins may be involved in the host immune response against I. multifiliis infection.
Collapse
Affiliation(s)
- Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yan-Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Hou-Jun Pan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Cun-Bin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shu-Qin Wu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China.
| |
Collapse
|
41
|
Chandel HS, Pandey SP, Roy S, Doyen N, Saha B. TLR-CD40 Cross-Talk in Anti-Leishmanial Immune Response. Front Immunol 2014; 5:220. [PMID: 24904575 PMCID: PMC4032977 DOI: 10.3389/fimmu.2014.00220] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/30/2014] [Indexed: 01/16/2023] Open
Affiliation(s)
| | | | - Sayoni Roy
- National Centre for Cell Science , Pune , India
| | | | | |
Collapse
|
42
|
Olekhnovitch R, Ryffel B, Müller AJ, Bousso P. Collective nitric oxide production provides tissue-wide immunity during Leishmania infection. J Clin Invest 2014; 124:1711-22. [PMID: 24614106 DOI: 10.1172/jci72058] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/09/2014] [Indexed: 12/24/2022] Open
Abstract
Nitric oxide (NO) production is critical for the host defense against intracellular pathogens; however, it is unclear whether NO-dependent control of intracellular organisms depends on cell-intrinsic or cell-extrinsic activity of NO. For example, NO production by infected phagocytes may enable these cells to individually control their pathogen burden. Alternatively, the ability of NO to diffuse across cell membranes might be critical for infection control. Here, using a murine ear infection model, we found that, during infection with the intracellular parasite Leishmania major, expression of inducible NO synthase does not confer a cell-intrinsic ability to lower parasite content. We demonstrated that the diffusion of NO promotes equally effective parasite killing in NO-producing and bystander cells. Importantly, the collective production of NO by numerous phagocytes was necessary to reach an effective antimicrobial activity. We propose that, in contrast to a cell-autonomous mode of pathogen control, this cooperative mechanism generates an antimicrobial milieu that provides the basis for pathogen containment at the tissue level.
Collapse
|
43
|
Rodriguez-Pinto D, Saravia NG, McMahon-Pratt D. CD4 T cell activation by B cells in human Leishmania (Viannia) infection. BMC Infect Dis 2014; 14:108. [PMID: 24568275 PMCID: PMC3937821 DOI: 10.1186/1471-2334-14-108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/21/2014] [Indexed: 11/20/2022] Open
Abstract
Background An effective adaptive immune response requires activation of specific CD4 T cells. The capacity of B cells to activate CD4 T cells in human cutaneous leishmaniasis caused by Leishmania (Viannia) has not been evaluated. Methods CD4 T cell activation by B cells of cutaneous leishmaniasis patients was evaluated by culture of PBMCs or purified B cells and CD4 T cells with Leishmania panamensis antigens. CD4 T cell and B cell activation markers were evaluated by flow cytometry and 13 cytokines were measured in supernatants with a bead-based capture assay. The effect of Leishmania antigens on BCR-mediated endocytosis of ovalbumin was evaluated in the Ramos human B cell line by targeting the antigen with anti-IgM-biotin and anti-biotin-ovalbumin-FITC. Results Culture of PBMCs from cutaneous leishmaniasis patients with Leishmania antigens resulted in upregulation of the activation markers CD25 and CD69 as well as increased frequency of CD25hiCD127- cells among CD4 T cells. Concomitantly, B cells upregulated the costimulatory molecule CD86. These changes were not observed in PBMCs from healthy subjects, indicating participation of Leishmania-specific lymphocytes expanded in vivo. Purified B cells from these patients, when interacting with purified CD4 T cells and Leishmania antigens, were capable of inducing significant increases in CD25 and CD69 expression and CD25hiCD127- frequency in CD4 T cells. These changes were associated with upregulation of CD86 in B cells. Comparison of changes in CD4 T cell activation parameters between PBMC and B cell/CD4 T cell cultures showed no statistically significant differences; further, significant secretion of IFN-γ, TNF-α, IL-6 and IL-13 was induced in both types of cultures. Additionally, culture with Leishmania antigens enhanced BCR-mediated endocytosis of ovalbumin in Ramos human B cells. Conclusions The capacity of B cells specific for Leishmania antigens in peripheral blood of cutaneous leishmaniasis patients to activate CD4 T cells and induce cytokine secretion is similar to that of all cell populations present in PBMCs. This capacity implicates B cells as a plausible target for modulation of the immune response to Leishmania infection as a therapeutic strategy.
Collapse
Affiliation(s)
- Daniel Rodriguez-Pinto
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia.
| | | | | |
Collapse
|
44
|
FC-98 regulates TLR9-mediated of CXCL-10 expression in dendritic cells via MAPK and STAT1 signaling pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:926130. [PMID: 24696007 PMCID: PMC3947834 DOI: 10.1155/2014/926130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs), as the most potent professional antigen presenting cells, play a crucial role in both innate and adaptive immune systems. Genomic bacterial DNA mimicked by unmethylated CpG motifs is discovered to possess immunostimulatory effects. CpG-DNA recognized by Toll-like receptor 9 (TLR9) on DCs arouses many immune diseases (such as cancer, viral infection, and autoimmune disorders). In this study we investigated the effects of FC-98 on CpG-induced bone marrow-derived DCs (BMDCs). The results showed that FC-98 significantly inhibited the CpG-induced BMDCs maturation and function by suppressing the expression of surface markers (CD40, CD80, CD86, and MHCII). Moreover, FC-98 downregulated the expression of C-X-C motif chemokine 10 (CXCL-10) both at the mRNA and protein level after CpG induction. Meanwhile, FC-98 markedly affected the migration of BMDCs to T cells without affecting their endocytosis capacity. Furthermore, FC-98 was confirmed to decrease CXCL-10 expression by inhibiting CpG-induced activation of MAPKs (ERK, JNK, and p38) and STAT1 signaling. Overall, these results suggested that FC-98 was a potential molecule in the treatment of CXCL-10-mediated immune diseases.
Collapse
|
45
|
Ghosh D, Stumhofer JS. Do you see what I see: Recognition of protozoan parasites by Toll-like receptors. ACTA ACUST UNITED AC 2014; 9:129-140. [PMID: 25383072 DOI: 10.2174/1573395509666131203225929] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Toll-like receptors (TLRs) are important for recognizing a variety of pathogens, including protozoan parasites, and initiating innate immune responses against them. TLRs are localized on the cell surface as well as in the endosome, and are implicated in innate sensing of these parasites. In this review, we will discuss recent findings on the identification of parasite-derived pathogen associated molecular patterns and the TLRs that bind them. The role of these TLRs in initiating the immune response against protozoan parasitic infections in vivo will be presented in the context of murine models of infection utilizing TLR-deficient mice. Additionally, we will explore evidence that TLRs and genetic variants of TLRs may impact the outcome of these parasitic infections in humans.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|
46
|
Akbari M, Honma K, Kimura D, Miyakoda M, Kimura K, Matsuyama T, Yui K. IRF4 in Dendritic Cells Inhibits IL-12 Production and Controls Th1 Immune Responses against Leishmania major. THE JOURNAL OF IMMUNOLOGY 2014; 192:2271-9. [DOI: 10.4049/jimmunol.1301914] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Zhao F, Li YW, Pan HJ, Shi CB, Luo XC, Li AX, Wu SQ. Expression profiles of toll-like receptors in channel catfish (Ictalurus punctatus) after infection with Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2013; 35:993-997. [PMID: 23742868 DOI: 10.1016/j.fsi.2013.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/10/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune system, but to date the roles of fish TLRs in response to parasitic infection are still poorly understood. In the present study, we used channel catfish (Ictalurus punctatus) and the ciliate parasite Ichthyophthirius multifiliis as a model to investigate whether and which fish TLRs play important roles in the immune response against parasitic pathogens by detecting the expression profiles of a complete set of TLRs in catfish at different time points after infection with I. multifiliis. The expression profiles of TLR1 and TLR2 were similar, and both were significantly up-regulated in the skin and head kidney at most time points after infection. Furthermore, the expression of TLR2 was also up-regulated in the gill and spleen. TLR9 was induced in the skin and gill, whereas TLR21 was induced in the head kidney and spleen after infection. For TLR19, significant up-regulation was observed in the skin and gill, but significant down-regulation was detected in the head kidney and spleen. In contrast to TLR19, TLR25 was significantly up-regulated in the head kidney and spleen at some time points. No significant changes were observed for the rest of the TLRs at most time points. The results indicated that some TLRs may play essential roles in catfish defense against I. multifiliis infection.
Collapse
Affiliation(s)
- Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 1 Xingyu Road, Liwan District, Guangzhou 510380, Guangdong Province, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Manuja A, Manuja BK, Kaushik J, Singha H, Singh RK. Immunotherapeutic potential of CpG oligodeoxynucleotides in veterinary species. Immunopharmacol Immunotoxicol 2013; 35:535-44. [PMID: 23981003 DOI: 10.3109/08923973.2013.828743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Innate immunity plays a critical role in host defense against infectious diseases by discriminating between self and infectious non-self. The recognition of infectious non-self involves germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs). The PAMPs are the components of pathogenic microbes which include not only the cell wall constituents but also the unmethylated 2'-deoxy-ribo-cytosine-phosphate-guanosine (CpG) motifs. These CpG motifs present within bacterial and viral DNA are recognized by toll-like receptor 9 (TLR9), and signaling by this receptor triggers a proinflammatory cytokine response which, in turn, influences both innate and adaptive immune responses. The activation of TLR9 with synthetic CpG oligodeoxynucleotides (ODNs) induces powerful Th1-like immune responses. It has been shown to provide protection against infectious diseases, allergy and cancer in laboratory animal models and some domestic animal species. With better understanding of the basic biology and immune mechanisms, it would be possible to exploit the potential of CpG motifs for animal welfare. The research developments in the area of CpG and TLR9 and the potential applications in animal health have been reviewed in this article.
Collapse
Affiliation(s)
- Anju Manuja
- Department of Veterinary Medicine, National Research Centre on Equines, Hisar , Haryana , India
| | | | | | | | | |
Collapse
|
49
|
Real F, Vidal RO, Carazzolle MF, Mondego JMC, Costa GGL, Herai RH, Würtele M, de Carvalho LM, Carmona e Ferreira R, Mortara RA, Barbiéri CL, Mieczkowski P, da Silveira JF, Briones MRDS, Pereira GAG, Bahia D. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res 2013; 20:567-81. [PMID: 23857904 PMCID: PMC3859324 DOI: 10.1093/dnares/dst031] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment.
Collapse
Affiliation(s)
- Fernando Real
- 1Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo - EPM/UNIFESP, Rua Botucatu 862, 6 andar, 04023-062 São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Srivastava S, Pandey SP, Jha MK, Chandel HS, Saha B. Leishmania expressed lipophosphoglycan interacts with Toll-like receptor (TLR)-2 to decrease TLR-9 expression and reduce anti-leishmanial responses. Clin Exp Immunol 2013; 172:403-9. [PMID: 23600828 DOI: 10.1111/cei.12074] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2013] [Indexed: 12/12/2022] Open
Abstract
Two different Toll-like receptors (TLRs) have been shown to play a role in host responses to Leishmania infection. TLR-2 is involved in parasite survival in macrophages upon activation by lipophosphoglycan (LPG), a virulence factor expressed by Leishmania. In contrast, activation of TLR-9 has been shown to promote a host-protective response. However, whether there is a relationship between the interaction of LPG and TLR-2, on one hand, with the effect of TLR-9, on the other hand, remains unknown. In this study, we report that in-vitro infection of macrophages with a L. major parasite with high expression levels of LPG results in decreased TLR-9 expression compared to infection with a L. major parasite with lower expression levels of LPG. Addition of anti-LPG as well as anti-TLR-2 antibodies prevents this reduction of TLR-9 expression. Also, the addition of purified LPG to macrophages results in a decrease of TLR-9 expression, which is shown to be mediated by transforming growth factor (TGF)-β and interleukin (IL)-10. Finally, in-vitro treatment of macrophages with anti-LPG and/or anti-TLR-2 antibodies before infection reduces the number of amastigotes in macrophages and co-treatment of mice with anti-TLR-2 antibodies and cytosine-phosphate-guanosine (CpG) reduces footpad swelling and parasite load in the draining lymph nodes, accompanied by an interferon (IFN)-γ-predominant T cell response. Thus, for the first time, we show how interactions between LPG and TLR-2 reduce anti-leishmanial responses via cytokine-mediated decrease of TLR-9 expression.
Collapse
|