1
|
Eroglu B, Isales C, Eroglu A. Age and duration of obesity modulate the inflammatory response and expression of neuroprotective factors in mammalian female brain. Aging Cell 2024; 23:e14313. [PMID: 39230054 PMCID: PMC11634740 DOI: 10.1111/acel.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
Obesity has become a global epidemic and is associated with comorbidities, including diabetes, cardiovascular, and neurodegenerative diseases, among others. While appreciable insight has been gained into the mechanisms of obesity-associated comorbidities, effects of age, and duration of obesity on the female brain remain obscure. To address this gap, adolescent and mature adult female mice were subjected to a high-fat diet (HFD) for 13 or 26 weeks, whereas age-matched controls were fed a standard diet. Subsequently, the expression of inflammatory cytokines, neurotrophic/neuroprotective factors, and markers of microgliosis and astrogliosis were analyzed in the hypothalamus, hippocampus, and cerebral cortex, along with inflammation in visceral adipose tissue. HFD led to a typical obese phenotype in all groups independent of age and duration of HFD. However, the intermediate duration of obesity induced a limited inflammatory response in adolescent females' hypothalamus while the hippocampus, cerebral cortex, and visceral adipose tissue remained unaffected. In contrast, the prolonged duration of obesity resulted in inflammation in all three brain regions and visceral adipose tissue along with upregulation of microgliosis/astrogliosis and suppression of neurotrophic/neuroprotective factors in all brain regions, denoting the duration of obesity as a critical risk factor for neurodegenerative diseases. Importantly, when female mice were older (i.e., mature adult), even the intermediate duration of obesity induced similar adverse effects in all brain regions. Taken together, our findings suggest that (1) both age and duration of obesity have a significant impact on obesity-associated comorbidities and (2) early interventions to end obesity are critical to preserving brain health.
Collapse
Affiliation(s)
- Binnur Eroglu
- Department of Neuroscience and Regenerative MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
| | - Carlos Isales
- Department of Neuroscience and Regenerative MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
- Department of MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
| | - Ali Eroglu
- Department of Neuroscience and Regenerative MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
- Department of Obstetrics and GynecologyMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
2
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024; 21:869-884. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
3
|
Lin Z, Jiwani Z, Serpooshan V, Aghaverdi H, Yang PC, Aguirre A, Wu JC, Mahmoudi M. Sex Influences the Safety and Therapeutic Efficacy of Cardiac Nanomedicine Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305940. [PMID: 37803920 PMCID: PMC10997742 DOI: 10.1002/smll.202305940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Nanomedicine technologies are being developed for the prevention, diagnosis, and treatment of cardiovascular disease (CVD), which is the leading cause of death worldwide. Before delving into the nuances of cardiac nanomedicine, it is essential to comprehend the fundamental sex-specific differences in cardiovascular health. Traditionally, CVDs have been more prevalent in males, but it is increasingly evident that females also face significant risks, albeit with distinct characteristics. Females tend to develop CVDs at a later age, exhibit different clinical symptoms, and often experience worse outcomes compared to males. These differences indicate the need for sex-specific approaches in cardiac nanomedicine. This Perspective discusses the importance of considering sex in the safety and therapeutic efficacy of nanomedicine approaches for the prevention, diagnosis, and treatment of CVD.
Collapse
Affiliation(s)
- Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Zahra Jiwani
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Haniyeh Aghaverdi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Phillip C Yang
- Department of Medicine, Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA 94309
| | - Aitor Aguirre
- Regenerative Biology and cell Reprogramming Laboratory, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48823, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Joseph C. Wu
- Department of Medicine, Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA 94309
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA 94305, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
- Connors Center for Women’s Health & Gender Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
4
|
Leek C, Cantu A, Sonti S, Gutierrez MC, Eldredge L, Sajti E, Xu HN, Lingappan K. Role of sex as a biological variable in neonatal alveolar macrophages. Redox Biol 2024; 75:103296. [PMID: 39098263 PMCID: PMC11345582 DOI: 10.1016/j.redox.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The lung macrophages play a crucial role in health and disease. Sexual dimorphism significantly impacts the phenotype and function of tissue-resident macrophages. The primary mechanisms responsible for sexually dimorphic outcomes in bronchopulmonary dysplasia (BPD) remain unidentified. We tested the hypothesis that biological sex plays a crucial role in the transcriptional state of alveolar macrophages, using neonatal murine hyperoxia-induced lung injury as a relevant model for human BPD. The effects of neonatal hyperoxia exposure (95 % FiO2, PND1-5: saccular stage) on the lung myeloid cells acutely after injury and during normoxic recovery were measured. Alveolar macrophages (AM) from room air- and hyperoxia exposed from male and female neonatal murine lungs were subjected to bulk-RNA Sequencing. AMs are significantly depleted in the hyperoxia-exposed lung acutely after injury, with subsequent recovery in both sexes. The transcriptome of the alveolar macrophages is impacted by neonatal hyperoxia exposure and by sex as a biological variable. Pathways related to DNA damage and interferon-signaling were positively enriched in female AMs. Metabolic pathways related to glucose and carbohydrate metabolism were positively enriched in the male AMs, while oxidative phosphorylation was negatively enriched. These pathways were shared with monocytes and airway macrophages from intubated male and female human premature neonates.
Collapse
Affiliation(s)
- Connor Leek
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Abiud Cantu
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Shilpa Sonti
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Manuel Cantu Gutierrez
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Laurie Eldredge
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Washington School of Medicine, Seattle Children's Hospital, WA, USA
| | - Eniko Sajti
- Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, CA, USA
| | - He N Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krithika Lingappan
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA.
| |
Collapse
|
5
|
Chivers SB, Andrade MA, Hammack RJ, Shannonhouse J, Gomez R, Zhang Y, Nguyen B, Shah P, Kim YS, Toney GM, Jeske NA. Peripheral macrophages contribute to nociceptor priming in mice with chronic intermittent hypoxia. Sci Signal 2024; 17:eadn8936. [PMID: 39078919 PMCID: PMC11412124 DOI: 10.1126/scisignal.adn8936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/13/2024] [Indexed: 09/21/2024]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with increased incidence of chronic musculoskeletal pain. We investigated the mechanism of this association in a mouse model of chronic intermittent hypoxia (CIH) that mimics the repetitive hypoxemias of OSA. After 14 days of CIH, both male and female mice exhibited behaviors indicative of persistent pain, with biochemical markers in the spinal cord dorsal horn and sensory neurons of the dorsal root ganglia consistent with hyperalgesic priming. CIH, but not sleep fragmentation alone, induced an increase in macrophage recruitment to peripheral sensory tissues (sciatic nerve and dorsal root ganglia), an increase in inflammatory cytokines in the circulation, and nociceptor sensitization. Peripheral macrophage ablation blocked CIH-induced hyperalgesic priming. The findings suggest that correcting the hypoxia or targeting macrophage signaling might suppress persistent pain in patients with OSA.
Collapse
Affiliation(s)
- Samuel B. Chivers
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mary Ann Andrade
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert J. Hammack
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Brian Nguyen
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Pankil Shah
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Glenn M. Toney
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
6
|
Villa PA, Ruggiero-Ruff RE, Jamieson BB, Campbell RE, Coss D. Obesity Alters POMC and Kisspeptin Neuron Cross Talk Leading to Reduced Luteinizing Hormone in Male Mice. J Neurosci 2024; 44:e0222242024. [PMID: 38744532 PMCID: PMC11236585 DOI: 10.1523/jneurosci.0222-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Obesity is associated with hypogonadism in males, characterized by low testosterone and sperm number. Previous studies determined that these stem from dysregulation of hypothalamic circuitry that regulates reproduction, by unknown mechanisms. Herein, we used mice fed chronic high-fat diet, which mimics human obesity, to determine mechanisms of impairment at the level of the hypothalamus, in particular gonadotropin-releasing hormone (GnRH) neurons that regulate luteinizing hormone (LH), which then regulates testosterone. Consistent with obese humans, we demonstrated lower LH, and lower pulse frequency of LH secretion, but unchanged pituitary responsiveness to GnRH. LH pulse frequency is regulated by pulsatile GnRH secretion, which is controlled by kisspeptin. Peripheral and central kisspeptin injections, and DREADD-mediated activation of kisspeptin neurons, demonstrated that kisspeptin neurons were suppressed in obese mice. Thus, we investigated regulators of kisspeptin secretion. We determined that the LH response to NMDA was lower in obese mice, corresponding to fewer glutamate receptors in kisspeptin neurons, which may be critical for kisspeptin synchronization. Given that kisspeptin neurons also interact with anorexigenic POMC neurons, which are affected by obesity, we examined their cross talk, and determined that the LH response to either DREADD-mediated activation of POMC neurons or central injection of αMSH, a product of POMC, is abolished in obese mice. This was accompanied by diminished levels of αMSH receptor, MC4R, in kisspeptin neurons. Together, our studies determined that obesity leads to the downregulation of receptors that regulate kisspeptin neurons, which is associated with lower LH pulse frequency, leading to lower LH and hypogonadism.
Collapse
Affiliation(s)
- Pedro A Villa
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California 92521
| | - Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California 92521
| | - Bradley B Jamieson
- Centre for Neuroendocrinology, and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California 92521
| |
Collapse
|
7
|
Guillot A, Tacke F. Liver macrophages revisited: The expanding universe of versatile responses in a spatiotemporal context. Hepatol Commun 2024; 8:e0491. [PMID: 38967563 PMCID: PMC11227356 DOI: 10.1097/hc9.0000000000000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024] Open
Abstract
The liver is a vital organ that continuously adapts to a wide and dynamic diversity of self-antigens and xenobiotics. This involves the active contribution of immune cells, particularly by the liver-resident macrophages, the Kupffer cells (KCs), which exert a variety of central functions in liver homeostasis and disease. As such, KCs interact with their microenvironment to shape the hepatic cellular landscape, control gut-derived signal integration, and modulate metabolism. On injury, the rapid recruitment of bone marrow monocyte-derived macrophages alters this status quo and, when unrestrained, drastically compromises liver homeostasis, immune surveillance, and tissue organization. Several factors determine the functional roles of liver macrophages in these processes, such as their ontogeny, activation/polarization profile and, importantly, spatial distribution within the liver. Loss of tolerance and adaptability of the hepatic immune environment may result in persistent inflammation, hepatic fibrosis, cirrhosis, and a tumorigenic niche promoting liver cancer. In this review, we aim at providing the most recent breakthroughs in our understanding of liver macrophage biology, particularly their diversity and adaptability in the hepatic spatiotemporal context, as well as on potential therapeutic interventions that may hold the key to tackling remaining clinical challenges of varying etiologies in hepatology.
Collapse
|
8
|
Roux S, Cherradi S, Duong HT. Exploiting the predictive power of educated spheroids to detect immune-mediated idiosyncratic drug-induced liver injury: the case of troglitazone. Front Pharmacol 2024; 15:1378371. [PMID: 38659594 PMCID: PMC11039894 DOI: 10.3389/fphar.2024.1378371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) is a major concern in drug development because its occurrence is unpredictable. Presently, iDILI prediction is a challenge, and cell toxicity is observed only at concentrations that are much higher than the therapeutic doses in preclinical models. Applying a proprietary cell educating technology, we developed a person-dependent spheroid system that contains autologous educated immune cells that can detect iDILI risk at therapeutic concentrations. Integrating this system into a high-throughput screening platform will help pharmaceutical companies accurately detect the iDILI risk of new molecules de-risking drug development.
Collapse
Affiliation(s)
| | | | - Hong Tuan Duong
- PredictCan Biotechnologies SAS, Biopôle Euromédecine, Grabels, France
| |
Collapse
|
9
|
Braga Tibaes JR, Barreto Silva MI, Wollin B, Vine D, Tsai S, Richard C. Sex differences in systemic inflammation and immune function in diet-induced obesity rodent models: A systematic review. Obes Rev 2024; 25:e13665. [PMID: 38072656 DOI: 10.1111/obr.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 02/28/2024]
Abstract
Understanding sex differences in immunological responses in the context of obesity is important to improve health outcomes. This systematic review aimed to investigate sex differences in systemic inflammation, immune cell phenotype, and function in diet-induced obesity (DIO) animal models. A systematic search in Medline, Embase, and CINAHL from inception to April 2023 was conducted, using a combination of the following concepts: sex, obesity, cytokines, and immune cell phenotypes/function. Forty-one publications reporting on systemic inflammation (61%), cell phenotype (44%), and/or function (7%) were included. Females had lower systemic inflammation compared with males in response to DIO intervention and a higher proportion of macrophage (M)2-like cells compared with males that had a higher proportion of M1-like in adipose tissue. Although there were no clear sex differences in immune function, high-fat DIO intervention remains an important factor in the development of immune dysfunction in both males and females, including disturbances in cytokine production, proliferation, and migration of immune cells. Yet, the mechanistic links between diet and obesity on such immune dysfunction remain unclear. Future studies should investigate the role of diet and obesity in the functionality of immune cells and employ adequate methods for a high-quality investigation of sex differences in this context.
Collapse
Affiliation(s)
| | - Maria Ines Barreto Silva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Applied Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bethany Wollin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Donna Vine
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Laaksonen S, Saraste M, Nylund M, Hinz R, Snellman A, Rinne J, Matilainen M, Airas L. Sex-driven variability in TSPO-expressing microglia in MS patients and healthy individuals. Front Neurol 2024; 15:1352116. [PMID: 38445263 PMCID: PMC10913932 DOI: 10.3389/fneur.2024.1352116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Background Males with multiple sclerosis (MS) have a higher risk for disability progression than females, but the reasons for this are unclear. Objective We hypothesized that potential differences in TSPO-expressing microglia between female and male MS patients could contribute to sex differences in clinical disease progression. Methods The study cohort consisted of 102 MS patients (mean (SD) age 45.3 (9.7) years, median (IQR) disease duration 12.1 (7.0-17.2) years, 72% females, 74% relapsing-remitting MS) and 76 age- and sex-matched healthy controls. TSPO-expressing microglia were measured using the TSPO-binding radioligand [11C](R)-PK11195 and brain positron emission tomography (PET). TSPO-binding was quantified as distribution volume ratio (DVR) in normal-appearing white matter (NAWM), thalamus, whole brain and cortical gray matter (cGM). Results Male MS patients had higher DVRs compared to female patients in the whole brain [1.22 (0.04) vs. 1.20 (0.02), p = 0.002], NAWM [1.24 (0.06) vs. 1.21 (0.05), p = 0.006], thalamus [1.37 (0.08) vs. 1.32 (0.02), p = 0.008] and cGM [1.25 (0.04) vs. 1.23 (0.04), p = 0.028]. Similarly, healthy men had higher DVRs compared to healthy women except for cGM. Of the studied subgroups, secondary progressive male MS patients had the highest DVRs in all regions, while female controls had the lowest DVRs. Conclusion We observed higher TSPO-binding in males compared to females among people with MS and in healthy individuals. This sex-driven inherent variability in TSPO-expressing microglia may predispose male MS patients to greater likelihood of disease progression.
Collapse
Affiliation(s)
- Sini Laaksonen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Maija Saraste
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Marjo Nylund
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| | - Anniina Snellman
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Ruggiero-Ruff RE, Le BH, Villa PA, Lainez NM, Athul SW, Das P, Ellsworth BS, Coss D. Single-Cell Transcriptomics Identifies Pituitary Gland Changes in Diet-Induced Obesity in Male Mice. Endocrinology 2024; 165:bqad196. [PMID: 38146776 PMCID: PMC10791142 DOI: 10.1210/endocr/bqad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Obesity is a chronic disease with increasing prevalence worldwide. Obesity leads to an increased risk of heart disease, stroke, and diabetes, as well as endocrine alterations, reproductive disorders, changes in basal metabolism, and stress hormone production, all of which are regulated by the pituitary. In this study, we performed single-cell RNA sequencing of pituitary glands from male mice fed control and high-fat diet (HFD) to determine obesity-mediated changes in pituitary cell populations and gene expression. We determined that HFD exposure is associated with dramatic changes in somatotrope and lactotrope populations, by increasing the proportion of somatotropes and decreasing the proportion of lactotropes. Fractions of other hormone-producing cell populations remained unaffected. Gene expression changes demonstrated that in HFD, somatotropes became more metabolically active, with increased expression of genes associated with cellular respiration, and downregulation of genes and pathways associated with cholesterol biosynthesis. Despite a lack of changes in gonadotrope fraction, genes important in the regulation of gonadotropin hormone production were significantly downregulated. Corticotropes and thyrotropes were the least affected in HFD, while melanotropes exhibited reduced proportion. Lastly, we determined that changes in plasticity and gene expression were associated with changes in hormone levels. Serum prolactin was decreased corresponding to reduced lactotrope fraction, while lower luteinizing hormone and follicle-stimulating hormone in the serum corresponded to a decrease in transcription and translation. Taken together, our study highlights diet-mediated changes in pituitary gland populations and gene expression that play a role in altered hormone levels in obesity.
Collapse
Affiliation(s)
- Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Brandon H Le
- Institute for Integrative Genome Biology Bioinformatics Core Facility, University of California, Riverside, CA 92521, USA
| | - Pedro A Villa
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Nancy M Lainez
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| | - Sandria W Athul
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Pratyusa Das
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Buffy S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences; School of Medicine, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Smiriglia A, Lorito N, Serra M, Perra A, Morandi A, Kowalik MA. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023; 26:108363. [PMID: 38034347 PMCID: PMC10682354 DOI: 10.1016/j.isci.2023.108363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Only a few preclinical findings are confirmed in the clinic, posing a critical issue for clinical development. Therefore, identifying the best preclinical models can help to dissect molecular and mechanistic insights into liver disease pathogenesis while being clinically relevant. In this context, the sex relevance of most preclinical models has been only partially considered. This is particularly significant in NAFLD and HCC, which have a higher prevalence in men when compared to pre-menopause women but not to those in post-menopausal status, suggesting a role for sex hormones in the pathogenesis of the diseases. This review gathers the sex-relevant findings and the available preclinical models focusing on both in vitro and in vivo studies and discusses the potential implications and perspectives of introducing the sex effect in the selection of the best preclinical model. This is a critical aspect that would help to tailor personalized therapies based on sex.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marina Serra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
14
|
Desai S, Lång P, Näreoja T, Windahl SH, Andersson G. RANKL-dependent osteoclast differentiation and gene expression in bone marrow-derived cells from adult mice is sexually dimorphic. Bone Rep 2023; 19:101697. [PMID: 37485233 PMCID: PMC10359713 DOI: 10.1016/j.bonr.2023.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Sex-specific differences in bone integrity and properties are associated with age as well as the number and activity of cells involved in bone remodeling. The aim of this study was to investigate sex-specific differences in adhesion, proliferation, and differentiation of mouse bone marrow derived cells into osteoclasts. The adherent fraction of bone marrow- derived cells from 12-week-old male and female C57BL/6J mice were assessed for their adhesion, proliferation, and receptor activator of nuclear factor κB (RANKL)-induced differentiation into osteoclasts. Female bone marrow derived macrophages (BMDMs) displayed higher adhesion and proliferation ratio upon macrophage colony stimulating factor (M-CSF) (day 0) and M-CSF + RANKL (day 4) treatment, respectively. On the contrary, male BMDMs differentiated more efficiently into osteoclasts upon RANKL-treatment compared to females (day 5). To further understand these sex-specific differences at the gene expression level, BMDMs treated with M-CSF (day 0) and M-CSF + RANKL (day 4), were assessed for their differential expression of genes through RNA sequencing. M-CSF treatment resulted in 1106 differentially expressed genes, while RANKL-treatment gave 473 differentially expressed genes. Integrin, adhesion, and proliferation-associated genes were elevated in the M-CSF-treated female BMDMs. RANKL-treatment further enhanced the expression of the proliferation- associated genes, and of genes associated with inhibition of osteoclast differentiation in the females, while RANK-signaling-associated genes were upregulated in males. In conclusion, BMDM adhesion, proliferation and differentiation into osteoclasts are sex-specific and may be directed by the PI3K-Akt signaling pathway for proliferation, and the colony stimulating factor 1-receptor and the RANKLsignaling pathway for the differentiation.
Collapse
Affiliation(s)
- Suchita Desai
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| | - Pernilla Lång
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| | - Tuomas Näreoja
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
- Department of Life Technologies, University of Turku, Finland
| | - Sara H. Windahl
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| | - Göran Andersson
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| |
Collapse
|
15
|
Borgiani E, Nasello G, Ory L, Herpelinck T, Groeneveldt L, Bucher CH, Schmidt-Bleek K, Geris L. COMMBINI: an experimentally-informed COmputational Model of Macrophage dynamics in the Bone INjury Immunoresponse. Front Immunol 2023; 14:1231329. [PMID: 38130715 PMCID: PMC10733790 DOI: 10.3389/fimmu.2023.1231329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023] Open
Abstract
Bone fracture healing is a well-orchestrated but complex process that involves numerous regulations at different scales. This complexity becomes particularly evident during the inflammatory stage, as immune cells invade the healing region and trigger a cascade of signals to promote a favorable regenerative environment. Thus, the emergence of criticalities during this stage might hinder the rest of the process. Therefore, the investigation of the many interactions that regulate the inflammation has a primary importance on the exploration of the overall healing progression. In this context, an in silico model named COMMBINI (COmputational Model of Macrophage dynamics in the Bone INjury Immunoresponse) has been developed to investigate the mechano-biological interactions during the early inflammatory stage at the tissue, cellular and molecular levels. An agent-based model is employed to simulate the behavior of immune cells, inflammatory cytokines and fracture debris as well as their reciprocal multiscale biological interactions during the development of the early inflammation (up to 5 days post-injury). The strength of the computational approach is the capacity of the in silico model to simulate the overall healing process by taking into account the numerous hidden events that contribute to its success. To calibrate the model, we present an in silico immunofluorescence method that enables a direct comparison at the cellular level between the model output and experimental immunofluorescent images. The combination of sensitivity analysis and a Genetic Algorithm allows dynamic cooperation between these techniques, enabling faster identification of the most accurate parameter values, reducing the disparity between computer simulation and histological data. The sensitivity analysis showed a higher sensibility of the computer model to the macrophage recruitment ratio during the early inflammation and to proliferation in the late stage. Furthermore, the Genetic Algorithm highlighted an underestimation of macrophage proliferation by in vitro experiments. Further experiments were conducted using another externally fixated murine model, providing an independent validation dataset. The validated COMMBINI platform serves as a novel tool to deepen the understanding of the intricacies of the early bone regeneration phases. COMMBINI aims to contribute to designing novel treatment strategies in both the biological and mechanical domains.
Collapse
Affiliation(s)
- Edoardo Borgiani
- Biomechanics Research Unit, GIGA-In Silico Medicine, University of Liège, Liège, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Division of Biomechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Gabriele Nasello
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Liesbeth Ory
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Tim Herpelinck
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Lisanne Groeneveldt
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Christian H. Bucher
- Julius Wolff Institute, Berlin Institute of Health, Charitè – Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Berlin Institute of Health, Charitè – Universitätsmedizin Berlin, Berlin, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA-In Silico Medicine, University of Liège, Liège, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Division of Biomechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Zur Tulod J, Witman ND, Grond K, Duddleston KN, Kurtz CC. Treatment with gut-specific nonsteroidal anti-inflammatory drug attenuates metabolic inflammation but not body mass in fattening ground squirrels. Am J Physiol Regul Integr Comp Physiol 2023; 325:R456-R464. [PMID: 37602382 PMCID: PMC11178295 DOI: 10.1152/ajpregu.00078.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The active season of hibernators corresponds to rapid adiposity in preparation for the next hibernation season. We have previously shown that this dramatic increase in adipose mass is associated with metabolic inflammation similar to what is seen in obesity and metabolic disease. We next sought to determine whether curbing this inflammation at its source (i.e., the gut) would attenuate weight gain in fattening 13-lined ground squirrels (Ictidomys tridecemlineatus). We fed active yearling ground squirrels a diet containing the gut-specific nonsteroidal anti-inflammatory drug mesalazine (5-aminosalicylic acid) for 10 wk. Mesalazine treatment had slight effects on microbial community diversity in the cecum and colon. Not surprisingly, mesalazine treatment decreased inflammatory cytokine levels in the ileum and colon. Mesalazine also decreased proinflammatory and increased anti-inflammatory cytokines in omental white adipose tissue (oWAT). Despite this, body mass was unaffected, and caloric intake increased in mesalazine-treated squirrels, mainly in males. Mass of the primary WAT depot, intra-abdominal WAT (iaWAT), or the highly metabolic oWAT were unaltered by treatment, as was adiposity index. Together, these results suggest that mesalazine treatment has some effects on adiposity in fattening ground squirrels, but this treatment needs to be modified to overcome the strong drive to fatten in this species.NEW & NOTEWORTHY Adiposity and obesity are caused, at least in part, by inflammation of metabolic tissues. Hibernators, like ground squirrels, undergo this same metabolic inflammation during their summer fattening period. We attempted to curb this inflammation, and thus fattening, using mesalazine. We found that mesalazine did curb the inflammation but did not affect fattening, likely due to the strong drive to fatten in hibernators.
Collapse
Affiliation(s)
- Jewel Zur Tulod
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| | - Nathan D Witman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| | - Kirsten Grond
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States
| | - Khrystyne N Duddleston
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States
| | - Courtney C Kurtz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| |
Collapse
|
17
|
Lu C, Donners MMPC, Karel J, de Boer H, van Zonneveld AJ, den Ruijter H, Jukema JW, Kraaijeveld A, Kuiper J, Pasterkamp G, Cavill R, Perales-Patón J, Ferrannini E, Goossens P, Biessen EAL. Sex-specific differences in cytokine signaling pathways in circulating monocytes of cardiovascular disease patients. Atherosclerosis 2023; 384:117123. [PMID: 37127497 DOI: 10.1016/j.atherosclerosis.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS This study aims to identify sex-specific transcriptional differences and signaling pathways in circulating monocytes contributing to cardiovascular disease. METHODS AND RESULTS We generated sex-biased gene expression signatures by comparing male versus female monocytes of coronary artery disease (CAD) patients (n = 450) from the Center for Translational Molecular Medicine-Circulating Cells Cohort. Gene set enrichment analysis demonstrated that monocytes from female CAD patients carry stronger chemotaxis and migratory signature than those from males. We then inferred cytokine signaling activities based on CytoSig database of 51 cytokine and growth factor regulation profiles. Monocytes from females feature a higher activation level of EGF, IFN1, VEGF, GM-CSF, and CD40L pathways, whereas IL-4, INS, and HMGB1 signaling was seen to be more activated in males. These sex differences were not observed in healthy subjects, as shown for an independent monocyte cohort of healthy subjects (GSE56034, n = 485). More pronounced GM-CSF signaling in monocytes of female CAD patients was confirmed by the significant enrichment of GM-CSF-activated monocyte signature in females. As we show these effects were not due to increased plasma levels of the corresponding ligands, sex-intrinsic differences in monocyte signaling regulation are suggested. Consistently, regulatory network analysis revealed jun-B as a shared transcription factor activated in all female-specific pathways except IFN1 but suppressed in male-activated IL-4. CONCLUSIONS We observed overt CAD-specific sex differences in monocyte transcriptional profiles and cytokine- or growth factor-induced responses, which provide insights into underlying mechanisms of sex differences in CVD.
Collapse
Affiliation(s)
- Chang Lu
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands.
| | - Joël Karel
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, the Netherlands
| | - Hetty de Boer
- Department of Internal Medicine (Nephrology), Leiden UMC, Leiden, the Netherlands
| | | | - Hester den Ruijter
- Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Adriaan Kraaijeveld
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | - Rachel Cavill
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, the Netherlands
| | - Javier Perales-Patón
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Joint Research Centre for Computational Biomedicine (JRC COMBINE), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ele Ferrannini
- Consiglio Nazionale Delle Ricerche (CNR) Institute of Clinical Physiology, Pisa, Italy
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht UMC+, Maastricht University, Maastricht, the Netherlands; Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
18
|
Eren N, Gerike S, Üsekes B, Peters O, Cosma NC, Hellmann-Regen J. Effects of autologous serum on TREM2 and APOE in a personalized monocyte-derived macrophage assay of late-onset Alzheimer's patients. Immun Ageing 2023; 20:52. [PMID: 37833781 PMCID: PMC10576307 DOI: 10.1186/s12979-023-00376-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Age-associated deterioration of the immune system contributes to a chronic low-grade inflammatory state known as "inflammaging" and is implicated in the pathogenesis of late-onset Alzheimer's disease (LOAD). Whether changes in the tissue environment caused by circulatory factors associated with aging may alter the innate immune response is unknown. Monocyte-derived macrophages (Mo-MФs) infiltrating the brain alongside microglia are postulated to play a modulatory role in LOAD and both express triggering receptor expressed on myeloid cells 2 (TREM2). Apolipoprotein E (APOE) acts as a ligand for TREM2, and their role in amyloid beta (Aβ) clearance highlights their importance in LOAD. However, the influence of the patient's own milieu (autologous serum) on the synthesis of TREM2 and APOE in infiltrating macrophages remains unknown. OBJECTIVES To functionally assess patient-specific TREM2 and APOE synthesis, we designed a personalized assay based on Mo-MФs using monocytes from LOAD patients and matched controls (CO). We assessed the influence of each participant's own milieu, by examining the effect of short- (1 day) and long- (10 days) term differentiation of the cells in the presence of the donor´s autologous serum (AS) into M1-, M2- or M0-macrophages. Additionally, sex differences and Aβ-uptake ability in short- and long-term differentiated Mo-MФs were assessed. RESULTS We showed a time-dependent increase in TREM2 and APOE protein levels in LOAD- and CO-derived cells. While AS did not differentially modulate TREM2 compared to standard fetal calf serum (FCS), AS decreased APOE levels in M2 macrophages but increased levels in M1 macrophages. Interestingly, higher levels of TREM2 and lower levels of APOE were detected in female- than in male- LOAD patients. Finally, we report decreased Aβ-uptake in long-term differentiated CO- and LOAD-derived cells, particularly in APOEε4(+) carriers. CONCLUSIONS We demonstrate for the first time the suitability of a personalized Mo-MФ cell culture-based assay for studying functional TREM2 and APOE synthesis in a patient's own aged milieu. Our strategy may thus provide a useful tool for future research on diagnostic and therapeutic aspects of personalized medicine.
Collapse
Affiliation(s)
- Neriman Eren
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Susanna Gerike
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Berk Üsekes
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Center for Mental Health (DZPG) Partner Site Berlin, Berlin, Germany
| | - Nicoleta-Carmen Cosma
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Section Clinical Neurobiology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| |
Collapse
|
19
|
Trink J, Nmecha IK, Zhang D, MacDonald M, Gao B, Krepinsky JC. Both sexes develop DKD in the CD1 uninephrectomized streptozotocin mouse model. Sci Rep 2023; 13:16635. [PMID: 37789041 PMCID: PMC10547794 DOI: 10.1038/s41598-023-42670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is characterized by a progressive increase in albuminuria and typical pathologic features. Recent studies have shown that sex is an important factor to consider in the pathogenesis of DKD. Presently, the hallmarks of this disease have primarily been studied in male rodent models. Here we explored the influence of sex in a murine model of DKD. CD1 mice underwent a right nephrectomy followed by intraperitoneal injection with 200 mg/kg streptozotocin to induce type 1 diabetes. Due to a high mortality rate, females required a reduction in streptozotocin to 150 mg/kg. Mice were followed for 12 weeks. Both sexes developed comparable hyperglycemia, while albuminuria and glomerular volume were increased to a greater degree in females and kidney hypertrophy was only seen in females. Males had a greater increase in blood pressure and glomerular basement membrane thickening, and a greater decrease in endpoint weight. Serum TGFβ1 levels were increased only in females. However, both sexes showed a similar increase in induction of kidney fibrosis. T cell and macrophage infiltration were also increased in both sexes. While some differences were observed, overall, both sexes developed clinical and pathologic characteristics of early DKD. Future studies evaluating therapeutic interventions can thus be assessed in both sexes of this DKD model.
Collapse
Affiliation(s)
- Jackie Trink
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Ifeanyi Kennedy Nmecha
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Dan Zhang
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Melissa MacDonald
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Bo Gao
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Joan C Krepinsky
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
20
|
Juszczak F, Pierre L, Decarnoncle M, Jadot I, Martin B, Botton O, Caron N, Dehairs J, Swinnen JV, Declèves AE. Sex differences in obesity-induced renal lipid accumulation revealed by lipidomics: a role of adiponectin/AMPK axis. Biol Sex Differ 2023; 14:63. [PMID: 37770988 PMCID: PMC10537536 DOI: 10.1186/s13293-023-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Sex differences have been observed in the development of obesity-related complications in patients, as well as in animal models. Accumulating evidence suggests that sex-dependent regulation of lipid metabolism contributes to sex-specific physiopathology. Lipid accumulation in the renal tissue has been shown to play a major role in the pathogenesis of obesity-induced kidney injury. Unlike in males, the physiopathology of the disease has been poorly described in females, particularly regarding the lipid metabolism adaptation. METHODS Here, we compared the lipid profile changes in the kidneys of female and male mice fed a high-fat diet (HFD) or low-fat diet (LFD) by lipidomics and correlated them with pathophysiological changes. RESULTS We showed that HFD-fed female mice were protected from insulin resistance and hepatic steatosis compared to males, despite similar body weight gains. Females were particularly protected from renal dysfunction, oxidative stress, and tubular lipid accumulation. Both HFD-fed male and female mice presented dyslipidemia, but lipidomic analysis highlighted differential renal lipid profiles. While both sexes presented similar neutral lipid accumulation with obesity, only males showed increased levels of ceramides and phospholipids. Remarkably, protection against renal lipotoxicity in females was associated with enhanced renal adiponectin and AMP-activated protein kinase (AMPK) signaling. Circulating adiponectin and its renal receptor levels were significantly lower in obese males, but were maintained in females. This observation correlated with the maintained basal AMPK activity in obese female mice compared to males. CONCLUSIONS Collectively, our findings suggest that female mice are protected from obesity-induced renal dysfunction and lipotoxicity associated with enhanced adiponectin and AMPK signaling compared to males.
Collapse
Affiliation(s)
- Florian Juszczak
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium.
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium.
| | - Louise Pierre
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Morgane Decarnoncle
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Inès Jadot
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Blanche Martin
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Olivia Botton
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| |
Collapse
|
21
|
Mohammed S, Thadathil N, Ohene-Marfo P, Tran AL, Van Der Veldt M, Georgescu C, Oh S, Nicklas EH, Wang D, Haritha NH, Luo W, Janknecht R, Miller BF, Wren JD, Freeman WM, Deepa SS. Absence of Either Ripk3 or Mlkl Reduces Incidence of Hepatocellular Carcinoma Independent of Liver Fibrosis. Mol Cancer Res 2023; 21:933-946. [PMID: 37204757 PMCID: PMC10472095 DOI: 10.1158/1541-7786.mcr-22-0820] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the etiologies that contribute to hepatocellular carcinoma (HCC), and chronic inflammation is one of the proposed mediators of HCC. Because necroptosis is a cell death pathway that induces inflammation, we tested whether necroptosis-induced inflammation contributes to the progression of NAFLD to HCC in a mouse model of diet-induced HCC. Male and female wild-type (WT) mice and mouse models where necroptosis is blocked (Ripk3-/- or Mlkl-/- mice) were fed either a control diet, choline-deficient low-fat diet or choline-deficient high-fat diet. Blocking necroptosis reduced markers of inflammation [proinflammatory cytokines (TNFα, IL6, and IL1β), F4/80+ve macrophages, CCR2+ve infiltrating monocytes], inflammation-associated oncogenic pathways (JNK, PD-L1/PD-1, β-catenin), and HCC in male mice. We demonstrate that hepatic necroptosis promotes recruitment and activation of liver macrophages leading to chronic inflammation, which in turn trigger oncogenic pathways leading to the progression of NAFLD to HCC in male mice. Whereas in female mice, blocking necroptosis reduced HCC independent of inflammation. Our data show a sex-specific difference in the development of inflammation, fibrosis, and HCC in WT mice. However, blocking necroptosis reduced HCC in both males and females without altering liver fibrosis. Thus, our study suggests that necroptosis is a valid therapeutic target for NAFLD-mediated HCC. IMPLICATIONS Necroptosis is a major contributor to hepatic inflammation that drives the progression of NAFLD to HCC and therefore represents a valid target for NAFLD-mediated HCC.
Collapse
Affiliation(s)
- Sabira Mohammed
- Stephenson Cancer Center, Oklahoma City, Oklahoma
- Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Nidheesh Thadathil
- Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Phoebe Ohene-Marfo
- Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Albert L. Tran
- Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | - Sangphil Oh
- Stephenson Cancer Center, Oklahoma City, Oklahoma
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Evan H. Nicklas
- Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dawei Wang
- Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Nair Hariprasad Haritha
- Stephenson Cancer Center, Oklahoma City, Oklahoma
- Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wenyi Luo
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ralf Janknecht
- Stephenson Cancer Center, Oklahoma City, Oklahoma
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Benjamin F. Miller
- Oklahoma Center for Geroscience & Brain Aging, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City VA medical Center, Oklahoma City, Oklahoma
| | - Jonathan D. Wren
- Genes and Human Disease Research Program, Oklahoma City, Oklahoma
| | - Willard M. Freeman
- Genes and Human Disease Research Program, Oklahoma City, Oklahoma
- Oklahoma Center for Geroscience & Brain Aging, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Oklahoma City VA medical Center, Oklahoma City, Oklahoma
| | - Sathyaseelan S. Deepa
- Stephenson Cancer Center, Oklahoma City, Oklahoma
- Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Oklahoma Center for Geroscience & Brain Aging, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Oklahoma City VA medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
22
|
Mukherjee S, Skrede S, Haugstøyl M, López M, Fernø J. Peripheral and central macrophages in obesity. Front Endocrinol (Lausanne) 2023; 14:1232171. [PMID: 37720534 PMCID: PMC10501731 DOI: 10.3389/fendo.2023.1232171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 09/19/2023] Open
Abstract
Obesity is associated with chronic, low-grade inflammation. Excessive nutrient intake causes adipose tissue expansion, which may in turn cause cellular stress that triggers infiltration of pro-inflammatory immune cells from the circulation as well as activation of cells that are residing in the adipose tissue. In particular, the adipose tissue macrophages (ATMs) are important in the pathogenesis of obesity. A pro-inflammatory activation is also found in other organs which are important for energy metabolism, such as the liver, muscle and the pancreas, which may stimulate the development of obesity-related co-morbidities, including insulin resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-induced pro-inflammatory signaling also occurs in the central nervous system (CNS), and that pro-inflammatory activation of immune cells in the brain may be involved in appetite dysregulation and metabolic disturbances in obesity. More recently, it has become evident that microglia, the resident macrophages of the CNS that drive neuroinflammation, may also be activated in obesity and can be relevant for regulation of hypothalamic feeding circuits. In this review, we focus on the action of peripheral and central macrophages and their potential roles in metabolic disease, and how macrophages interact with other immune cells to promote inflammation during obesity.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Martha Haugstøyl
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Lenart-Lipińska M, Łuniewski M, Szydełko J, Matyjaszek-Matuszek B. Clinical and Therapeutic Implications of Male Obesity. J Clin Med 2023; 12:5354. [PMID: 37629396 PMCID: PMC10455727 DOI: 10.3390/jcm12165354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence of obesity, a disorder linked to numerous comorbidities and metabolic complications, has recently increased dramatically worldwide and is highly prevalent in men, even at a young age. Compared to female patients, men with obesity more frequently have delayed diagnosis, higher severity of obesity, increased mortality rate, and only a minority of obese male patients are successfully treated, including with bariatric surgery. The aim of this review was to present the current state of knowledge about the clinical and therapeutic implications of obesity diagnosed in males.
Collapse
Affiliation(s)
- Monika Lenart-Lipińska
- Department of Endocrinology, Diabetology, and Metabolic Diseases, Medical University of Lublin, 20-954 Lublin, Poland; (M.Ł.); (J.S.); (B.M.-M.)
| | | | | | | |
Collapse
|
24
|
Terlizzi M, Colarusso C, Ferraro G, Falanga A, Monti MC, Somma P, De Rosa I, Panico L, Pinto A, Sorrentino R. Sex Differences in Sphingosine-1-Phosphate Levels Are Dependent on Ceramide Synthase 1 and Ceramidase in Lung Physiology and Tumor Conditions. Int J Mol Sci 2023; 24:10841. [PMID: 37446018 DOI: 10.3390/ijms241310841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Sex is a biological variable that can reflect clinical outcomes in terms of quality of life, therapy effectiveness, responsiveness and/or toxicity. Sphingosine-1-phosphate (S1P) is a lipidic mediator whose activity can be influenced by sex. To evaluate whether the S1P axis underlies sex 'instructions' in the lung during physiological and oncological lung conditions, sphingosine and S1P were quantified in the blood of healthy (H) volunteers, lung adenocarcinoma (ADK) and squamous cell carcinoma (SCC) patients of both sexes. S1P receptors and their metabolic enzymes were evaluated in the tissues. Circulating levels of S1P were similar among H female and male subjects and female SCC patients. Instead, male and female ADK patients had lower circulating S1P levels. S1P receptor 3 (S1PR3) was physiologically expressed in the lung, but it was overexpressed in male SCC, and female and male ADK, but not in female SCC patients, who showed a significantly reduced ceramide synthase 1 (CERS1) mRNA and an overexpression of the ceramidase (ASAH1) precursor in lung tumor tissues, compared to male SCC and both male and female ADK patients. These findings highlighted sex differences in S1P rheostat in pathological conditions, but not in physiological conditions, identifying S1P as a prognostic mediator depending on lung cancer histotype.
Collapse
Affiliation(s)
- Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Chiara Colarusso
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Giusy Ferraro
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Anna Falanga
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Maria Chiara Monti
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | - Pasquale Somma
- Anatomy and Pathology Unit, Ospedale dei Colli, Azienda Ospedaliera di Rilievo Nazionale (AORN), "Monaldi", 84131 Naples, Italy
| | - Ilaria De Rosa
- Anatomy and Pathology Unit, Ospedale dei Colli, Azienda Ospedaliera di Rilievo Nazionale (AORN), "Monaldi", 84131 Naples, Italy
| | - Luigi Panico
- Anatomy and Pathology Unit, Ospedale dei Colli, Azienda Ospedaliera di Rilievo Nazionale (AORN), "Monaldi", 84131 Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Fisciano, Italy
| | | |
Collapse
|
25
|
Li J, Ruggiero-Ruff RE, He Y, Qiu X, Lainez N, Villa P, Godzik A, Coss D, Nair MG. Sexual dimorphism in obesity is governed by RELMα regulation of adipose macrophages and eosinophils. eLife 2023; 12:e86001. [PMID: 37162190 PMCID: PMC10171862 DOI: 10.7554/elife.86001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
Obesity incidence is increasing worldwide with the urgent need to identify new therapeutics. Sex differences in immune cell activation drive obesity-mediated pathologies where males are more susceptible to obesity comorbidities and exacerbated inflammation. Here, we demonstrate that the macrophage-secreted protein RELMα critically protects females against high-fat diet (HFD)-induced obesity. Compared to male mice, serum RELMα levels were higher in both control and HFD-fed females and correlated with frequency of adipose macrophages and eosinophils. RELMα-deficient females gained more weight and had proinflammatory macrophage accumulation and eosinophil loss in the adipose stromal vascular fraction (SVF), while RELMα treatment or eosinophil transfer rescued this phenotype. Single-cell RNA-sequencing of the adipose SVF was performed and identified sex and RELMα-dependent changes. Genes involved in oxygen sensing and iron homeostasis, including hemoglobin and lncRNA Gm47283/Gm21887, correlated with increased obesity, while eosinophil chemotaxis and response to amyloid-beta were protective. Monocyte-to-macrophage transition was also dysregulated in RELMα-deficient animals. Collectively, these studies implicate a RELMα-macrophage-eosinophil axis in sex-specific protection against obesity and uncover new therapeutic targets for obesity.
Collapse
Affiliation(s)
- Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Yuxin He
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Xinru Qiu
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California RiversideRiversideUnited States
| | - Nancy Lainez
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Pedro Villa
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Adam Godzik
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| |
Collapse
|
26
|
Loonstra FC, Falize KF, de Ruiter LRJ, Schoonheim MM, Strijbis EMM, Killestein J, de Vries HE, Uitdehaag BMJ, Rijnsburger M. Adipokines in multiple sclerosis patients are related to clinical and radiological measures. J Neurol 2023; 270:2018-2030. [PMID: 36562851 PMCID: PMC10025234 DOI: 10.1007/s00415-022-11519-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND An imbalance of adipokines, hormones secreted by white adipose tissue, is suggested to play a role in the immunopathology of multiple sclerosis (MS). In people with MS (PwMS) of the same age, we aimed to determine whether the adipokines adiponectin, leptin, and resistin are associated with MS disease severity. Furthermore, we aimed to investigate whether these adipokines mediate the association between body mass index (BMI) and MS disease severity. METHODS Adiponectin, resistin, and leptin were determined in serum using ELISA. 288 PwMS and 125 healthy controls (HC) were included from the Project Y cohort, a population-based cross-sectional study of people with MS born in the Netherlands in 1966, and age and sex-matched HC. Adipokine levels and BMI were related to demographic, clinical and disability measures, and MRI-based brain volumes. RESULTS Adiponectin levels were 1.2 fold higher in PwMS vs. HC, especially in secondary progressive MS. Furthermore, we found a sex-specific increase in adiponectin levels in primary progressive (PP) male patients compared to male controls. Leptin and resistin levels did not differ between PwMS and HC, however, leptin levels were associated with higher disability (EDSS) and resistin strongly related to brain volumes in progressive patients, especially in several grey matter regions in PPMS. Importantly, correction for BMI did not significantly change the results. CONCLUSION In PwMS of the same age, we found associations between adipokines (adiponectin, leptin, and resistin) and a range of clinical and radiological metrics. These associations were independent of BMI, indicating distinct mechanisms.
Collapse
Affiliation(s)
- Floor C Loonstra
- MS Center Amsterdam, Neurology Department, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, De boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Kim F Falize
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Lodewijk R J de Ruiter
- MS Center Amsterdam, Neurology Department, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, De boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Eva M M Strijbis
- MS Center Amsterdam, Neurology Department, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, De boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center Amsterdam, Neurology Department, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, De boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Helga E de Vries
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Bernard M J Uitdehaag
- MS Center Amsterdam, Neurology Department, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, De boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Merel Rijnsburger
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Villa PA, Lainez NM, Jonak CR, Berlin SC, Ethell IM, Coss D. Altered GnRH neuron and ovarian innervation characterize reproductive dysfunction linked to the Fragile X messenger ribonucleoprotein ( Fmr1) gene mutation. Front Endocrinol (Lausanne) 2023; 14:1129534. [PMID: 36909303 PMCID: PMC9992745 DOI: 10.3389/fendo.2023.1129534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene cause Fragile X Syndrome, the most common monogenic cause of intellectual disability. Mutations of FMR1 are also associated with reproductive disorders, such as early cessation of reproductive function in females. While progress has been made in understanding the mechanisms of mental impairment, the causes of reproductive disorders are not clear. FMR1-associated reproductive disorders were studied exclusively from the endocrine perspective, while the FMR1 role in neurons that control reproduction was not addressed. Results Here, we demonstrate that similar to women with FMR1 mutations, female Fmr1 null mice stop reproducing early. However, young null females display larger litters, more corpora lutea in the ovaries, increased inhibin, progesterone, testosterone, and gonadotropin hormones in the circulation. Ovariectomy reveals both hypothalamic and ovarian contribution to elevated gonadotropins. Altered mRNA and protein levels of several synaptic molecules in the hypothalamus are identified, indicating reasons for hypothalamic dysregulation. Increased vascularization of corpora lutea, higher sympathetic innervation of growing follicles in the ovaries of Fmr1 nulls, and higher numbers of synaptic GABAA receptors in GnRH neurons, which are excitatory for GnRH neurons, contribute to increased FSH and LH, respectively. Unmodified and ovariectomized Fmr1 nulls have increased LH pulse frequency, suggesting that Fmr1 nulls exhibit hyperactive GnRH neurons, regardless of the ovarian feedback. Conclusion These results reveal Fmr1 function in the regulation of GnRH neuron secretion, and point to the role of GnRH neurons, in addition to the ovarian innervation, in the etiology of Fmr1-mediated reproductive disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| |
Collapse
|
28
|
Keever AL, Collins KM, Clark RA, Framstad AL, Ashley JW. RANK signaling in osteoclast precursors results in a more permissive epigenetic landscape and sexually divergent patterns of gene expression. PeerJ 2023; 11:e14814. [PMID: 36788807 PMCID: PMC9922499 DOI: 10.7717/peerj.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/11/2023] Open
Abstract
Background Sex is an important risk factor in the development of osteoporosis and other bone loss disorders, with women often demonstrating greater susceptibility than men. While variation in sex steroids, such as estradiol, accounts for much of the risk, there are likely additional non-endocrine factors at transcriptional and epigenetic levels that result in a higher rate of bone loss in women. Identification of these factors could improve risk assessment and therapies to preserve and improve bone health. Methods Osteoclast precursors were isolated male and female C57Bl/6 mice and cultured with either MCSF alone or MCSF and RANKL. Following the culture period RNA was isolated for RNA sequencing and DNA was isolated for tagmentation and ATAC sequencing. RNA-Seq and ATAC-seq were evaluated via pathway analysis to identify sex- and RANKL-differential transcription and chromatin accessibility. Results Osteoclasts demonstrated significant alterations in gene expression compared to macrophages with both shared and differential pathways between the sexes. Transcriptional pathways differentially regulated between male and female cells were associated with immunological functions with evidence of greater sensitivity in male macrophages and female osteoclasts. ATAC-Seq revealed a large increase in chromatin accessibility following RANKL treatment with few alterations attributable to sex. Comparison of RNA-Seq and ATAC-seq data revealed few common pathways suggesting that many of the transcriptional changes of osteoclastogenesis occur independently of chromatin remodeling.
Collapse
Affiliation(s)
- Abigail L. Keever
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States,Department of Biology, Eastern Washington University, Cheney, WA, United States
| | - Kathryn M. Collins
- Department of Biology, Eastern Washington University, Cheney, WA, United States
| | - Rachel A. Clark
- Department of Biology, Eastern Washington University, Cheney, WA, United States
| | - Amber L. Framstad
- Department of Biology, Eastern Washington University, Cheney, WA, United States
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, WA, United States
| |
Collapse
|
29
|
Li J, Ruggiero-Ruff RE, He Y, Qiu X, Lainez NM, Villa PA, Godzik A, Coss D, Nair MG. Sexual dimorphism in obesity is governed by RELMα regulation of adipose macrophages and eosinophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523880. [PMID: 36711654 PMCID: PMC9882128 DOI: 10.1101/2023.01.13.523880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Obesity incidence is increasing worldwide with the urgent need to identify new therapeutics. Sex differences in immune cell activation drive obesity-mediated pathologies where males are more susceptible to obesity co-morbidities and exacerbated inflammation. Here, we demonstrate that the macrophage-secreted protein RELMα critically protects females against high fat diet-induced obesity. Compared to male mice, RELMα levels were elevated in both control and high fat dietfed females and correlated with adipose macrophages and eosinophils. RELMα-deficient females gained more weight and had pro-inflammatory macrophage accumulation and eosinophil loss, while both RELMα treatment and eosinophil transfer rescued this phenotype. Single cell RNA-sequencing of the adipose stromal vascular fraction was performed and identified sex and RELMα-dependent changes. Genes involved in oxygen sensing and iron homeostasis, including hemoglobin and lncRNA Gm47283, correlated with increased obesity, while eosinophil chemotaxis and response to amyloid-beta were protective. Monocyte-to-macrophage transition was also dysregulated in RELMα-deficient animals. Collectively, these studies implicate a RELMα-macrophage-eosinophil axis in sex-specific protection against obesity and uncover new therapeutic targets for obesity.
Collapse
Affiliation(s)
- Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Rebecca E. Ruggiero-Ruff
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Yuxin He
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Xinru Qiu
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, CA, USA
| | - Nancy M. Lainez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Pedro A. Villa
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Adam Godzik
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
30
|
Wagner AS, Vogel AK, Lumsdaine SW, Phillips EK, Willems HME, Peters BM, Reynolds TB. Mucosal Infection with Unmasked Candida albicans Cells Impacts Disease Progression in a Host Niche-Specific Manner. Infect Immun 2022; 90:e0034222. [PMID: 36374100 PMCID: PMC9753624 DOI: 10.1128/iai.00342-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Shielding the immunogenic cell wall epitope β(1, 3)-glucan under an outer layer of mannosylated glycoproteins is an essential virulence factor deployed by Candida albicans during systemic infection. Accordingly, mutants with increased β(1, 3)-glucan exposure (unmasking) display increased immunostimulatory capabilities in vitro and attenuated virulence during systemic infection in mice. However, little work has been done to assess the impact of increased unmasking during the two most common manifestations of candidiasis, namely, oropharyngeal candidiasis (OPC) and vulvovaginal candidiasis (VVC). We have shown previously that the expression of a single hyperactive allele of the MAP3K STE11ΔN467 induces unmasking via the Cek1 MAPK pathway, attenuates fungal burden, and prolongs survival during systemic infection in mice. Here, we expand on these findings and show that infection with an unmasked STE11ΔN467 mutant also impacts disease progression during OPC and VVC murine infection models. Male mice sublingually infected with the STE11ΔN467 mutant showed a significant reduction in tongue fungal burden at 2 days postinfection and a modest reduction at 5 days postinfection. However, we find that selection for STE11ΔN467 suppressor mutants that no longer display increased unmasking occurs within the oral cavity and is likely responsible for the restoration of fungal burden trends to wild-type levels later in the infection. In the VVC infection model, no attenuation in fungal burden was observed. However, polymorphonuclear cell recruitment and interleukin-1β (IL-1β) levels within the vaginal lumen, markers of immunopathogenesis, were increased in mice infected with unmasked STE11ΔN467 cells. Thus, our data suggest a niche-specific impact for unmasking on disease progression.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Amanda K. Vogel
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Hubertine M. E. Willems
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Brian M. Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
31
|
Cox AR, Masschelin PM, Saha PK, Felix JB, Sharp R, Lian Z, Xia Y, Chernis N, Bader DA, Kim KH, Li X, Yoshino J, Li X, Li G, Sun Z, Wu H, Coarfa C, Moore DD, Klein S, Sun K, Hartig SM. The rheumatoid arthritis drug auranofin lowers leptin levels and exerts antidiabetic effects in obese mice. Cell Metab 2022; 34:1932-1946.e7. [PMID: 36243005 PMCID: PMC9742315 DOI: 10.1016/j.cmet.2022.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 07/19/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023]
Abstract
Low-grade, sustained inflammation in white adipose tissue (WAT) characterizes obesity and coincides with type 2 diabetes mellitus (T2DM). However, pharmacological targeting of inflammation lacks durable therapeutic effects in insulin-resistant conditions. Through a computational screen, we discovered that the FDA-approved rheumatoid arthritis drug auranofin improved insulin sensitivity and normalized obesity-associated abnormalities, including hepatic steatosis and hyperinsulinemia in mouse models of T2DM. We also discovered that auranofin accumulation in WAT depleted inflammatory responses to a high-fat diet without altering body composition in obese wild-type mice. Surprisingly, elevated leptin levels and blunted beta-adrenergic receptor activity achieved by leptin receptor deletion abolished the antidiabetic effects of auranofin. These experiments also revealed that the metabolic benefits of leptin reduction were superior to immune impacts of auranofin in WAT. Our studies uncover important metabolic properties of anti-inflammatory treatments and contribute to the notion that leptin reduction in the periphery can be accomplished to treat obesity and T2DM.
Collapse
Affiliation(s)
- Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Peter M Masschelin
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pradip K Saha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jessica B Felix
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Robert Sharp
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Zeqin Lian
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yan Xia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Natasha Chernis
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Anesthesiology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Li
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Gang Li
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng Sun
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
32
|
Chen YL, Lowery AKT, Lin S, Walker AM, Chen KHE. Tumor cell-derived asymmetric dimethylarginine regulates macrophage functions and polarization. Cancer Cell Int 2022; 22:351. [PMID: 36376929 PMCID: PMC9664648 DOI: 10.1186/s12935-022-02769-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Asymmetric dimethylarginine (ADMA), which is significantly elevated in the plasma of cancer patients, is formed via intracellular recycling of methylated proteins and serves as a precursor for resynthesis of arginine. However, the cause of ADMA elevation in cancers and its impact on the regulation of tumor immunity is not known. METHODS Three mouse breast cell lines (normal breast epithelial HC11, breast cancer EMT6 and triple negative breast cancer 4T1) and their equivalent 3D stem cell culture were used to analyze the secretion of ADMA using ELISA and their responses to ADMA. Bone marrow-derived macrophages and/or RAW264.7 cells were used to determine the impact of increased extracellular ADMA on macrophage-tumor interactions. Gene/protein expression was analyzed through RNAseq, qPCR and flow cytometry. Protein functional analyses were conducted via fluorescent imaging (arginine uptake, tumor phagocytosis) and enzymatic assay (arginase activity). Cell viability was measured via MTS assay and/or direct cell counting using Countess III FL system. RESULTS For macrophages, ADMA impaired proliferation and phagocytosis of tumor cells, and even caused death in cultures incubated without arginine. ADMA also led to an unusual macrophage phenotype, with increased expression of arginase, cd163 and cd206 but decreased expression of il10 and dectin-1. In contrast to the severely negative impacts on macrophages, ADMA had relatively minor effects on proliferation and survival of mouse normal epithelial HC11 cells, mouse breast cancer EMT6 and 4T1 cells, but there was increased expression of the mesenchymal markers, vimentin and snail2, and decreased expression of the epithelial marker, mucin-1 in EMT6 cells. When tumor cells were co-cultured ex vivo with tumor antigen in vivo-primed splenocytes, the tumor cells secreted more ADMA and there were alterations in the tumor cell arginine metabolic landscape, including increased expression of genes involved in arginine uptake, metabolism and methylation, and decreased expression of a gene that is responsible for arginine demethylation. Additionally, interferon-gamma, a cytokine involved in immune challenge, increased secretion of ADMA in tumor cells, a process attenuated by an autophagy inhibitor. CONCLUSION Our results suggest initial immune attack promotes autophagy in tumor cells, which then secrete ADMA to manipulate macrophage polarization favoring tumor tolerance.
Collapse
Affiliation(s)
- Yi-Ling Chen
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - AKaychia T Lowery
- Division of Mathematics and Sciences, Delta State University, 38733, Cleveland, MS, USA
| | - Samuel Lin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA
| | - Kuan-Hui E Chen
- Division of Mathematics and Sciences, Delta State University, 38733, Cleveland, MS, USA.
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA.
- Department of Biological Sciences, Texas Tech University, 79409, Lubbock, TX, USA.
| |
Collapse
|
33
|
Tomimatsu M, Matsumoto K, Ashizuka M, Kumagai S, Tanaka S, Nakae T, Yokota K, Kominami S, Kajiura R, Okuzaki D, Motooka D, Shiraishi A, Abe T, Matsuda H, Okada Y, Maeda M, Seno S, Obana M, Fujio Y. Myeloid cell-specific ablation of Runx2 gene exacerbates post-infarct cardiac remodeling. Sci Rep 2022; 12:16656. [PMID: 36198906 PMCID: PMC9534857 DOI: 10.1038/s41598-022-21202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Runt-related transcription factor 2 (Runx2), a regulator of osteoblast differentiation, is pathologically involved in vascular calcification; however, the significance of Runx2 in cardiac homeostasis remains unclear. Here, we investigated the roles of Runx2 in cardiac remodeling after myocardial infarction (MI). The expression of Runx2 mRNA and protein was upregulated in murine hearts after MI. Runx2 was expressed in heart-infiltrating myeloid cells, especially in macrophages, at the border zone of post-infarct myocardium. To analyze the biological functions of Runx2 in cardiac remodeling, myeloid cell-specific Runx2 deficient (CKO) mice were exposed to MI. After MI, ventricular weight/tibia length ratio was increased in CKO mice, concomitant with severe cardiac dysfunction. Cardiac fibrosis was exacerbated in CKO mice, consistent with the upregulation of collagen 1a1 expression. Mechanistically, immunohistochemical analysis using anti-CD31 antibody showed that capillary density was decreased in CKO mice. Additionally, conditioned culture media of myeloid cells from Runx2 deficient mice exposed to MI induced the tube formation of vascular endothelial cells to a lesser extent than those from control mice. RNA-sequence showed that the expression of pro-angiogenic or anti-angiogenic factors was altered in macrophages from Runx2-deficient mice. Collectively, Runx2+ myeloid cells infiltrate into post-infarct myocardium and prevent adverse cardiac remodeling, at least partially, by regulating endothelial cell function.
Collapse
Affiliation(s)
- Masashi Tomimatsu
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kotaro Matsumoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Moe Ashizuka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shohei Kumagai
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takafumi Nakae
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kosei Yokota
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shunsuke Kominami
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Ryota Kajiura
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Aki Shiraishi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Makiko Maeda
- Laboratory of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Medical Center for Translational Research, Department of Medical Innovation, Osaka University Hospital, Suita, Osaka, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan. .,Global Center for Medical Engineering and Informatics (MEI), Osaka University, Suita, Osaka, Japan. .,Radioisotope Research Center, Institute for Radiation Science, Osaka University, Suita, Osaka, Japan.
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
34
|
Salas-Venegas V, Flores-Torres RP, Rodríguez-Cortés YM, Rodríguez-Retana D, Ramírez-Carreto RJ, Concepción-Carrillo LE, Pérez-Flores LJ, Alarcón-Aguilar A, López-Díazguerrero NE, Gómez-González B, Chavarría A, Konigsberg M. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front Integr Neurosci 2022; 16:798995. [PMID: 35422689 PMCID: PMC9002268 DOI: 10.3389/fnint.2022.798995] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Overweight and obesity are now considered a worldwide pandemic and a growing public health problem with severe economic and social consequences. Adipose tissue is an organ with neuroimmune-endocrine functions, which participates in homeostasis. So, adipocyte hypertrophy and hyperplasia induce a state of chronic inflammation that causes changes in the brain and induce neuroinflammation. Studies with obese animal models and obese patients have shown a relationship between diet and cognitive decline, especially working memory and learning deficiencies. Here we analyze how obesity-related peripheral inflammation can affect central nervous system physiology, generating neuroinflammation. Given that the blood-brain barrier is an interface between the periphery and the central nervous system, its altered physiology in obesity may mediate the consequences on various cognitive processes. Finally, several interventions, and the use of natural compounds and exercise to prevent the adverse effects of obesity in the brain are also discussed.
Collapse
Affiliation(s)
- Verónica Salas-Venegas
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana - Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Rosa Pamela Flores-Torres
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana - Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México (CDMX), Mexico City, Mexico
| | - Yesica María Rodríguez-Cortés
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Diego Rodríguez-Retana
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Luis Edgar Concepción-Carrillo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Laura Josefina Pérez-Flores
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Adriana Alarcón-Aguilar
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Norma Edith López-Díazguerrero
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Beatriz Gómez-González
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México (CDMX), Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Mina Konigsberg
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
- *Correspondence: Mina Konigsberg,
| |
Collapse
|
35
|
Abstract
Despite numerous studies of immune sexual dimorphism, sexual differences are not rigorously mapped and dimorphic mechanisms are incompletely understood. Current immune research typically studies sex differences in specific cells, tissues, or diseases but without providing an integrated picture. To connect the dots, we suggest comprehensive research approaches to better our understanding of immune sexual dimorphism and its mechanisms.
Collapse
Affiliation(s)
- Shani Talia Gal-Oz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
36
|
Immunomodulatory effect of camellia oil (Camellia oleifera Abel.) on CD19+ B cells enrichment and IL-10 production in BALB/c mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
37
|
Varghese M, Clemente J, Lerner A, Abrishami S, Islam M, Subbaiah P, Singer K. Monocyte Trafficking and Polarization Contribute to Sex Differences in Meta-Inflammation. Front Endocrinol (Lausanne) 2022; 13:826320. [PMID: 35422759 PMCID: PMC9001155 DOI: 10.3389/fendo.2022.826320] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is associated with systemic inflammation and immune cell recruitment to metabolic tissues. Sex differences have been observed where male mice challenged with high fat diet (HFD) exhibit greater adipose tissue inflammation than females demonstrating a role for sex hormones in differential inflammatory responses. Circulating monocytes that respond to dietary lipids and chemokines and produce cytokines are the primary source of recruited adipose tissue macrophages (ATMs). In this study, we investigated sexual dimorphism in biological pathways in HFD-fed ATMs from male and female mice by RNA-seq. We also conducted chemotaxis assays to investigate sex differences in the migration of monocytes isolated from bone marrow from male and female mice toward a dietary saturated lipid - palmitate (PA), and a chemokine - monocyte chemoattractant protein 1 (MCP1), factors known to stimulate myeloid cells in obesity. ATM RNA-Seq demonstrated sex differences of both metabolic and inflammatory activation, including pathways for chemokine signaling and leukocyte trans-endothelial migration. In vivo monocyte transfer studies demonstrated that male monocytes traffic to female adipose tissue to generate ATMs more readily. In chemotaxis assays, lean male monocytes migrated in greater numbers than females toward PA and MCP1. With short-term HFD, male and female monocytes migrated similarly, but in chronic HFD, male monocytes showed greater migration than females upon PA and MCP1 stimulation. Studies with monocytes from toll-like receptor 4 knockout mice (Tlr4-/- ) demonstrated that both males and females showed decreased migration than WT in response to PA and MCP1 implying a role for TLR4 in monocyte influx in response to meta-inflammation. Overall, these data demonstrate the role of sexual dimorphism in monocyte recruitment and response to metabolic stimuli that may influence meta-inflammation in obesity.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jeremy Clemente
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Arianna Lerner
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Simin Abrishami
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Mohammed Islam
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Perla Subbaiah
- Department of Statistics and Mathematics, Oakland University, Rochester, MI, United States
| | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Kanakadurga Singer,
| |
Collapse
|
38
|
Adipokines as Immune Cell Modulators in Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms221910845. [PMID: 34639186 PMCID: PMC8509121 DOI: 10.3390/ijms221910845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS), a chronic inflammatory and demyelinating disease of the central nervous system (CNS), is a major clinical and societal problem, which has a tremendous impact on the life of patients and their proxies. Current immunomodulatory and anti-inflammatory therapies prove to be relatively effective; however, they fail to concomitantly stop ongoing neurological deterioration and do not reverse acquired disability. The proportion to which genetic and environmental factors contribute to the etiology of MS is still incompletely understood; however, a recent association between MS etiology and obesity was shown, with obesity greatly increasing the risk of developing MS. An altered balance of adipokines, which are white adipose tissue (WAT) hormones, plays an important role in the low-grade chronic inflammation during obesity by their pervasive modification of local and systemic inflammation. Vice versa, inflammatory factors secreted by immune cells affect adipokine function. To explore the role of adipokines in MS pathology, we will here review the reciprocal effects of adipokines and immune cells and summarize alterations in adipokine levels in MS patient cohorts. Finally, we will discuss proof-of-concept studies demonstrating the therapeutic potential of adipokines to target both neuroinflammation and neurodegeneration processes in MS.
Collapse
|
39
|
O'Brien CJO, Haberman ER, Domingos AI. A Tale of Three Systems: Toward a Neuroimmunoendocrine Model of Obesity. Annu Rev Cell Dev Biol 2021; 37:549-573. [PMID: 34613819 PMCID: PMC7614880 DOI: 10.1146/annurev-cellbio-120319-114106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevalence of obesity is on the rise. What was once considered a simple disease of energy imbalance is now recognized as a complex condition perpetuated by neuro- and immunopathologies. In this review, we summarize the current knowledge of the neuroimmunoendocrine mechanisms underlying obesity. We examine the pleiotropic effects of leptin action in addition to its established role in the modulation of appetite, and we discuss the neural circuitry mediating leptin action and how this is altered with obesity, both centrally (leptin resistance) and in adipose tissues (sympathetic neuropathy). Finally, we dissect the numerous causal and consequential roles of adipose tissue macrophages in obesity and highlight recent key studies demonstrating their direct role in organismal energy homeostasis.
Collapse
Affiliation(s)
- Conan J O O'Brien
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Emma R Haberman
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| | - Ana I Domingos
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
40
|
Pan R, Chen Y. Fat biology and metabolic balance: On the significance of sex. Mol Cell Endocrinol 2021; 533:111336. [PMID: 34090969 DOI: 10.1016/j.mce.2021.111336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Obesity and its related metabolic disorders have become prevalent and fatal, which are faced by the entire human beings since decades. An energy equilibrium is urgently important for human metabolic health, which requires the participation of multiple organs, such as adipose tissues, liver and skeletal muscles. It seems that both sex and age play a role in the above processes. In this review, we focus on the sexual dimorphism in energy metabolism mediated by adipose tissues, including white and thermogenic (brown/beige) adipose tissues. Remarkably, past investigations have focused on targeting brown/beige adipose tissues to combat obesity because of their contributions to non-shivering thermogenesis. However, sex differences in the regulation of adipose tissue metabolism are likely overlooked. Particularly, increasing data show that males display more visceral fat than females, and females show increased visceral fat after menopause. Visceral adiposity is more deleterious and closely related to metabolic disorders, such as cardiovascular diseases. In this review, we discuss current findings on sexual dimorphism in WAT and BAT biology for a better metabolic balance in humans.
Collapse
Affiliation(s)
- Ruping Pan
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Yong Chen
- Department of Endocrinology, Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, PR China; Branch of National Clinical Research Center for Metabolic Diseases, Hubei, PR China.
| |
Collapse
|
41
|
Abstract
Free fatty acids (FFAs) are implicated in the pathogenesis of metabolic diseases that includes obesity, type 2 diabetes mellitus, and cardiovascular disease (CVD). FFAs serve as ligands for free fatty acid receptors (FFARs) that belong to the family of rhodopsin-like G protein-coupled receptors (GPCRs) and are expressed throughout the body to maintain energy homeostasis under changing nutritional conditions. Free fatty acid receptor 4 (FFAR4), also known as G protein-coupled receptor 120, is a long-chain fatty acid receptor highly expressed in adipocytes, endothelial cells, and macrophages. Activation of FFAR4 helps maintain metabolic homeostasis by regulating adipogenesis, insulin sensitivity, and inflammation. Furthermore, dysfunction of FFAR4 is associated with insulin resistance, obesity, and eccentric remodeling in both humans and mice, making FFAR4 an attractive therapeutic target for treating or preventing metabolic diseases. While much of the previous literature on FFAR4 has focused on its role in obesity and diabetes, recent studies have demonstrated that FFAR4 may also play an important role in the development of atherosclerosis and CVD. Most notably, FFAR4 activation reduces monocyte-endothelial cell interaction, enhances cholesterol efflux from macrophages, reduces lesion size in atherogenic mouse models, and stimulates oxylipin production in myocytes that functions in a feed-forward cardioprotective mechanism. This review will focus on the role of FFAR4 in metabolic diseases and highlights an underappreciated role of FFAR4 in the development of atherosclerosis and CVD.
Collapse
Affiliation(s)
- Gage M Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
42
|
Visceral adipose tissue imparts peripheral macrophage influx into the hypothalamus. J Neuroinflammation 2021; 18:140. [PMID: 34154608 PMCID: PMC8218389 DOI: 10.1186/s12974-021-02183-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Obesity is characterized by a systemic inflammation and hypothalamic neuroinflammation. Systemic inflammation is caused by macrophages that infiltrate obese adipose tissues. We previously demonstrated that high-fat diet (HFD)-fed male mice exhibited peripheral macrophage infiltration into the hypothalamus, in addition to activation of resident microglia. Since this infiltration contributes to neuroinflammation and neuronal impairment, herein we characterize the phenotype and origin of these hypothalamic macrophages in HFD mice. METHODS C57BL/6J mice were fed HFD (60% kcal from fat) or control diet with matching sucrose levels, for 12-16 weeks. Males and females were analyzed separately to determine sex-specific responses to HFD. Differences in hypothalamic gene expression in HFD-fed male and female mice, compared to their lean controls, in two different areas of the hypothalamus, were determined using the NanoString neuroinflammation panel. Phenotypic changes in macrophages that infiltrated the hypothalamus in HFD-fed mice were determined by analyzing cell surface markers using flow cytometry and compared to changes in macrophages from the adipose tissue and peritoneal cavity. Adipose tissue transplantation was performed to determine the source of hypothalamic macrophages. RESULTS We determined that hypothalamic gene expression profiles demonstrate sex-specific and region-specific diet-induced changes. Sex-specific changes included larger changes in males, while region-specific changes included larger changes in the area surrounding the median eminence. Several genes were identified that may provide partial protection to female mice. We also identified diet-induced changes in macrophage migration into the hypothalamus, adipose tissue, and peritoneal cavity, specifically in males. Further, we determined that hypothalamus-infiltrating macrophages express pro-inflammatory markers and markers of metabolically activated macrophages that were identical to markers of adipose tissue macrophages in HFD-fed mice. Employing adipose tissue transplant, we demonstrate that hypothalamic macrophages can originate from the visceral adipose tissue. CONCLUSION HFD-fed males experience higher neuroinflammation than females, likely because they accumulate more visceral fat, which provides a source of pro-inflammatory macrophages that migrate to other tissues, including the hypothalamus. Our findings may explain the male bias for neuroinflammation and the metabolic syndrome. Together, our results demonstrate a new connection between the adipose tissue and the hypothalamus in obesity that contributes to neuroinflammation and hypothalamic pathologies.
Collapse
|