1
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
2
|
Chatterjee S, Jain CK, Saha T, Roychoudhury S, Majumder HK, Das S. Utilizing coordination chemistry through formation of a Cu II-quinalizarin complex to manipulate cell biology: An in vitro, in silico approach. J Inorg Biochem 2023; 249:112369. [PMID: 37776829 DOI: 10.1016/j.jinorgbio.2023.112369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
Quinalizarin, an analogue of anthracycline anticancer agents, is an anticancer agent itself. A CuII complex was prepared and characterized by elemental analysis, UV-Vis & IR spectroscopy, mass spectrometry, EPR and DFT. The intention behind the preparation of the complex was to increase cellular uptake, compare its binding with DNA against that of quinalizarin, modulation of semiquinone formation, realization of human DNA topoisomerase I & human DNA topoisomerase II inhibition and observation of anticancer activity. While the first two attributes of complex formation lead to increased efficacy, decrease in semiquinone generation could results in a compromise with efficacy. Inhibition of human DNA topoisomerase makes up this envisaged compromise in free radical activity since the complex shows remarkable ability to disrupt activities of human DNA topoisomerase I and II. The complex unlike quinalizarin, does not catalyze flow of electrons from NADH to O2 to the extent known for quinalizarin. Hence, decrease in semiquinone or superoxide radical anion could make modified quinalizarin [as CuII complex] less efficient in free radical pathway. However, it would be less cardiotoxic and that would be advantageous to qualify it as a better anticancer agent. Although binding to calf thymus DNA was comparable to quinalizarin, it was weaker than anthracyclines. Low cost of quinalizarin could justify consideration as a substitute for anthracyclines but the study revealed IC50 of quinalizarin/CuII-quinalizarin was much higher than anthracyclines or their complexes. Even then, there is a possibility that CuII-quinalizarin could be an improved and less costly form of quinalizarin as anticancer agent.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India; Department of Chemistry, Vijaygarh Jyotish Ray College, Kolkata 700 032, India
| | - Chetan Kumar Jain
- Cancer Biology & Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata 700 032, India; Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Tanmoy Saha
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India
| | - Susanta Roychoudhury
- Cancer Biology & Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Saurabh Das
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India.
| |
Collapse
|
3
|
Asnaashari M, Kenari RE, Taghdisi SM, Abnous K, Farahmandfar R. A Novel Fluorescent DNA Sensor for Acrylamide Detection in Food Samples Based on Single-Stranded DNA and GelRed. J Fluoresc 2023:10.1007/s10895-023-03479-7. [PMID: 37930599 DOI: 10.1007/s10895-023-03479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
The presence of acylamide (AA) in large group of food products and its health hazards have been confirmed by scientists. In this study, a simple and innovative biosensor for AA determination was designed based on single-stranded DNA (ssDNA) with partial guanine and GelRed. The idea of this biosensor is based on the formation of AA-ssDNA adduct through the strong binding interaction between AA and guanine base of ssDNA, which subsequently inhibits the interaction of ssDNA and GelRed, leading to a weak fluorescence intensity. The binding interaction between AA and ssDNA was confirmed by UV-Vis absorption spectrometry and fluorescence intensity. Under optimum conditions, the designed biosensor exhibited excellent linear response in range of 0.01-95 mM, moreover it showed high selectivity toward AA. The limit of detection was 0.003 mM. This biosensor was successfully applied for the determination of AA in water extract of potato fries and coffee in the range of 0.05-100 mM with LOD of 0.01 mM and 0.05-95 mM with LOD of 0.004 mM, respectively.
Collapse
Affiliation(s)
- Maryam Asnaashari
- Department of Animal Processing, Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Sari Agricultural Sciences & Natural Resources University (SANRU), Sari, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Farahmandfar
- Department of Food Science and Technology, Sari Agricultural Sciences & Natural Resources University (SANRU), Sari, Iran
| |
Collapse
|
4
|
Jurič A, Lovaković BT, Zandona A, Rašić D, Češi M, Pizent A, Neuberg M, Canjuga I, Katalinić M, Vrdoljak AL, Rešić A, Karačonji IB. The effects of ketamine on viability, primary DNA damage, and oxidative stress parameters in HepG2 and SH-SY5Y cells. Arh Hig Rada Toksikol 2023; 74:106-114. [PMID: 37357882 PMCID: PMC10291499 DOI: 10.2478/aiht-2023-74-3727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/01/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
Ketamine is a dissociative anaesthetic used to induce general anaesthesia in humans and laboratory animals. Due to its hallucinogenic and dissociative effects, it is also used as a recreational drug. Anaesthetic agents can cause toxic effects at the cellular level and affect cell survival, induce DNA damage, and cause oxidant/antioxidant imbalance. The aim of this study was to explore these possible adverse effects of ketamine on hepatocellular HepG2 and neuroblastoma SH-SY5Y cells after 24-hour exposure to a concentration range covering concentrations used in analgesia, drug abuse, and anaesthesia (0.39, 1.56, and 6.25 µmol/L, respectively). At these concentrations ketamine had relatively low toxic outcomes, as it lowered HepG2 and SH-SY5Y cell viability up to 30 %, and low, potentially repairable DNA damage. Interestingly, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) remained unchanged in both cell lines. On the other hand, oxidative stress markers [superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT)] pointed to ketamine-induced oxidant/antioxidant imbalance.
Collapse
Affiliation(s)
- Andreja Jurič
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dubravka Rašić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Martin Češi
- University of Zagreb Faculty of Food Technology and Biotechnology, Zagreb, Croatia
| | - Alica Pizent
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Irena Canjuga
- University North, University Centre Varaždin, Varaždin, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Arnes Rešić
- Children’s Hospital Zagreb Department of Paediatrics, Zagreb, Croatia
| | - Irena Brčić Karačonji
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
- University of Rijeka Faculty of Health Studies, Rijeka, Croatia
| |
Collapse
|
5
|
Pandey S, Tripathi P, Parashar P, Maurya V, Malik MZ, Singh R, Yadav P, Tandon V. Synthesis and Biological Evaluation of Novel 1 H-Benzo[ d]imidazole Derivatives as Potential Anticancer Agents Targeting Human Topoisomerase I. ACS OMEGA 2022; 7:2861-2880. [PMID: 35097282 PMCID: PMC8793051 DOI: 10.1021/acsomega.1c05743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Small molecules that modulate biological functions are targets of modern-day drug discovery efforts. A new series of novel 1H-benzo[d]imidazoles (BBZs) were designed and synthesized with different functional groups at the phenyl ring and variable lengths of the alkyl chain at the piperazine end as anticancer agents. We identified human topoisomerase I (Hu Topo I) as a probable target of these molecules through a computational study and DNA relaxation assay, a functional assay of the Hu Topo I enzyme. UV absorption, fluorescence, and circular dichroism spectroscopy were used to study interactions between BBZ and DNA. Out of 16 compounds, 11a, 12a, and 12b showed strong binding affinity and thermal stabilization of AT sequence-specific DNA. BBZs were screened against a panel of 60 human cancer cell lines at National Cancer Institute, USA. Most potent molecules 11a, 12a, and 12b showed 50% growth inhibition (GI50) in a concentration range from 0.16 to 3.6 μM cancer cells. Moreover, 12b showed 50% inhibition of the relaxation of DNA by Hu Topo I at 16 μM. Furthermore, flow cytometry revealed that 11a, 12a, and 12b cause prominent G2M arrest of cancer cells. In view of the above, we propose that 12b deserves to be further evaluated for its therapeutic use as an anticancer agent.
Collapse
Affiliation(s)
- Stuti Pandey
- Department
of Chemistry, University of Delhi, Delhi 110007, India
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Pragya Tripathi
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Palak Parashar
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Vikas Maurya
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Md. Zubbair Malik
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Raja Singh
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Pooja Yadav
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Vibha Tandon
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
The analysis of interactions between DNA and small molecules: proposals for binding mechanisms based on computational data. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Franich AA, Đorđević IS, Živković MD, Rajković S, Janjić GV, Djuran MI. Dinuclear platinum(II) complexes as the pattern for phosphate backbone binding: a new perspective for recognition of binding modes to DNA. J Biol Inorg Chem 2021; 27:65-79. [PMID: 34714401 DOI: 10.1007/s00775-021-01911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
The mechanism of action of most approved drugs in use today is based on their binding to specific proteins or DNA. One of the achievements of this research is a new perspective for recognition of binding modes to DNA by monitoring of changes in measured and stoichiometric values of absorbance at 260 nm. UV-Vis and IR spectroscopy, gel electrophoresis and docking study were used for investigation of binding properties of three dinuclear platinum(II) complexes containing different pyridine-based bridging ligands, [{Pt(en)Cl}2(μ-4,4'-bipy)]Cl2·2H2O (Pt1), [{Pt(en)Cl}2(μ-bpa)]Cl2·4H2O (Pt2) and [{Pt(en)Cl}2(μ-bpe)]Cl2·4H2O (Pt3) to DNA (4,4'-bipy, bpa and bpe are 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane and 1,2-bis(4-pyridyl)ethene, respectively). In contrast to the system with well-known intercalated ligand (EtBr), covalently bound ligand (cis-Pt) and with minor groove binder (Hoechst 33258), which do not have significant differences in measured and stoichiometric values, the most pronounced deviations are recorded for two dinuclear platinum(II) complexes (Pt1 and Pt2), as a consequence of complex binding to the phosphate backbone and bending of DNA helix. The hydrolysis of complexes and changes in DNA conformation were also analysed as phenomena that may have an impact on the changes in absorbance.
Collapse
Affiliation(s)
- Andjela A Franich
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000, Kragujevac, Serbia
| | - Ivana S Đorđević
- Institute of Chemistry Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Marija D Živković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000, Kragujevac, Serbia
| | - Snežana Rajković
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000, Kragujevac, Serbia
| | - Goran V Janjić
- Institute of Chemistry Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia.
| |
Collapse
|
8
|
Breslauer KJ. The shaping of a molecular linguist: How a career studying DNA energetics revealed the language of molecular communication. J Biol Chem 2021; 296:100522. [PMID: 34237886 PMCID: PMC8058554 DOI: 10.1016/j.jbc.2021.100522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
My personal and professional journeys have been far from predictable based on my early childhood. Owing to a range of serendipitous influences, I miraculously transitioned from a rebellious, apathetic teenage street urchin who did poorly in school to a highly motivated, disciplined, and ambitious academic honors student. I was the proverbial “late bloomer.” Ultimately, I earned my PhD in biophysical chemistry at Yale, followed by a postdoc fellowship at Berkeley. These two meccas of thermodynamics, coupled with my deep fascination with biology, instilled in me a passion to pursue an academic career focused on mapping the energy landscapes of biological systems. I viewed differential energetics as the language of molecular communication that would dictate and control biological structures, as well as modulate the modes of action associated with biological functions. I wanted to be a “molecular linguist.” For the next 50 years, my group and I used a combination of spectroscopic and calorimetric techniques to characterize the energy profiles of the polymorphic conformational space of DNA molecules, their differential ligand-binding properties, and the energy landscapes associated with mutagenic DNA damage recognition, repair, and replication. As elaborated below, the resultant energy databases have enabled the development of quantitative molecular biology through the rational design of primers, probes, and arrays for diagnostic, therapeutic, and molecular-profiling protocols, which collectively have contributed to a myriad of biomedical assays. Such profiling is further justified by yielding unique energy-based insights that complement and expand elegant, structure-based understandings of biological processes.
Collapse
Affiliation(s)
- Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA; The Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
9
|
Design, Synthesis, and Evaluation of Novel 3-Carboranyl-1,8-Naphthalimide Derivatives as Potential Anticancer Agents. Int J Mol Sci 2021; 22:ijms22052772. [PMID: 33803403 PMCID: PMC7967199 DOI: 10.3390/ijms22052772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
We synthesized a series of novel 3-carboranyl-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, using click chemistry, reductive amination and amidation reactions and investigated their in vitro effects on cytotoxicity, cell death, cell cycle, and the production of reactive oxygen species in a HepG2 cancer cell line. The analyses showed that modified naphthalic anhydrides and naphthalimides bearing ortho- or meta-carboranes exhibited diversified activity. Naphthalimides were more cytotoxic than naphthalic anhydrides, with the highest IC50 value determined for compound 9 (3.10 µM). These compounds were capable of inducing cell cycle arrest at G0/G1 or G2M phase and promoting apoptosis, autophagy or ferroptosis. The most promising conjugate 35 caused strong apoptosis and induced ROS production, which was proven by the increased level of 2′-deoxy-8-oxoguanosine in DNA. The tested conjugates were found to be weak topoisomerase II inhibitors and classical DNA intercalators. Compounds 33, 34, and 36 fluorescently stained lysosomes in HepG2 cells. Additionally, we performed a similarity-based assessment of the property profile of the conjugates using the principal component analysis. The creation of an inhibitory profile and descriptor-based plane allowed forming a structure–activity landscape. Finally, a ligand-based comparative molecular field analysis was carried out to specify the (un)favorable structural modifications (pharmacophoric pattern) that are potentially important for the quantitative structure–activity relationship modeling of the carborane–naphthalimide conjugates.
Collapse
|
10
|
Sarkar S, Singh PC. Sequence specific hydrogen bond of DNA with denaturants affects its stability: Spectroscopic and simulation studies. Biochim Biophys Acta Gen Subj 2020; 1865:129735. [PMID: 32946929 DOI: 10.1016/j.bbagen.2020.129735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Several different small molecules have been used to target the DNA helix in order to treat the diseases caused by its mutation. Guanidinium(Gdm+) and urea based drugs have been used for the diseases related to central nervous system, also as the anti-inflammatory and chemotherapeutic agent. However, the role of Gdm+ and urea in the stabilization/destabilization of DNA is not well understood. METHODS Spectroscopic techniques along with molecular dynamics (MD) simulation have been performed on different sequences of DNA in the presence of guanidinium chloride (GdmCl) and urea to decode the binding of denaturants with DNA and the role of hydrogen bond with the different regions of DNA in its stability/destability. RESULTS AND CONCLUSION Our study reveals that, Gdm+ of GdmCl and urea both intrudes into the groove region of DNA along with the interaction with its phosphate backbone. However, interaction of Gdm+ and urea with the nucleobases in the groove region is different. Gdm+ forms the intra-strand hydrogen bond with the central region of the both sequences of DNA whereas inter-strand hydrogen bond along with water assisted hydrogen bond takes place in the case of urea. The intra-strand hydrogen bond formation capability of Gdm+ with the nucleobases in the minor groove of DNA decreases its groove width which probably causes the stabilization of B-DNA in GdmCl. In contrast, the propensity of the formation of inter-strand hydrogen bond of urea with the nucleobases in the groove region of DNA without affecting the groove width destabilizes B-DNA as compared to GdmCl. This study depicts that the opposite effect of GdmCl and urea on the stability is a general property of B-DNA. However, the extent of stabilization/destabilization of DNA in Gdm+ and urea depend on its sequence probably due to the difference in the intra/inter-strand hydrogen bonding with different bases present in both the sequences of DNA. GENERAL SIGNIFICANCE The information obtained from this study will be useful for the designing of Gdm+ based drug molecule which can target the DNA more specifically and selectively.
Collapse
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 70032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 70032, India.
| |
Collapse
|
11
|
Structural Effects of the Syntheticcobalt–Manganese-Zinc Ferrite Nanoparticles (Co0.3Mn0.2Zn0.5Fe2O4 NPs) on DNA and its Antiproliferative Effect on T47Dcells. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00657-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Mandal B, Mondal HK, Das S. In situ reactivity of electrochemically generated semiquinone on Emodin and its CuII/MnII complexes with pyrimidine based nucleic acid bases and calf thymus DNA: Insight into free radical induced cytotoxicity of anthracyclines. Biochem Biophys Res Commun 2019; 515:505-509. [DOI: 10.1016/j.bbrc.2019.05.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/22/2019] [Indexed: 11/26/2022]
|
13
|
Komal, Sonia, Kukreti S, Kaushik M. Exploring the potential of environment friendly silver nanoparticles for DNA interaction: Physicochemical approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:158-165. [PMID: 30954875 DOI: 10.1016/j.jphotobiol.2019.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Nanosilver, being the most prominent nanoproduct has diverse bio-medical applications and hence the effects associated with their exposure need to be investigated in detail. The interaction of metal nanoparticles with DNA has become a matter of interest, as their effect on structural integrity, synthesis and replication could be explored through it. Present work aims at the facile synthesis and characterization of spherical silver nanoparticles (AgNPs) using Epipremnum aureum leaves extract. Nanoparticles were characterized using UV-Visible spectroscopy, Transmission Electron Microscopy (TEM), High Resolution X-ray Diffraction (HR-XRD) and Dynamic Light Scattering (DLS) studies. The interaction of AgNPs with Calf thymus DNA (CT-DNA) was investigated using different spectroscopic techniques like UV-Visible spectroscopy, UV-thermal melting, Circular Dichroism and fluorescence spectroscopic studies. Fluorescence results suggest van der Waals and H-bonding interactions, which are predominantly responsible for the interaction of AgNPs with CT-DNA. Circular dichroism and thermal melting studies are pointing towards the groove binding of AgNPs to CT-DNA. DNA duplex destabilization was confirmed by the decreased thermal melting temperature of CT-DNA on addition of AgNPs. Present study might open up new vistas for the study of unusual kind of DNA binders, which can destabilize DNA and may further be used for various biomedical applications.
Collapse
Affiliation(s)
- Komal
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Sonia
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
14
|
Pashah Z, Hekmat A, Hesami Tackallou S. Structural effects of Diamond nanoparticles and Paclitaxel combination on calf thymus DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:249-278. [PMID: 30922151 DOI: 10.1080/15257770.2018.1515440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The combination effects of nanodiamonds (NDs) and Paclitaxel (PTX) on the DNA structure were examined. The UV-Visible, steady-state and time-resolved fluorescence spectroscopy, CD, viscosity and zeta potential results showed that PTX + NDs could form a complex via groove binding mechanism. The values of binding constants, ΔG° and ΔH° and ΔS° values showed that PTX + NDs interact strongly with DNA and the hydrophobic force plays main role in this interaction. The ΔG25ο and Tm study indicated the instability of DNA in presence of PTX + NDs. This study demonstrated that NDs could enhance the effect of PTX on DNA structure as well as its affinity and binding to DNA.
Collapse
Affiliation(s)
- Zahra Pashah
- a Department of Biology , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Azadeh Hekmat
- a Department of Biology , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Saeed Hesami Tackallou
- b Department of Biology , Central Tehran Branch, Islamic Azad University , Tehran , Iran
| |
Collapse
|
15
|
Shoute LCT, Loppnow GR. Characterization of the binding interactions between EvaGreen dye and dsDNA. Phys Chem Chem Phys 2018; 20:4772-4780. [PMID: 29380825 DOI: 10.1039/c7cp06058k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding the dsDNA·EG binding interaction is important because the EvaGreen (EG) dye is increasingly used in real-time quantitative polymerase chain reaction, high resolution melting analysis, and routine quantification of DNA. In this work, a binding isotherm for the interactions of EG with duplex DNA (poly-dA17·poly-dT17) has been determined from the absorption and fluorescence spectra of the EG and dsDNA·EG complex. The isotherm has a sigmoidal shape and can be modeled with the Hill equation, indicating positive cooperativity for the binding interaction. A Scatchard plot of the binding data yields a concave-down curve in agreement with the Hill analysis of the binding isotherm for a positive cooperative binding interaction. Analysis of the Scatchard plot with the modified McGhee and von Hippel model for a finite one-dimensional homogeneous lattice and nonspecific binding of ligands to duplex DNA yields the intrinsic binding constant, the number of lattice sites occluded by a bound ligand, and the cooperativity parameter of 3.6 × 105 M-1, 4.0, and 8.1, respectively. The occluded site size of 4 indicates that moieties of the EG intercalate into the adjacent base pairs of the duplex DNA with a gap of 1 intercalation site between EG binding sites, as expected for a bifunctional molecule. Interestingly, at high [EG]/[base pair], the intercalation is disrupted. A model is proposed based on the fluorescence spectrum where the formation of anti-parallel stacked chains of EGs bound externally to the duplex DNA occur at these high ratios.
Collapse
Affiliation(s)
- L C T Shoute
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | | |
Collapse
|
16
|
Mukherjee Chatterjee S, Jain CK, Singha S, Das P, Roychoudhury S, Majumder HK, Das S. Activity of Co II-Quinalizarin: A Novel Analogue of Anthracycline-Based Anticancer Agents Targets Human DNA Topoisomerase, Whereas Quinalizarin Itself Acts via Formation of Semiquinone on Acute Lymphoblastic Leukemia MOLT-4 and HCT 116 Cells. ACS OMEGA 2018; 3:10255-10266. [PMID: 31459155 PMCID: PMC6644896 DOI: 10.1021/acsomega.8b00706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/23/2018] [Indexed: 05/13/2023]
Abstract
Quinalizarin (THAQ), a hydroxy-9,10-anthraquinone analogue of the family of anthracycline anticancer drugs and an inhibitor of protein kinase, was observed for its anticancer activity. Because apart from showing anticancer activity, anthracyclines and their analogues also show cardiotoxic side effects, believed to be addressed through metal complex formation; an effort was made to realize this by preparing a CoII complex of THAQ. The aim of this study was to find out if complex formation leads to a decrease in the generation of intermediates that are responsible for toxic side effects. However, because this also meant that efficacy on cancer cells would be compromised, studies were undertaken on two cancer cell lines, namely, acute lymphoblastic leukemia (ALL) MOLT-4 and HCT116 cells. The complex decreases the flow of electrons from NADH to molecular oxygen (O2) in the presence of NADH dehydrogenase forming less semiquinone than THAQ. It showed increased affinity toward DNA with binding constant values remaining constant over the physiological pH range unlike THAQ (for which decrease in binding constant values with increase in pH was observed). The complex is probably a human DNA topoisomerase I and human DNA topoisomerase II poison acting by stabilizing the covalent topoisomerase-cleaved DNA adduct, a phenomenon not observed for THAQ. Activity of the compounds on cancer cells suggests that THAQ was more effective on ALL MOLT-4 cells, whereas the complex performed better on HCT116 cells. Results suggest that the formation of semiquinone probably dominates the action because of THAQ, whereas the performance of the complex is attributed to increased DNA binding, inhibition of topoisomerase, and so forth. Inspite of a decrease in the generation of superoxide by the complex, it did not hamper efficacy on either cell line, probably compensated by improved DNA binding and inhibition of topoisomerase enzymes which are positive attributes of complex formation. A decrease in superoxide formation suggests that the complex could be less cardiotoxic, thus increasing its therapeutic index.
Collapse
Affiliation(s)
| | - Chetan Kumar Jain
- Cancer Biology & Inflammatory
Disorder Division and Infectious Diseases and Immunology
Division, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Soumen Singha
- Department
of Chemistry (Inorganic Section) and Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Piyal Das
- Department
of Chemistry (Inorganic Section) and Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Susanta Roychoudhury
- Cancer Biology & Inflammatory
Disorder Division and Infectious Diseases and Immunology
Division, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Hemanta Kumar Majumder
- Cancer Biology & Inflammatory
Disorder Division and Infectious Diseases and Immunology
Division, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Saurabh Das
- Department
of Chemistry (Inorganic Section) and Department of Physics, Jadavpur University, Kolkata 700032, India
- E-mail: , . Phone: +91 33
24572148, +91 33 8902087756. Fax: +91
33 24146223 (S.D.)
| |
Collapse
|
17
|
Hadwiger LA, Tanaka K. DNA Damage and Chromatin Conformation Changes Confer Nonhost Resistance: A Hypothesis Based on Effects of Anti-cancer Agents on Plant Defense Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:1056. [PMID: 30087685 PMCID: PMC6066612 DOI: 10.3389/fpls.2018.01056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/28/2018] [Indexed: 05/06/2023]
Abstract
Over the last decades, medical research has utilized DNA altering procedures in cancer treatments with the objective of killing cells or suppressing cell proliferation. Simultaneous research related to enhancing disease resistance in plants reported that alterations in DNA can enhance defense responses. These two opposite perspectives have in common their effects on the center for gene transcription, the nuclear chromatin. A review of selected research from both anticancer- and plant defense-related research provides examples of some specific DNA altering actions: DNA helical distortion, DNA intercalation, DNA base substitution, DNA single cleavage by DNases, DNA alkylation/methylation, and DNA binding/exclusion. The actions of the pertinent agents are compared, and their proposed modes of action are described in this study. Many of the DNA specific agents affecting resistance responses in plants, e.g., the model system using pea endocarp tissue, are indeed anticancer agents. The tumor cell death or growth suppression in cancer cells following high level treatments may be accompanied with chromatin distortions. Likewise, in plants, DNA-specific agents activate enhanced expression of many genes including defense genes, probably due to the chromatin alterations resulting from the agents. Here, we propose a hypothesis that DNA damage and chromatin structural changes are central mechanisms in initiating defense gene transcription during the nonhost resistance response in plants.
Collapse
Affiliation(s)
- Lee A. Hadwiger
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
18
|
Synthesis, DNA binding and cytotoxic activity of pyrimido[4′,5′:4,5]thieno(2,3-b)quinoline with 9-hydroxy-4-(3-diethylaminopropylamino) and 8-methoxy-4-(3-diethylaminopropylamino) substitutions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:1-9. [DOI: 10.1016/j.jphotobiol.2017.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 11/22/2022]
|
19
|
Radhika R, Shankar R, Vijayakumar S, Kolandaivel P. Role of 6-Mercaptopurine in the potential therapeutic targets DNA base pairs and G-quadruplex DNA: insights from quantum chemical and molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:1369-1401. [PMID: 28436311 DOI: 10.1080/07391102.2017.1323013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The theoretical studies on DNA with the anticancer drug 6-Mercaptopurine (6-MP) are investigated using theoretical methods to shed light on drug designing. Among the DNA base pairs considered, 6-MP is stacked with GC with the highest interaction energy of -46.19 kcal/mol. Structural parameters revealed that structure of the DNA base pairs is deviated from the planarity of the equilibrium position due to the formation of hydrogen bonds and stacking interactions with 6-MP. These deviations are verified through the systematic comparison between X-H bond contraction and elongation and the associated blue shift and red shift values by both NBO analysis and vibrational analysis. Bent's rule is verified for the C-H bond contraction in the 6-MP interacted base pairs. The AIM results disclose that the higher values of electron density (ρ) and Laplacian of electron density (∇2ρ) indicate the increased overlap between the orbitals that represent the strong interaction and positive values of the total electron density show the closed-shell interaction. The relative sensitivity of the chemical shift values for the DNA base pairs with 6-MP is investigated to confirm the hydrogen bond strength. Molecular dynamics simulation studies of G-quadruplex DNA d(TGGGGT)4 with 6-MP revealed that the incorporation of 6-MP appears to cause local distortions and destabilize the G-quadruplex DNA.
Collapse
Affiliation(s)
- R Radhika
- a Department of Physics , Bharathiar University , Coimbatore , India
| | - R Shankar
- a Department of Physics , Bharathiar University , Coimbatore , India
| | - S Vijayakumar
- b Department of Medical Physics , Bharathiar University , Coimbatore , India
| | - P Kolandaivel
- a Department of Physics , Bharathiar University , Coimbatore , India
| |
Collapse
|
20
|
Mantaj J, Jackson PJM, Rahman KM, Thurston DE. From Anthramycin to Pyrrolobenzodiazepine (PBD)-Containing Antibody-Drug Conjugates (ADCs). Angew Chem Int Ed Engl 2017; 56:462-488. [PMID: 27862776 PMCID: PMC5215561 DOI: 10.1002/anie.201510610] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/11/2016] [Indexed: 12/15/2022]
Abstract
The pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are a family of sequence-selective DNA minor-groove binding agents that form a covalent aminal bond between their C11-position and the C2-NH2 groups of guanine bases. The first example of a PBD monomer, the natural product anthramycin, was discovered in the 1960s, and the best known PBD dimer, SJG-136 (also known as SG2000, NSC 694501 or BN2629), was synthesized in the 1990s and has recently completed Phase II clinical trials in patients with leukaemia and ovarian cancer. More recently, PBD dimer analogues are being attached to tumor-targeting antibodies to create antibody-drug conjugates (ADCs), a number of which are now in clinical trials, with many others in pre-clinical development. This Review maps the development from anthramycin to the first PBD dimers, and then to PBD-containing ADCs, and explores both structure-activity relationships (SARs) and the biology of PBDs, and the strategies for their use as payloads for ADCs.
Collapse
Affiliation(s)
- Julia Mantaj
- Institute of Pharmaceutical ScienceKing's College LondonBritannia House, 7 Trinity Street, London SE1 1DB, and Femtogenix Ltd, Britannia House, 7 Trinity StreetLondonSE1 1DBUK
| | - Paul J. M. Jackson
- Institute of Pharmaceutical ScienceKing's College LondonBritannia House, 7 Trinity Street, London SE1 1DB, and Femtogenix Ltd, Britannia House, 7 Trinity StreetLondonSE1 1DBUK
| | - Khondaker M. Rahman
- Institute of Pharmaceutical ScienceKing's College LondonBritannia House, 7 Trinity Street, London SE1 1DB, and Femtogenix Ltd, Britannia House, 7 Trinity StreetLondonSE1 1DBUK
| | - David E. Thurston
- Professor of Drug Discovery, King's College London, Faculty of Life Sciences & MedicineInstitute of Pharmaceutical ScienceBritannia House, 7 Trinity StreetLondonSE1 1DBUK
- Femtogenix LtdBritannia House, 7 Trinity StreetLondonSE1 1DBUK
| |
Collapse
|
21
|
Geny S, Moreno PMD, Krzywkowski T, Gissberg O, Andersen NK, Isse AJ, El-Madani AM, Lou C, Pabon YV, Anderson BA, Zaghloul EM, Zain R, Hrdlicka PJ, Jørgensen PT, Nilsson M, Lundin KE, Pedersen EB, Wengel J, Smith CIE. Next-generation bis-locked nucleic acids with stacking linker and 2'-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes. Nucleic Acids Res 2016; 44:2007-19. [PMID: 26857548 PMCID: PMC4797291 DOI: 10.1093/nar/gkw021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson–Crick binding. To improve the bisLNA design, we investigated its mechanism of binding. Our results suggest that bisLNAs bind via Hoogsteen-arm first, followed by Watson–Crick arm invasion, initiated at the tail. Based on this proposed hybridization mechanism, we designed next-generation bisLNAs with a novel linker able to stack to adjacent nucleobases, a new strategy previously not applied for any type of clamp-constructs. Although the Hoogsteen-arm limits the invasion, upon incorporation of the stacking linker, bisLNA invasion is significantly more efficient than for non-clamp, or nucleotide-linker containing LNA-constructs. Further improvements were obtained by substituting LNA with 2′-glycylamino-LNA, contributing a positive charge. For regular bisLNAs a 14-nt tail significantly enhances invasion. However, when two stacking linkers were incorporated, tail-less bisLNAs were able to efficiently invade. Finally, successful targeting of plasmids inside bacteria clearly demonstrates that strand invasion can take place in a biologically relevant context.
Collapse
Affiliation(s)
- Sylvain Geny
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Pedro M D Moreno
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden INEB-Instituto de Engenharia Biomedica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Tomasz Krzywkowski
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-171 21, Sweden
| | - Olof Gissberg
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Nicolai K Andersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Abdirisaq J Isse
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Amro M El-Madani
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Chenguang Lou
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Y Vladimir Pabon
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | | | - Eman M Zaghloul
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | - Per T Jørgensen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-171 21, Sweden
| | - Karin E Lundin
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Erik B Pedersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| |
Collapse
|
22
|
Nikolić S, Rangasamy L, Gligorijević N, Aranđelović S, Radulović S, Gasser G, Grgurić-Šipka S. Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands. J Inorg Biochem 2016; 160:156-65. [PMID: 26818702 DOI: 10.1016/j.jinorgbio.2016.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023]
Abstract
Three new ruthenium(II)-arene complexes, namely [(η(6)-p-cymene)Ru(Me2dppz)Cl]PF6 (1), [(η(6)-benzene)Ru(Me2dppz)Cl]PF6 (2) and [(η(6)-p-cymene)Ru(aip)Cl]PF6 (3) (Me2dppz=11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine; aip=2-(9-anthryl)-1H-imidazo[4,5-f] [1,10] phenanthroline) have been synthesized and characterized using different spectroscopic techniques including elemental analysis. The complexes were found to be well soluble and stable in DMSO. The biological activity of the three complexes was tested in three different human cancer cell lines (A549, MDA-MB-231 and HeLa) and in one human non-cancerous cell line (MRC-5). Complexes 1 and 3, carrying η(6)-p-cymene as the arene ligand, were shown to be toxic in all cell lines in the low micromolar/subnanomolar range, with complex 1 being the most cytotoxic complex of the series. Flow cytometry analysis revealed that complex 1 caused concentration- and time-dependent arrest of the cell cycle in G2-M and S phases in HeLa cells. This event is followed by the accumulation of the sub-G1 DNA content after 48h, in levels higher than cisplatin and in the absence of phosphatidylserine externalization. Fluorescent microscopy and acridine orange/ethidium bromide staining revealed that complex 1 induced both apoptotic and necrotic cell morphology characteristics. Drug-accumulation and DNA-binding studies performed by inductively coupled plasma mass spectrometry in HeLa cells showed that the total ruthenium uptake increased in a time- and concentration-dependent manner, and that complex 1 accumulated more efficiently than cisplatin at equimolar concentrations. The introduction of a Me2dppz ligand into the ruthenium(II)-p-cymene scaffold was found to allow the discovery of a strongly cytotoxic complex with significantly higher cellular uptake and DNA-binding properties than cisplatin.
Collapse
Affiliation(s)
- Stefan Nikolić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Loganathan Rangasamy
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Sandra Aranđelović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Sanja Grgurić-Šipka
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
23
|
Nadres ET, Fan J, Rodrigues DF. Toxicity and Environmental Applications of Graphene-Based Nanomaterials. GRAPHENE-BASED MATERIALS IN HEALTH AND ENVIRONMENT 2016. [DOI: 10.1007/978-3-319-45639-3_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Gasiorek M, Schneider HJ. Unwinding DNA and RNA with Synthetic Complexes: On the Way to Artificial Helicases. Chemistry 2015; 21:18328-32. [PMID: 26503404 DOI: 10.1002/chem.201502738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Indexed: 01/04/2023]
Abstract
Synthetic helicases can be designed on the basis of ligands that bind more strongly to single-stranded nucleic acids than to double-stranded nucleic acids. This can be achieved with ligands containing phenyl groups, which intercalate into single strands, but due to their small size not into double strands. Moreover, two phenyl rings are combined with a distance that allows bis-intercalation with only single strands and not double strands. In this respect, such ligands also mimic single-strand binding (SSB) proteins. Exploration with more than 23 ligands, mostly newly synthesised, shows that the distance between the phenyl rings and between those and the linker influence the DNA unwinding efficiency, which can reach a melting point decrease of almost ΔTm =50 °C at much lower concentrations than that with any other known artificial helicases. Conformational pre-organisation of the ligand plays a decisive role in optimal efficiency. Substituents at the phenyl rings have a large effect, and increase, for example, in the order of H<F<Cl<Br, which illustrates the strong role of dispersive interactions in intercalation. Studies with homopolymers revealed significant selectivity: for example, with a ligand concentration of 40 μM at 35 °C, only GC double strands melt (ΔTm =48 °C), whereas the AT strand remains untouched, and with poly(rA)-poly(rU) as an RNA model one observes unfolding at 29 °C with a concentration of only 30 μM.
Collapse
Affiliation(s)
- Martin Gasiorek
- FR Organische Chemie, Universität des Saarlandes, 66041 Saarbrücken (Germany)
| | - Hans-Jörg Schneider
- FR Organische Chemie, Universität des Saarlandes, 66041 Saarbrücken (Germany).
| |
Collapse
|
25
|
Synthesis, characterization and biological activity of platinum(II) complexes with a tetrapyrazole ligand. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.09.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Savreux-Lenglet G, Depauw S, David-Cordonnier MH. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts. Int J Mol Sci 2015; 16:26555-81. [PMID: 26556350 PMCID: PMC4661830 DOI: 10.3390/ijms161125971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.
Collapse
Affiliation(s)
- Gaëlle Savreux-Lenglet
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| |
Collapse
|
27
|
Malla S, Kadimisetty K, Fu YJ, Choudhary D, Jansson I, Schenkman JB, Rusling JF. CHEMICAL SELECTIVITY OF NUCLEOBASE ADDUCTION RELATIVE TO IN VIVO MUTATION SITES ON EXON 7 FRAGMENT OF P53 TUMOR SUPPRESSOR GENE. Chem Sci 2015; 6:5554-5563. [PMID: 26417421 PMCID: PMC4583204 DOI: 10.1039/c5sc01403d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/24/2015] [Indexed: 01/03/2023] Open
Abstract
Damage to p53 tumor suppressor gene is found in half of all human cancers. Databases integrating studies of large numbers of tumors and cancer cell cultures show that mutation sites of specific p53 codons are correlated with specific types of cancers. If the most frequently damaged p53 codons in vivo correlate with the most frequent chemical damage sites in vitro, predictions of organ-specific cancer risks might result. Herein, we describe LC-MS/MS methodology to reveal codons with metabolite-adducted nucleobases by LC-MS/MS for oligonucleotides longer than 20 base pairs. Specifically, we used a known carcinogen, benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) to determine the most frequently adducted nucleobases within codons. We used a known sequence of 32 base pairs (bp) representing part of p53 exon 7 with 5 possible reactive hot spots. This is the first nucleobase reactivity study of a double stranded DNA p53 fragment featuring more than 20 base pairs with multiple reactive sites. We reacted the 32 bp fragment with benzo[a]pyrene metabolite BPDE that undergoes nucleophilic substitution by DNA bases. Liquid chromatography-mass spectrometry (LC-MS/MS) was used for sequencing of oligonucleotide products from the reacted 32 bp fragment after fragmentation by a restriction endonuclease. Analysis of the adducted p53 fragment compared with unreacted fragment revealed guanines of codons 248 and 244 as most frequently targeted, which are also mutated with high frequency in human tumors. Codon 248 is mutated in non-small cell and small cell lung, head and neck, colorectal and skin cancer, while codon 244 is mutated in small cell lung cancer, all of which involve possible BDPE exposure. Results suggest the utility of this approach for screening of adducted p53 gene by drugs and environmental chemicals to predict risks for organ specific cancers.
Collapse
Affiliation(s)
- Spundana Malla
- Department of Chemistry , University of Connecticut , Storrs , CT 06269 , USA .
| | - Karteek Kadimisetty
- Department of Chemistry , University of Connecticut , Storrs , CT 06269 , USA .
| | - You-Jun Fu
- Department of Chemistry , University of Connecticut , Storrs , CT 06269 , USA .
| | - Dharamainder Choudhary
- Department of Surgery , University of Connecticut Health Center , Farmington , CT 06032 , USA
| | - Ingela Jansson
- Department of Cell Biology , University of Connecticut Health Center , Farmington , CT 06032 , USA
| | - John B. Schenkman
- Department of Cell Biology , University of Connecticut Health Center , Farmington , CT 06032 , USA
| | - James F. Rusling
- Department of Chemistry , University of Connecticut , Storrs , CT 06269 , USA .
- Department of Cell Biology , University of Connecticut Health Center , Farmington , CT 06032 , USA
- Institute of Material Science , University of Connecticut , Storrs , CT 06269 , USA
- School of Chemistry , National University of Ireland at Galway , Ireland
| |
Collapse
|
28
|
Nicasio-Collazo LA, Delgado-González A, Castañeda-Priego R, Hernández-Lemus E. Stress-induced DNA damage: a case study in diffuse large B-cell lymphoma. J R Soc Interface 2015; 11:20140827. [PMID: 25209404 DOI: 10.1098/rsif.2014.0785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA damage is one of the mechanisms of mutagenesis. Sequence integrity may be affected by the action of thermal changes, chemical agents, both endogenous and exogenous, and other environmental issues. Abnormally high mutation rates are referred to as genomic instability: a phenomenon closely related to the onset of cancer. Mutant genotypes may be able to confer some kind of selective advantage on subclonal cell populations, leading them to multiply until dominance in a localized tissue environment that later becomes the tumour. Cellular stress, especially that of oxidative and ionic nature, is a recognized trigger for DNA-damaging processes. A physico-chemical model has shown that high hysteresis rates in DNA denaturation curves may be indicative of dissipative processes inducing DNA damage, thus potentially leading to uncontrolled mutagenesis and genome instability. We here study selectively to what extent this phenomenon may occur by analysing the sequence length and composition effects on the thermodynamic behaviour and the presence of hysteresis in pressure-driven DNA denaturation; pronounced hysteresis in the denaturation/renaturation curves may indicate thermal susceptibility to DNA damage. In particular, we consider highly mutated regions of the genome characterized in diffuse large B-cell lymphoma on a recent whole exome next-generation sequencing effort.
Collapse
Affiliation(s)
| | | | | | - Enrique Hernández-Lemus
- Department of Computational Genomics, National Institute of Genomic Medicine, Mexico City, Mexico Complexity in Systems Biology, Center for Complexity Sciences, National Autonomous University of México, Mexico City, Mexico
| |
Collapse
|
29
|
Agarwal S, Chadha D, Mehrotra R. Molecular modeling and spectroscopic studies of semustine binding with DNA and its comparison with lomustine–DNA adduct formation. J Biomol Struct Dyn 2014; 33:1653-68. [DOI: 10.1080/07391102.2014.968874] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Salem AA, El Haty IA, Abdou IM, Mu Y. Interaction of human telomeric G-quadruplex DNA with thymoquinone: a possible mechanism for thymoquinone anticancer effect. Biochim Biophys Acta Gen Subj 2014; 1850:329-42. [PMID: 25450185 DOI: 10.1016/j.bbagen.2014.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Thymoquinone (TQ) has been documented to possess chemo-preventive and chemotherapeutic antitumor effects. Studies reported that TQ inhibits the growth of cancer cells in animal models, culture and xenografted tumors. Molecular mechanisms underlying these anticancer effects were attributed to inductions of cell cycle arrest, apoptosis, oxidative damage of cellular macromolecules, blockade of tumor angiogenesis and inhibitions in migration, invasion and metastasis of cancer cells. On the other hand, human telomere DNA plays a role in regulating genes' transcriptions. It folds up into G-quadruplex structures that inhibit telomerase enzyme over-expressed in cancerous cells. Molecules that selectively stabilize G-quadruplex are potential anticancer agents. Therefore, this work aimed to explore the interaction of TQ with G-quadruplex DNA as a possible underlying mechanism for the anticancer effect of TQ. METHODS Interactions of TQ with telomeric G-quadruplex (5'-AGGG(TTAGGG)3-3') and duplex DNAs were studied using UV-vis, fluorescence, circular dichroism, liquid and solid NMR (1H and 13C), melting temperature and docking simulation. RESULTS Changes in UV-vis, CD, fluorescence, 1H NMR and 13C NMR, spectra as well as melting temperatures and docking simulations provided evidences for TQ's interactions with G-quadruplex. TQ was found to interact with G-quadruplex on two binding sites adjacent to the TTA loop with binding constants 1.80×10(5) and 1.12×10(7) M(-1). Melting temperatures indicated that TQ stabilized G-quadruplex by 5.6 °C and destabilized ct-DNA by 5.1 °C. Selectivity experiment indicated that TQ is preferentially binding to G-quadruplex over duplex with selectivity coefficients of 2.80-3.33×10(-3). Results suggested an intercalation binding mode based on π-π stacking. CONCLUSION Our results propose that TQ can possibly act as a G-quadruplex DNA stabilizer and subsequently contribute to the inhibition of telomerase enzyme and cancer's proliferation. GENERAL SIGNIFICANCE Our results represent a change in the paradigms reported for structural features of G-quadruplex's stabilizers and anticancer mechanisms of TQ.
Collapse
Affiliation(s)
- Alaa A Salem
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Ismail A El Haty
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Ibrahim M Abdou
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Yuguang Mu
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
31
|
Zhang J, Yin D, Li H. hMSH2 expression is associated with paclitaxel resistance in ovarian carcinoma, and inhibition of hMSH2 expression in vitro restores paclitaxel sensitivity. Oncol Rep 2014; 32:2199-206. [PMID: 25175513 DOI: 10.3892/or.2014.3430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to investigate the association between paclitaxel resistance, gene copy number, and gene expression in ovarian carcinoma, and to restore paclitaxel sensitivity in a paclitaxel-resistant ovarian carcinoma cell line by using hMSH2-targeting siRNA. Paclitaxel-resistant ovarian carcinoma cell lines OC3/TAX300 and OC3/TAX50 and their parental cell lines were analyzed by comparative genomic hybridization, and the expression levels of hMSH2 in ovarian carcinoma cell lines and tissues were determined. An siRNA targeted to hMSH2 mRNA was used to transfect a paclitaxel-resistant cell line. We assessed the morphological features, proliferation, and susceptibility to apoptosis of the transfected cells after paclitaxel treatment. Chromosome 2p21 (gene locus of hMSH2) was amplified in OC3/TAX300 cells. hMSH2 was overexpressed in 93.9 and 47.6% of paclitaxel-treated and untreated ovarian carcinoma tissue samples (P=0.0001), respectively. hMSH2 was overexpressed in 93.3 and 54.2% of low-differentiated and moderate-to-highly differentiated ovarian carcinoma tissue samples (P=0.0008), respectively. hMSH2 expression was inhibited in the OC3/TAX300 cells transfected with hMSH2 siRNA. hMSH2 siRNA increased paclitaxel sensitivity, inhibited OC3/TAX300 cell proliferation (G2/M arrest), and increased susceptibility to apoptosis. hMSH2 expression was upregulated in ovarian carcinoma cell lines and tissues after paclitaxel treatment. hMSH2 overexpression is related to paclitaxel resistance and poor prognosis. Inhibition of hMSH2 expression in vitro restores paclitaxel sensitivity in paclitaxel‑resistant ovarian carcinoma cell lines and indicates a new direction in adjuvant therapy for ovarian carcinoma.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Haidian, Beijing 100038, P.R. China
| | - Dongmei Yin
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Dongcheng, Beijing 100006, P.R. China
| | - Hongxia Li
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Haidian, Beijing 100038, P.R. China
| |
Collapse
|
32
|
Drug-DNA intercalation: from discovery to the molecular mechanism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 92:1-62. [PMID: 23954098 DOI: 10.1016/b978-0-12-411636-8.00001-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability of small molecules to perturb the natural structure and dynamics of nucleic acids is intriguing and has potential applications in cancer therapeutics. Intercalation is a special binding mode where the planar aromatic moiety of a small molecule is inserted between a pair of base pairs, causing structural changes in the DNA and leading to its functional arrest. Enormous progress has been made to understand the nature of the intercalation process since its idealistic conception five decades ago. However, the biological functions were detected even earlier. In this review, we focus mainly on the acridine and anthracycline types of drugs and provide a brief overview of the development in the field through various experimental methods that led to our present understanding of the subject. Subsequently, we discuss the molecular mechanism of the intercalation process, free-energy landscapes, and kinetics that was revealed recently through detailed and rigorous computational studies.
Collapse
|
33
|
Zhao C, Ren J, Gregoliński J, Lisowski J, Qu X. Contrasting enantioselective DNA preference: chiral helical macrocyclic lanthanide complex binding to DNA. Nucleic Acids Res 2012; 40:8186-96. [PMID: 22675072 PMCID: PMC3439914 DOI: 10.1093/nar/gks524] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
There is great interest in design and synthesis of small molecules which selectively target specific genes to inhibit biological functions in which particular DNA structures participate. Among these studies, chiral recognition has been received much attention because more evidences have shown that conversions of the chirality and diverse conformations of DNA are involved in a series of important life events. Here, we report that a pair of chiral helical macrocyclic lanthanide (III) complexes, (M)-Yb[LSSSSSS]3+ and (P)-Yb[LRRRRRR]3+, can enantioselectively bind to B-form DNA and show remarkably contrasting effects on GC-rich and AT-rich DNA. Neither of them can influence non-B-form DNA, nor quadruplex DNA stability. Our results clearly show that P-enantiomer stabilizes both poly(dG-dC)2 and poly(dA-dT)2 while M-enantiomer stabilizes poly(dA-dT)2, however, destabilizes poly(dG-dC)2. To our knowledge, this is the best example of chiral metal compounds with such contrasting preference on GC- and AT-DNA. Ligand selectively stabilizing or destabilizing DNA can interfere with protein–DNA interactions and potentially affect many crucial biological processes, such as DNA replication, transcription and repair. As such, bearing these unique capabilities, the chiral compounds reported here may shed light on the design of novel enantiomers targeting specific DNA with both sequence and conformation preference.
Collapse
Affiliation(s)
- Chuanqi Zhao
- Division of Biological Inorganic Chemistry, State Key laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Graduate School of Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | | | | | |
Collapse
|