1
|
Matei E, Enciu M, Roșu MC, Voinea F, Mitroi AF, Deacu M, Băltățescu GI, Nicolau AA, Chisoi A, Aşchie M, Ionescu Mitu AC. Apoptosis-Cell Cycle-Autophagy Molecular Mechanisms Network in Heterogeneous Aggressive Phenotype Prostate Hyperplasia Primary Cell Cultures Have a Prognostic Role. Int J Mol Sci 2024; 25:9329. [PMID: 39273277 PMCID: PMC11394677 DOI: 10.3390/ijms25179329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Our study highlights the apoptosis, cell cycle, DNA ploidy, and autophagy molecular mechanisms network to identify prostate pathogenesis and its prognostic role. Caspase 3/7 expressions, cell cycle, adhesion glycoproteins, autophagy, nuclear shrinkage, and oxidative stress by flow-cytometry analysis are used to study the BPH microenvironment's heterogeneity. A high late apoptosis expression by caspases 3/7 activity represents an unfavorable prognostic biomarker, a dependent predictor factor for cell adhesion, growth inhibition by arrest in the G2/M phase, and oxidative stress processes network. The heterogeneous aggressive phenotype prostate adenoma primary cell cultures present a high S-phase category (>12%), with an increased risk of death or recurrence due to aneuploid status presence, representing an unfavorable prognostic biomarker, a dependent predictor factor for caspase 3/7 activity (late apoptosis and necrosis), and cell growth inhibition (G2/M arrest)-linked mechanisms. Increased integrin levels in heterogenous BPH cultures suggest epithelial-mesenchymal transition (EMT) that maintains an aggressive phenotype by escaping cell apoptosis, leading to the cell proliferation necessary in prostate cancer (PCa) development. As predictor biomarkers, the biological mechanisms network involved in apoptosis, the cell cycle, and autophagy help to establish patient prognostic survival or target cancer therapy development.
Collapse
Affiliation(s)
- Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Manuela Enciu
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Mihai Cătălin Roșu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Felix Voinea
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
- Urology Department, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Mariana Deacu
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Gabriela Isabela Băltățescu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Antonela-Anca Nicolau
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Anca Chisoi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Mariana Aşchie
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Anita Cristina Ionescu Mitu
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
- Chemical Carcinogenesis and Molecular Biology Laboratory, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| |
Collapse
|
2
|
Cruz SP, Zhang Q, Devarajan R, Paia C, Luo B, Zhang K, Koivusalo S, Qin L, Xia J, Ahtikoski A, Vaarala M, Wenta T, Wei G, Manninen A. Dampened Regulatory Circuitry of TEAD1/ITGA1/ITGA2 Promotes TGFβ1 Signaling to Orchestrate Prostate Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305547. [PMID: 38169150 PMCID: PMC10953553 DOI: 10.1002/advs.202305547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Indexed: 01/05/2024]
Abstract
The extracellular matrix (ECM) undergoes substantial changes during prostate cancer (PCa) progression, thereby regulating PCa growth and invasion. Herein, a meta-analysis of multiple PCa cohorts is performed which revealed that downregulation or genomic loss of ITGA1 and ITGA2 integrin genes is associated with tumor progression and worse prognosis. Genomic deletion of both ITGA1 and ITGA2 activated epithelial-to-mesenchymal transition (EMT) in benign prostate epithelial cells, thereby enhancing their invasive potential in vitro and converting them into tumorigenic cells in vivo. Mechanistically, EMT is induced by enhanced secretion and autocrine activation of TGFβ1 and nuclear targeting of YAP1. An unbiased genome-wide co-expression analysis of large PCa cohort datasets identified the transcription factor TEAD1 as a key regulator of ITGA1 and ITGA2 expression in PCa cells while TEAD1 loss phenocopied the dual loss of α1- and α2-integrins in vitro and in vivo. Remarkably, clinical data analysis revealed that TEAD1 downregulation or genomic loss is associated with aggressive PCa and together with low ITGA1 and ITGA2 expression synergistically impacted PCa prognosis and progression. This study thus demonstrated that loss of α1- and α2-integrins, either via deletion/inactivation of the ITGA1/ITGA2 locus or via loss of TEAD1, contributes to PCa progression by inducing TGFβ1-driven EMT.
Collapse
Affiliation(s)
- Sara P. Cruz
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Raman Devarajan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Christos Paia
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Binjie Luo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Kai Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Saara Koivusalo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Longguang Qin
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Jihan Xia
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Anne Ahtikoski
- Departments of Urology, Pathology and Radiology, and Medical Research Center OuluOulu University Hospital and University of OuluAapistie 5aOulu90220Finland
| | - Markku Vaarala
- Departments of Urology, Pathology and Radiology, and Medical Research Center OuluOulu University Hospital and University of OuluAapistie 5aOulu90220Finland
| | - Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
- Department of General and Medical Biochemistry, Faculty of BiologyUniversity of GdanskJana Bażyńskiego 8Gdańsk80–309Poland
| | - Gong‐Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesShanghai Medical College of Fudan University138 Yi Xue Yuan RoadShanghai200032China
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| |
Collapse
|
3
|
Characterization of the Tumor Microenvironment and the Biological Processes with a Role in Prostatic Tumorigenesis. Biomedicines 2022; 10:biomedicines10071672. [PMID: 35884977 PMCID: PMC9313300 DOI: 10.3390/biomedicines10071672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Prostate intratumoral heterogeneity, driven by epithelial−mesenchymal plasticity, contributes to the limited treatment response, and it is therefore necessary to use the biomarkers to improve patient prognostic survival. We aimed to characterize the tumor microenvironment (T lymphocyte infiltration, intratumoral CD34, and KI-67 expressions) by immunohistochemistry methods and to study the biological mechanisms (cell cycle, cell proliferation by adhesion glycoproteins, cell apoptosis) involved in the evolution of the prostate tumor process by flow-cytometry techniques. Our results showed that proliferative activity (S-phase) revealed statistically significant lower values of prostate adenocarcinoma (PCa) and benign prostatic hyperplasia (BPH) reported at non-malignant adjacent cell samples (PCa 4.32 ± 4.91; BPH 2.35 ± 1.37 vs. C 10.23 ± 0.43, p < 0.01). Furthermore, 68% of BPH cases and 88% of patients with PCa had aneuploidy. Statistically increased values of cell proliferation (CD34+ CD61+) were observed in prostate adenocarcinoma and hyperplasia cases reported to non-malignant adjacent cell samples (PCa 28.79 ± 10.14; BPH 40.65 ± 11.88 vs. C 16.15 ± 2.58, p < 0.05). The CD42b+ cell population with a role in cell adhesion, and metastasis had a significantly increased value in PCa cases (38.39 ± 11.23) reported to controls (C 26.24 ± 0.62, p < 0.01). The intratumoral expression of CD34 showed a significantly increased pattern of PCa tissue samples reported to controls (PCa 26.12 ± 6.84 vs. C 1.50 ± 0.70, p < 0.01). Flow cytometric analysis of the cell cycle, apoptosis, and adhesion glycoproteins with a critical role in tumoral cell proliferation, T cell infiltrations, Ki-67, and CD 34 expressions by IHC methods are recommended as techniques for the efficient means of measurement for adenocarcinoma and hyperplasia prostate tissue samples and should be explored in the future.
Collapse
|
4
|
Spethmann T, Böckelmann LC, Labitzky V, Ahlers AK, Schröder-Schwarz J, Bonk S, Simon R, Sauter G, Huland H, Kypta R, Schumacher U, Lange T. Opposing prognostic relevance of junction plakoglobin in distinct prostate cancer patient subsets. Mol Oncol 2021; 15:1956-1969. [PMID: 33533127 PMCID: PMC8253102 DOI: 10.1002/1878-0261.12922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
Both oncogenic and tumor suppressor functions have been described for junction plakoglobin (JUP), also known as γ-catenin. To clarify the role of JUP in prostate cancer, JUP protein expression was immunohistochemically detected in a tissue microarray containing 11 267 individual prostatectomy specimens. Considering all patients, high JUP expression was associated with adverse tumor stage (P = 0.0002), high Gleason grade (P < 0.0001), and lymph node metastases (P = 0.011). These associations were driven mainly by the subset without TMPRSS2:ERG fusion, in which high JUP expression was an independent predictor of poor prognosis (multivariate analyses, P = 0.0054) and early biochemical recurrence (P = 0.0003). High JUP expression was further linked to strong androgen receptor expression (P < 0.0001), high cell proliferation, and PTEN and FOXP1 deletion (P < 0.0001). In the ERG-negative subset, high JUP expression was additionally linked to MAP3K7 (P = 0.0007) and CHD1 deletion (P = 0.0021). Contrasting the overall prognostic effect of JUP, low JUP expression indicated poor prognosis in the fraction of CHD1-deleted patients (P = 0.039). In this subset, the association of high JUP and high cell proliferation was specifically absent. In conclusion, the controversial biological roles of JUP are reflected by antagonistic prognostic effects in distinct prostate cancer patient subsets.
Collapse
Affiliation(s)
- Tanja Spethmann
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany.,Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Vera Labitzky
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Ann-Kristin Ahlers
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany.,Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Hartwig Huland
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Robert Kypta
- Department of Surgery and Cancer, Imperial College London, UK.,Center for Cooperative Research in Biosciences, CIC bioGUNE, Derio, Spain
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
5
|
Exosomes-Mediated Transfer of Itga2 Promotes Migration and Invasion of Prostate Cancer Cells by Inducing Epithelial-Mesenchymal Transition. Cancers (Basel) 2020; 12:cancers12082300. [PMID: 32824235 PMCID: PMC7466113 DOI: 10.3390/cancers12082300] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Although integrin alpha 2 subunit (ITGA2) mediates cancer progression and metastasis, its transfer by exosomes has not been investigated in prostate cancer (PCa). We aimed to determine the role of exosomal ITGA2 derived from castration-resistant PCa (CRPC) cells in promoting aggressive phenotypes in androgen receptor (AR)-positive cells. Exosomes were co-incubated with recipient cells and tested for different cellular assays. ITGA2 was enriched in exosomes derived from CRPC cells. Co-culture of AR-positive cells with CRPC-derived exosomes increased their proliferation, migration, and invasion by promoting epithelial-mesenchymal transition, which was reversed via ITGA2 knockdown or inhibition of exosomal uptake by methyl-β-cyclodextrin (MβCD). Ectopic expression of ITGA2 reproduced the effect of exosomal ITGA2 in PCa cells. ITGA2 transferred by exosomes exerted its effect within a shorter time compared to that triggered by its endogenous expression. The difference of ITGA2 protein expression in localized tumors and those with lymph node metastatic tissues was indistinguishable. Nevertheless, its abundance was higher in circulating exosomes collected from PCa patients when compared with normal subjects. Our findings indicate the possible role of the exosomal-ITGA2 transfer in altering the phenotype of AR-positive cells towards more aggressive phenotype. Thus, interfering with exosomal cargo transfer may inhibit the development of aggressive phenotype in PCa cells.
Collapse
|
6
|
Nollet EA, Cardo-Vila M, Ganguly SS, Tran JD, Schulz VV, Cress A, Corey E, Miranti CK. Androgen receptor-induced integrin α6β1 and Bnip3 promote survival and resistance to PI3K inhibitors in castration-resistant prostate cancer. Oncogene 2020; 39:5390-5404. [PMID: 32565538 PMCID: PMC7395876 DOI: 10.1038/s41388-020-1370-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/09/2022]
Abstract
The androgen receptor (AR) is the major driver of prostate cancer growth and survival. However, almost all patients relapse with castration resistant disease (CRPC) when treated with anti-androgen therapy. In CRPC, AR is often aberrantly activated independent of androgen. Targeting survival pathways downstream of AR could be a viable strategy to overcome CRPC. Surprisingly, little is known about how AR drives prostate cancer survival. Furthermore, CRPC tumors in which Pten is lost are also resistant to eradication by PI3K inhibitors. We sought to identify the mechanism by which AR drives tumor survival in CRPC to identify ways to overcome resistance to PI3K inhibition. We found that integrin α6β1 and Bnip3 are selectively elevated in CRPC downstream of AR. While integrin α6 promotes survival and is a direct transcriptional target of AR, the ability of AR to induce Bnip3 is dependent on adhesion to laminin and integrin α6β1-dependent nuclear translocation of HIF1α. Integrin α6β1 and Bnip3 were found to promote survival of CRPC cells selectively on laminin through the induction of autophagy and mitophagy. Furthermore, blocking Bnip3 or integrin α6β1 restored sensitivity to PI3K inhibitors in Pten-negative CRPC. We identified an AR driven pathway that cooperates with laminin and hypoxia to drive resistance to PI3K inhibitors. These findings can help explain in part why PI3K inhibitors have failed in clinical trials to overcome AR-dependent CRPC.
Collapse
Affiliation(s)
| | - Marina Cardo-Vila
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Sourik S Ganguly
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Jack D Tran
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Anne Cress
- Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Cindy K Miranti
- Van Andel Research Institute, Grand Rapids, MI, USA. .,Department of Cellular and Molecular Medicine and Prostate Cancer Research Program at University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
7
|
Harryman WL, Warfel NA, Nagle RB, Cress AE. The Tumor Microenvironments of Lethal Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:149-170. [PMID: 31900909 DOI: 10.1007/978-3-030-32656-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Localized prostate cancer (confined to the gland) generally is considered curable, with nearly a 100% 5-year-survival rate. When the tumor escapes the prostate capsule, leading to metastasis, there is a poorer prognosis and higher mortality rate, with 5-year survival dropping to less than 30%. A major research question has been to understand the transition from indolent (low risk) disease to aggressive (high risk) disease. In this chapter, we provide details of the changing tumor microenvironments during prostate cancer invasion and their role in the progression and metastasis of lethal prostate cancer. Four microenvironments covered here include the muscle stroma, perineural invasion, hypoxia, and the role of microvesicles in altering the extracellular matrix environment. The adaptability of prostate cancer to these varied microenvironments and the cues for phenotypic changes are currently understudied areas. Model systems for understanding smooth muscle invasion both in vitro and in vivo are highlighted. Invasive human needle biopsy tissue and mouse xenograft tumors both contain smooth muscle invasion. In combination, the models can be used in an iterative process to validate molecular events for smooth muscle invasion in human tissue. Understanding the complex and interacting microenvironments in the prostate holds the key to early detection of high-risk disease and preventing tumor invasion through escape from the prostate capsule.
Collapse
Affiliation(s)
| | - Noel A Warfel
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Raymond B Nagle
- Department of Pathology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Anne E Cress
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
8
|
Steinbichler TB, Dudás J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Semin Cancer Biol 2017; 44:170-181. [PMID: 28215970 DOI: 10.1016/j.semcancer.2017.02.006] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are small membrane vesicles with a size ranging from 40 to 100nm. They can serve as functional mediators in cell interaction leading to cancer metastasis. Metastasis is a complex multistep process of cancer cell invasion, survival in blood vessels, attachment to and colonization of the host organ. Exosomes influence every step of this cascade and can be targeted by oncological treatment. This review highlights the role of exosomes in the various steps of the metastatic cascade and how exosome dependent pathways can be targeted as therapeutic approach or used for liquid biopsies.
Collapse
Affiliation(s)
| | - József Dudás
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
9
|
Wang M, Nagle RB, Knudsen BS, Rogers GC, Cress AE. A basal cell defect promotes budding of prostatic intraepithelial neoplasia. J Cell Sci 2017; 130:104-110. [PMID: 27609833 PMCID: PMC5394777 DOI: 10.1242/jcs.188177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022] Open
Abstract
Basal cells in a simple secretory epithelium adhere to the extracellular matrix (ECM), providing contextual cues for ordered repopulation of the luminal cell layer. Early high-grade prostatic intraepithelial neoplasia (HG-PIN) tissue has enlarged nuclei and nucleoli, luminal layer expansion and genomic instability. Additional HG-PIN markers include loss of α6β4 integrin or its ligand laminin-332, and budding of tumor clusters into laminin-511-rich stroma. We modeled the invasive budding phenotype by reducing expression of α6β4 integrin in spheroids formed from two normal human stable isogenic prostate epithelial cell lines (RWPE-1 and PrEC 11220). These normal cells continuously spun in culture, forming multicellular spheroids containing an outer laminin-332 layer, basal cells (expressing α6β4 integrin, high-molecular-weight cytokeratin and p63, also known as TP63) and luminal cells that secrete PSA (also known as KLK3). Basal cells were optimally positioned relative to the laminin-332 layer as determined by spindle orientation. β4-integrin-defective spheroids contained a discontinuous laminin-332 layer corresponding to regions of abnormal budding. This 3D model can be readily used to study mechanisms that disrupt laminin-332 continuity, for example, defects in the essential adhesion receptor (β4 integrin), laminin-332 or abnormal luminal expansion during HG-PIN progression.
Collapse
Affiliation(s)
- Mengdie Wang
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Raymond B Nagle
- Department of Pathology, College of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Beatrice S Knudsen
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA
| |
Collapse
|
10
|
Drivalos A, Chrisofos M, Efstathiou E, Kapranou A, Kollaitis G, Koutlis G, Antoniou N, Karanastasis D, Dimopoulos MA, Bamias A. Expression of α5-integrin, α7-integrin, Ε-cadherin, and N-cadherin in localized prostate cancer. Urol Oncol 2015; 34:165.e11-8. [PMID: 26652134 DOI: 10.1016/j.urolonc.2015.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/14/2015] [Accepted: 10/27/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To explore the correlation between the expression of α5-integrin, α7-integrin, Ε-cadherin, and N-cadherin in prostate cancer (PCa) and its clinicopathological data including tumor grade and clinical stage. METHODS The expression of α5-integrin, α7-integrin, Ε-cadherin, and N-cadherin was examined in 157 cases of PCa and adjacent normal prostatic tissue by immunohistochemical assay, and the correlation with clinicopathological features was analyzed. RESULTS Expressions of α5-integrin, α7-integrin, and Ε-cadherin in PCa were lower than those in normal prostatic tissues (P<0.05). N-cadherin expression was higher in cancer prostatic tissue than in normal prostatic tissues (P<0.05). The reduced expression of α5-integrin, α7-integrin, and Ε-cadherin was related to Gleason score, pathological stage, lymph node metastasis, and prostate-specific antigen level, but it was not associated with positive surgical margins and patient age. The increased expression of N-cadherin was related to Gleason score, pathological stage, lymph node metastasis, and prostate-specific antigen level, but not to age and positive surgical margins. The expression of E-cadherin was highly negatively correlated with that of N-cadherin and also positively correlated with that of α5-integrin and α7-integrin. CONCLUSION The reduced expression of α5-integrin, α7-integrin, and Ε-cadherin and abnormal expression of N-cadherin play an important role in the occurrence and development of PCa. The results indicate that these have potential values in the diagnosis and are predictable indices in the proliferation of PCa.
Collapse
Affiliation(s)
| | - Michael Chrisofos
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, University of Athens, Athens, Greece
| | - Eleni Efstathiou
- Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, University of Athens, Athens, Greece
| | - Amalia Kapranou
- Department of Anatomopathology, Athens Navy Hospital, Athens, Greece
| | | | - Georgios Koutlis
- Department of Anatomopathology, Athens Navy Hospital, Athens, Greece
| | - Nick Antoniou
- Department of Urology, Athens General Hospital "Elpis," Athens, Greece
| | | | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, University of Athens, Athens, Greece
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, School of Medicine, Alexandra Hospital, University of Athens, Athens, Greece
| |
Collapse
|
11
|
Vieira AF, Paredes J. P-cadherin and the journey to cancer metastasis. Mol Cancer 2015; 14:178. [PMID: 26438065 PMCID: PMC4595126 DOI: 10.1186/s12943-015-0448-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022] Open
Abstract
P-cadherin is a classical cell-to-cell adhesion molecule with a homeostatic function in several normal tissues. However, its behaviour in the malignant setting is notably dependent on the cellular context. In some tumour models, such as melanoma and oral squamous cell carcinoma, P-cadherin acts as a tumour suppressor, since its absence is associated with a more aggressive cancer cell phenotype; nevertheless, the overexpression of this molecule is linked to significant tumour promoting effects in the breast, ovarian, prostate, endometrial, skin, gastric, pancreas and colon neoplasms. Herein, we review the role of P-cadherin in cancer cell invasion, as well as in loco-regional and distant metastatic dissemination. We focus in P-cadherin signalling pathways that are activated to induce invasion and metastasis, as well as cancer stem cell properties. The signalling network downstream of P-cadherin is notably dependent on the cellular and tissue context and includes the activation of integrin molecules, receptor tyrosine kinases, small molecule GTPases, EMT transcription factors, and crosstalk with other cadherin family members. As new oncogenic molecular pathways mediated by P-cadherin are uncovered, putative therapeutic options can be tested, which will allow for the targeting of invasion or metastatic disease, depending on the tumour model.
Collapse
Affiliation(s)
- André Filipe Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho, N. 45, 4200-135, Porto, Portugal.
| | - Joana Paredes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho, N. 45, 4200-135, Porto, Portugal. .,Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
12
|
Chin SP, Marthick JR, West AC, Short AK, Chuckowree J, Polanowski AM, Thomson RJ, Holloway AF, Dickinson JL. Regulation of the ITGA2 gene by epigenetic mechanisms in prostate cancer. Prostate 2015; 75:723-34. [PMID: 25662931 DOI: 10.1002/pros.22954] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/01/2014] [Indexed: 11/11/2022]
Abstract
BACKGROUND Integrin alpha2 beta1 (α2 β1 ) plays an integral role in tumour cell invasion, metastasis and angiogenesis, and altered expression of the receptor has been linked to tumour prognosis in several solid tumours. However, the relationship is complex, with both increased and decreased expression associated with different stages of tumour metastases in several tumour types. The ITGA2 gene, which codes for the α2 subunit, was examined to investigate whether a large CpG island associated with its promoter region is involved in the differential expression of ITGA2 observed in prostate cancer. METHODS Bisulphite sequencing of the ITGA2 promoter was used to assess methylation in formalin-fixed paraffin-embedded (FFPE) prostate tumour specimens and prostate cancer cell lines, PC3, 22Rv1 and LNCaP. Changes in ITGA2 mRNA expression were measured using quantitative PCR. ITGA2 functionality was interrogated using cell migration scratch assays and siRNA knockdown experiments. RESULTS Bisulphite sequencing revealed strikingly decreased methylation at key CpG sites within the promoter of tumour samples, when compared with normal prostate tissue. Altered methylation of this CpG island is also associated with differences in expression in the non-invasive LNCaP, and the highly metastatic PC3 and 22Rv1 prostate cancer cell lines. Further bisulphite sequencing confirmed that selected CpGs were highly methylated in LNCaP cells, whilst only low levels of methylation were observed in PC3 and 22Rv1 cells, correlating with ITGA2 transcript levels. Examination of the increased expression of ITGA2 was shown to influence migratory potential via scratch assay in PC3, 22Rv1 and LNCaP cells, and was confirmed by siRNA knockdown experiments. CONCLUSIONS Taken together, our data supports the assertion that epigenetic modification of the ITGA2 promoter is a mechanism by which ITGA2 expression is regulated.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Cell Line, Tumor
- Cell Movement/genetics
- DNA Methylation
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Integrin alpha5beta1/biosynthesis
- Integrin alpha5beta1/genetics
- Male
- Middle Aged
- Promoter Regions, Genetic
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Suyin Paulynn Chin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ganguly SS, Li X, Miranti CK. The host microenvironment influences prostate cancer invasion, systemic spread, bone colonization, and osteoblastic metastasis. Front Oncol 2014; 4:364. [PMID: 25566502 PMCID: PMC4266028 DOI: 10.3389/fonc.2014.00364] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/29/2014] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men worldwide. Most PCa deaths are due to osteoblastic bone metastases. What triggers PCa metastasis to the bone and what causes osteoblastic lesions remain unanswered. A major contributor to PCa metastasis is the host microenvironment. Here, we address how the primary tumor microenvironment influences PCa metastasis via integrins, extracellular proteases, and transient epithelia-mesenchymal transition (EMT) to promote PCa progression, invasion, and metastasis. We discuss how the bone-microenvironment influences metastasis; where chemotactic cytokines favor bone homing, adhesion molecules promote colonization, and bone-derived signals induce osteoblastic lesions. Animal models that fully recapitulate human PCa progression from primary tumor to bone metastasis are needed to understand the PCa pathophysiology that leads to bone metastasis. Better delineation of the specific processes involved in PCa bone metastasize is needed to prevent or treat metastatic PCa. Therapeutic regimens that focus on the tumor microenvironment could add to the PCa pharmacopeia.
Collapse
Affiliation(s)
- Sourik S Ganguly
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Tumor Microenvironment and Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA ; Program for Skeletal Disease and Tumor Metastasis, Laboratory of Integrin Signaling and Tumorigenesis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| | - Xiaohong Li
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Tumor Microenvironment and Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| | - Cindy K Miranti
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Integrin Signaling and Tumorigenesis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| |
Collapse
|
14
|
Li J, Xu YH, Lu Y, Ma XP, Chen P, Luo SW, Jia ZG, Liu Y, Guo Y. Identifying differentially expressed genes and small molecule drugs for prostate cancer by a bioinformatics strategy. Asian Pac J Cancer Prev 2014; 14:5281-6. [PMID: 24175814 DOI: 10.7314/apjcp.2013.14.9.5281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Prostate cancer caused by the abnormal disorderly growth of prostatic acinar cells is the most prevalent cancer of men in western countries. We aimed to screen out differentially expressed genes (DEGs) and explore small molecule drugs for prostate cancer. MATERIALS AND METHODS The GSE3824 gene expression profile of prostate cancer was downloaded from Gene Expression Omnibus database which including 21 normal samples and 18 prostate cancer cells. The DEGs were identified by Limma package in R language and gene ontology and pathway enrichment analyses were performed. In addition, potential regulatory microRNAs and the target sites of the transcription factors were screened out based on the molecular signature database. In addition, the DEGs were mapped to the connectivity map database to identify potential small molecule drugs. RESULTS A total of 6,588 genes were filtered as DEGs between normal and prostate cancer samples. Examples such as ITGB6, ITGB3, ITGAV and ITGA2 may induce prostate cancer through actions on the focal adhesion pathway. Furthermore, the transcription factor, SP1, and its target genes ARHGAP26 and USF1 were identified. The most significant microRNA, MIR-506, was screened and found to regulate genes including ITGB1 and ITGB3. Additionally, small molecules MS-275, 8-azaguanine and pyrvinium were discovered to have the potential to repair the disordered metabolic pathways, abd furthermore to remedy prostate cancer. CONCLUSIONS The results of our analysis bear on the mechanism of prostate cancer and allow screening for small molecular drugs for this cancer. The findings have the potential for future use in the clinic for treatment of prostate cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of Urology, the 452nd Hospital of PLA, Chengdu, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Differential expression of extracellular matrix constituents and cell adhesion molecules between malignant pleural mesothelioma and mesothelial hyperplasia. J Thorac Oncol 2014; 8:1389-95. [PMID: 24084442 DOI: 10.1097/jto.0b013e3182a59f45] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm associated with asbestos exposure. Currently, the molecular mechanisms that induce MPM development are still unknown. The purpose of this study was to identify new molecular biomarkers for mesothelial carcinogenesis. METHODS We analyzed a panel of 84 genes involved in extracellular matrix remodeling and cell adhesion by polymerase chain reaction (PCR) array in 15 samples of epithelioid mesothelioma and 10 samples of reactive mesothelial hyperplasia (MH; 3 of 25 samples were inadequate for mRNA analysis). To validate the differentially expressed genes identified by PCR array, we analyzed 27 more samples by immunohistochemistry, in addition to the 25 samples already studied. RESULTS Twenty-five genes were differentially expressed in MPM and MH by PCR array. Of these we studied matrix metalloproteinase 7 (MMP7), MMP14, CD44, and integrin, alpha3 expression by immunohistochemistry in 26 epithelioid MPM and 26 MH samples from the entire series of 52 cases. We observed higher MMP14 and integrin, alpha3 expression in MPM samples compared with MH samples (p = 0.000002 and p = 0.000002, respectively). Conversely, CD44 expression was low in most (57.7%) mesothelioma samples but only in 11.5% of the MH samples (p = 0.0013). As regards MMP7, we did not observe differential expression between MH and MPM samples. CONCLUSIONS We have extensively studied genes involved in cell adhesion and extracellular matrix remodeling in MPM and MH samples, gaining new insight into the pathophysiology of mesothelioma. Moreover, our data suggest that these factors could be potential biomarkers for MPM.
Collapse
|
16
|
Pontes-Júnior J, Reis ST, Bernardes FS, Oliveira LCN, Barros ÉAFD, Dall'Oglio MF, Timosczuk LMS, Ribeiro-Filho LA, Srougi M, Leite KRM. Correlation between beta1 integrin expression and prognosis in clinically localized prostate cancer. Int Braz J Urol 2014; 39:335-42; discussion 343. [PMID: 23849566 DOI: 10.1590/s1677-5538.ibju.2013.03.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 11/30/2012] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED Integrins are transmembrane glycoprotein receptors that regulate cell-matrix interactions, thus functioning as sensors from the environment. They also act as cell adhesion molecules that are responsible for the maintenance of the normal epithelial phenotype. Some studies have reported a correlation between carcinogenesis and changes in integrin expression, especially β1 integrin, however its role in prostate cancer (PC) is unclear. The aim of our study was to evaluate the expression of β1 integrin in localized PC and to correlate the pattern of expression with recurrence after surgical treatment. Methods For this case-control study, we retrospectively selected surgical specimens from 111 patients with localized PC who underwent radical prostatectomy. Recurrence was defined as a PSA level exceeding 0.2 ng/mL after surgery, and the median follow-up was 123 months. Integrin expression was evaluated by immunohistochemistry in a tissue microarray containing two samples from each tumor. We employed a semiquantitative analysis and considered a case as positive when the expression was strong and diffusely present. RESULTS There was a loss of 11 cases during the tissue micro array assembling. β1 expression was positive in 79 of the 100 evaluated cases (79%). The univariate and multivariate analyses showed that the negative expression of β1 integrin was associated with biochemical recurrence (p = 0.047) and time to recurrence after radical prostatectomy (p = 0.023). When β1 was negative, the odds ratio for recurrence was 2.78 times higher than that observed in the positive cases [OR = 2.78, p = 0.047, IC 95% (1.01-7.66)]. CONCLUSIONS The loss of β1 integrin immune expression was correlated with biochemical recurrence in patients treated with radical prostatectomy for localized PC.
Collapse
Affiliation(s)
- José Pontes-Júnior
- Laboratory of Medical Investigation - LIM 55, Urology Department, University of Sao Paulo Medical, School and Universidade Nove de Julho, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schittenhelm J, Klein A, Tatagiba MS, Meyermann R, Fend F, Goodman SL, Sipos B. Comparing the expression of integrins αvβ3, αvβ5, αvβ6, αvβ8, fibronectin and fibrinogen in human brain metastases and their corresponding primary tumors. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:2719-32. [PMID: 24294359 PMCID: PMC3843253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/09/2013] [Indexed: 06/02/2023]
Abstract
AIMS To evaluate the expression of αv-series integrins in brain metastases. Inhibitors targeting these integrins are being tested for their therapeutic potential. MATERIAL AND METHOD The extracellular regions of the αvβ3, αvβ5, αvβ6, αvβ8, the cytoplasmic domain of β3, the αv-chain, and the ECM molecules fibronectin and fibrinogen were studied immunohistochemically in a series of 122 carcinoma and 60 melanomas metastatic to the central nervous system. In addition, 38 matched primary and metastatic tumors to the brain were compared directly. RESULTS The αv-subunit was generally moderately to highly expressed in most tumors. αvβ3 and cytoplasmic β3 were weakly to moderately detectable in metastatic renal cell carcinomas and melanomas, αvβ5 was prominently expressed in metastatic renal and colorectal carcinomas, αvβ6 was most abundantly detectable in metastatic lung adenocarcinomas, but absent in melanomas. The tumor associated vessels in CNS metastases consistently expressed αvβ3, αvβ5, αv-, fibronectin and fibrinogen, however, mostly at low levels, while αvβ6, αvβ8 were lacking in vasculature. The comparative analysis of 38 matched primary tumors and brain metastases showed comparable levels of expression only for αvβ3 and αvβ8, while αvβ6 and αvβ5 were higher in primaries. CONCLUSION We confirmed that integrin expression exhibits considerable heterogeneity according to tumor origin. αvβ5 is the most promising target for integrin targeted treatment in brain metastases.
Collapse
Affiliation(s)
- Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of TübingenTübingen 72076, Germany
| | - Annemarie Klein
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of TübingenTübingen 72076, Germany
| | - Marcos S Tatagiba
- Department of Neurosurgery, University of TübingenTübingen 72076, Germany
| | - Richard Meyermann
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of TübingenTübingen 72076, Germany
| | - Falko Fend
- Department of Pathology, Institute of Pathology and Neuropathology, University of TübingenTübingen 72076, Germany
| | - Simon L Goodman
- Department of Translational and Biomarkers Research - Oncology, Merck KGaA64271 Darmstadt, Germany
| | - Bence Sipos
- Department of Pathology, Institute of Pathology and Neuropathology, University of TübingenTübingen 72076, Germany
| |
Collapse
|
18
|
Hudak L, Tezeeh P, Wedel S, Makarević J, Juengel E, Tsaur I, Bartsch G, Wiesner C, Haferkamp A, Blaheta RA. Low dosed interferon alpha augments the anti-tumor potential of histone deacetylase inhibition on prostate cancer cell growth and invasion. Prostate 2012; 72:1719-35. [PMID: 22473339 DOI: 10.1002/pros.22525] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/07/2012] [Indexed: 11/08/2022]
Abstract
We evaluated whether low-dosed interferon alpha (IFNa) may augment the anti-tumor potential of the histone deacetylase (HDAC)-inhibitor valproic acid (VPA) on prostate cancer cells in vitro and in vivo. PC-3, DU-145, or LNCaP prostate cancer cells were treated with VPA (1 mM), IFNa (200 U/ml), or with the VPA-IFNa combination. Tumor cell growth, cell cycle progression, and cell cycle regulating proteins were then investigated by the MTT assay, flow cytometry, and western blotting. Tumor cell adhesion to endothelium or to immobilized extracellular matrix proteins, as well as migratory properties of the cells, were evaluated. Integrin α and β adhesion molecules and alterations of cell signaling pathways were analyzed. Finally, effects of the drug treatment on prostate cancer growth in vivo were determined in the NOD/SCID mouse model. VPA reduced tumor cell adhesion, migration, and growth in vitro. A much stronger anti-cancer potential was evoked by the VPA-IFNa combination, although IFNa in itself did not block growth or adhesion. The same effect was seen when tumor growth was evaluated in vivo. Molecular analysis revealed distinct elevation of histone H3 acetylation caused by VPA which was further up-regulated by VPA-IFNa, whereas IFNa alone did not alter H3 acetylation. The combinatorial benefit became obvious in Akt phosphorylation, p21 and p27 and integrin α1, α3, and β1 expression. Application of low-dosed IFNa to a VPA based regimen profoundly boosts the anti-tumor properties of VPA. The combined use of VPA and low-dosed IFNa may therefore be an innovative option in treating advanced prostate cancer.
Collapse
Affiliation(s)
- Lukasz Hudak
- Department of Urology, Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
RGD-Binding Integrins in Prostate Cancer: Expression Patterns and Therapeutic Prospects against Bone Metastasis. Cancers (Basel) 2012; 4:1106-45. [PMID: 24213501 PMCID: PMC3712721 DOI: 10.3390/cancers4041106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/09/2012] [Accepted: 10/22/2012] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is the third leading cause of male cancer deaths in the developed world. The current lack of highly specific detection methods and efficient therapeutic agents for advanced disease have been identified as problems requiring further research. The integrins play a vital role in the cross-talk between the cell and extracellular matrix, enhancing the growth, migration, invasion and metastasis of cancer cells. Progression and metastasis of prostate adenocarcinoma is strongly associated with changes in integrin expression, notably abnormal expression and activation of the β3 integrins in tumour cells, which promotes haematogenous spread and tumour growth in bone. As such, influencing integrin cell expression and function using targeted therapeutics represents a potential treatment for bone metastasis, the most common and debilitating complication of advanced prostate cancer. In this review, we highlight the multiple ways in which RGD-binding integrins contribute to prostate cancer progression and metastasis, and identify the rationale for development of multi-integrin antagonists targeting the RGD-binding subfamily as molecularly targeted agents for its treatment.
Collapse
|
20
|
Marthick JR, Dickinson JL. Emerging putative biomarkers: the role of alpha 2 and 6 integrins in susceptibility, treatment, and prognosis. Prostate Cancer 2012; 2012:298732. [PMID: 22900191 PMCID: PMC3415072 DOI: 10.1155/2012/298732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/17/2012] [Indexed: 11/22/2022] Open
Abstract
The genetic architecture underpinning prostate cancer is complex, polygenic and despite recent significant advances many questions remain. Advances in genetic technologies have greatly improved our ability to identify genetic variants associated with complex disease including prostate cancer. Genome-wide association studies (GWASs) and microarray gene expression studies have identified genetic associations with prostate cancer susceptibility and tumour development. The integrins feature prominently in both studies examining the underlying genetic susceptibility and mechanisms driving prostate tumour development. Integrins are cell adhesion molecules involved in extracellular and intracellular signalling and are imperative for tumour development, migration, and angiogenesis. Although several integrins have been implicated in tumour development, the roles of integrin α(2) and integrin α(6) are the focus of this paper as evidence is now emerging that these integrins are implicit in prostate cancer susceptibility, cancer stem cell biology, angiogenesis, cell migration, and metastases to bone and represent potential biomarkers and therapeutic targets. There currently exists an urgent need to develop tools that differentiate indolent from aggressive prostate cancers and predict how patients will respond to treatment. This paper outlines the evidence supporting the use of α(2) and α(6) integrins in clinical applications for tailored patient treatment.
Collapse
Affiliation(s)
- James R. Marthick
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street Hobart, TAS 7000, Australia
| | - Joanne L. Dickinson
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street Hobart, TAS 7000, Australia
| |
Collapse
|
21
|
The desmosomal armadillo protein plakoglobin regulates prostate cancer cell adhesion and motility through vitronectin-dependent Src signaling. PLoS One 2012; 7:e42132. [PMID: 22860065 PMCID: PMC3408445 DOI: 10.1371/journal.pone.0042132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 07/03/2012] [Indexed: 02/02/2023] Open
Abstract
Plakoglobin (PG) is an armadillo protein that associates with both classic and desmosomal cadherins, but is primarily concentrated in mature desmosomes in epithelia. While reduced levels of PG have been reported in localized and hormone refractory prostate tumors, the functional significance of these changes is unknown. Here we report that PG expression is reduced in samples of a prostate tumor tissue array and inversely correlated with advancing tumor potential in 7 PCa cell lines. Ectopically expressed PG enhanced intercellular adhesive strength, and attenuated the motility and invasion of aggressive cell lines, whereas silencing PG in less tumorigenic cells had the opposite effect. PG also regulated cell-substrate adhesion and motility through extracellular matrix (ECM)-dependent inhibition of Src kinase, suggesting that PG’s effects were not due solely to increased intercellular adhesion. PG silencing resulted in elevated levels of the ECM protein vitronectin (VN), and exposing PG-expressing cells to VN induced Src activity. Furthermore, increased VN levels and Src activation correlated with diminished expression of PG in patient tissues. Thus, PG may inhibit Src by keeping VN low. Our results suggest that loss of intercellular adhesion due to reduced PG expression might be exacerbated by activation of Src through a PG-dependent mechanism. Furthermore, PG down-regulation during PCa progression could contribute to the known VN-dependent promotion of PCa invasion and metastasis, demonstrating a novel functional interaction between desmosomal cell-cell adhesion and cell-substrate adhesion signaling axes in prostate cancer.
Collapse
|
22
|
Corn PG. The tumor microenvironment in prostate cancer: elucidating molecular pathways for therapy development. Cancer Manag Res 2012; 4:183-93. [PMID: 22904640 PMCID: PMC3421469 DOI: 10.2147/cmar.s32839] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mechanisms leading to the development of virulent prostate cancer are not confined to the cancer epithelial cell, but also involve the tumor microenvironment. Multiple signaling pathways exist between epithelial cells, stromal cells, and the extracellular matrix to support tumor progression from the primary site to regional lymph nodes and distant metastases. Prostate cancers preferentially metastasize to the skeleton, prompting considerable research effort into understanding the unique interaction between prostate cancer epithelial cells and the bone microenvironment. This effort has led to the discovery that signaling pathways involved in normal prostate and bone development become dysregulated in cancer. These pathways stimulate excessive cell growth and neovascularization, impart more invasive properties to epithelial cells, weaken antitumor immune surveillance, and promote the emergence of castrate-resistant disease. An improved understanding of the complex relationship between cancer epithelial cells and the organ-specific microenvironments with which they interact has created a powerful opportunity to develop novel therapies.
Collapse
Affiliation(s)
- Paul G Corn
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Colombel M, Eaton CL, Hamdy F, Ricci E, van der Pluijm G, Cecchini M, Mege-Lechevallier F, Clezardin P, Thalmann G. Increased expression of putative cancer stem cell markers in primary prostate cancer is associated with progression of bone metastases. Prostate 2012; 72:713-20. [PMID: 21882211 DOI: 10.1002/pros.21473] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/13/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND A number of putative stem cell markers have been associated with aggressiveness of prostate cancer, including alpha 2 and alpha 6 integrin and c-met. The study aimed to test the hypothesis that the development of bone metastasis correlates with the proportion of prostate cancer stem cell-like cells present in the primary tumor. METHODS Prostate tissue samples were obtained from patients with high-risk prostatic adenocarcinoma. Prostate cancer tumor tissue samples underwent immunohistochemical staining for alpha 2 and alpha 6 integrin and c-met; positive and negative controls were included. Samples were scored as positive if >5% of cells within the sample stained positively. Survival and bone metastasis-free survival curves on the patient cohort were estimated by the actuarial method of Kaplan-Meier. RESULTS A total of 62 patients were included in the study. Bone metastases progression rate was 46% at 105 months with a median time of 46 months (95% CI: 1-62.5 months); prostate cancer-specific survival was 33% at 122 months with a median survival time of 69.4 months (95% CI: 63.5-109.4 months). Survival curves show that c-met-, alpha 2, and alpha 6 integrin-positive tumors were positively associated with the occurrence of bone metastasis-free survival. There was a higher level of significance when at least c-met and either alpha 2 or alpha 6 integrin was positive. CONCLUSION It can be concluded that percentage of stem cell-like prostate cancer cells has a prognostic impact especially on the risk of metastatic bone progression.
Collapse
Affiliation(s)
- Marc Colombel
- Service d'Urologie et Chirurgie de la Transplantation, Université Lyon 1, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Salvatori L, Caporuscio F, Verdina A, Starace G, Crispi S, Nicotra MR, Russo A, Calogero RA, Morgante E, Natali PG, Russo MA, Petrangeli E. Cell-to-cell signaling influences the fate of prostate cancer stem cells and their potential to generate more aggressive tumors. PLoS One 2012; 7:e31467. [PMID: 22328933 PMCID: PMC3273473 DOI: 10.1371/journal.pone.0031467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 01/09/2012] [Indexed: 11/22/2022] Open
Abstract
An increasing number of malignancies has been shown to be initiated and propelled by small subpopulations of cancer stem cells (CSC). However, whether tumor aggressiveness is driven by CSC and by what extent this property may be relevant within the tumor mass is still unsettled. To address this issue, we isolated a rare tumor cell population on the basis of its CD44+CD24− phenotype from the human androgen-independent prostate carcinoma cell line DU145 and established its CSC properties. The behavior of selected CSC was investigated with respect to the bulk DU145 cells. The injection of CSC in nude mice generated highly vascularized tumors infiltrating the adjacent tissues, showing high density of neuroendocrine cells and expressing low levels of E-cadherin and β-catenin as well as high levels of vimentin. On the contrary, when a comparable number of unsorted DU145 cells were injected the resulting tumors were less aggressive. To investigate the different features of tumors in vivo, the influence of differentiated tumor cells on CSC was examined in vitro by growing CSC in the absence or presence of conditioned medium from DU145 cells. CSC grown in permissive conditions differentiated into cell populations with features similar to those of cells held in aggressive tumors generated from CSC injection. Differently, conditioned medium induced CSC to differentiate into a cell phenotype comparable to cells of scarcely aggressive tumors originated from bulk DU145 cell injection. These findings show for the first time that CSC are able to generate differentiated cells expressing either highly or scarcely aggressive phenotype, thus influencing prostate cancer progression. The fate of CSC was determined by signals released from tumor environment. Moreover, using microarray analysis we selected some molecules which could be involved in this cell-to-cell signaling, hypothesizing their potential value for prognostic or therapeutic applications.
Collapse
Affiliation(s)
- Luisa Salvatori
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Pelger RCM, van der Pluijm G. Integrin αv expression is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2559-68. [PMID: 21907176 DOI: 10.1016/j.ajpath.2011.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 07/05/2011] [Accepted: 07/11/2011] [Indexed: 01/02/2023]
Abstract
Integrins participate in multiple cellular processes, including cell adhesion, migration, proliferation, survival, and the activation of growth factor receptors. Recent studies have shown that expression of αv integrins is elevated in the prostate cancer stem/progenitor cell subpopulation compared with more differentiated, committed precursors. Here, we examine the functional role of αv integrin receptor expression in the acquisition of a metastatic stem/progenitor phenotype in human prostate cancer. Stable knockdown of αv integrins expression in PC-3M-Pro4 prostate cancer cells coincided with a significant decrease of prostate cancer stem/progenitor cell characteristics (α2 integrin, CD44, and ALDH(hi)) and decreased expression of invasion-associated genes Snail, Snail2, and Twist. Consistent with these observations, αv-knockdown strongly inhibited the clonogenic and migratory potentials of human prostate cancer cells in vitro and significantly decreased tumorigenicity and metastatic ability in preclinical models of orthotopic growth and bone metastasis. Our data indicate that integrin αv expression is functionally involved in the maintenance of a highly migratory, mesenchymal cellular phenotype as well as the acquisition of a stem/progenitor phenotype in human prostate cancer cells with metastasis-initiating capacity.
Collapse
|
26
|
Chao Y, Wu Q, Acquafondata M, Dhir R, Wells A. Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. CANCER MICROENVIRONMENT 2011; 5:19-28. [PMID: 21892699 DOI: 10.1007/s12307-011-0085-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 08/11/2011] [Indexed: 01/22/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is an oft-studied mechanism for the initiation of metastasis. We have recently shown that once cancer cells disseminate to a secondary organ, a mesenchymal to epithelial reverting transition (MErT) may occur, which we postulate is to enable metastatic colonization. Despite a wealth of in vitro and in vivo studies, evidence supportive of MErT in human specimens is rare and difficult to document because clinically detectable metastases are typically past the micrometastatic stage at which this transition is most likely evident. We obtained paired primary and metastatic tumors from breast and prostate cancer patients and evaluated expression of various epithelial and mesenchymal markers by immunohistochemistry. The metastases exhibited increased expression of membranous E-cadherin compared to primary tumors, consistent with EMT at the primary site and MErT at the metastatic site. However, the re-emergence of the epithelial phenotype was only partial or incomplete. Expression of epithelial markers connexins 26 and/or 43 was also increased on the majority of metastases, particularly those to the brain. Despite the upregulation of epithelial markers in metastases, expression of mesenchymal markers vimentin and FSP1 was mostly unchanged. We also examined prostate carcinoma metastases of varied sizes and found that while E-cadherin expression was increased compared to the primary lesion, the expression inversely correlated with size of the metastasis. This not only suggests that a second EMT may occur in the ectopic site for tumor growth or to seed further metastases, but also provides a basis for the failure to discern epithelial phenotypes in clinically examined macrometastases. In summary, we report increased expression of epithelial markers and persistence of mesenchymal markers consistent with a partial MErT that readily allows for a second EMT at the metastatic site. Our results suggest that cancer cells continue to display phenotypic plasticity beyond the EMT that initiates metastasis.
Collapse
Affiliation(s)
- Yvonne Chao
- Department of Pathology, Pittsburgh VAMC and University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | | | | | | |
Collapse
|
27
|
Molecular markers that can be utilized in diet and dietary supplement research. Urol Clin North Am 2011; 38:321-4. [PMID: 21798394 DOI: 10.1016/j.ucl.2011.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prostate and other cancers have a multitude of potential markers that can be used in laboratory and clinical studies of diet and dietary supplement interventions. More overt clinical markers include imaging tests, biopsy samples, prostate-specific antigen kinetics, and urinary testing. Many molecular markers are currently available, including antiapoptotic and apoptotic proteins, cell adhesion molecules, cell cycle compounds, growth factors, angiogenic markers, and proliferative and inflammatory signals. Protein kinases and transcription factors should also be considered for diversity. Testing of numerous molecular markers has become critical in gaining preliminary insight into the potential impact of a novel diet and supplemental agents.
Collapse
|
28
|
Metastasis Update: Human Prostate Carcinoma Invasion via Tubulogenesis. Prostate Cancer 2011; 2011:249290. [PMID: 21949592 PMCID: PMC3177701 DOI: 10.1155/2011/249290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/25/2011] [Indexed: 01/08/2023] Open
Abstract
This paper proposes that human prostate carcinoma primarily invades as a cohesive cell collective through a mechanism similar to embryonic tubulogenesis, instead of the popular epithelial-mesenchymal transformation (EMT) model. Evidence supporting a tubulogenesis model is presented, along with suggestions for additional research. Additionally, observations documenting cell adhesion molecule changes in tissue and stromal components are reviewed, allowing for comparisons between the current branching morphogenesis models and the tubulogenesis model. Finally, the implications of this model on prevailing views of therapeutic and diagnostic strategies for aggressive prostatic disease are considered.
Collapse
|
29
|
Lamb LE, Zarif JC, Miranti CK. The androgen receptor induces integrin α6β1 to promote prostate tumor cell survival via NF-κB and Bcl-xL Independently of PI3K signaling. Cancer Res 2011; 71:2739-49. [PMID: 21310825 DOI: 10.1158/0008-5472.can-10-2745] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies indicate that androgen receptor (AR) signaling is critical for prostate cancer cell survival, even in castration-resistant disease wherein AR continues to function independently of exogenous androgens. Integrin-mediated adhesion to the extracellular matrix is also important for prostate cell survival. AR-positive prostate cancer cells express primarily integrin α6β1 and adhere to a laminin-rich matrix. In this study, we show that active nuclear-localized AR protects prostate cancer cells from death induced by phosphoinositide 3-kinase (PI3K) inhibition when cells adhere to laminin. Resistance to PI3K inhibition is mediated directly by an AR-dependent increase in integrin α6β1 mRNA transcription and protein expression. Subsequent signaling by integrin α6β1 in AR-expressing cells increased NF-κB activation and Bcl-xL expression. Blocking AR, integrin α6, NF-κB, or Bcl-xL concurrent with inhibition of PI3K was sufficient and necessary to trigger death of laminin-adherent AR-expressing cells. Taken together, these results define a novel integrin-dependent survival pathway in prostate cancer cells that is regulated by AR, independent of and parallel to the PI3K pathway. Our findings suggest that combined targeting of both the AR/α6β1 and PI3K pathways may effectively trigger prostate cancer cell death, enhancing the potential therapeutic value of PI3K inhibitors being evaluated in this setting.
Collapse
Affiliation(s)
- Laura E Lamb
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
30
|
Combined targeting of the VEGFr/EGFr and the mammalian target of rapamycin (mTOR) signaling pathway delays cell cycle progression and alters adhesion behavior of prostate carcinoma cells. Cancer Lett 2011; 301:17-28. [DOI: 10.1016/j.canlet.2010.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/04/2010] [Accepted: 11/07/2010] [Indexed: 01/08/2023]
|
31
|
Pontes-Júnior J, Reis ST, de Oliveira LCN, Sant'anna AC, Dall'oglio MF, Antunes AA, Ribeiro-Filho LA, Carvalho PA, Cury J, Srougi M, Leite KRM. Association between integrin expression and prognosis in localized prostate cancer. Prostate 2010; 70:1189-95. [PMID: 20564421 DOI: 10.1002/pros.21153] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Integrins and other adhesion molecules are essential for maintaining the epithelial phenotype. Some studies have reported correlations between abnormalities in their expression and carcinogenesis, but their role in prostate cancer is unclear. Our aim was to study the expression profile of integrins in surgical specimens of prostate cancer and associate their expression patterns with patient outcomes. METHODS We selected 111 patients with localized prostate cancer who had undergone radical prostatectomy. Of these patients, 60 had no tumor recurrence after a median follow-up of 123 months. Integrin expression was evaluated by immunohistochemistry in a tissue microarray containing two tumor samples per patient. A semiquantitative analysis was employed. We measured the association between the expression of eight integrins and tumor recurrence. RESULTS Multivariate analysis showed that expression of alpha3 and alpha3beta1 was related to worse outcome. When alpha3 expression was strong and alpha3beta1 expression was positive, the odds of recurrence were 3.0- and 2.5-fold higher, respectively. Only 19% and 28% of patients were recurrence-free in a mean period of 123 months of follow up when their tumors showed strong alpha3 or positive alpha3beta1 immuno-expression, respectively. CONCLUSIONS We have shown that the expression of integrin alpha3beta1 was independently associated with tumor recurrence after radical prostatectomy, suggesting that this integrin is a potential prognostic marker.
Collapse
Affiliation(s)
- José Pontes-Júnior
- Laboratory of Medical Investigation (LIM55), Urology Department, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lam YW, Yuan Y, Isaac J, Babu CVS, Meller J, Ho SM. Comprehensive identification and modified-site mapping of S-nitrosylated targets in prostate epithelial cells. PLoS One 2010; 5:e9075. [PMID: 20140087 PMCID: PMC2816712 DOI: 10.1371/journal.pone.0009075] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 01/17/2010] [Indexed: 12/20/2022] Open
Abstract
Background Although overexpression of nitric oxide synthases (NOSs) has been found associated with prostate diseases, the underlying mechanisms for NOS-related prostatic diseases remain unclear. One proposed mechanism is related to the S-nitrosylation of key regulatory proteins in cell-signaling pathways due to elevated levels of NO in the prostate. Thus, our primary objective was to identify S-nitrosylated targets in an immortalized normal prostate epithelial cell line, NPrEC. Methodology/Principal Findings We treated NPrEC with nitroso-cysteine and used the biotin switch technique followed by gel-based separation and mass spectrometry protein identification (using the LTQ-Orbitrap) to discover S-nitrosylated (SNO) proteins in the treated cells. In parallel, we adapted a peptide pull-down methodology to locate the site(s) of S-nitrosylation on the protein SNO targets identified by the first technique. This combined approach identified 116 SNO proteins and determined the sites of modification for 82 of them. Over 60% of these proteins belong to four functional groups: cell structure/cell motility/protein trafficking, protein folding/protein response/protein assembly, mRNA splicing/processing/transcriptional regulation, and metabolism. Western blot analysis validated a subset of targets related to disease development (proliferating cell nuclear antigen, maspin, integrin β4, α-catenin, karyopherin [importin] β1, and elongation factor 1A1). We analyzed the SNO sequences for their primary and secondary structures, solvent accessibility, and three-dimensional structural context. We found that about 80% of the SNO sites that can be mapped into resolved structures are buried, of which approximately half have charged amino acids in their three-dimensional neighborhood, and the other half residing within primarily hydrophobic pockets. Conclusions/Significance We here identified 116 potential SNO targets and mapped their putative SNO sites in NPrEC. Elucidation of how this post-translational modification alters the function of these proteins should shed light on the role of NO in prostate pathologies. To our knowledge, this is the first report identifying SNO targets in prostate epithelial cells.
Collapse
Affiliation(s)
- Ying Wai Lam
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yong Yuan
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jared Isaac
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - C. V. Suresh Babu
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jarek Meller
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Cancer Consortium, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
33
|
Goel HL, Alam N, Johnson INS, Languino LR. Integrin signaling aberrations in prostate cancer. Am J Transl Res 2009; 1:211-220. [PMID: 19956432 PMCID: PMC2757165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 04/17/2009] [Indexed: 05/28/2023]
Abstract
Integrins are cell surface receptors for extracellular matrix proteins and play a key role in cell survival, proliferation, migration and gene expression. Integrin signaling has been shown to be deregulated in several types of cancer, including prostate cancer. This review is focused on integrin signaling pathways known to be deregulated in prostate cancer and known to promote prostate cancer progression.
Collapse
Affiliation(s)
- Hira Lal Goel
- Department of Cancer Biology, Prostate Cancer Discovery and Development Program, Cancer Center, University of Massachusetts Medical School Worcester, MA 01605, USA
| | | | | | | |
Collapse
|