1
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
2
|
Mardanyan S, Sharoyan S, Antonyan A. Diversity of amyloid beta peptide actions. Rev Neurosci 2024; 35:387-398. [PMID: 38281140 DOI: 10.1515/revneuro-2023-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Fibril formation by amyloidogenic proteins and peptides is considered the cause of a number of incurable diseases. One of the most known amyloid diseases is Alzheimer's disease (AD). Traditionally, amyloidogenic beta peptides Aβ40 and Aβ42 (Aβs) are considered as main causes of AD and the foremost targets in AD fight. The main efforts in pharmacology are aimed at reducing Aβs concentration to prevent their accumulation, aggregation, formation of senile plaques, neuronal death, and neurodegeneration. However, a number of publications have demonstrated certain beneficial physiological effects of Aβs. Simultaneously, it is indicated that the effects of Aβs turn into pathological due to the development of certain diseases in the body. The accumulation of C- and N-terminal truncated Aβs under diverse conditions is supposed to play a role in AD development. The significance of transformation of glutamate residue at positions 3 or 11 of Aβs catalyzed by glutaminyl cyclase making them more degradation resistant, hydrophobic, and prone to aggregation, as well as the participation of dipeptidyl peptidase IV in these transformations are discussed. The experimental data presented confirm the maintenance of physiological, nonaggregated state of Aβs by plant preparations. In conclusion, this review suggests that in the fight against AD, instead of removing Aβs, preference should be given to the treatment of common diseases. Glutaminyl cyclase and dipeptidyl peptidase IV can be considered as targets in AD treatment. Flavonoids and plant preparations that possess antiamyloidogenic propensity are proposed as beneficial neuroprotective, anticancer, and antidiabetic food additives.
Collapse
Affiliation(s)
- Sona Mardanyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| | - Svetlana Sharoyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| | - Alvard Antonyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| |
Collapse
|
3
|
Singh L, Kaur H, Chandra Arya G, Bhatti R. Neuroprotective potential of formononetin, a naturally occurring isoflavone phytoestrogen. Chem Biol Drug Des 2024; 103:e14353. [PMID: 37722967 DOI: 10.1111/cbdd.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
The increased prevalence of neurological illnesses is a burgeoning challenge to the public healthcare system and presents greater financial pressure. Formononetin, an O-methylated isoflavone, has gained a lot of attention due to its neuroprotective potential explored in several investigations. Formononetin is widely found in legumes and several types of clovers including Trifolium pratense L., Astragalus membranaceus, Sophora tomentosa, etc. Formononetin modulates various endogenous mediators to confer neuroprotection. It prevents RAGE activation that results in the inhibition of neuronal damage via downregulating the level of ROS and proinflammatory cytokines. Furthermore, formononetin also increases the expression of ADAM-10, which affects the pathology of neurodegenerative disease by lowering tau phosphorylation, maintaining synaptic plasticity, and boosting hippocampus neurogenesis. Besides these, formononetin also increases the expression of antioxidants, Nrf-2, PI3K, ApoJ, and LRP1. Whereas, reduces the expression of p65-NF-κB and proinflammatory cytokines. It also inhibits the deposition of Aβ and MAO-B activity. An inhibition of Aβ/RAGE-induced activation of MAPK and NOX governs the protection elicited by formononetin against inflammatory and oxidative stress-induced neuronal damage. Besides this, PI3K/Akt and ER-α-mediated activation of ADAM10, ApoJ/LRP1-mediated clearance of Aβ, and MAO-B inhibition-mediated preservation of dopaminergic neurons integrity are the major modulations produced by formononetin. This review covers the biosynthesis of formononetin and key molecular pathways modulated by formononetin to confer neuroprotection.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Harpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Girish Chandra Arya
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
4
|
Chavan RS, Supalkar KV, Sadar SS, Vyawahare NS. Animal models of Alzheimer's disease: An originof innovativetreatments and insight to the disease's etiology. Brain Res 2023; 1814:148449. [PMID: 37302570 DOI: 10.1016/j.brainres.2023.148449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The main pathogenic features are the development and depositionof senile plaques and neurofibrillary tangles in brain. Recent developments in the knowledge of the pathophysiological mechanisms behind Alzheimer's disease and other cognitive disorders have suggested new approaches to treatment development. These advancements have been significantly aided by the use of animal models, which are also essential for the assessment of therapies. Various approaches as transgenic animal model, chemical models, brain injury are used. This review will presentAD pathophysiology and emphasize several Alzheimer like dementia causingchemical substances, transgenic animal model and stereotaxy in order to enhance our existing knowledge of their mechanism of AD induction, dose, and treatment duration.
Collapse
Affiliation(s)
- Ritu S Chavan
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India.
| | - Krishna V Supalkar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Smeeta S Sadar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Niraj S Vyawahare
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| |
Collapse
|
5
|
Iliyasu MO, Musa SA, Oladele SB, Iliya AI. Amyloid-beta aggregation implicates multiple pathways in Alzheimer's disease: Understanding the mechanisms. Front Neurosci 2023; 17:1081938. [PMID: 37113145 PMCID: PMC10128090 DOI: 10.3389/fnins.2023.1081938] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by tau pathology and accumulations of neurofibrillary tangles (NFTs) along with amyloid-beta (Aβ). It has been associated with neuronal damage, synaptic dysfunction, and cognitive deficits. The current review explained the molecular mechanisms behind the implications of Aβ aggregation in AD via multiple events. Beta (β) and gamma (γ) secretases hydrolyzed amyloid precursor protein (APP) to produce Aβ, which then clumps together to form Aβ fibrils. The fibrils increase oxidative stress, inflammatory cascade, and caspase activation to cause hyperphosphorylation of tau protein into neurofibrillary tangles (NFTs), which ultimately lead to neuronal damage. Acetylcholine (Ach) degradation is accelerated by upstream regulation of the acetylcholinesterase (AChE) enzyme, which leads to a deficiency in neurotransmitters and cognitive impairment. There are presently no efficient or disease-modifying medications for AD. It is necessary to advance AD research to suggest novel compounds for treatment and prevention. Prospectively, it might be reasonable to conduct clinical trials with unclean medicines that have a range of effects, including anti-amyloid and anti-tau, neurotransmitter modulation, anti-neuroinflammatory, neuroprotective, and cognitive enhancement.
Collapse
Affiliation(s)
- Musa O. Iliyasu
- Department of Anatomy, Kogi State University, Anyigba, Nigeria
- *Correspondence: Musa O. Iliyasu, ;
| | - Sunday A. Musa
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Nigeria
| | - Sunday B. Oladele
- Department of Veterinary Pathology, Ahmadu Bello University, Zaria, Nigeria
| | | |
Collapse
|
6
|
Yang JJ. Brain insulin resistance and the therapeutic value of insulin and insulin-sensitizing drugs in Alzheimer's disease neuropathology. Acta Neurol Belg 2022; 122:1135-1142. [PMID: 35482277 DOI: 10.1007/s13760-022-01907-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
The incidence of Alzheimer's disease (AD) is significantly higher in people with diabetes. Insulin and insulin receptor (IR) signaling intermediates are expressed in the brain. Insulin exerts multiple function in the brain. The role of compromised IR signaling in AD pathogenesis and the therapeutic value of insulin attract broad attention. This review summarizes the collective insulin action in the brain related to key factors of AD pathogenesis, updates the key features of insulin resistance in the AD brain and assesses the therapeutic potential of insulin and insulin-sensitizing drugs. Insulin stimulates neural growth and survival, suppresses amyloidogenic processing of the amyloid precursor protein (AβPP) and inhibits the Tau phosphorylation kinase, glycogen synthase kinase 3β. Central nervous IR signaling regulates systemic metabolism and increases glucose availability to neurons. The expression of IR and its downstream effectors is reduced in AD brain tissues. Insulin and insulin-sensitizing drugs can improve cognitive function in AD patients and AD animal models. Systemic insulin delivery is less effective than intranasal insulin treatment. The penetrance of insulin-sensitizing drugs to the blood brain barrier is problematic and new brain-prone drugs need be developed. Insulin resistance manifested by the degradation and the altered phosphorylation of IR intermediates precedes overt AD syndrome. Type 3 diabetes as a pure form of brain insulin resistance without systemic insulin resistance is proposed as a causal factor in AD. Further research is needed for the identification of critical factors leading to impaired IR signaling and the development of new molecules to stimulate brain IR signaling.
Collapse
Affiliation(s)
- James J Yang
- Marriotts Ridge High School, 12100 Woodford Dr, Marriottsville, MD, 21104, USA.
- , 3060 Seneca Chief Trail, Ellicott City, MD, 21042, USA.
| |
Collapse
|
7
|
Sharma C, Kim SR. Linking Oxidative Stress and Proteinopathy in Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10081231. [PMID: 34439479 PMCID: PMC8388980 DOI: 10.3390/antiox10081231] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Proteinopathy and excessive production of reactive oxygen species (ROS), which are the principal features observed in the Alzheimer’s disease (AD) brain, contribute to neuronal toxicity. β-amyloid and tau are the primary proteins responsible for the proteinopathy (amyloidopathy and tauopathy, respectively) in AD, which depends on ROS production; these aggregates can also generate ROS. These mechanisms work in concert and reinforce each other to drive the pathology observed in the aging brain, which primarily involves oxidative stress (OS). This, in turn, triggers neurodegeneration due to the subsequent loss of synapses and neurons. Understanding these interactions may thus aid in the identification of potential neuroprotective therapies that could be clinically useful. Here, we review the role of β-amyloid and tau in the activation of ROS production. We then further discuss how free radicals can influence structural changes in key toxic intermediates and describe the putative mechanisms by which OS and oligomers cause neuronal death.
Collapse
Affiliation(s)
- Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|
8
|
Cardoso S, Moreira PI. Antidiabetic drugs for Alzheimer's and Parkinson's diseases: Repurposing insulin, metformin, and thiazolidinediones. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:37-64. [PMID: 32854858 DOI: 10.1016/bs.irn.2020.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Medical and scientific communities have been striving to disentangle the complexity of neurodegenerative diseases, particularly Alzheimer's disease (AD) and Parkinson's disease (PD), in order to develop a cure or effective treatment for these diseases. Along this journey, it has become important to identify the early events occurring in the prodromal phases of these diseases and the disorders that increase the risk of neurodegeneration highlighting common pathological features. This strategy has led to a wealth of evidence identifying diabetes, mainly type 2 diabetes mellitus (T2DM) as a main risk factor for the onset and progression of AD and PD. Impaired glucose metabolism, insulin resistance, and mitochondrial dysfunction are features common to both type 2 diabetes mellitus (T2DM), and AD and PD, and they appear before clinical diagnosis of the two neurodegenerative diseases. These could represent the strategic nodes of therapeutic intervention. Following this line of thought, a conceivable approach is to repurpose antidiabetic drugs as valuable agents that may prevent or reduce the risk of cognitive decline and neurodegeneration. This review summarizes the past and current findings that link AD and PD with T2DM, emphasizing the common pathological mechanisms. The efficacy of antidiabetic drugs, namely intranasal insulin, metformin, and thiazolidinediones, in the prevention and/or treatment of AD and PD is also discussed.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Physiology-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
9
|
Effects of Physical Activity on Brain Energy Biomarkers in Alzheimer's Diseases. Diseases 2020; 8:diseases8020018. [PMID: 32521816 PMCID: PMC7349237 DOI: 10.3390/diseases8020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
The prevalence of dementia has substantially increased worldwide. Currently, there is no cure for dementia or Alzheimer’s disease (AD), and care for affected patients is financially and psychologically costly. Of late, more attention has been given to preventive interventions—in particular, physical activity/exercise. In this review, examine the risk factors associated with AD and the effects physical activity may play in the prevention of the degenerative process of this disease, loss of memory and cognitive performance in the elderly. To date, research has shown that physical activity, especially aerobic exercise, has a protective effect on cognitive function and memory in the elderly and Alzheimer’s patients. In comparison with aerobic exercise, several strength training studies have also shown positive effects, and the rare studies that compare the two different modalities show no difference.
Collapse
|
10
|
Hassan A, Robinson M, Willerth SM. Modeling the Effects of Yoga on the Progression of Alzheimer's Disease in a Dish. Cells Tissues Organs 2019; 206:263-271. [PMID: 31121578 DOI: 10.1159/000499503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) accounts for 80% of all dementia cases, making it the most common form of dementia. Aging serves as the main risk factor for AD, but early onset AD can also occur in individuals younger than 65 years. AD results from progressive neurodegeneration leading to dysfunctional synaptic transmission in the brain. The cascade hypothesis of AD states that amyloid precursor protein (APP) metabolism becomes impaired either by mutation or an interleukin-mediated stress response to injury, resulting in the splicing of harmful oligomeric forms of amyloid beta (Aβ). These oligomers disrupt extracellular receptor binding, intracellular function, and cellular membrane integrity. Yoga and meditative practices slow the progression of the cognitive decline associated with AD. However, the biological mechanisms underlying this therapeutic effect remain elusive. Here, we investigated the ability of neurotransmitters released during yoga and meditative practices to rescue neurons from synaptic dysfunction in an in vitro Alzheimer's model created by culturing basal forebrain cholinergic neurons with physiologically relevant levels of the I-42 isoform of oligomeric Aβ (OΑβI-42). We found that the neurotransmitters dopamine and histamine produce a cooperative action with serotonin to reverse the loss of choline acetyltransferase (CHaT) by OΑβI-42. The loss of ChaT, the enzyme responsible for processing the cholinergic neurotransmitter acetylcholine, contributes to the synaptic dysfunction experienced during AD. These neurotransmitters inhibit nitric oxide synthesis caused by OΑβI-42, preventing oxidative and nitrosative stress. Serotonin activates an alternate cleavage of APP to produce a fragment with known neurotrophic effects, giving it the unique ability to inhibit the OΑβI-42 production cycle. We hypothesize here that these concerted actions lead to the protection of cholinergic synaptic transmission in AD.
Collapse
Affiliation(s)
- Adithy Hassan
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Meghan Robinson
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Stephanie M Willerth
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada, .,Biomedical Engineering Program, University of Victoria, Victoria, British Columbia, Canada, .,Department of Mechanical Engineering, Faculty of Engineering, University of Victoria, Victoria, British Columbia, Canada, .,Centre for Biomedical Research, Faculty of Engineering, University of Victoria, Victoria, British Columbia, Canada, .,International Collaboration for Repair Discovery, University of British Columbia, Vancouver, British Columbia, Canada,
| |
Collapse
|
11
|
Pardeshi R, Bolshette N, Gadhave K, Arfeen M, Ahmed S, Jamwal R, Hammock BD, Lahkar M, Goswami SK. Docosahexaenoic Acid Increases the Potency of Soluble Epoxide Hydrolase Inhibitor in Alleviating Streptozotocin-Induced Alzheimer's Disease-Like Complications of Diabetes. Front Pharmacol 2019; 10:288. [PMID: 31068802 PMCID: PMC6491817 DOI: 10.3389/fphar.2019.00288] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
Diabetes is a risk factor for Alzheimer's disease and it is associated with significant memory loss. In the present study, we hypothesized that the soluble epoxide hydrolase (sEH) inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl)-urea (also known as TPPU) could alleviate diabetes-aggravated Alzheimer's disease-like symptoms by improving memory and cognition, and reducing the oxidative stress and inflammation associated with this condition. Also, we evaluated the effect of edaravone, an antioxidant on diabetes-induced Alzheimer's-like complications and the additive effect of docosahexaenoic acid (DHA) on the efficacy of TPPU. Diabetes was induced in male Sprague-Dawley rats by intraperitoneally administering streptozotocin (STZ). Six weeks after induction of diabetes, animals were either treated with vehicle, edaravone (3 or 10 mg/kg), TPPU (1 mg/kg) or TPPU (1 mg/kg) + DHA (100 mg/kg) for 2 weeks. The results demonstrate that the treatments increased the memory response of diabetic rats, in comparison to untreated diabetic rats. Indeed, DHA + TPPU were more effective than TPPU alone in reducing the symptoms monitored. All drug treatments reduced oxidative stress and minimized inflammation in the brain of diabetic rats. Expression of the amyloid precursor protein (APP) was increased in the brain of diabetic rats. Treatment with edaravone (10 mg/kg), TPPU or TPPU + DHA minimized the level of APP. The activity of acetylcholinesterase (AChE) which metabolizes acetylcholine was increased in the brain of diabetic rats. All the treatments except edaravone (3 mg/kg) were effective in decreasing the activity of AChE and TPPU + DHA was more efficacious than TPPU alone. Intriguingly, the histological changes in hippocampus after treatment with TPPU + DHA showed significant protection of neurons against STZ-induced neuronal damage. Overall, we found that DHA improved the efficacy of TPPU in increasing neuronal survival and memory, decreasing oxidative stress and inflammation possibly by stabilizing anti-inflammatory and neuroprotective epoxides of DHA. In the future, further evaluating the detailed mechanisms of action of sEH inhibitor and DHA could help to develop a strategy for the management of Alzheimer's-like complications in diabetes.
Collapse
Affiliation(s)
- Rohit Pardeshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Nityanand Bolshette
- Institutional Level Biotech Hub (IBT Hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Mohammad Arfeen
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Rohitash Jamwal
- Biomedical and Pharmaceutical Sciences, The University of Rhode Island, Kingston, RI, United States
| | - Bruce D. Hammock
- Hammock Laboratory of Pesticide Biotechnology, Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Mangala Lahkar
- Institutional Level Biotech Hub (IBT Hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Sumanta Kumar Goswami
- Hammock Laboratory of Pesticide Biotechnology, Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Wright SM, Jensen SL, Cockriel KL, Davis B, Tschanz JT, Munger RG, Corcoran CD, Kauwe JSK. Association study of rs3846662 with Alzheimer's disease in a population-based cohort: the Cache County Study. Neurobiol Aging 2019; 84:242.e1-242.e6. [PMID: 30975575 DOI: 10.1016/j.neurobiolaging.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 11/28/2022]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase is associated with monitoring cholesterol levels. The presence of the single-nucleotide polymorphism rs3846662 introduces alternative splicing at exon 13; the exclusion of this exon leads to a reduction in total cholesterol levels. Lower cholesterol levels are linked to a reduction in Alzheimer's disease (AD) risk. The major allele of rs3846662, which encourages the splicing of exon 13, has recently been shown to act as a preventative allele for AD, especially in women. The purpose of our research was to replicate and confirm this finding. Using logistic regressions and survival curves, we found a significant association between AD and rs3846662, with a stronger association in individuals who carry the APOE e4 allele, supporting previously published work. The effect of rs3846662 on women is insignificant in our cohort. We confirmed that rs3846662 is associated with reduced risk for AD without gender differences; however, we failed to detect association between rs3846662 and delayed mild cognitive impairment conversion to AD for either of the APOE e4 allelic groups.
Collapse
Affiliation(s)
- Sage M Wright
- Department of Biology, Brigham Young University, Provo, UT, USA
| | | | | | - Brian Davis
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - JoAnn T Tschanz
- Department of Psychology, Utah State University, Logan, UT, USA
| | - Ronald G Munger
- Department of Nutrition, Dietetics, and Food Science, Utah State University, Logan, UT, USA
| | | | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
13
|
Pretorius L, Kell DB, Pretorius E. Iron Dysregulation and Dormant Microbes as Causative Agents for Impaired Blood Rheology and Pathological Clotting in Alzheimer's Type Dementia. Front Neurosci 2018; 12:851. [PMID: 30519157 PMCID: PMC6251002 DOI: 10.3389/fnins.2018.00851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease and other similar dementias are debilitating neurodegenerative disorders whose etiology and pathogenesis remain largely unknown, even after decades of research. With the anticipated increase in prevalence of Alzheimer’s type dementias among the more susceptible aging population, the need for disease-modifying treatments is urgent. While various hypotheses have been put forward over the last few decades, we suggest that Alzheimer’s type dementias are triggered by external environmental factors, co-expressing in individuals with specific genetic susceptibilities. These external stressors are defined in the Iron Dysregulation and Dormant Microbes (IDDM) hypothesis, previously put forward. This hypothesis is consistent with current literature in which serum ferritin levels of individuals diagnosed with Alzheimer’s disease are significantly higher compared those of age- and gender-matched controls. While iron dysregulation contributes to oxidative stress, it also causes microbial reactivation and virulence of the so-called dormant blood (and tissue) microbiome. Dysbiosis (changes in the microbiome) or previous infections can contribute to the dormant blood microbiome (atopobiosis1), and also directly promotes systemic inflammation via the amyloidogenic formation and shedding of potent inflammagens such as lipopolysaccharides. The simultaneous iron dysregulation and microbial aberrations affect the hematological system, promoting fibrin amylodiogenesis, and pathological clotting. Systemic inflammation and oxidative stress can contribute to blood brain barrier permeability and the ensuing neuro-inflammation, characteristic of Alzheimer’s type dementias. While large inter-individual variability exists, especially concerning disease pathogenesis, the IDDM hypothesis acknowledges primary causative factors which can be targeted for early diagnosis and/or for prevention of disease progression.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom.,The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
14
|
Nootropic and Anti-Alzheimer's Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer's Neuropathology. Mol Neurobiol 2018; 56:4925-4944. [PMID: 30414087 DOI: 10.1007/s12035-018-1420-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
Medicinal plants are the backbone of modern medicine. In recent times, there is a great urge to discover nootropic medicinal plants to reverse cognitive dysfunction owing to their less adverse effects. Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the inevitable loss of cognitive function, memory and language impairment, and behavioral disturbances, which turn into gradually more severe. Alzheimer's has no current cure, but symptomatic treatments are available and research continues. The number of patients suffering from AD continues to rise and today, there is a worldwide effort under study to find better ways to alleviate Alzheimer's pathogenesis. In this review, the nootropic and anti-Alzheimer's potentials of 6 medicinal plants (i.e., Centella asiatica, Clitoria ternatea, Crocus sativus, Terminalia chebula, Withania somnifera, and Asparagus racemosus) were explored through literature review. This appraisal focused on available information about neuroprotective and anti-Alzheimer's use of these plants and their respective bioactive compounds/metabolites and associated effects in animal models and consequences of its use in human as well as proposed molecular mechanisms. This review progresses our existing knowledge to reveal the promising linkage of traditional medicine to halt AD pathogenesis. This analysis also avowed a new insight to search the promising anti-Alzheimer's drugs.
Collapse
|
15
|
Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotox Res 2018; 33:569-579. [PMID: 29297151 DOI: 10.1007/s12640-017-9845-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by beta-amyloid (Aβ) accumulation and neurofibrillary tangles formation in the brain which are associated to synaptic deficits and dementia. Liver X receptor (LXR) agonists have been demonstrated to revert of pathologic and cognitive defects in murine models of AD through the regulation of Apolipoprotein E, ATP-Binding Cassette A1 (ABCA1), by dampening neuroinflammation and also by reducing the levels of amyloid-β (Aβ) accumulation in the brain. However, the role of LXR with regard to the regulation of synaptic function remains relatively understudied. In the present paper, we analyzed the in-vitro effect of the LXR agonist GW3965 on synaptic function upon exposure of primary hippocampal cultures to oligomeric amyloid-β (oAβ(1-42)). We showed that oAβ(1-42) exposure significantly decreased the density of mature (mushroom shaped) dendritic spines density and synaptic contacts number. oAβ(1-42) also modulates the expression of pre- (VGlut1, SYT1, SV2A) and post-synaptic (SHANK2, NMDA) proteins, it decreases the expression of PINK1, and increases ROCKII, and activates of caspase-3; these changes were prevented by the pre-treating neuronal cultures with GW3965. These results show further support the role of the LXR agonist GW3965 in synaptic physiology and highlight its potential as an alternative pharmacological strategy for AD.
Collapse
|
16
|
Neth BJ, Craft S. Insulin Resistance and Alzheimer's Disease: Bioenergetic Linkages. Front Aging Neurosci 2017; 9:345. [PMID: 29163128 PMCID: PMC5671587 DOI: 10.3389/fnagi.2017.00345] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a well-established feature of Alzheimer's disease (AD), evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D), hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets.
Collapse
Affiliation(s)
- Bryan J Neth
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
17
|
Ebrahimi K, Majdi A, Baghaiee B, Hosseini SH, Sadigh-Eteghad S. Physical activity and beta-amyloid pathology in Alzheimer's disease: A sound mind in a sound body. EXCLI JOURNAL 2017; 16:959-972. [PMID: 28900376 PMCID: PMC5579405 DOI: 10.17179/excli2017-475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/17/2017] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. Since curative treatment has not been established for AD yet and due to heavy financial and psychological costs of patients' care, special attention has been paid to preventive interventions such as physical activity. Evidence shows that physical activity has protective effects on cognitive function and memory in AD patients. Several pathologic factors are involved in AD-associated cognitive impairment some of which are preventable by physical activity. Also, various experimental and clinical studies are in progress to prove exercise role in the beta-amyloid (Aβ) pathology as a most prevailing hypothesis explaining AD pathogenesis. This study aims to review the role of physical activity in Aβ-related pathophysiology in AD.
Collapse
Affiliation(s)
- Khadije Ebrahimi
- Department of Sports Science and Physical Education, Marand Branch, Islamic Azad University, Marand, Iran
| | - Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Baghaiee
- Department of Sports Science and Physical Education, Jolfa Branch, Islamic Azad University, Jolfa, Iran
| | - Seyed Hojjat Hosseini
- Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Rygiel K. Novel strategies for Alzheimer's disease treatment: An overview of anti-amyloid beta monoclonal antibodies. Indian J Pharmacol 2017; 48:629-636. [PMID: 28066098 PMCID: PMC5155461 DOI: 10.4103/0253-7613.194867] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, progressive neurodegenerative disorder with a poor prognosis, and thus, novel therapies for AD are certainly needed in a growing population of elderly patients or asymptomatic individuals, who are at risk for AD, worldwide. It has been established that some AD biomarkers such as amyloid-beta load in the brain, precede the onset of the disease, by approximately 20 years. Therefore, the therapy to prevent or effectively treat AD has to be initiated before the emergence of symptoms. A goal of this review is to present the results of recent clinical trials on monoclonal antibodies against amyloid beta, used for the treatment of AD and also to address some of the current challenges and emerging strategies to prevent AD. In recent trials, a monoclonal antibody, i.e. solanezumab has shown some beneficial cognitive effects among mild AD patients. Ongoing studies with gantenerumab and crenezumab will examine when exactly the AD treatment, aimed at modifying the disease course has to be started. This review was based on Medline database search for trials on passive anti-AD immunotherapy, for which the main timeframe was set from 2012 to 2015.
Collapse
Affiliation(s)
- Katarzyna Rygiel
- Department of Family Practice, Medical University of Silesia, Katowice Zabrze, Poland
| |
Collapse
|
19
|
Ganguly G, Chakrabarti S, Chatterjee U, Saso L. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer's disease and Parkinson's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:797-810. [PMID: 28352155 PMCID: PMC5358994 DOI: 10.2147/dddt.s130514] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer’s disease and Parkinson’s disease are two common neurodegenerative diseases of the elderly people that have devastating effects in terms of morbidity and mortality. The predominant form of the disease in either case is sporadic with uncertain etiology. The clinical features of Parkinson’s disease are primarily motor deficits, while the patients of Alzheimer’s disease present with dementia and cognitive impairment. Though neuronal death is a common element in both the disorders, the postmortem histopathology of the brain is very characteristic in each case and different from each other. In terms of molecular pathogenesis, however, both the diseases have a significant commonality, and proteinopathy (abnormal accumulation of misfolded proteins), mitochondrial dysfunction and oxidative stress are the cardinal features in either case. These three damage mechanisms work in concert, reinforcing each other to drive the pathology in the aging brain for both the diseases; very interestingly, the nature of interactions among these three damage mechanisms is very similar in both the diseases, and this review attempts to highlight these aspects. In the case of Alzheimer’s disease, the peptide amyloid beta (Aβ) is responsible for the proteinopathy, while α-synuclein plays a similar role in Parkinson’s disease. The expression levels of these two proteins and their aggregation processes are modulated by reactive oxygen radicals and transition metal ions in a similar manner. In turn, these proteins – as oligomers or in aggregated forms – cause mitochondrial impairment by apparently following similar mechanisms. Understanding the common nature of these interactions may, therefore, help us to identify putative neuroprotective strategies that would be beneficial in both the clinical conditions.
Collapse
Affiliation(s)
- Gargi Ganguly
- Department of Pathology, Institute of Post Graduate Medical Education and Research, Kolkata
| | - Sasanka Chakrabarti
- Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, West Bengal, India
| | - Uttara Chatterjee
- Department of Pathology, Institute of Post Graduate Medical Education and Research, Kolkata
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Bennett J, Burns J, Welch P, Bothwell R. Safety and Tolerability of R(+) Pramipexole in Mild-to-Moderate Alzheimer's Disease. J Alzheimers Dis 2016; 49:1179-87. [PMID: 26682692 DOI: 10.3233/jad-150788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is an aging-related, degenerative brain disease of adults. Most (∼95%) of AD occurs sporadically and is associated with early-appearing deficits in brain regional glucose uptake, changes in cerebrospinal fluid (CSF) AD-related proteins, regional brain atrophy, and oxidative stress damage. We treated mild-moderate AD individuals with R(+)-pramipexole-dihydrochloride (R(+)PPX), a neuroprotective, lipophilic-cation, free-radical scavenger that accumulates into brain and mitochondria. 19 subjects took R(+)PPX twice a day in increasing daily doses up to 300 mg/day under a physician-sponsor IND (60,948, JPB), IRB-approved protocol and quarterly external safety committee monitoring. 15 persons finished and contributed baseline and post-treatment serum, lumbar spinal fluid, brain 18F-2DG PET scans, and ADAS-Cog scores. ADAS-Cog scores did not change (n = 1), improved (n = 2), declined 1-3 points (n = 5), or declined 4-13 points (n = 8) over 6 months of R(+)PPX treatment. Serum PPX levels were not related to changes in ADAS-Cog scores. Fasting AM serum PPX levels at 6 months varied considerably across subjects and correlated strongly with CSF [PPX] (r = 0.97, p < 0.0001). CSF [PPX] was not related to CSF [Aβ(42)], [Tau], or [P-Tau]. Regional 18F-2DG measures of brain glucose uptake demonstrated a 3-6% decline during R(+)PPX treatment. 56 mild-moderate adverse events occurred, 26 probably/definitely related to R(+)PPX use, with 4 withdrawals. R(+)PPX was generally well-tolerated and entered brain extracellular space linearly. Further studies of R(+)PPX in AD should include a detailed pharmacokinetic study of peak and trough serum [PPX] variations among subjects prior to planning any larger studies that would be needed to determine efficacy in altering disease progression.
Collapse
Affiliation(s)
- James Bennett
- Virginia Commonwealth University Parkinson's Center, Richmond, VA, USA.,Neurodegeneration Therapeutics, Inc., Charlottesville, VA, USA
| | - Jeffrey Burns
- University of Kansas School of Medicine Alzheimer's Disease Center, Kansas City, KS, USA
| | - Paul Welch
- University of Kansas School of Medicine Alzheimer's Disease Center, Kansas City, KS, USA
| | - Rebecca Bothwell
- University of Kansas School of Medicine Alzheimer's Disease Center, Kansas City, KS, USA
| |
Collapse
|
21
|
Bu XL, Jiao SS, Lian Y, Wang YJ. Perspectives on the Tertiary Prevention Strategy for Alzheimer's Disease. Curr Alzheimer Res 2016; 13:307-16. [PMID: 26667888 PMCID: PMC4997925 DOI: 10.2174/1567205013666151215110114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Amyloid-beta (Aβ) plays a pivotal role in Alzheimer's disease (AD) pathogenesis, and is the most promising disease-modifying target for AD. A succession of failures in Aβ-targeting clinical trials, however, has prompted questions on whether Aβ is the true cause of AD and a valid therapeutic target. Therefore, current therapeutic targets and intervention strategies must be reconsidered. In addition to Aβ, multiple pathological events such as tau hyperphosphorylation, oxidative stress and neuroinflammation are involved in the disease pathogenesis and cause cross-talk between these pathological pathways, which synergistically drive disease progression. Increasing evidence also reveals that the pathogenesis varies at different stages of the disease. Therefore, targeting Aβ alone at all stages of the disease would not be sufficient to halt or reverse disease progression. In the light of the pathophysiologic similarities between the development of ischemic stroke and AD, we can formulate management strategies for AD from the successful practice of ischemic stroke management, namely the tertiary prevention strategy. These new perspectives of tertiary prevention target both Aβ and different pathological pathways of AD pathogenesis at different stages of the disease, and may represent a promising avenue for the effective prevention and treatment of AD.
Collapse
Affiliation(s)
| | | | | | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
22
|
Protective Effects of Dietary Supplementation with a Combination of Nutrients in a Transgenic Mouse Model of Alzheimer's Disease. PLoS One 2015; 10:e0143135. [PMID: 26606074 PMCID: PMC4659639 DOI: 10.1371/journal.pone.0143135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/31/2015] [Indexed: 01/21/2023] Open
Abstract
Objective This study investigated the effects of intervention with a combination of nutrients in the amyloid precursor protein-presenilin (APP-PSN) C57BL/6J double transgenic mouse model of Alzheimer’s disease (AD). Methods A total of 72 2-month-old APP-PSN mice were randomly assigned to three groups. The model group (MG) was fed regular, unsupplemented chow, while the low- and high-dose treatment groups (LG and HG, respectively) were given a combination of nutrients that included phosphatidylserine, blueberry extracts, docosahexaenoic acid, and eicosapentaenoic acid as part of their diet. An additional 24 wild-type littermates that were fed unsupplemented chow served as the negative control group (NG). After 3 and 7 months of treatment, the cognitive performance was assessed with the Morris water maze and the shuttle box escape/avoidance task, and the biochemical parameters and oxidative stress were evaluated in both the blood and brain. Results An improvement in antioxidant capacity was observed in the treatment groups relative to the MG at 3 months, while superior behavioral test results were observed in the mice of the HG and NG groups. In the MG, pycnosis was detected in neuronal nuclei, and a loss of neurons was observed in the cerebral cortex and the hippocampus. At 7 months, the β-amyloid1–42 peptide accumulation was significantly elevated in the MG but was markedly lower in the mice fed the nutrient combination. The antioxidant capacity and behavioral test scores were also higher in these mice. Conclusions Early intervention with a combination of nutrients should be considered as a strategy for preventing cognitive decline and other symptoms associated with AD.
Collapse
|
23
|
Chakrabarti S, Khemka VK, Banerjee A, Chatterjee G, Ganguly A, Biswas A. Metabolic Risk Factors of Sporadic Alzheimer's Disease: Implications in the Pathology, Pathogenesis and Treatment. Aging Dis 2015; 6:282-99. [PMID: 26236550 DOI: 10.14336/ad.2014.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD), the major cause of dementia among the elderly world-wide, manifests in familial and sporadic forms, and the latter variety accounts for the majority of the patients affected by this disease. The etiopathogenesis of sporadic AD is complex and uncertain. The autopsy studies of AD brain have provided limited understanding of the antemortem pathogenesis of the disease. Experimental AD research with transgenic animal or various cell based models has so far failed to explain the complex and varied spectrum of AD dementia. The review, therefore, emphasizes the importance of AD related risk factors, especially those with metabolic implications, identified from various epidemiological studies, in providing clues to the pathogenesis of this complex disorder. Several metabolic risk factors of AD like hypercholesterolemia, hyperhomocysteinemia and type 2 diabetes have been studied extensively both in epidemiology and experimental research, while much less is known about the role of adipokines, pro-inflammatory cytokines and vitamin D in this context. Moreover, the results from many of these studies have shown a degree of variability which has hindered our understanding of the role of AD related risk factors in the disease progression. The review also encompasses the recent recommendations regarding clinical and neuropathological diagnosis of AD and brings out the inherent uncertainty and ambiguity in this area which may have a distinct impact on the outcome of various population-based studies on AD-related risk factors.
Collapse
Affiliation(s)
- Sasanka Chakrabarti
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Vineet Kumar Khemka
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Anindita Banerjee
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India. ; Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, India
| | - Gargi Chatterjee
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Anirban Ganguly
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Atanu Biswas
- Department of Neuromedicine, Bangur Institute of Neurosciences (BIN), Kolkata, India
| |
Collapse
|
24
|
Zheng KM, Zhang J, Zhang CL, Zhang YW, Chen XC. Curcumin inhibits appoptosin-induced apoptosis via upregulating heme oxygenase-1 expression in SH-SY5Y cells. Acta Pharmacol Sin 2015; 36:544-52. [PMID: 25891083 DOI: 10.1038/aps.2014.166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/20/2014] [Indexed: 01/06/2023] Open
Abstract
AIM Appoptosin (SLC25A38) is a pro-apoptotic protein, which is upregulated in Alzheimer's disease (AD) brains and plays an important role in promoting the pathological progress of AD. The aim of this study was to investigate the effects of curcumin from the rhizome of Curcuma longa on appoptosin-induced apoptosis in SH-SY5Y cells. METHODS SH-SY5Y cells were pretreated with curcumin, then transfected with appoptosin or vector. The apoptotic cells were detected with Annexin V staining analysis by flow cytometry. The expression of cleaved caspase-3, appoptosin, heme oxygenase-1 (HO-1) was examined using Western blotting. Intracellular level of ROS was measured with DCFH-DA staining by flow cytometry analysis. Mitochondrial membrane potential (ΔΨm) was detected with JC-1 staining under a fluorescence microscope and quantified by fluorescence ratio detection.Overexpression of appoptosin in SH-SY5Y cells markedly increased cell apoptosis accompanied by reduced HO-1 expression, increased intracellular heme level, ROS overproduction and ΔΨm impairment. Treatment of SH-SY5Y cells with curcumin (2.5-20 μmol/L) for 24 h did not significantly affect their viability. However, pretreatment with curcumin (2.5-20 μmol/L) dose-dependently attenuated all above-mentioned pathological changes in appoptosin-transfected SH-SY5Y cells. RESULTS Overexpression of appoptosin in SH-SY5Y cells markedly increased cell apoptosis accompanied by reduced HO-1 expression, increased intracellular heme level, ROS overproduction and ΔΨm impairment. Treatment of SH-SY5Y cells with curcumin (2.5-20 μmol/L) for 24 h did not significantly affect their viability. However, pretreatment with curcumin (2.5-20 μmol/L) dose-dependently attenuated all above-mentioned pathological changes in appoptosin-transfected SH-SY5Y cells. CONCLUSION Curcumin inhibits appoptosin-induced apoptosis in SH-SY5Y cells by upregulating the expression of HO-1, reducing the production of intracellular heme and ROS, and preventing the ΔΨm loss.
Collapse
|
25
|
Matveev SV, Kwiatkowski S, Sviripa VM, Fazio RC, Watt DS, LeVine H. Tritium-labeled (E,E)-2,5-bis(4'-hydroxy-3'-carboxystyryl)benzene as a probe for β-amyloid fibrils. Bioorg Med Chem Lett 2014; 24:5534-6. [PMID: 25452000 PMCID: PMC4254541 DOI: 10.1016/j.bmcl.2014.09.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/11/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022]
Abstract
Accumulation of Aβ in the brains of Alzheimer disease (AD) patients reflects an imbalance between Aβ production and clearance from their brains. Alternative cleavage of amyloid precursor protein (APP) by processing proteases generates soluble APP fragments including the neurotoxic amyloid Aβ40 and Aβ42 peptides that assemble into fibrils and form plaques. Plaque-buildup occurs over an extended time-frame, and the early detection and modulation of plaque formation are areas of active research. Radiolabeled probes for the detection of amyloid plaques and fibrils in living subjects are important for noninvasive evaluation of AD diagnosis, progression, and differentiation of AD from other neurodegenerative diseases and age-related cognitive decline. Tritium-labeled (E,E)-1-[(3)H]-2,5-bis(4'-hydroxy-3'-carbomethoxystyryl)benzene possesses an improved level of chemical stability relative to a previously reported radioiodinated analog for radiometric quantification of Aβ plaque and tau pathology in brain tissue and in vitro studies with synthetic Aβ and tau fibrils.
Collapse
Affiliation(s)
- Sergey V Matveev
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, United States
| | - Stefan Kwiatkowski
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, United States
| | - Vitaliy M Sviripa
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, United States
| | - Robert C Fazio
- ViTrax Radiochemicals, 660 S. Jefferson Street, Unit E, Placentia, CA 92870, United States
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, United States; Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093, United States.
| | - Harry LeVine
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, United States.
| |
Collapse
|
26
|
Kesler SR. Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging 2014; 35 Suppl 2:S11-9. [PMID: 24913897 PMCID: PMC4120757 DOI: 10.1016/j.neurobiolaging.2014.03.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/01/2023]
Abstract
Chronic medical conditions and/or their treatments may interact with aging to alter or even accelerate brain senescence. Adult onset cancer, for example, is a disease associated with advanced aging and emerging evidence suggests a profile of subtle but diffuse brain injury following cancer chemotherapy. Breast cancer is currently the primary model for studying these "chemobrain" effects. Given the widespread changes to brain structure and function as well as the common impairment of integrated cognitive skills observed following breast cancer chemotherapy, it is likely that large-scale brain networks are involved. Default mode network (DMN) is a strong candidate considering its preferential vulnerability to aging and sensitivity to toxicity and disease states. Additionally, chemotherapy is associated with several physiological effects including increased inflammation and oxidative stress that are believed to elevate toxicity in the DMN. Biomarkers of DMN connectivity could aid in the development of treatments for chemotherapy-related cognitive decline.
Collapse
Affiliation(s)
- Shelli R Kesler
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
27
|
Zimmermann M. Neuronal AChE splice variants and their non-hydrolytic functions: redefining a target of AChE inhibitors? Br J Pharmacol 2014; 170:953-67. [PMID: 23991627 DOI: 10.1111/bph.12359] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 08/04/2013] [Accepted: 08/12/2013] [Indexed: 12/11/2022] Open
Abstract
AChE enzymatic inhibition is a core focus of pharmacological intervention in Alzheimer's disease (AD). Yet, AChE has also been ascribed non-hydrolytic functions, which seem related to its appearance in various isoforms. Neuronal AChE presents as a tailed form (AChE-T) predominantly found on the neuronal synapse, and a facultatively expressed readthough form (AChE-R), which exerts short to medium-term protective effects. Notably, this latter form is also found in the periphery. While these non-hydrolytic functions of AChE are most controversially discussed, there is evidence for them being additional targets of AChE inhibitors. This review aims to provide clarification as to the role of these AChE splice variants and their interplay with other cholinergic parameters and their being targets of AChE inhibition: AChE-R is particularly involved in the mediation of (anti-)apoptotic events in cholinergic cells, involving adaptation of various cholinergic parameters and a time-dependent link to the expression of neuroprotective factors. The AChE-T C-terminus is central to AChE activity regulation, while isolated AChE-T C-terminal fragments mediate toxic effects via the α7 nicotinic acetylcholine receptor. There is direct evidence for roles of AChE-T and AChE-R in neurodegeneration and neuroprotection, with these roles involving AChE as a key modulator of the cholinergic system: in vivo data further encourages the use of AChE inhibitors in the treatment of neurodegenerative conditions such as AD since effects on both enzymatic activity and the enzyme's non-hydrolytic functions can be postulated. It also suggests that novel AChE inhibitors should enhance protective AChE-R, while avoiding the concomitant up-regulation of AChE-T.
Collapse
Affiliation(s)
- M Zimmermann
- Department of Pharmacology, School of Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that causes dementia in a large percentage of the aged population and for which there are only symptomatic treatments. Disease-modifying therapies that are currently being pursued are based on the amyloid cascade theory. This states that accumulation of amyloid β (Aβ) in the brain triggers a cascade of cellular events leading to neurodegeneration. Aβ, which is the major constituent of amyloid plaques, is a peptidic fragment derived from proteolytic processing of the amyloid precursor protein (APP) by sequential cleavages that involve β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase. Targeting BACE1 is a rational approach as its cleavage of APP is the rate-limiting step in Aβ production and this enzyme is elevated in the brain of patients with AD. Furthermore, knocking out the BACE1 gene in mice showed little apparent consequences. Ten years of intensive research has led to the design of efficacious BACE1 inhibitors with favorable pharmacological properties. Several drug candidates have shown promising results in animal models, as they reduce amyloid plaque pathology in the brain and rescue cognitive deficits. Phase I clinical trials indicate that these drugs are well tolerated, and the results from further trials in AD patients are now awaited eagerly. Yet, recent novel information on BACE1 biology, and the discovery that BACE1 cleaves a selection of substrates involved in myelination, retinal homeostasis, brain circuitry, and synaptic function, alert us to potential side effects of BACE1 inhibitors that will require further evaluation to provide a safe therapy for AD.
Collapse
|
29
|
Micropublications: a semantic model for claims, evidence, arguments and annotations in biomedical communications. J Biomed Semantics 2014; 5:28. [PMID: 26261718 PMCID: PMC4530550 DOI: 10.1186/2041-1480-5-28] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background Scientific publications are documentary representations of defeasible arguments, supported by data and repeatable methods. They are the essential mediating artifacts in the ecosystem of scientific communications. The institutional “goal” of science is publishing results. The linear document publication format, dating from 1665, has survived transition to the Web. Intractable publication volumes; the difficulty of verifying evidence; and observed problems in evidence and citation chains suggest a need for a web-friendly and machine-tractable model of scientific publications. This model should support: digital summarization, evidence examination, challenge, verification and remix, and incremental adoption. Such a model must be capable of expressing a broad spectrum of representational complexity, ranging from minimal to maximal forms. Results The micropublications semantic model of scientific argument and evidence provides these features. Micropublications support natural language statements; data; methods and materials specifications; discussion and commentary; challenge and disagreement; as well as allowing many kinds of statement formalization. The minimal form of a micropublication is a statement with its attribution. The maximal form is a statement with its complete supporting argument, consisting of all relevant evidence, interpretations, discussion and challenges brought forward in support of or opposition to it. Micropublications may be formalized and serialized in multiple ways, including in RDF. They may be added to publications as stand-off metadata. An OWL 2 vocabulary for micropublications is available at http://purl.org/mp. A discussion of this vocabulary along with RDF examples from the case studies, appears as OWL Vocabulary and RDF Examples in Additional file
1. Conclusion Micropublications, because they model evidence and allow qualified, nuanced assertions, can play essential roles in the scientific communications ecosystem in places where simpler, formalized and purely statement-based models, such as the nanopublications model, will not be sufficient. At the same time they will add significant value to, and are intentionally compatible with, statement-based formalizations. We suggest that micropublications, generated by useful software tools supporting such activities as writing, editing, reviewing, and discussion, will be of great value in improving the quality and tractability of biomedical communications.
Collapse
|
30
|
Ulrich H, Bocsi J, Glaser T, Tárnok A. Cytometry in the brain: studying differentiation to diagnostic applications in brain disease and regeneration therapy. Cell Prolif 2014; 47:12-9. [PMID: 24450810 DOI: 10.1111/cpr.12087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/02/2013] [Indexed: 12/30/2022] Open
Abstract
During brain development, a population of uniform embryonic cells migrates and differentiates into a large number of neural phenotypes - origin of the enormous complexity of the adult nervous system. Processes of cell proliferation, differentiation and programmed death of no longer required cells, do not occur only during embryogenesis, but are also maintained during adulthood and are affected in neurodegenerative and neuropsychiatric disease states. As neurogenesis is an endogenous response to brain injury, visible as proliferation (of to this moment silent stem or progenitor cells), its further stimulation can present a treatment strategy in addition to stem cell transfer for cell regeneration therapy. Concise techniques for studying such events in vitro and in vivo permit understanding of underlying mechanisms. Detection of subtle physiological alterations in brain cell proliferation and neurogenesis can be explored, that occur during environmental stimulation, exercise and ageing. Here, we have collected achievements in the field of basic research on applications of cytometry, including automated imaging for quantification of morphological or fluorescence-based parameters in cell cultures, towards imaging of three-dimensional brain architecture together with DNA content and proliferation data. Multi-parameter and more recently in vivo flow cytometry procedures, have been developed for quantification of phenotypic diversity and cell processes that occur during brain development as well as in adulthood, with importance for therapeutic approaches.
Collapse
Affiliation(s)
- H Ulrich
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, São Paulo, S.P 05508-900, Brazil
| | | | | | | |
Collapse
|
31
|
Song JW, Choi BS. Mercury induced the Accumulation of Amyloid Beta (Aβ) in PC12 Cells: The Role of Production and Degradation of Aβ. Toxicol Res 2014; 29:235-40. [PMID: 24578793 PMCID: PMC3936175 DOI: 10.5487/tr.2013.29.4.235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 01/15/2023] Open
Abstract
Extracellular accumulation of amyloid beta protein (Aβ) plays a central role in Alzheimer’s disease (AD). Some metals, such as copper, lead, and aluminum can affect the Aβ accumulation in the brain. However, the effect of mercury on Aβ accumulation in the brain is not clear. Thus, this study was proposed to estimate whether mercury concentration affects Aβ accumulation in PC12 cells. We treated 10, 100, and 1000 nM HgCl2 (Hg) or CH3HgCl2 (MeHg) for 48 hr in PC12 cells. After treatment, Aβ40 in culture medium increased in a dose- and time-dependent manner. Hg and MeHg increased amyloid precursor protein (APP), which is related to Aβ production. Neprilysin (NEP) levels in PC12 cells were decreased by Hg and MeHg treatment. These results suggested that Hg induced Aβ accumulation through APP overproduction and reduction of NEP.
Collapse
Affiliation(s)
- Ji-Won Song
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Byung-Sun Choi
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
32
|
Drachman DA. The amyloid hypothesis, time to move on: Amyloid is the downstream result, not cause, of Alzheimer's disease. Alzheimers Dement 2014; 10:372-80. [PMID: 24589433 DOI: 10.1016/j.jalz.2013.11.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/07/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022]
Abstract
The "amyloid hypothesis" has dominated Alzheimer research for more than 20 years, and proposes that amyloid is the toxic cause of neural/synaptic damage and dementia. If correct, decreasing the formation or removing amyloid should be therapeutic. Despite discrepancies in the proposed mechanism, and failed clinical trials, amyloid continues to be considered the cause of a degenerative cascade. Alternative hypotheses must explain three features: (i) why amyloid toxicity is not the etiology of Alzheimer's disease (AD), (ii) what alternative mechanisms cause the degeneration and dementia of AD, and (iii) why increased amyloid accumulates in the brain in AD. We propose that AD, which occurs in elderly, already vulnerable brains, with multiple age-related changes, is precipitated by impaired microvascular function, resulting primarily from decreased Notch-related angiogenesis. With impaired microvasculature, a lack of vascular endothelial-derived trophic factors and decreased cerebral blood flow cause the atrophy of neural structures. Therapeutic strategies should focus on supporting normal angiogenesis.
Collapse
|
33
|
Yu M, Ryan TM, Ellis S, Bush AI, Triccas JA, Rutledge PJ, Todd MH. Neuroprotective peptide–macrocycle conjugates reveal complex structure–activity relationships in their interactions with amyloid β. Metallomics 2014; 6:1931-40. [DOI: 10.1039/c4mt00122b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel neuroprotective peptide–macrocycle conjugates exhibit complex, multifaceted structure–activity relationships in their interactions with amyloid β.
Collapse
Affiliation(s)
- Mingfeng Yu
- School of Chemistry
- The University of Sydney
- Sydney, Australia
| | - Timothy M. Ryan
- The Florey Institute of Neuroscience and Mental Health
- Parkville, Australia
| | - Samantha Ellis
- Sydney Medical School
- The University of Sydney
- Sydney, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health
- Parkville, Australia
| | | | | | - Matthew H. Todd
- School of Chemistry
- The University of Sydney
- Sydney, Australia
| |
Collapse
|
34
|
Genetics of Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:254954. [PMID: 23984328 PMCID: PMC3741956 DOI: 10.1155/2013/254954] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease is the most common form of dementia and is the only top 10 cause of death in the United States that lacks disease-altering treatments. It is a complex disorder with environmental and genetic components. There are two major types of Alzheimer's disease, early onset and the more common late onset. The genetics of early-onset Alzheimer's disease are largely understood with variants in three different genes leading to disease. In contrast, while several common alleles associated with late-onset Alzheimer's disease, including APOE, have been identified using association studies, the genetics of late-onset Alzheimer's disease are not fully understood. Here we review the known genetics of early- and late-onset Alzheimer's disease.
Collapse
|
35
|
CNF1 increases brain energy level, counteracts neuroinflammatory markers and rescues cognitive deficits in a murine model of Alzheimer's disease. PLoS One 2013; 8:e65898. [PMID: 23738020 PMCID: PMC3667817 DOI: 10.1371/journal.pone.0065898] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
Overexpression of pro-inflammatory cytokines and cellular energy failure are associated with neuroinflammatory disorders, such as Alzheimer's disease. Transgenic mice homozygous for human ApoE4 gene, a well known AD and atherosclerosis animal model, show decreased levels of ATP, increased inflammatory cytokines level and accumulation of beta amyloid in the brain. All these findings are considered responsible for triggering cognitive decline. We have demonstrated that a single administration of the bacterial E. coli protein toxin CNF1 to aged apoE4 mice, beside inducing a strong amelioration of both spatial and emotional memory deficits, favored the cell energy restore through an increment of ATP content. This was accompanied by a modulation of cerebral Rho and Rac1 activity. Furthermore, CNF1 decreased the levels of beta amyloid accumulation and interleukin-1β expression in the hippocampus. Altogether, these data suggest that the pharmacological modulation of Rho GTPases by CNF1 can improve memory performances in an animal model of Alzheimer's disease via a control of neuroinflammation and a rescue of systemic energy homeostasis.
Collapse
|
36
|
Jeynes B, Provias J. P-Glycoprotein Altered Expression in Alzheimer's Disease: Regional Anatomic Variability. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:257953. [PMID: 26316985 PMCID: PMC4437351 DOI: 10.1155/2013/257953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/25/2013] [Accepted: 03/13/2013] [Indexed: 11/17/2022]
Abstract
We investigated the expression of P-glycoprotein (P-gp) in brain samples of Alzheimer disease (AD) and normative brains (NM). Superior temporal cortex hippocampal and brainstem samples from 15 AD and NM brains were selected from comparable sites. P-gp positive capillaries and β-amyloid (Aβ) senile plaques (SP) were counted. Statistical analysis of the data was performed using nonparametric data analysis with Mann-Whitney, Kruskal-Wallis, and Spearman's tests. There were no significant differences in P-gp expression between superior temporal and hippocampus samples. However, there were significant differences in P-gp expression, when comparing brainstem with both hippocampal and superior temporal samples in both conditions (P < 0.012; P < 0.002 in NM cases and P < 0.001; <0.001 in AD cases); the brainstem has greater P-gp expression in each case and condition. In addition, there was a notable inverse negative correlation (P < 0.01) between P-gp expression and the presence of SPs in the AD condition superior temporal cortex. The results of this study suggest that there were significant site-dependent differences in the expression of P-gp. There may be an increased protective role for P-gp expression against amyloid deposition in the brainstem and in the superior temporal cortex of AD brains.
Collapse
Affiliation(s)
- Brian Jeynes
- Department of Community Health Sciences, Faculty of Applied Health Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON, Canada L2S 3A1
| | - John Provias
- Department of Pathology & Molecular, Medicine [Neuropathology], Hamilton Health Sciences, McMaster University, Hamilton, 1280 Main Street West, Hamilton, ON, Canada L8S4L8
| |
Collapse
|
37
|
Leclerc B, Abulrob A. Perspectives in molecular imaging using staging biomarkers and immunotherapies in Alzheimer's disease. ScientificWorldJournal 2013; 2013:589308. [PMID: 23476143 PMCID: PMC3576798 DOI: 10.1155/2013/589308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/20/2012] [Indexed: 01/02/2023] Open
Abstract
Sporadic Alzheimer's disease (AD) is an emerging chronic illness characterized by a progressive pleiotropic pathophysiological mode of actions triggered during the senescence process and affecting the elderly worldwide. The complex molecular mechanisms of AD not only are supported by cholinergic, beta-amyloid, and tau theories but also have a genetic basis that accounts for the difference in symptomatology processes activation among human population which will evolve into divergent neuropathological features underlying cognitive and behaviour alterations. Distinct immune system tolerance could also influence divergent responses among AD patients treated by immunotherapy. The complexity in nature increases when taken together the genetic/immune tolerance with the patient's brain reserve and with neuropathological evolution from early till advance AD clinical stages. The most promising diagnostic strategies in today's world would consist in performing high diagnostic accuracy of combined modality imaging technologies using beta-amyloid 42 peptide-cerebrospinal fluid (CSF) positron emission tomography (PET), Pittsburgh compound B-PET, fluorodeoxyglucose-PET, total and phosphorylated tau-CSF, and volumetric magnetic resonance imaging hippocampus biomarkers for criteria evaluation and validation. Early diagnosis is the challenge task that needs to look first at plausible mechanisms of actions behind therapies, and combining them would allow for the development of efficient AD treatment in a near future.
Collapse
Affiliation(s)
- Benoît Leclerc
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - Abedelnasser Abulrob
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
- Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Building M-54, Ottawa, ON, Canada K1A 0R6
| |
Collapse
|
38
|
Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer's disease. Mol Neurodegener 2012; 7:52. [PMID: 23039869 PMCID: PMC3507664 DOI: 10.1186/1750-1326-7-52] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex age-related pathology, the etiology of which has not been firmly delineated. Among various histological stigmata, AD-affected brains display several cellular dysfunctions reflecting enhanced oxidative stress, inflammation process and calcium homeostasis disturbance. Most of these alterations are directly or indirectly linked to amyloid β-peptides (Aβ), the production, molecular nature and biophysical properties of which likely conditions the degenerative process. It is particularly noticeable that, in a reverse control process, the above-described cellular dysfunctions alter Aβ peptides levels. β-secretase βAPP-cleaving enzyme 1 (BACE1) is a key molecular contributor of this cross-talk. This enzyme is responsible for the primary cleavage generating the N-terminus of “full length” Aβ peptides and is also transcriptionally induced by several cellular stresses. This review summarizes data linking brain insults to AD-like pathology and documents the key role of BACE1 at the cross-road of a vicious cycle contributing to Aβ production.
Collapse
Affiliation(s)
- Linda Chami
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, 06560 Valbonne, France
| | | |
Collapse
|
39
|
Lapchak PA. Transcranial near-infrared laser therapy applied to promote clinical recovery in acute and chronic neurodegenerative diseases. Expert Rev Med Devices 2012; 9:71-83. [PMID: 22145842 DOI: 10.1586/erd.11.64] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
One of the most promising methods to treat neurodegeneration is noninvasive transcranial near-infrared laser therapy (NILT), which appears to promote acute neuroprotection by stimulating mitochondrial function, thereby increasing cellular energy production. NILT may also promote chronic neuronal function restoration via trophic factor-mediated plasticity changes or possibly neurogenesis. Clearly, NILT is a treatment that confers neuroprotection or neurorestoration using pleiotropic mechanisms. The most advanced application of NILT is for acute ischemic stroke based upon extensive preclinical and clinical studies. In laboratory settings, NILT is also being developed to treat traumatic brain injury, Alzheimer's disease and Parkinson's disease. There is some intriguing data in the literature that suggests that NILT may be a method to promote clinical improvement in neurodegenerative diseases where there is a common mechanistic component, mitochondrial dysfunction and energy impairment. This article will analyze and review data supporting the continued development of NILT to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul A Lapchak
- Cedars-Sinai Medical Center, Department of Neurology, Los Angeles, CA 90048, USA.
| |
Collapse
|
40
|
Transient focal cerebral ischemia/reperfusion induces early and chronic axonal changes in rats: its importance for the risk of Alzheimer's disease. PLoS One 2012; 7:e33722. [PMID: 22457786 PMCID: PMC3311543 DOI: 10.1371/journal.pone.0033722] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/15/2012] [Indexed: 11/19/2022] Open
Abstract
The dementia of Alzheimer's type and brain ischemia are known to increase at comparable rates with age. Recent advances suggest that cerebral ischemia may contribute to the pathogenesis of Alzheimer's disease (AD), however, the neuropathological relationship between these two disorders is largely unclear. It has been demonstrated that axonopathy, mainly manifesting as impairment of axonal transport and swelling of the axon and varicosity, is a prominent feature in AD and may play an important role in the neuropathological mechanisms in AD. In this study, we investigated the early and chronic changes of the axons of neurons in the different brain areas (cortex, hippocampus and striatum) using in vivo tracing technique and grading analysis method in a rat model of transient focal cerebral ischemia/reperfusion (middle cerebral artery occlusion, MCAO). In addition, the relationship between the changes of axons and the expression of β-amyloid 42 (Aβ42) and hyperphosphorylated Tau, which have been considered as the key neuropathological processes of AD, was analyzed by combining tracing technique with immunohistochemistry or western blotting. Subsequently, we found that transient cerebral ischemia/reperfusion produced obvious swelling of the axons and varicosities, from 6 hours after transient cerebral ischemia/reperfusion even up to 4 weeks. We could not observe Aβ plaques or overexpression of Aβ42 in the ischemic brain areas, however, the site-specific hyperphosphorylated Tau could be detected in the ischemic cortex. These results suggest that transient cerebral ischemia/reperfusion induce early and chronic axonal changes, which may be an important mechanism affecting the clinical outcome and possibly contributing to the development of AD after stroke.
Collapse
|
41
|
More SS, Vince R. Potential of a γ-glutamyl-transpeptidase-stable glutathione analogue against amyloid-β toxicity. ACS Chem Neurosci 2012; 3:204-10. [PMID: 22860189 DOI: 10.1021/cn200113z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/03/2012] [Indexed: 11/29/2022] Open
Abstract
The antioxidant properties of glutathione (GSH) and their relevance to oxidative stress induced pathological states such as Alzheimer's disease is well-established. The utility of GSH itself as a pharmacotherapeutic agent for such disorders is limited because of the former's lability to breakdown through amide cleavage by the ubiquitous enzyme γ-glutamyl transpeptidase (γ-GT). In the present study, a GSH analogue, Ψ-GSH, where the γ-glutamylcysteine amide linkage is replaced with a ureide linkage, was synthesized. Ψ-GSH was found to be stable toward γ-GT mediated breakdown. Ψ-GSH fulfilled four cardinal properties of GSH, namely, traversing across the blood brain barrier (BBB) via the GSH active uptake machinery, replacing GSH in the glyoxalase-I mediated detoxification of methylglyoxal, protecting cells against chemical oxidative insult, and finally lowering the cytotoxicity of amyloid-β peptide. These results validate Ψ-GSH as a viable metabolically stable replacement for GSH and establish it as a potential preclinical candidate for treatment of oxidative stress mediated pathology.
Collapse
Affiliation(s)
- Swati S. More
- Center for Drug Design, Academic
Health Center, University of Minnesota,
Minneapolis, Minnesota 55455,
United States
| | - Robert Vince
- Center for Drug Design, Academic
Health Center, University of Minnesota,
Minneapolis, Minnesota 55455,
United States
| |
Collapse
|
42
|
Yao J, Brinton RD. Targeting mitochondrial bioenergetics for Alzheimer's prevention and treatment. Curr Pharm Des 2012; 17:3474-9. [PMID: 21902662 DOI: 10.2174/138161211798072517] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/17/2011] [Indexed: 01/31/2023]
Abstract
Alzheimer's is a neurodegenerative disease with a complex and progressive pathological phenotype characterized first by hypometabolism and impaired mitochondrial bioenergetics followed by pathological burden. The progressive and multifaceted degenerative phenotype of Alzheimer's suggests that successful treatment strategies necessarily will be equally multi-faceted and disease stage specific. Traditional therapeutic strategies based on the pathological aspect of the disease have achieved success in preclinical models which has not translated into clinical therapeutic efficacy. Meanwhile, increasing evidence indicates an antecedent and potentially causal role of mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress in AD pathogenesis. The essential role of mitochondrial bioenergetics and the unique trajectory of alterations in brain metabolic capacity enable a bioenergetic- centric strategy that targets disease-stage specific pattern of brain metabolism for disease prevention and treatment. A combination of nutraceutical and pharmaceutical intervention that enhances glucose-driven metabolic activity and potentiates mitochondrial bioenergetic function could prevent the antecedent decline in brain glucose metabolism, promote healthy aging and prevent AD. Alternatively, during the prodromal incipient phase of AD, sustained activation of ketogenic metabolic pathways coupled with supplement of the alternative fuel source, ketone bodies, could sustain mitochondrial bioenergetic function to prevent or delay further progression of the disease.
Collapse
Affiliation(s)
- Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90033, USA
| | | |
Collapse
|
43
|
Xiao AW, He J, Wang Q, Luo Y, Sun Y, Zhou YP, Guan Y, Lucassen PJ, Dai JP. The origin and development of plaques and phosphorylated tau are associated with axonopathy in Alzheimer's disease. Neurosci Bull 2012; 27:287-99. [PMID: 21934724 DOI: 10.1007/s12264-011-1736-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The production of neurotoxic β-amyloid and the formation of hyperphosphorylated tau are thought to be critical steps contributing to the neuropathological mechanisms in Alzheimer's disease (AD). However, there remains an argument as to their importance in the onset of AD. Recent studies have shown that axonopathy is considered as an early stage of AD. However, the exact relationship between axonopathy and the origin and development of classic neuropathological changes such as senile plaques (SPs) and neurofibrillary tangles (NFTs) is unclear. The present study aimed to investigate this relationship. METHODS Postmortem tracing, combined with the immunohistochemical or immunofluorescence staining, was used to detect axonopathy and the formation of SPs and NFTs. RESULTS Axonal leakage-a novel type of axonopathy, was usually accompanied with the extensive swollen axons and varicosities, and was associated with the origin and development of Aβ plaques and hyperphosphorylated tau in the brains of AD patients. CONCLUSION Axonopathy, particularly axonal leakage, might be a key event in the initiation of the neuropathological processes in AD.
Collapse
Affiliation(s)
- Ai-Wu Xiao
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yao J, Brinton RD. Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer's disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:327-71. [PMID: 22840752 PMCID: PMC3970844 DOI: 10.1016/b978-0-12-394816-8.00010-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a complex and progressive pathological phenotype characterized first by hypometabolism and impaired mitochondrial bioenergetics followed by pathological burden. Increasing evidence indicates an antecedent and potentially causal role of mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress in AD pathogenesis. Compromised aerobic glycolysis pathway coupled with oxidative stress is first accompanied by a shift toward a ketogenic pathway that eventually progresses into fatty acid oxidation (FAO) pathways and leads to white matter degeneration and overproduction and mitochondrial accumulation of β-amyloid. Estrogen-induced signaling pathways converge upon the mitochondria to enhance mitochondrial function and to sustain aerobic glycolysis coupled with citric acid cycle-driven oxidative phosphorylation to potentiate ATP (Adenosine triphosphate) generation. In addition to potentiated mitochondrial bioenergetics, estrogen also enhances neural survival and health through maintenance of calcium homeostasis, promotion of antioxidant defense against free radicals, efficient cholesterol trafficking, and beta amyloid clearance. Significantly, the convergence of E2 mechanisms of action onto mitochondria is also a potential point of vulnerability when activated in diseased neurons that exacerbates degeneration through increased load on dysregulated calcium homeostasis. The "healthy cell bias of estrogen action" hypothesis examines the role that regulating mitochondrial function and bioenergetics play in promoting neural health and the mechanistic crossroads that lead to divergent outcomes following estrogen exposure. As the continuum of neurological health progresses from healthy to unhealthy, so too do the benefits of estrogen or hormone therapy.
Collapse
Affiliation(s)
- Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
45
|
Yao J, Rettberg JR, Klosinski LP, Cadenas E, Brinton RD. Shift in brain metabolism in late onset Alzheimer's disease: implications for biomarkers and therapeutic interventions. Mol Aspects Med 2011; 32:247-57. [PMID: 22024249 DOI: 10.1016/j.mam.2011.10.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/11/2011] [Indexed: 01/23/2023]
Abstract
Alzheimer's is a neurodegenerative disease with a complex and progressive pathological phenotype characterized first by hypometabolism and impaired mitochondrial bioenergetics followed by pathological burden. Increasing evidence indicates an antecedent and potentially causal role of mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress in AD pathogenesis. Compromised mitochondrial bioenergetics lead to over-production of and mitochondrial accumulation of β-amyloid, which is coupled with oxidative stress. Collectively, this results in a shift in brain metabolic profile from glucose-driven bioenergetics towards a compensatory, but less efficient, ketogenic pathway. We propose that the compensatory shift from a primarily aerobic glycolysis pathway to a ketogenic/fatty acid β-oxidation pathway eventually leads to white matter degeneration. The essential role of mitochondrial bioenergetics and the unique trajectory of compensatory metabolic adaptations in brain enable a bioenergetic-centric strategy for development of biomarkers. From a therapeutic perspective, this trajectory of alterations in brain metabolic capacity enables disease-stage specific strategies to target brain metabolism for disease prevention and treatment. A combination of nutraceutical and pharmaceutical interventions that enhance glucose-driven metabolic activity and potentiate mitochondrial bioenergetic function could prevent the antecedent decline in brain glucose metabolism, promote healthy aging and prevent AD. Alternatively, during the prodromal incipient phase of AD, sustained activation of ketogenic metabolic pathways coupled with supplementation of the alternative fuel source, ketone bodies, could sustain mitochondrial bioenergetic function to prevent or delay further progression of the disease.
Collapse
Affiliation(s)
- Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States
| | | | | | | | | |
Collapse
|
46
|
γ-secretase inhibitors for treating Alzheimer’s disease: rationale and clinical data. ACTA ACUST UNITED AC 2011. [DOI: 10.4155/cli.11.86] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|