1
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
2
|
Jeswani BM, Sharma S, Rathore SS, Nazir A, Bhatheja R, Kapoor K. PCSK9 Inhibitors: The Evolving Future. Health Sci Rep 2024; 7:e70174. [PMID: 39479289 PMCID: PMC11522611 DOI: 10.1002/hsr2.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction PCSK9 inhibitors are a novel class of medications that lower LDL cholesterol (LDL-C) by increasing LDL receptor activity, promoting clearance of LDL-C from the bloodstream. Over the years, PCSK9 inhibitors have been explored as adjunct therapies to statins or as monotherapy in high-risk cardiovascular patients. Aim This review aims to provide an updated perspective on PCSK9 inhibitors, assessing their clinical efficacy, safety, and significance, especially in light of recent clinical trials. Methods The review examines the role of PCSK9 in cholesterol regulation and summarizes the results of major cardiovascular trials, including FOURIER, SPIRE-1, SPIRE-2, and ODYSSEY Outcomes. It also discusses emerging treatments like small interfering RNA (siRNA) therapies and evaluates PCSK9 inhibitor effects on LDL-C and lipoprotein(a) levels. Results Clinical trials have shown PCSK9 inhibitors reduce LDL-C by up to 60%. In the FOURIER trial, evolocumab reduced LDL-C by 59% and major cardiovascular events by 15%-20%. The SPIRE-2 trial, despite early termination, showed a 21% risk reduction in the primary composite endpoint with bococizumab. The ODYSSEY Outcomes trial reported a 57% LDL-C reduction with alirocumab, alongside a 15% reduction in adverse events. Emerging treatments like Inclisiran offer long-term LDL-C control with fewer doses. PCSK9 inhibitors are generally well-tolerated, with the most common side effect being injection site reactions. Conclusion PCSK9 inhibitors significantly lower LDL-C and reduce cardiovascular events, offering promising therapies for high-risk patients, including those with familial hypercholesterolemia (FH) and those who cannot tolerate statins. Future research will focus on optimizing these inhibitors, integrating complementary therapies, and exploring gene-editing technologies to improve patient outcomes.
Collapse
Affiliation(s)
- Bijay Mukesh Jeswani
- Department of MedicineGCS Medical College, Hospital & Research CentreAhmedabadIndia
| | | | | | - Abubakar Nazir
- Department of MedicineKing Edward Medical UniversityLahorePakistan
- Department of MedicineOli Health Magazine Organization, Research, and EducationKigaliRwanda
| | | | - Kapil Kapoor
- Cardiology, AdventHealth OrlandoOrlandoFloridaUSA
| |
Collapse
|
3
|
Martino F, Niglio T, Martino E, Barilla' F, Guardamagna O, Paravati V, Bassareo PP. Awareness of cholesterol levels in 46,309 Italian children and adolescents unveils the tip of the iceberg. Eur J Pediatr 2024; 183:4747-4754. [PMID: 39207459 DOI: 10.1007/s00431-024-05745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Cardiovascular diseases (CVD) risk factors include high cholesterol. Children with total cholesterol (TC) levels ≥ 170 mg/dL are usually considered hypercholesterolemic. This study aimed at investigating the awareness of TC levels in a large Italian paediatric population and at looking for a possible correlation between their TC and TC in their parents' blood. METHODS AND RESULTS A survey was carried out in 46,309 subjects (mean age 9.7 ± 2.3 years; age range 6-14 years) to check the awareness of their own TC levels by using a personal and family medical history questionnaire. In 95.67% of the sample TC value was unknown. In 2.69% TC was < 170 mg/dL, whereas 1.64% were hypercholesterolemic (TC ≥ 170 mg/dL). A statistically significant correlation was found between children with normal TC values and physiological TC values in both parents (p < 0.0001). Again, a significant association between children with high TC and their parents with high TC was detected when parents were analysed separately (i.e. children with TC ≥ 170 mg/dl vs maternal TC ≥ 200 mg/dL: OR 2.01 (95% CI 1.61-2.49, p < 0.001); children with TC ≥ 200 mg/dl vs maternal TC ≥ 240 mg/dL: OR 3.14 (95% CI 2.14-4.6, p < 0.001); children with TC ≥ 170 mg/dl vs paternal TC ≥ 200 mg/dL: OR 2.39 (95% CI 1.91-2.98, p < 0.001); children with TC ≥ 200 mg/dl vs paternal TC ≥ 240 mg/dL: OR 3.85 (95% CI 2.70-5,.50, p < 0.001). CONCLUSION Just a minority of the investigated young patients knew their TC. This is worrisome. Children with normal TC values are more likely to be born from healthy parents with physiological TC. In addition, high TC in the enrolled subjects is significantly associated with high TC in their parents. Overall, these findings seem to highlight the importance of health education and genetics in TC pathogenesis.
Collapse
Affiliation(s)
- Francesco Martino
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | | | - Eliana Martino
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Francesco Barilla'
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Ornella Guardamagna
- Department of Public Health and Paediatric Sciences, University of Turin, Turin, Italy
| | - Vincenzo Paravati
- Department of Internal Medicine, Anaesthesiology, and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Pier Paolo Bassareo
- School of Medicine, University College of Dublin, Mater Misericordiae University Hospital and Children's Health Ireland at Crumlin, Dublin, Ireland.
| |
Collapse
|
4
|
Jawabri AA, John A, Ghattas MA, Mahgoub RE, Hamad MIK, Barakat MT, Shobi B, Daggag H, Ali BR. Cellular and functional evaluation of LDLR missense variants reported in hypercholesterolemic patients demonstrates their hypomorphic impacts on trafficking and LDL internalization. Front Cell Dev Biol 2024; 12:1412236. [PMID: 39114568 PMCID: PMC11303217 DOI: 10.3389/fcell.2024.1412236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by increased LDL-cholesterol levels. About 85% of FH cases are caused by LDLR mutations encoding the low-density lipoprotein receptor (LDLR). LDLR is synthesized in the endoplasmic reticulum (ER) where it undergoes post-translational modifications and then transported through Golgi apparatus to the plasma membrane. Over 2900 LDLR variants have been reported in FH patients with limited information on the pathogenicity and functionality of many of them. This study aims to elucidate the cellular trafficking and functional implications of LDLR missense variants identified in suspected FH patients using biochemical and functional methods. Methods We used HeLa, HEK293T, and LDLR-deficient-CHO-ldlA7 cells to evaluate the subcellular localization and LDL internalization of ten LDLR missense variants (p.C167F, p.D178N, p.C243Y, p.E277K, p.G314R, p.H327Y, p.D477N, p.D622G, p.R744Q, and p.R814Q) reported in multiethnic suspected FH patients. We also analyzed the functional impact of three variants (p.D445E, p.D482H, and p.C677F), two of which previously shown to be retained in the ER. Results We show that p.D622G, p.D482H, and p.C667F are largely retained in the ER whereas p.R744Q is partially retained. The other variants were predominantly localized to the plasma membrane. LDL internalization assays in CHO-ldlA7 cells indicate that p.D482H, p.C243Y, p.D622G, and p.C667F have quantitatively lost their ability to internalize Dil-LDL with the others (p.C167F, p.D178N, p.G314R, p.H327Y, p.D445E, p.D477N, p.R744Q and p.R814Q) showing significant losses except for p.E277K which retained full activity. However, the LDL internalization assay is only to able evaluate the impact of the variants on LDL internalization and not the exact functional defects such as failure to bind LDL. The data represented illustrate the hypomorphism nature of variants causing FH which may explain some of the variable expressivity of FH. Conclusion Our combinatorial approach of in silico, cellular, and functional analysis is a powerful strategy to determine pathogenicity and FH disease mechanisms which may provide opportunitites for novel therapeutic strategies.
Collapse
Affiliation(s)
- Aseel A. Jawabri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | | | - Radwa E. Mahgoub
- College of Pharmacy, Al-Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Maha T. Barakat
- Research Institute, Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, United Arab Emirates
| | - Bindu Shobi
- Research Institute, Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, United Arab Emirates
| | - Hinda Daggag
- Research Institute, Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Kern JA, Hinds BR, Shi V. Chronic Progressive Pink-Yellow Papules and Nodules in a Middle-Aged Man. JAMA Dermatol 2024; 160:672-673. [PMID: 38630488 DOI: 10.1001/jamadermatol.2024.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
A 38-year-old man presented with numerous pink-yellow firm papules and nodules on the bilateral elbows for 10 years spreading to the hands and knees in the past year. What is your diagnosis?
Collapse
Affiliation(s)
- Jessica A Kern
- School of Medicine, University of California San Diego, La Jolla
| | - Brian R Hinds
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla
| | - Veronica Shi
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla
| |
Collapse
|
6
|
Aldworth H, Hooper NM. Post-translational regulation of the low-density lipoprotein receptor provides new targets for cholesterol regulation. Biochem Soc Trans 2024; 52:431-440. [PMID: 38329179 PMCID: PMC10903450 DOI: 10.1042/bst20230918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
The amount of the low-density lipoprotein receptor (LDLR) on the surface of hepatocytes is the primary determinant of plasma low-density lipoprotein (LDL)-cholesterol level. Although the synthesis and cellular trafficking of the LDLR have been well-documented, there is growing evidence of additional post-translational mechanisms that regulate or fine tune the surface availability of the LDLR, thus modulating its ability to bind and internalise LDL-cholesterol. Proprotein convertase subtilisin/kexin type 9 and the asialoglycoprotein receptor 1 both independently interact with the LDLR and direct it towards the lysosome for degradation. While ubiquitination by the E3 ligase inducible degrader of the LDLR also targets the receptor for lysosomal degradation, ubiquitination of the LDLR by a different E3 ligase, RNF130, redistributes the receptor away from the plasma membrane. The activity of the LDLR is also regulated by proteolysis. Proteolytic cleavage of the transmembrane region of the LDLR by γ-secretase destabilises the receptor, directing it to the lysosome for degradation. Shedding of the extracellular domain of the receptor by membrane-type 1 matrix metalloprotease and cleavage of the receptor in its LDL-binding domain by bone morphogenetic protein-1 reduces the ability of the LDLR to bind and internalise LDL-cholesterol at the cell surface. A better understanding of how the activity of the LDLR is regulated will not only unravel the complex biological mechanisms controlling LDL-cholesterol metabolism but also could help inform the development of alternative pharmacological intervention strategies for the treatment of hypercholesterolaemia.
Collapse
Affiliation(s)
- Harry Aldworth
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
7
|
Fularski P, Hajdys J, Majchrowicz G, Stabrawa M, Młynarska E, Rysz J, Franczyk B. Unveiling Familial Hypercholesterolemia-Review, Cardiovascular Complications, Lipid-Lowering Treatment and Its Efficacy. Int J Mol Sci 2024; 25:1637. [PMID: 38338916 PMCID: PMC10855128 DOI: 10.3390/ijms25031637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder primarily transmitted in an autosomal-dominant manner. We distinguish two main forms of FH, which differ in the severity of the disease, namely homozygous familial hypercholesterolemia (HoFH) and heterozygous familial hypercholesterolemia (HeFH). The characteristic feature of this disease is a high concentration of low-density lipoprotein cholesterol (LDL-C) in the blood. However, the level may significantly vary between the two mentioned types of FH, and it is decidedly higher in HoFH. A chronically elevated concentration of LDL-C in the plasma leads to the occurrence of certain abnormalities, such as xanthomas in the tendons and skin, as well as corneal arcus. Nevertheless, a significantly more severe phenomenon is leading to the premature onset of cardiovascular disease (CVD) and its clinical implications, such as cardiac events, stroke or vascular dementia, even at a relatively young age. Due to the danger posed by this medical condition, we have investigated how both non-pharmacological and selected pharmacological treatment impact the course of FH, thereby reducing or postponing the risk of clinical manifestations of CVD. The primary objective of this review is to provide a comprehensive summary of the current understanding of FH, the effectiveness of lipid-lowering therapy in FH and to explain the anatomopathological correlation between FH and premature CVD development, with its complications.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Stabrawa
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
8
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
9
|
Wazir M, Olanrewaju OA, Yahya M, Kumari J, Kumar N, Singh J, Abbas Al-Itbi AY, Kumari K, Ahmed A, Islam T, Varrassi G, Khatri M, Kumar S, Wazir H, Raza SS. Lipid Disorders and Cardiovascular Risk: A Comprehensive Analysis of Current Perspectives. Cureus 2023; 15:e51395. [PMID: 38292957 PMCID: PMC10825376 DOI: 10.7759/cureus.51395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
The increasing worldwide prevalence of cardiovascular diseases (CVDs) highlights the need to understand the complex relationships between lipid abnormalities and elevated cardiovascular risk. This review thoroughly investigates the complex terrain of lipid abnormalities, highlighting their crucial significance in developing CVDs. Dyslipidemia, which is closely connected to atherosclerosis, is a significant risk factor for CVDs, including coronary artery disease, myocardial infarction, and stroke. This review thoroughly examines the intricate relationship between lipoproteins, cholesterol metabolism, and the inflammatory cascade, providing a detailed comprehension of the mechanisms that contribute to atherogenic processes. An extensive analysis of the occurrence and distribution of lipid diseases worldwide indicates a concerning high frequency, which calls for a reassessment of public health approaches. Dyslipidemia is caused by a combination of genetic predispositions, lifestyle factors, and metabolic abnormalities, as supported by significant data. Moreover, investigating different types of lipoproteins and their specific functions in the development of atherosclerosis provides insight into the complex causes of CVDs. In addition to conventional lipid profiles, newly identified biomarkers and advanced imaging techniques are being carefully examined for their ability to improve risk classification and treatment strategies' effectiveness. From a critical perspective, the review thoroughly examines the current state of lipid-modifying medicines, specifically statins, fibrates, and new therapeutic approaches. The text discusses the emerging concept of precision medicine, which involves tailoring treatment approaches to individuals based on their genetic and molecular characteristics. This approach has the potential to improve treatment outcomes. In addition, this study critically assesses the effects of lifestyle changes and nutritional interventions on lipid homeostasis, offering a comprehensive view of preventive strategies. This review consolidates current viewpoints on lipid diseases and their complex correlation with cardiovascular risk. This review contributes to the ongoing cardiovascular disease prevention and management dialogue by clarifying the molecular mechanisms, exploring new therapeutic options, and considering broader societal implications.
Collapse
Affiliation(s)
- Maha Wazir
- Department of Medicine, Khyber Teaching Hospital, Peshawar, PAK
| | - Olusegun A Olanrewaju
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, NGA
- Department of General Medicine, Stavropol State Medical University, Stavropol, RUS
| | - Muhammad Yahya
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | - Jaya Kumari
- Department of Internal Medicine, Mehran Medical Centre, Karachi, PAK
| | - Narendar Kumar
- Department of Internal Medicine, Burjeel Hospital, Abu Dhabi, ARE
| | - Jagjeet Singh
- Department of Internal Medicine, Lahore General Hospital, Lahore, PAK
| | | | - Komal Kumari
- Department of Medicine, NMC Royal Family Medical Centre, Abu Dhabi, ARE
| | - Aqsa Ahmed
- Department of Medicine, Medicare Hospital, Faisalabad, PAK
| | - Tamur Islam
- Department of Internal Medicine, Allied Hospital, Faisalabad, PAK
| | | | - Mahima Khatri
- Department of Internal Medicine/Cardiology, Dow University of Health Sciences, Karachi, PAK
| | - Satesh Kumar
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| | - Hina Wazir
- Department of Internal Medicine, Khyber Medical College, Peshawar, PAK
| | - Syed S Raza
- Department of Physiology, Gajju Khan Medical College, Swabi, PAK
- Department of Physiology, Khyber Medical College, Peshawar, PAK
- Robert and Suzanne Tomsich Department of Cardiothoracic Surgery, Cleveland Clinic Florida, Peshawar, PAK
- Department of Physiology, Gandhara University, Peshawar, PAK
| |
Collapse
|
10
|
Suryawanshi YN, Warbhe RA. Familial Hypercholesterolemia: A Literature Review of the Pathophysiology and Current and Novel Treatments. Cureus 2023; 15:e49121. [PMID: 38125244 PMCID: PMC10732334 DOI: 10.7759/cureus.49121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a genetically transmitted disorder. It shows an autosomal dominant mode of inheritance. It is a metabolic disorder. Mutation in chromosome 19 leads to this disorder. Chromosome 19 codes data for low-density lipoprotein (LDL) receptor (LDLR). LDLR either reduces increased LDL levels from the circulation or maintains a normal level of LDL. It precipitates the risk of cardiovascular disease at an early age. Characteristic features of FH are elevated levels of LDL in the blood because of sudden changes in LDLR, which causes a decrease in the clearance of LDL from the blood. Plaque gets deposited in the lumen of the arteries, called atherosclerosis, which occurs at an early young age. If both genes are affected then it is homozygous FH (HoFH); such a case is very rare. When a single gene is affected then that condition is known as heterozygous FH (HeFH). HoFH comes up with more severe cardiac disease than HeFH at an early age. The major cause of FH is a mutation in the LDLR gene while other causes include mutation in various genes like apolipoprotein B (apo B), proprotein convertase subtilisin/kexin type 9 (PCSK9), LDLR adaptor protein 1 (LDLRAP 1). In order to prevent cardiovascular crises due to FH, it must be diagnosed early and treated effectively. With increasing research and advances in medical sciences, many kinds of current and novel therapies are emerging that aim to reduce the level of LDL in blood.
Collapse
Affiliation(s)
- Yasha N Suryawanshi
- Department of Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rupesh A Warbhe
- Department of Pharmacology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Syal S, Rao S, Joshi R, Keshwani R, Bodhanwala M. Inherited Lipid Disorders in Children: Experience from a Tertiary Care Centre. Indian J Endocrinol Metab 2023; 27:230-236. [PMID: 37583406 PMCID: PMC10424103 DOI: 10.4103/ijem.ijem_248_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 08/17/2023] Open
Abstract
Background Primary dyslipidaemia in children is a rare inherited disorder of lipoprotein metabolism with debilitating sequelae and poor outcomes. Lipid-lowering drugs have less often been used in children and long-term outcome studies are scarce. The purpose of this study was to understand the clinical and laboratory profile, response to treatment on follow up and outcome of primary dyslipidaemia in Indian children. Methods Clinical records, including historical details, examination features and laboratory and radiological evaluation of children diagnosed with primary dyslipidaemia, presenting over the last 9 years were studied. Cascade screening was done for family members of the patients to detect dyslipidaemia in parents and siblings. All children were followed up 3 to 6 monthly for clinical and laboratory evaluation. Diet and drug therapy, initiated as appropriate, were modified as necessary. Results Of nine children with primary dyslipidaemia, seen over the last 9 years, homozygous familial hypercholesterolaemia (HoFH) (n = 4/9), familial hypertriglyceridaemia (FHT) (n = 3/9), familial combined hyperlipidemia (FCH) (n = 1/9), mutation proven chylomicronaemia syndrome (n = 1/9) were the phenotypes seen. Multiple xanthomas (n = 4/9), recurrent pancreatitis (n = 2/9) and incidentally found biochemical abnormality (n = 3/9) were the chief presenting features. Medical nutrition therapy and lipid-lowering drugs, as appropriate, were instituted in all. Follow-up over 16 months (range 4 to 90 months) revealed no deaths and no new onset of symptoms. Atherosclerotic plaques in the carotid artery were seen in one child, who presented late, despite fair compliance to treatment. Interestingly, lipid levels decreased in all cases and were normalised in two. Conclusion Primary dyslipidaemia when detected early and treated aggressively can improve short-term outcomes.
Collapse
Affiliation(s)
- Simran Syal
- Department of Pediatrics, Division of Pediatric Endocrinology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Sudha Rao
- Department of Pediatrics, Division of Pediatric Endocrinology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Rajesh Joshi
- Department of Pediatrics, Division of Pediatric Endocrinology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Rachna Keshwani
- Department of Pediatrics, Division of Pediatric Endocrinology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Minnie Bodhanwala
- Department of Pediatrics, Division of Pediatric Endocrinology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| |
Collapse
|
12
|
Mansilla-Rodríguez ME, Romero-Jimenez MJ, Rigabert Sánchez-Junco A, Gutierrez-Cortizo EN, Sánchez-Ramos JL, Mata P, Pang J, Watts GF. Risk factors for cardiovascular events in patients with heterozygous familial hypercholesterolaemia: protocol for a systematic review. BMJ Open 2023; 13:e065551. [PMID: 36990476 PMCID: PMC10069512 DOI: 10.1136/bmjopen-2022-065551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
INTRODUCTION Heterozygous familial hypercholesterolaemia (heFH) is the most common monogenic cause of premature atherosclerotic cardiovascular disease. The precise diagnosis of heFH is established by genetic testing. This systematic review will investigate the risk factors that predict cardiovascular events in patients with a genetic diagnosis of heFH. METHODS AND ANALYSIS Our literature search will cover publications from database inception until June 2023. We will undertake a search of CINAHL (trial), clinicalKey, Cochrane Library, DynaMed, Embase, Espacenet, Experiments (trial), Fisterra, ÍnDICEs CSIC, LILACS, LISTA, Medline, Micromedex, NEJM Resident 360, OpenDissertations, PEDro, Trip Database, PubPsych, Scopus, TESEO, UpToDate, Web of Science and the grey literature for eligible studies. We will screen the title, abstract and full-text papers for potential inclusion and assess the risk of bias. We will employ the Cochrane tool for randomised controlled trials and non-randomised clinical studies and the Newcastle-Ottawa Scale for assessing the risk of bias in observational studies. We will include full-text peer-reviewed publications, reports of a cohort/registry, case-control and cross-sectional studies, case report/series and surveys related to adults (≥18 years of age) with a genetic diagnostic heFH. The language of the searched studies will be restricted to English or Spanish. The Grading of Recommendations, Assessment, Development and Evaluation approach will be used to assess the quality of the evidence. Based on the data available, the authors will determine whether the data can be pooled in meta-analyses. ETHICS AND DISSEMINATION All data will be extracted from published literature. Hence, ethical approval and patient informed consent are not required. The findings of the systematic review will be submitted for publication in a peer-reviewed journal and presentation at international conferences. PROSPERO REGISTRATION NUMBER CRD42022304273.
Collapse
Affiliation(s)
| | | | | | | | | | - Pedro Mata
- Fundación de Hipercolesterolemia Familiar, Madrid, Spain
| | - Jing Pang
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Gerald F Watts
- Cardiometabolic Service, Department of Cardiology and Internal Medicine, Royal Perth Hospital, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Helk O, Böck A, Stefanutti C, Widhalm K. Lp(a) does not affect intima media thickness in hypercholesterolemic children -a retrospective cross sectional study. ATHEROSCLEROSIS PLUS 2023; 51:1-7. [PMID: 36969701 PMCID: PMC10037085 DOI: 10.1016/j.athplu.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
PURPOSE Combined hyperlipidaemia results in premature atherosclerosis and a high burden of cardiovascular morbidity and mortality. Early identification of highly affected subjects within this population is of utmost importance to enable informed treatment decisions. The measurement of intima media thickness (IMT) is a readily available, non-invasive method to investigate evidence of early atherosclerosis. To assess the usefulness of this method in pediatric subjects with hypercholesterolemia, we here examined a possible interaction of LDL-C and Lp(a) on IMT. METHODS Blood lipids (Lp(a), LDL-cholesterol, total cholesterol, triglycerides, high density lipoprotein (HDL) -cholesterol, apolipoprotein A1, apolipoprotein B), anthropometric parameters (age, height, weight, body mass index (BMI)) and possibly existing early evidence of atherosclerotic lesions measured by intima media thickness (IMT zscore).as a surrogate parameter was examined retrospectively in 113 children and adolescents (aged 1-18 years) with elevated Lp(a) and/or LDL-cholesterol (Lp(a) > 30 mg/dL, LDL>130 mg/dL). Furthermore, we compared hsCRP levels between groups. RESULTS There were no significant differences in IMT Zscore or hsCRP between groups. Regression analysis did not reveal a statistically significant interaction between Lp(a) and LDL-C. CONCLUSIONS At the age of 6-18 years, we found no significant differences in early markers of atherosclerosis between subjects with high Lp(a)- and/or high LDL-cholesterol with no detectable synergistic effects between the two lipoproteins.
Collapse
Affiliation(s)
- Oliver Helk
- Department of Nephrology and Dialysis, Medical University of Vienna, Austria
| | - Andreas Böck
- University Department for Paediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Claudia Stefanutti
- Extracorporeal Therapeutic Techniques, Lipid Clinic and Atherosclerosis Prevention Centre, Department of Molecular Medicine and Department of Immunohematology and Transfusion Medicine, ‘Sapienza’ University of Rome, Italy
| | - Kurt Widhalm
- University Department for Paediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| |
Collapse
|
14
|
Yang M, Zhan Y, Hou Z, Wang C, Fan W, Guo T, Li Z, Fang L, Lv S, Li S, Gu C, Ye M, Qin H, Liu Q, Cui X. VLDLR disturbs quiescence of breast cancer stem cells in a ligand-independent function. Front Oncol 2022; 12:887035. [PMID: 36568166 PMCID: PMC9767959 DOI: 10.3389/fonc.2022.887035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer stem cells are responsible for cancer initiation, progression, and drug resistance. However, effective targeting strategies against the cell subpopulation are still limited. Here, we unveil two splice variants of very-low-density lipoprotein receptor, VLDLR-I and -II, which are highly expressed in breast cancer stem cells. In breast cancer cells, VLDLR silencing suppresses sphere formation abilities in vitro and tumor growth in vivo. We find that VLDLR knockdown induces transition from self-renewal to quiescence. Surprisingly, ligand-binding activity is not involved in the cancer-promoting functions of VLDLR-I and -II. Proteomic analysis reveals that citrate cycle and ribosome biogenesis-related proteins are upregulated in VLDLR-I and -II overexpressed cells, suggesting that VLDLR dysregulation is associated with metabolic and anabolic regulation. Moreover, high expression of VLDLR in breast cancer tissues correlates with poor prognosis of patients. Collectively, these findings indicate that VLDLR may be an important therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Mengying Yang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yajing Zhan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wenjun Fan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Tao Guo
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhuoshi Li
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lei Fang
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shasha Lv
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sisi Li
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chundong Gu
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Mingliang Ye
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Hongqiang Qin
- Chinese Academy of Sciences (CAS) Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China,*Correspondence: Xiaonan Cui, ; Quentin Liu, ; Hongqiang Qin,
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xiaonan Cui, ; Quentin Liu, ; Hongqiang Qin,
| | - Xiaonan Cui
- The First Affiliated Hospital, Dalian Medical University, Dalian, China,*Correspondence: Xiaonan Cui, ; Quentin Liu, ; Hongqiang Qin,
| |
Collapse
|
15
|
Arrout A, El Ghallab Y, El Otmani IS, Said AAH. Ethnopharmacological survey of plants prescribed by herbalists for traditional treatment of hypercholesterolemia in Casablanca, Morocco. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Zubielienė K, Valterytė G, Jonaitienė N, Žaliaduonytė D, Zabiela V. Familial Hypercholesterolemia and Its Current Diagnostics and Treatment Possibilities: A Literature Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1665. [PMID: 36422206 PMCID: PMC9692978 DOI: 10.3390/medicina58111665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 11/13/2022] [Indexed: 09/30/2023]
Abstract
Familial hypercholesterolemia (FH) is a common, inherited disorder of cholesterol metabolism. This pathology is usually an autosomal dominant disorder and is caused by inherited mutations in the APOB, LDLR, and PCSK9 genes. Patients can have a homozygous or a heterozygous genotype, which determines the severity of the disease and the onset age of cardiovascular disease (CVD) manifestations. The incidence of heterozygous FH is 1: 200-250, whereas that of homozygous FH is 1: 100.000-160.000. Unfortunately, FH is often diagnosed too late and after the occurrence of a major coronary event. FH may be suspected in patients with elevated blood low-density lipoprotein cholesterol (LDL-C) levels. Moreover, there are other criteria that help to diagnose FH. For instance, the Dutch Lipid Clinical Criteria are a helpful diagnostic tool that is used to diagnose FH. FH often leads to the development of early cardiovascular disease and increases the risk of sudden cardiac death. Therefore, early diagnosis and treatment of this disease is very important. Statins, ezetimibe, bile acid sequestrants, niacin, PCSK9 inhibitors (evolocumab and alirocumab), small-interfering-RNA-based therapeutics (inclisiran), lomitapide, mipomersen, and LDL apheresis are several of the available treatment possibilities that lower LDL-C levels. It is important to say that the timeous lowering of LDL-C levels can reduce the risk of cardiovascular events and mortality in patients with FH. Therefore, it is essential to increase awareness of FH in order to reduce the burden of acute coronary syndrome (ACS).
Collapse
Affiliation(s)
- Kristina Zubielienė
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Hospital, LT-45130 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, LT-44307, Kaunas, Lithuania
| | - Gintarė Valterytė
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
| | - Neda Jonaitienė
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
| | - Diana Žaliaduonytė
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Hospital, LT-45130 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, LT-44307, Kaunas, Lithuania
| | - Vytautas Zabiela
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, LT-44307, Kaunas, Lithuania
- Institute of Cardiology Kaunas, Cardiology Research Automation Laboratory, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| |
Collapse
|
17
|
Firus Khan AY, Ramli AS, Abdul Razak S, Mohd Kasim NA, Chua YA, Ul-Saufie AZ, Jalaludin MA, Nawawi H. The Mala ysian HEalth and Well Being Assessmen T (MyHEBAT) Study Protocol: An Initiation of a National Registry for Extended Cardiovascular Risk Evaluation in the Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811789. [PMID: 36142062 PMCID: PMC9517557 DOI: 10.3390/ijerph191811789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/01/2023]
Abstract
Cardiovascular disease (CVD) has been a burden to many developing countries for decades, including Malaysia. Although various steps have been taken to prevent and manage CVD, it remains the leading cause of morbidity and mortality. The rising prevalence of CVD risk factors such as hypertension, hypercholesterolaemia, diabetes, overweight and obesity is the main driving force behind the CVD epidemic. Therefore, a nationwide health study coined as the Malaysian Health and Wellbeing Assessment (MyHEBAT) was designed. It aimed to investigate the prevalence of CVD and the associated risk factors in the community across Malaysia. The MyHEBAT study recruited participants (18-75 years old) through community health screening programmes from 11 states in Malaysia. The MyHEBAT study was further divided into two sub-studies, namely, the Cardiovascular Risk Epidemiological Study (MyHEBAT-CRES) and the MyHEBAT Familial Hypercholesterolaemia Study (MyHEBAT-FH). These studies assessed the prevalence of CVD risk factors and the prevalence of FH in the community, respectively. The data garnered from the MyHEBAT study will provide information for healthcare providers to devise better prevention and clinical practice guidelines for managing CVD in Malaysia.
Collapse
Affiliation(s)
- Al’aina Yuhainis Firus Khan
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Anis Safura Ramli
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Departments of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Suraya Abdul Razak
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Departments of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Cardio Vascular and Lungs Research Institute (CaVaLRI), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Noor Alicezah Mohd Kasim
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- UiTM Al-Sultan Abdullah Hospital, Puncak Alam 42300, Selangor, Malaysia
- Department of Pathology, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Yung-An Chua
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Ahmad Zia Ul-Saufie
- Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Mohd Amin Jalaludin
- Department of Otorhinolaringology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Hapizah Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- UiTM Al-Sultan Abdullah Hospital, Puncak Alam 42300, Selangor, Malaysia
- Department of Pathology, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| |
Collapse
|
18
|
RSSDI consensus recommendations for dyslipidemia management in diabetes mellitus. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
19
|
Human Placental Intracellular Cholesterol Transport: A Focus on Lysosomal and Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11030500. [PMID: 35326150 PMCID: PMC8944475 DOI: 10.3390/antiox11030500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The placenta participates in cholesterol biosynthesis and metabolism and regulates exchange between the maternal and fetal compartments. The fetus has high cholesterol requirements, and it is taken up and synthesized at elevated rates during pregnancy. In placental cells, the major source of cholesterol is the internalization of lipoprotein particles from maternal circulation by mechanisms that are not fully understood. As in hepatocytes, syncytiotrophoblast uptake of lipoprotein cholesterol involves lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI). Efflux outside the cells requires proteins such as the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. However, mechanisms associated with intracellular traffic of cholesterol in syncytiotrophoblasts are mostly unknown. In hepatocytes, uptaken cholesterol is transported to acidic late endosomes (LE) and lysosomes (LY). Proteins such as Niemann–Pick type C 1 (NPC1), NPC2, and StAR related lipid transfer domain containing 3 (STARD3) are required for cholesterol exit from the LE/LY. These proteins transfer cholesterol from the lumen of the LE/LY into the LE/LY-limiting membrane and then export it to the endoplasmic reticulum, mitochondria, or plasma membrane. Although the production, metabolism, and transport of cholesterol in placental cells are well explored, there is little information on the role of proteins related to intracellular cholesterol traffic in placental cells during physiological or pathological pregnancies. Such studies would be relevant for understanding fetal and placental cholesterol management. Oxidative stress, induced by generating excess reactive oxygen species (ROS), plays a critical role in regulating various cellular and biological functions and has emerged as a critical common mechanism after lysosomal and mitochondrial dysfunction. This review discusses the role of cholesterol, lysosomal and mitochondrial dysfunction, and ROS in the development and progression of hypercholesterolemic pregnancies.
Collapse
|
20
|
Hatton SL, Pandey MK. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:1089. [PMID: 35163013 PMCID: PMC8835271 DOI: 10.3390/ijms23031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Shelby Loraine Hatton
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
21
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
22
|
Sil A, Bhanja DB, Biswas SK. Intertriginous Xanthomas-Pathognomonic Cutaneous Markers of Homozygous Familial Hypercholesterolemia. JAMA Dermatol 2021; 157:1228. [PMID: 34468693 DOI: 10.1001/jamadermatol.2021.3060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Abheek Sil
- Department of Dermatology, Venereology, and Leprosy, RG Kar Medical College & Hospital, Kolkata, West Bengal, India
| | - Dibyendu Bikash Bhanja
- Department of Dermatology, Venereology, and Leprosy, Midnapore Medical College & Hospital, Kolkata, West Bengal, India
| | - Surajit Kumar Biswas
- Department of Dermatology, Venereology, and Leprosy, RG Kar Medical College & Hospital, Kolkata, West Bengal, India
| |
Collapse
|
23
|
Leopold S, Zachariah JP. Pediatric Lipid Disorders. Pediatr Ann 2021; 50:e105-e112. [PMID: 34038650 PMCID: PMC8544611 DOI: 10.3928/19382359-20210218-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Current scientific evidence has proven that atherosclerosis is a process that begins in childhood and tracks into adulthood, likely culminating in adverse cardiovascular events such as coronary artery disease, peripheral artery disease, and stroke. In addition, the obesity epidemic and increasing awareness of genetic lipid disorders has made the understanding and management of lipid disorders necessary for pediatricians. Childhood offers a unique opportunity for preventing, modifying, or eliminating risk factors and, in doing so, reversing or slowing the process of atherosclerosis. In general, management involves targeted lifestyle interventions such as strict dietary changes and increases in physical activity. In some circumstances, pharmacotherapy, even in childhood, is warranted. [Pediatr Ann. 2021;50(3):e105-e112.].
Collapse
|
24
|
Flora GD, Nayak MK. A Brief Review of Cardiovascular Diseases, Associated Risk Factors and Current Treatment Regimes. Curr Pharm Des 2020; 25:4063-4084. [PMID: 31553287 DOI: 10.2174/1381612825666190925163827] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature death and disability in humans and their incidence is on the rise globally. Given their substantial contribution towards the escalating costs of health care, CVDs also generate a high socio-economic burden in the general population. The underlying pathogenesis and progression associated with nearly all CVDs are predominantly of atherosclerotic origin that leads to the development of coronary artery disease, cerebrovascular disease, venous thromboembolism and, peripheral vascular disease, subsequently causing myocardial infarction, cardiac arrhythmias or stroke. The aetiological risk factors leading to the onset of CVDs are well recognized and include hyperlipidaemia, hypertension, diabetes, obesity, smoking and, lack of physical activity. They collectively represent more than 90% of the CVD risks in all epidemiological studies. Despite high fatality rate of CVDs, the identification and careful prevention of the underlying risk factors can significantly reduce the global epidemic of CVDs. Beside making favorable lifestyle modifications, primary regimes for the prevention and treatment of CVDs include lipid-lowering drugs, antihypertensives, antiplatelet and anticoagulation therapies. Despite their effectiveness, significant gaps in the treatment of CVDs remain. In this review, we discuss the epidemiology and pathology of the major CVDs that are prevalent globally. We also determine the contribution of well-recognized risk factors towards the development of CVDs and the prevention strategies. In the end, therapies for the control and treatment of CVDs are discussed.
Collapse
Affiliation(s)
- Gagan D Flora
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Manasa K Nayak
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
25
|
Sugahara G, Ishida Y, Sun J, Tateno C, Saito T. Art of Making Artificial Liver: Depicting Human Liver Biology and Diseases in Mice. Semin Liver Dis 2020; 40:189-212. [PMID: 32074631 PMCID: PMC8629128 DOI: 10.1055/s-0040-1701444] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Advancement in both bioengineering and cell biology of the liver led to the establishment of the first-generation humanized liver chimeric mouse (HLCM) model in 2001. The HLCM system was initially developed to satisfy the necessity for a convenient and physiologically representative small animal model for studies of hepatitis B virus and hepatitis C virus infection. Over the last two decades, the HLCM system has substantially evolved in quality, production capacity, and utility, thereby growing its versatility beyond the study of viral hepatitis. Hence, it has been increasingly employed for a variety of applications including, but not limited to, the investigation of drug metabolism and pharmacokinetics and stem cell biology. To date, more than a dozen distinctive HLCM systems have been established, and each model system has similarities as well as unique characteristics, which are often perplexing for end-users. Thus, this review aims to summarize the history, evolution, advantages, and pitfalls of each model system with the goal of providing comprehensive information that is necessary for researchers to implement the ideal HLCM system for their purposes. Furthermore, this review article summarizes the contribution of HLCM and its derivatives to our mechanistic understanding of various human liver diseases, its potential for novel applications, and its current limitations.
Collapse
Affiliation(s)
- Go Sugahara
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Jeffrey Sun
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chise Tateno
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,USC Research Center for Liver Diseases, Los Angeles, California
| |
Collapse
|
26
|
Gulcan HO, Yigitkan S, Orhan IE. The Natural Products as Hydroxymethylglutaryl-Coa Reductase Inhibitors. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666181112144353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
High cholesterol and triglyceride levels are mainly related to further generation of lifethreating
metabolism disorders including cardiovascular system diseases. Therefore,
hypercholesterolemia (i.e., also referred to as hyperlipoproteinemia) is a serious disease state, which
must be controlled. Currently, the treatment of hypercholesterolemia is mainly achieved through the
employment of statins in the clinic, although there are alternative drugs (e.g., ezetimibe,
cholestyramine). In fact, the original statins are natural products directly obtained from fungi-like
molds and mushrooms and they are potent inhibitors of hydroxymethylglutaryl-CoA reductase, the
key enzyme in the biosynthesis of cholesterol. This review focuses on the first identification of
natural statins, their synthetic and semi-synthetic analogues, and the validation of
hydroxymethylglutaryl-CoA reductase as a target in the treatment of hypercholesterolemia.
Furthermore, other natural products that have been shown to possess the potential to inhibit
hydroxymethylglutaryl-CoA reductase are also reviewed with respect to their chemical structures.
Collapse
Affiliation(s)
- Hayrettin Ozan Gulcan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, TRNC, via Mersin 10, Turkey
| | - Serkan Yigitkan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Dicle University, 06330 Diyarbakir, Turkey
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| |
Collapse
|
27
|
Development of a Synthetic 3-ketosteroid Δ 1-dehydrogenase for the Generation of a Novel Catabolic Pathway Enabling Cholesterol Degradation in Human Cells. Sci Rep 2019; 9:5969. [PMID: 30979909 PMCID: PMC6461610 DOI: 10.1038/s41598-019-42046-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/22/2019] [Indexed: 01/05/2023] Open
Abstract
Cholesterol is an essential component of membranes, which is acquired by cells via receptor-mediated endocytosis of lipoproteins or via de novo synthesis. In specialized cells, anabolic enzymes metabolize cholesterol, generating steroid hormones or bile acids. However, surplus cholesterol cannot be catabolized due to the lack of enzymes capable of degrading the cholestane ring. The inability to degrade cholesterol becomes evident in the development and progression of cardiovascular disease, where the accumulation of cholesterol/cholesteryl-esters in macrophages can elicit a maladaptive immune response leading to the development and progression of atherosclerosis. The discovery of cholesterol catabolic pathways in Actinomycetes led us to the hypothesis that if enzymes enabling cholesterol catabolism could be genetically engineered and introduced into human cells, the atherosclerotic process may be prevented or reversed. Comparison of bacterial enzymes that degrade cholesterol to obtain carbon and generate energy with the action of human enzymes revealed that humans lack a 3-ketosteroid Δ1-dehydrogenase (Δ1-KstD), which catalyzes the C-1 and C-2 desaturation of ring A. Here we describe the construction, heterologous expression, and actions of a synthetic humanized Δ1-KstD expressed in Hep3B and U-937 cells, providing proof that one of three key enzymes required for cholesterol ring opening can be functionally expressed in human cells.
Collapse
|
28
|
Phuong Kim T, Thuan Duc L, Thuy Ai HL. The Major Molecular Causes of Familial Hypercholesterolemia. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2018. [DOI: 10.18311/ajprhc/2018/20031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Lamri A, Pigeyre M, Garver WS, Meyre D. The Extending Spectrum of NPC1-Related Human Disorders: From Niemann-Pick C1 Disease to Obesity. Endocr Rev 2018; 39:192-220. [PMID: 29325023 PMCID: PMC5888214 DOI: 10.1210/er.2017-00176] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022]
Abstract
The Niemann-Pick type C1 (NPC1) protein regulates the transport of cholesterol and fatty acids from late endosomes/lysosomes and has a central role in maintaining lipid homeostasis. NPC1 loss-of-function mutations in humans cause NPC1 disease, a rare autosomal-recessive lipid-storage disorder characterized by progressive and lethal neurodegeneration, as well as liver and lung failure, due to cholesterol infiltration. In humans, genome-wide association studies and post-genome-wide association studies highlight the implication of common variants in NPC1 in adult-onset obesity, body fat mass, and type 2 diabetes. Heterozygous human carriers of rare loss-of-function coding variants in NPC1 display an increased risk of morbid adult obesity. These associations have been confirmed in mice models, showing an important interaction with high-fat diet. In this review, we describe the current state of knowledge for NPC1 variants in relationship to pleiotropic effects on metabolism. We provide evidence that NPC1 gene variations may predispose to common metabolic diseases by modulating steroid hormone synthesis and/or lipid homeostasis. We also propose several important directions of research to further define the complex roles of NPC1 in metabolism. This review emphasizes the contribution of NPC1 to obesity and its metabolic complications.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Marie Pigeyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,INSERM 1190, European Genomics Institute for Diabetes, University of Lille, CHRU Lille, Lille, France
| | - William S Garver
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Hulin A, Hego A, Lancellotti P, Oury C. Advances in Pathophysiology of Calcific Aortic Valve Disease Propose Novel Molecular Therapeutic Targets. Front Cardiovasc Med 2018; 5:21. [PMID: 29594151 PMCID: PMC5862098 DOI: 10.3389/fcvm.2018.00021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/26/2018] [Indexed: 01/17/2023] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is the most common heart valve disease and its incidence is expected to rise with aging population. No medical treatment so far has shown slowing progression of CAVD progression. Surgery remains to this day the only way to treat it. Effective drug therapy can only be achieved through a better insight into the pathogenic mechanisms underlying CAVD. The cellular and molecular events leading to leaflets calcification are complex. Upon endothelium cell damage, oxidized LDLs trigger a proinflammatory response disrupting healthy cross-talk between valve endothelial and interstitial cells. Therefore, valve interstitial cells transform into osteoblasts and mineralize the leaflets. Studies have investigated signaling pathways driving and connecting lipid metabolism, inflammation and osteogenesis. This review draws a summary of the recent advances and discusses their exploitation as promising therapeutic targets to treat CAVD and reduce valve replacement.
Collapse
Affiliation(s)
- Alexia Hulin
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Alexandre Hego
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Patrizio Lancellotti
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium.,GIGA Cardiovascular Sciences, Department of Cardiology, University of Liège Hospital, Heart Valve Clinic, CHU Sart Tilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| | - Cécile Oury
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium
| |
Collapse
|
31
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
32
|
Gupta N, Sharma N, Mathur SK, Chandra R, Nimesh S. Advancement in nanotechnology-based approaches for the treatment and diagnosis of hypercholesterolemia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:188-197. [PMID: 29265888 DOI: 10.1080/21691401.2017.1417863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cardiovascular diseases have been the major cause of mortality and morbidity all over the world accounting for more than 80% of the deaths from heart attacks and strokes. Hypercholesterolemia, an autosomal disorder of lipoprotein metabolism is one of the foremost causes of CVDs. An increased level of low-density lipoprotein cholesterol (LDL-C) in the plasma results in the rise of incidence rates in disease patients. Several conventional and combinational therapies have been proposed for lowering the LDL-C levels in the blood. These therapeutic agents are designed to target some crucial molecules that participates in the lipid metabolism such as apolipoprotein B, HMGCoA reductase, proprotein convertase subtilisin/kexin 9, etc. Although these therapies are effective but are associated with certain side effects. This article presents an overview on different conventional and nanotechnology-based approaches for the treatment and diagnosis of hypercholesterolemia. Numerous nanomaterial-based therapies including polymeric nanoparticles, cationic lipids, liposomes, dendrimers and inorganic nanoparticles have been discussed in lowering the cholesterol level along with recent advancement in diagnosis and imaging.
Collapse
Affiliation(s)
- Nidhi Gupta
- a Department of Biotechnology , The IIS University , Jaipur , India
| | - Nikita Sharma
- b Department of Biotechnology , Central University of Rajasthan , Ajmer , India
| | - Sandeep K Mathur
- c Department of Endocrinology , SMS Medical College and Hospitals , Jaipur , India
| | - Ramesh Chandra
- d Department of Chemistry , University of Delhi , Delhi , India
| | - Surendra Nimesh
- b Department of Biotechnology , Central University of Rajasthan , Ajmer , India
| |
Collapse
|
33
|
Naeli P, Mirzadeh Azad F, Malakootian M, Seidah NG, Mowla SJ. Post-transcriptional Regulation of PCSK9 by miR-191, miR-222, and miR-224. Front Genet 2017; 8:189. [PMID: 29230236 PMCID: PMC5711823 DOI: 10.3389/fgene.2017.00189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022] Open
Abstract
Since proprotein convertase subtilisin kexin 9 (PCSK9) discovery, a gene involved in LDL metabolism regulation and cardiovascular diseases (CVD), many therapeutic strategies have been introduced for direct targeting of PCSK9. The main goal of these strategies has been to reduce PCSK9 protein level either by application of antibodies or inhibition of its production. In this study, we have tried to discover microRNAs (miRNAs) which can target, and hence regulate, PCSK9 expression. Using bioinformatics tools, we selected three microRNAs with binding sites on 3′-UTR of PCSK9. The expression level of these miRNAs was examined in three different cell lines using real-time RT-PCR. We observed a reciprocal expression pattern between expression level of miR-191, miR-222, and miR-224 with that of PCSK9. Accordingly, the expression levels were highest in Huh7 cells which expressed the lowest level of PCSK9, compared to HepG2 and A549 cell lines. PCSK9 mRNA level also showed a significant decline in HepG2 cells transfected with the vectors overexpressing the aforementioned miRNAs. Furthermore, the miRNAs target sites were cloned in psiCHECK-2 vector, and a direct interaction of the miRNAs and the PCSK9 3′-UTR putative target sites was investigated by means of luciferase assay. Our findings revealed that miR-191, miR-222, and miR-224 can directly interact with PCSK9 3′-UTR and regulate its expression. In conclusion, our data introduces a role for miRNAs to regulate PCSK9 expression.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mirzadeh Azad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, QC, Canada
| | - Seyed J Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
DeBeasi LC. Optimizing Diet, Weight, and Exercise in Adults With Familial Hypercholesterolemia. J Nurse Pract 2017. [DOI: 10.1016/j.nurpra.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Pećin I, Hartgers ML, Hovingh GK, Dent R, Reiner Ž. Prevention of cardiovascular disease in patients with familial hypercholesterolaemia: The role of PCSK9 inhibitors. Eur J Prev Cardiol 2017. [PMID: 28644091 PMCID: PMC5574519 DOI: 10.1177/2047487317717346] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Familial hypercholesterolaemia is an autosomal dominant inherited disorder characterised by elevated low-density lipoprotein cholesterol levels and consequently an increased risk of atherosclerotic cardiovascular disease (ASCVD). Familial hypercholesterolaemia is relatively common, but is often underdiagnosed and undertreated. Cardiologists are likely to encounter many individuals with familial hypercholesterolaemia; however, patients presenting with premature ASCVD are rarely screened for familial hypercholesterolaemia and fasting lipid levels are infrequently documented. Given that individuals with familial hypercholesterolaemia and ASCVD are at a particularly high risk of subsequent cardiac events, this is a missed opportunity for preventive therapy. Furthermore, because there is a 50% chance that first-degree relatives of individuals with familial hypercholesterolaemia will also be affected by the disorder, the underdiagnosis of familial hypercholesterolaemia among patients with ASCVD is a barrier to cascade screening and the prevention of ASCVD in affected relatives. Targeted screening of patients with ASCVD is an effective strategy to identify new familial hypercholesterolaemia index cases. Statins are the standard treatment for individuals with familial hypercholesterolaemia; however, low-density lipoprotein cholesterol targets are not achieved in a large proportion of patients despite treatment. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have been shown to reduce low-density lipoprotein cholesterol levels considerably in individuals with familial hypercholesterolaemia who are concurrently receiving the maximal tolerated statin dose. The clinical benefit of PCSK9 inhibitors must, however, also be considered in terms of their cost-effectiveness. Increased awareness of familial hypercholesterolaemia is required among healthcare professionals, particularly cardiologists and primary care physicians, in order to start early preventive measures and to reduce the mortality and morbidity associated with familial hypercholesterolaemia and ASCVD.
Collapse
Affiliation(s)
- Ivan Pećin
- 1 Department of Internal Medicine, University Hospital Centre Zagreb, Croatia.,2 School of Medicine, University of Zagreb, Croatia
| | - Merel L Hartgers
- 3 Department of Vascular Medicine, Academic Medical Centre, the Netherlands
| | - G Kees Hovingh
- 3 Department of Vascular Medicine, Academic Medical Centre, the Netherlands
| | - Ricardo Dent
- 4 Amgen (Europe) GmbH, Zug, Switzerland.,5 Esperion Therapeutics Inc., Ann Arbor, USA
| | - Željko Reiner
- 1 Department of Internal Medicine, University Hospital Centre Zagreb, Croatia.,2 School of Medicine, University of Zagreb, Croatia
| |
Collapse
|
36
|
Tan A, Florman SS, Schiano TD. Genetic, hematological, and immunological disorders transmissible with liver transplantation. Liver Transpl 2017; 23:663-678. [PMID: 28240807 DOI: 10.1002/lt.24755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/14/2017] [Indexed: 12/08/2022]
Abstract
It is well recognized that solid organ transplantation can transmit bacterial infection and chronic viral hepatitis as well as certain cancers. As indications for liver transplantation (LT) have expanded, it has been used to treat and even cure certain genetic cholestatic disorders, urea cycle defects, and coagulation abnormalities; many of these conditions are potentially transmissible with LT as well. It is important for clinicians and transplant patients to be aware of these potentially transmissible conditions as unexplained post-LT complications can sometimes be related to donor transmission of disease and thus should prompt a thorough exploration of the donor allograft history. Herein, we will review the reported genetic, metabolic, hematologic, and immunological disorders that are transmissible with LT and describe clinical scenarios in which these cases have occurred, such as in inadvertent or recognized transplantation of a diseased organ, domino transplantation, and with living related liver donation. Liver Transplantation 23 663-678 2017 AASLD.
Collapse
Affiliation(s)
- Amy Tan
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sander S Florman
- Recanati/Miller Transplantation Institute, Mount Sinai Medical Center, New York, NY
| | - Thomas D Schiano
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Division of Liver Diseases, Mount Sinai Medical Center, New York, NY.,Recanati/Miller Transplantation Institute, Mount Sinai Medical Center, New York, NY
| |
Collapse
|
37
|
Rai S, Bhatnagar S. Novel Lipidomic Biomarkers in Hyperlipidemia and Cardiovascular Diseases: An Integrative Biology Analysis. ACTA ACUST UNITED AC 2017; 21:132-142. [DOI: 10.1089/omi.2016.0178] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Dwarka, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Dwarka, India
| |
Collapse
|
38
|
Oishi K, Arnon R, Wasserstein MP, Diaz GA. Liver transplantation for pediatric inherited metabolic disorders: Considerations for indications, complications, and perioperative management. Pediatr Transplant 2016; 20:756-69. [PMID: 27329540 PMCID: PMC5142218 DOI: 10.1111/petr.12741] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/13/2022]
Abstract
LT is an effective therapeutic option for a variety of IEM. This approach can significantly improve the quality of life of patients who suffer from severe disease manifestations and/or life-threatening metabolic decompensations despite medical/dietary management. Due to the significant risks for systemic complications from surgical stressors, careful perioperative management is vital. Even after LT, some disorders require long-term dietary restriction, medical management, and monitoring of metabolites. Successful liver transplant for these complex disorders can be achieved with disease- and patient-specific strategies using a multidisciplinary approach. In this article, we review indications, complications, perioperative management, and long-term follow-up recommendations for IEM that are treatable with LT.
Collapse
Affiliation(s)
- Kimihiko Oishi
- Departments of Pediatrics, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ronen Arnon
- Departments of Pediatrics, Pediatric Gastroenterology and Hepatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, The Recanati / Miller Transplantation Institute, Mount Sinai Medical Center, New York, NY10029
| | - Melissa P. Wasserstein
- Departments of Pediatrics, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - George A. Diaz
- Departments of Pediatrics, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
39
|
Miller CM, Harris EN. Antisense Oligonucleotides: Treatment Strategies and Cellular Internalization. RNA & DISEASE 2016; 3:e1393. [PMID: 28374018 PMCID: PMC5376066 DOI: 10.14800/rd.1393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The clinical applicaton of antisense oligonucleotides (ASOs) is becoming more of a reality as several drugs have been approved for the treatment of human disorders and many others are in various phases in development and clinical trials. ASOs are short DNA/RNA oligos which are heavily modified to increase their stability in biological fluids and retain the properties of creating RNA-RNA and DNA-RNA duplexes that knock-down or correct genetic expression. This review outlines several strategies that ASOs utilize for the treatment of various congenital diseases and syndromes that develop with aging. In addition, we discuss some of the mechanisms for specific non-targeted ASO internalization within cells.
Collapse
Affiliation(s)
- Colton M. Miller
- Department of Biochemistry, University of Nebraska - Lincoln, 1901 Vine St. Lincoln NE 68588 USA
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska - Lincoln, 1901 Vine St. Lincoln NE 68588 USA
| |
Collapse
|
40
|
Abstract
Familial hypercholesterolemia is a common, inherited disorder of cholesterol metabolism that leads to early cardiovascular morbidity and mortality. It is underdiagnosed and undertreated. Statins, ezetimibe, bile acid sequestrants, niacin, lomitapide, mipomersen, and low-density lipoprotein (LDL) apheresis are treatments that can lower LDL cholesterol levels. Early treatment can lead to substantial reduction of cardiovascular events and death in patients with familial hypercholesterolemia. It is important to increase awareness of this disorder in physicians and patients to reduce the burden of this disorder.
Collapse
Affiliation(s)
- Victoria Enchia Bouhairie
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 South Euclid, St Louis, MO 63110, USA
| | - Anne Carol Goldberg
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 South Euclid, St Louis, MO 63110, USA.
| |
Collapse
|
41
|
Expert and Advocacy Group Consensus Findings on the Horizon of Public Health Genetic Testing. Healthcare (Basel) 2016; 4:healthcare4010014. [PMID: 27417602 PMCID: PMC4934548 DOI: 10.3390/healthcare4010014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/18/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022] Open
Abstract
Description: Among the two leading causes of death in the United States, each responsible for one in every four deaths, heart disease costs Americans $300 billion, while cancer costs Americans $216 billion per year. They also rank among the top three causes of death in Europe and Asia. In 2012 the University of Michigan Center for Public Health and Community Genomics and Genetic Alliance, with the support of the Centers for Disease Control and Prevention Office of Public Health Genomics, hosted a conference in Atlanta, Georgia to consider related action strategies based on public health genomics. The aim of the conference was consensus building on recommendations to implement genetic screening for three major heritable contributors to these mortality and cost figures: hereditary breast and ovarian cancer (HBOC), familial hypercholesterolemia (FH), and Lynch syndrome (LS). Genetic applications for these three conditions are labeled with a “Tier 1” designation by the U.S. Centers for Disease Control and Prevention because they have been fully validated and clinical practice guidelines based on systematic review support them. Methodology: The conference followed a deliberative sequence starting with nationally recognized clinical and public health presenters for each condition, followed by a Patient and Community Perspectives Panel, working group sessions for each of the conditions, and a final plenary session. The 74 conference participants represented disease research and advocacy, public health, medicine and nursing, genetics, governmental health agencies, and industry. Participants drew on a public health framework interconnecting policy, clinical intervention, surveillance, and educational functions for their deliberations. Results: Participants emphasized the importance of collaboration between clinical, public health, and advocacy groups in implementing Tier 1 genetic screening. Advocacy groups could help with individual and institutional buy-in of Tier 1 programs. Groups differed on funding strategies, with alternative options such as large-scale federal funding and smaller scale, incremental funding solutions proposed. Piggybacking on existing federal breast and colorectal cancer control programs was suggested. Public health departments need to assess what information is now being collected by their state cancer registries. The groups advised that information on cascade screening of relatives be included in toolkits for use by states. Participants stressed incorporation of family history into health department breast cancer screening programs, and clinical HBOC data into state surveillance systems. The carrying out of universal LS screening of tumors in those with colorectal cancer was reviewed. Expansion of universal screening to include endometrial tumors was discussed, as was the application of guidelines recommending cholesterol screening of children 9–11 years old. States more advanced in terms of Tier 1 testing could serve as models and partners with other states launching screening and surveillance programs. A multidisciplinary team of screening program champions was suggested as a means of raising awareness among the consumer and health care communities. Participants offered multiple recommendations regarding use of electronic health records, including flagging of at-risk family members and utilization of state-level health information exchanges. The paper contains an update of policy developments and happenings for all three Tier 1 conditions, as well as identified gaps. Conclusions: Implementation of cascade screening of family members for HBOC and FH, and universal screening for LS in CRC tumors has reached a point of readiness within the U.S., with creative solutions at hand. Facilitating factors such as screening coverage through the Patient Protection and Affordable Care Act, and state health information exchanges can be tapped. Collaboration is needed between public health departments, health care systems, disease advocacy groups, and industry to fully realize Tier 1 genetic screening. State health department and disease networks currently engaged in Tier 1 screening can serve as models for the launch of new initiatives.
Collapse
|
42
|
Abstract
Familial hypercholesterolemia is a common, inherited disorder of cholesterol metabolism that leads to early cardiovascular morbidity and mortality. It is underdiagnosed and undertreated. Statins, ezetimibe, bile acid sequestrants, niacin, lomitapide, mipomersen, and low-density lipoprotein (LDL) apheresis are treatments that can lower LDL cholesterol levels. Early treatment can lead to substantial reduction of cardiovascular events and death in patients with familial hypercholesterolemia. It is important to increase awareness of this disorder in physicians and patients to reduce the burden of this disorder.
Collapse
Affiliation(s)
- Victoria Enchia Bouhairie
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 South Euclid, St Louis, MO 63110, USA
| | - Anne Carol Goldberg
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, Campus Box 8127, 660 South Euclid, St Louis, MO 63110, USA.
| |
Collapse
|
43
|
Turgeon RD, Barry AR, Pearson GJ. Familial hypercholesterolemia: Review of diagnosis, screening, and treatment. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2016; 62:32-37. [PMID: 26796832 PMCID: PMC4721838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To summarize the pathophysiology, epidemiology, screening, diagnosis, and treatment of familial hypercholesterolemia (FH). QUALITY OF EVIDENCE A PubMed search was conducted (inception to July 2014) for articles on pathophysiology, screening, diagnosis, and management of FH, supplemented with hand searches of bibliographies of guidelines and reviews. A supporting level of evidence for each recommendation was categorized as level I (randomized controlled trial or systematic review of randomized controlled trials), level II (observational study), or level III (expert opinion). The best available evidence is mostly level II or III. MAIN MESSAGE Familial hypercholesterolemia affects 1 in 500 Canadians. Risk of a coronary event is high in these patients and is underestimated by risk calculators (eg, Framingham). Clinicians should screen patients according to guidelines and suspect FH in any patient with a premature cardiovascular event, physical stigmata of hypercholesterolemia, or an elevated plasma lipid level. Physicians should diagnose FH using either the Simon Broome or Dutch Lipid Network criteria. Management of heterozygous FH includes reducing low-density lipoprotein levels by 50% or more from baseline with high-dose statins and other lipid-lowering agents. Clinicians should refer any patient with homozygous FH to a specialized centre. CONCLUSION Familial hypercholesterolemia represents an important cause of premature cardiovascular disease in Canadians. Early identification and aggressive treatment of individuals with FH reduces cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Ricky D Turgeon
- Clinical pharmacist at Vancouver General Hospital in British Columbia
| | - Arden R Barry
- Assistant Professor in the Faculty of Pharmacy and Pharmaceutical Sciences at the University of British Columbia
| | - Glen J Pearson
- Professor of Medicine in the Division of Cardiology in the Faculty of Medicine at the University of Alberta in Edmonton.
| |
Collapse
|
44
|
Porras AM, Shanmuganayagam D, Meudt JJ, Krueger CG, Hacker TA, Rahko PS, Reed JD, Masters KS. Development of Aortic Valve Disease in Familial Hypercholesterolemic Swine: Implications for Elucidating Disease Etiology. J Am Heart Assoc 2015; 4:e002254. [PMID: 26508741 PMCID: PMC4845146 DOI: 10.1161/jaha.115.002254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Familial hypercholesterolemia (FH) is a prevalent hereditary disease associated with increased atherosclerosis and calcific aortic valve disease (CAVD). However, in both FH and non‐FH individuals, the role of hypercholesterolemia in the development of CAVD is poorly understood. This study used Rapacz FH (RFH) swine, an established model of human FH, to investigate the role of hypercholesterolemia alone in the initiation and progression of CAVD. The valves of RFH swine have not previously been examined. Methods and Results Aortic valve leaflets were isolated from wild‐type (0.25‐ and 1‐year‐old) and RFH (0.25‐, 1‐, 2‐, and 3‐year‐old) swine. Adult RFH animals exhibited numerous hallmarks of early CAVD. Significant leaflet thickening was found in adult RFH swine, accompanied by extensive extracellular matrix remodeling, including proteoglycan enrichment, collagen disorganization, and elastin fragmentation. Increased lipid oxidation and infiltration of macrophages were also evident in adult RFH swine. Intracardiac echocardiography revealed mild aortic valve sclerosis in some of the adult RFH animals, but unimpaired valve function. Microarray analysis of valves from adult versus juvenile RFH animals revealed significant upregulation of inflammation‐related genes, as well as several commonalities with atherosclerosis and overlap with human CAVD. Conclusions Adult RFH swine exhibited several hallmarks of early human CAVD, suggesting potential for these animals to help elucidate CAVD etiology in both FH and non‐FH individuals. The development of advanced atherosclerotic lesions, but only early‐stage CAVD, in RFH swine supports the hypothesis of an initial shared disease process, with additional stimulation necessary for further progression of CAVD.
Collapse
Affiliation(s)
- Ana M. Porras
- Department of Biomedical EngineeringUniversity of Wisconsin–MadisonMadisonWI
| | | | - Jennifer J. Meudt
- Department of Animal SciencesUniversity of Wisconsin–MadisonMadisonWI
| | | | - Timothy A. Hacker
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of Wisconsin–MadisonMadisonWI
| | - Peter S. Rahko
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of Wisconsin–MadisonMadisonWI
| | - Jess D. Reed
- Department of Animal SciencesUniversity of Wisconsin–MadisonMadisonWI
| | - Kristyn S. Masters
- Department of Biomedical EngineeringUniversity of Wisconsin–MadisonMadisonWI
| |
Collapse
|
45
|
Gretarsdottir S, Helgason H, Helgadottir A, Sigurdsson A, Thorleifsson G, Magnusdottir A, Oddsson A, Steinthorsdottir V, Rafnar T, de Graaf J, Daneshpour MS, Hedayati M, Azizi F, Grarup N, Jørgensen T, Vestergaard H, Hansen T, Eyjolfsson G, Sigurdardottir O, Olafsson I, Kiemeney LA, Pedersen O, Sulem P, Thorgeirsson G, Gudbjartsson DF, Holm H, Thorsteinsdottir U, Stefansson K. A Splice Region Variant in LDLR Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease. PLoS Genet 2015; 11:e1005379. [PMID: 26327206 PMCID: PMC4556698 DOI: 10.1371/journal.pgen.1005379] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/22/2015] [Indexed: 01/08/2023] Open
Abstract
Through high coverage whole-genome sequencing and imputation of the identified variants into a large fraction of the Icelandic population, we found four independent signals in the low density lipoprotein receptor gene (LDLR) that associate with levels of non-high density lipoprotein cholesterol (non-HDL-C) and coronary artery disease (CAD). Two signals are novel with respect to association with non-HDL-C and are represented by non-coding low frequency variants (between 2–4% frequency), the splice region variant rs72658867-A in intron 14 and rs17248748-T in intron one. These two novel associations were replicated in three additional populations. Both variants lower non-HDL-C levels (rs72658867-A, non-HDL-C effect = -0.44 mmol/l, Padj = 1.1 × 10−80 and rs17248748-T, non-HDL-C effect = -0.13 mmol/l, Padj = 1.3 × 10−12) and confer protection against CAD (rs72658867-A, OR = 0.76 and Padj = 2.7 × 10−8 and rs17248748-T, OR = 0.92 and Padj = 0.022). The LDLR splice region variant, rs72658867-A, located at position +5 in intron 14 (NM_000527:c.2140+5G>A), causes retention of intron 14 during transcription and is expected to produce a truncated LDL receptor lacking domains essential for function of the receptor. About half of the transcripts generated from chromosomes carrying rs72658867-A are characterized by this retention of the intron. The same variant also increases LDLR mRNA expression, however, the wild type transcripts do not exceed levels in non-carriers. This demonstrates that sequence variants that disrupt the LDL receptor can lower non-HDL-C and protect against CAD. Cholesterol levels in the bloodstream, in particular elevated low-density lipoprotein cholesterol (LDL-C), are strong risk factors for cardiovascular disease, and LDL-C reduction reduces mortality in people at risk. One of the major determinants of plasma LDL-C levels is the low density lipoprotein receptor (LDLR) that acts as a scavenger for cholesterol rich lipoprotein particles. Mutations that disrupt the function of the LDLR or lead to reduction in the number of LDLR usually result in elevated LDL-C in blood. In the current study, we identified, through whole-genome sequencing and imputation into a large fraction of the Icelandic population, four LDLR gene variants that affect non-HDL-C levels (that includes cholesterol in LDL and other pro-atherogenic lipoproteins) and risk of coronary artery disease (CAD). Two variants are known and two are novel. One of them, a splice region variant in intron 14 (rs72658867-A), affects normal splicing and is predicted to generate a truncated LDLR, lacking domains essential for receptor function. Despite this, rs72658867-A lowers non-HDL-C substantially and protects against CAD in the general population, demonstrating that variants that disrupt the LDLR can result in lower cholesterol levels.
Collapse
Affiliation(s)
| | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Anna Helgadottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | - Jacqueline de Graaf
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Maryam S. Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I. R. Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I. R. Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, I. R. Iran
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Jørgensen
- Research Centre for Prevention and Health, The Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Medicine, University of Aalborg, Aalborg, Denmark
- Institute of Public Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali, National University Hospital, Reykjavik, Iceland
| | - Lambertus A. Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Gudmundur Thorgeirsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Division of Cardiology, Department of Internal Medicine, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Daniel F. Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Division of Cardiology, Department of Internal Medicine, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- * E-mail: (UT); (KS)
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- * E-mail: (UT); (KS)
| |
Collapse
|
46
|
Carvalho MS, Coeli CM, Chor D, Pinheiro RS, da Fonseca MDJM, de Sá Carvalho LC. The Challenge of Cardiovascular Diseases and Diabetes to Public Health: A Study Based on Qualitative Systemic Approach. PLoS One 2015; 10:e0132216. [PMID: 26171854 PMCID: PMC4501838 DOI: 10.1371/journal.pone.0132216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/08/2015] [Indexed: 01/02/2023] Open
Abstract
The most common modeling approaches to understanding incidence, prevalence and control of chronic diseases in populations, such as statistical regression models, are limited when it comes to dealing with the complexity of those problems. Those complex adaptive systems have characteristics such as emerging properties, self-organization and feedbacks, which structure the system stability and resistance to changes. Recently, system science approaches have been proposed to deal with the range, complexity, and multifactor nature of those public health problems. In this paper we applied a multilevel systemic approach to create an integrated, coherent, and increasingly precise conceptual framework, capable of aggregating different partial or specialized studies, based on the challenges of the Longitudinal Study of Adult Health - ELSA-Brasil. The failure to control blood pressure found in several of the study's subjects was discussed, based on the proposed model, analyzing different loops, time lags, and feedback that influence this outcome in a population with high educational level, with reasonably good health services access. We were able to identify the internal circularities and cycles that generate the system's resistance to change. We believe that this study can contribute to propose some new possibilities of the research agenda and to the discussion of integrated actions in the field of public health.
Collapse
Affiliation(s)
- Marilia Sá Carvalho
- Scientific Computing Program, Oswaldo Cruz Foundation, Antiga Residência Oficial, Rio de Janeiro, RJ, Brazil
- * E-mail:
| | - Claudia Medina Coeli
- Institute for Studies in Collective Health. Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Dóra Chor
- Department of Epidemiology, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Rejane Sobrino Pinheiro
- Institute for Studies in Collective Health. Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
47
|
Lin CJ, Lai CK, Kao MC, Wu LT, Lo UG, Lin LC, Chen YA, Lin H, Hsieh JT, Lai CH, Lin CD. Impact of cholesterol on disease progression. Biomedicine (Taipei) 2015; 5:7. [PMID: 26048694 PMCID: PMC4502043 DOI: 10.7603/s40681-015-0007-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
Cholesterol-rich microdomains (also called lipid rafts), where platforms for signaling are provided and thought to be associated with microbe-induced pathogenesis and lead to cancer progression. After treatment of cells with cholesterol disrupting or usurping agents, raft-associated proteins and lipids can be dissociated, and this renders the cell structure nonfunctional and therefore mitigates disease severity. This review focuses on the role of cholesterol in disease progression including cancer development and infectious diseases. Understanding the molecular mechanisms of cholesterol in these diseases may provide insight into the development of novel strategies for controlling these diseases in clinical scenarios.
Collapse
Affiliation(s)
- Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Texas, Dallas, 75235, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Screening for Familial Hypercholesterolaemia: Universal or Cascade? A Critique of Current FH Recognition Strategies. CURRENT CARDIOVASCULAR RISK REPORTS 2015. [DOI: 10.1007/s12170-014-0434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|