1
|
Takashima S, Usui S, Matsuura S, Goten C, Inoue O, Takeda Y, Yamaguchi K, Hashimuko D, Shinjo Y, Sugita M, Ohtani K, Kubota K, Sakai Y, Sakata K, Takamura M. Bone marrow-derived NGFR-positive dendritic cells regulate arterial remodeling. Am J Physiol Cell Physiol 2025; 328:C414-C428. [PMID: 39745544 DOI: 10.1152/ajpcell.00665.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR+) cells regulate arterial remodeling. We found that human NGFR+ mononuclear cells (MNCs) in peripheral blood expressed markers for plasmacytoid dendritic cells (DCs) and were susceptible to apoptosis in response to proNGF secreted by activated arterial smooth muscle cells (SMCs). Bone marrow-specific depletion of NGFR+ cells increased neointimal formation following arterial ligation in mice. Bone marrow-derived NGFR+ cells accumulated in the neointima and underwent apoptosis. In contrast, in a bone marrow-specific NGFR-knockout model, SMCs occupied the neointima with augmented proliferation. NGFR+ cells in the neointima promoted mannose receptor C-type 1-positive anti-inflammatory macrophage accumulation and secreted anti-inflammatory IL-10, thereby inhibiting SMC proliferation in the neointima. In patients with acute coronary syndrome (ACS), NGFR+ peripheral MNCs increased after ACS onset. Multiple linear regression analysis showed that an insufficient increase in NGFR+ peripheral MNCs in ACS was an adjusted independent risk factor for 9-mo intimal progression of a nontargeted lesion. Taken together, these observations imply that bone marrow-derived NGFR+ DCs are suppressors of arteriosclerosis.NEW & NOTEWORTHY We propose a new concept of arterial remodeling after injury in which bone marrow-derived NGFR+ dendritic cells inhibit neointimal progression mediated by apoptosis. NGFR+ dendritic cells promote anti-inflammatory MRC1+ M2 macrophage accumulation and production of interleukin-10, inhibiting smooth muscle cell proliferation within the neointima. In a clinical study, insufficient mobilization of NGFR+ peripheral mononuclear cells in acute coronary syndrome was an independent risk factor for 9-mo nontargeted coronary intimal progression.
Collapse
MESH Headings
- Dendritic Cells/metabolism
- Animals
- Vascular Remodeling
- Humans
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice
- Neointima/pathology
- Neointima/metabolism
- Mice, Inbred C57BL
- Cell Proliferation
- Mice, Knockout
- Bone Marrow Cells/metabolism
- Apoptosis
- Acute Coronary Syndrome/pathology
- Acute Coronary Syndrome/metabolism
- Acute Coronary Syndrome/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Middle Aged
- Female
- Macrophages/metabolism
- Macrophages/pathology
- Interleukin-10/metabolism
- Interleukin-10/genetics
- Aged
- Cells, Cultured
- Nerve Tissue Proteins
- Receptors, Nerve Growth Factor
Collapse
Affiliation(s)
- Shinichiro Takashima
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shintaro Matsuura
- Department of Cardiology, Public Central Hospital of Matto Ishikawa, Hakusan, Japan
| | - Chiaki Goten
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Oto Inoue
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Takeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kosei Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Daiki Hashimuko
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Shinjo
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Sugita
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Keisuke Ohtani
- Department of Cardiology, Public Central Hospital of Matto Ishikawa, Hakusan, Japan
| | - Koji Kubota
- Department of Cardiology, Public Central Hospital of Matto Ishikawa, Hakusan, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Simons CA, Kim S, Hahn YK, Boake-Agyei A, Nass SR, Vo P, Hauser KF, Knapp PE. Sex Affects Cognitive Outcomes in HIV-1 Tat Transgenic Mice: Role of CCR5. ASN Neuro 2025; 17:2447338. [PMID: 39805095 DOI: 10.1080/17590914.2024.2447338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells. Notably, CCR5 has been implicated in cognition unrelated to HIV infection. Inhibition of CCR5 has been shown to improve learning and memory. To test whether CCR5 is involved in cognitive changes in HAND, we used a non-infectious, transgenic model in which HIV-1 Tat is inducibly expressed. Well-powered cohorts of male and female mice were placed on a diet containing doxycycline to induce Tat expression for 8-wks. Males showed Tat-mediated deficits in the Barnes maze test of spatial learning and memory; females showed no impairments. Deficits in the males were fully reversed by the CCR5 antagonist, maraviroc (MVC). Tat-mediated deficits were not found in novel object recognition or contextual fear conditioning in either sex. Based on earlier work, we hypothesized that MVC might increase brain-derived neurotrophic factor (BDNF), which is essential in maintaining synaptodendritic function. MVC did increase the mBDNF to proBDNF ratio in males, perhaps contributing to improved cognition.
Collapse
Affiliation(s)
- Chloe A Simons
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarah Kim
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yun K Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ama Boake-Agyei
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sara R Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Phu Vo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kurt F Hauser
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pamela E Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
3
|
Danos JA, Addemir M, McGettigan L, Summers DW. Nerve Growth Factor Signaling Tunes Axon Maintenance Protein Abundance and Kinetics of Wallerian Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630780. [PMID: 39803444 PMCID: PMC11722262 DOI: 10.1101/2024.12.31.630780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Neurotrophic factors are critical for establishing functional connectivity in the nervous system and sustaining neuronal survival through adulthood. As the first neurotrophic factor purified, nerve growth factor (NGF) is extensively studied for its prolific role in axon outgrowth, pruning, and survival. Applying NGF to diseased neuronal tissue is an exciting therapeutic option and understanding how NGF regulates local axon susceptibility to pathological degeneration is critical for exploiting its full potential. Our study identifies surprising connections between NGF signaling and proteostasis of axon maintenance factors. NGF deprivation increases Nmnat2 and Stmn2 protein levels in axon segments with a corresponding delay in Wallerian degeneration. Conversely, acute NGF stimulation reduces local abundance of these axon maintenance factors and accelerates Wallerian degeneration. Pharmacological studies implicate phospholipase C as the key effector in TrkA activation, which drives degradation of palmitoylated Stmn2. While seemingly opposed to neuroprotective activities well-documented for NGF, downregulating Nmnat2 and Stmn2 favors axonal outgrowth over transient hyper-susceptibility to Sarm1-dependent degeneration. This new facet of NGF biology has important implications for axonal remodeling during development and sustained integrity through adulthood.
Collapse
Affiliation(s)
- Joseph A Danos
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Merve Addemir
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Lily McGettigan
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
| | - Daniel W Summers
- Department of Biology, University of Iowa, Iowa City, IA 52242 USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
4
|
Azari N, Rezaee M, Dayer D, Tabandeh MR. Dimethyl itaconate modulates neuroprotective effect on primary rat astrocytes under inflammatory condition by regulating the expression of neurotrophic factors and TrkA/B-P75 receptors. Neurol Res 2024; 46:1137-1148. [PMID: 39489601 DOI: 10.1080/01616412.2024.2423583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Astrocytes, specialized glial cells, are essential for maintaining the central nervous system homeostasis. Inflammatory conditions can disrupt neurotrophic factors and receptor expression in astrocytes, leading to potential central nervous system damage. Itaconate, recently identified for its anti-inflammatory properties, was investigated in this study for its effects on neurotrophic factors in LPS-stimulated primary rat astrocytes. METHODS Primary rat astrocyte cells were isolated from one-day-old Wistar rats and exposed to 1 µg/ml lipopolysaccharide (LPS) for 6 h to stimulate inflammation. The effect of DMI (62.5, 125, and 250 µM for 18 h) on the cell viability of astrocyte cells exposed to LPS was evaluated by the MTT assay. The effects of DMI on the mRNA and protein levels of NGF, BDNF, and GDNF were evaluated using ELISA and qRT-PCR assays. Protein and mRNA levels of neurotrophic factor receptors (TrkA, TrkB, and P75) were evaluated using qRT-PCR and Western blot analyses. RESULTS The results showed that DMI suppressed astrocytes cell death induced by LPS in a dose-dependent manner. DMI dose-dependently restored the reduced mRNA and protein levels of NGF, BDNF, GDNF, and TrkA and TrkB receptors in LPS-treated astrocytes, but it significantly decreased the p75 expression in the same condition. CONCLUSION In conclusion, DMI may be able to support astrocyte survival and functions based on the restoration of neurotrophic factors and their receptors expression in LPS-stimulated astrocyte cells. This suggests that DMI could be a promising therapeutic option for neurodegenerative diseases characterized by inflammation-induced astrocyte dysfunction.
Collapse
Affiliation(s)
- Nooshin Azari
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Malahat Rezaee
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Mirzahosseini G, Ishrat T. Modulation of p75 neurotrophin receptor mitigates brain damage following ischemic stroke in mice. Neural Regen Res 2024; 19:2093-2094. [PMID: 38488534 PMCID: PMC11034603 DOI: 10.4103/1673-5374.392860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
6
|
Xiao QX, Xue LL, Tan YX, Huangfu LR, Chen L, Zhai CY, Ma RF, Al-Hawwas M, Zhou HS, Wang TH, Zhou XF, Xiong LL. p75ECD-Fc reverses neonatal hypoxic-ischemic encephalopathy-induced neurological deficits and inhibits apoptosis associated with Nestin. Biomed Pharmacother 2024; 179:117338. [PMID: 39278187 DOI: 10.1016/j.biopha.2024.117338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
A recent study has introduced a recombinant fusion protein, consisting of the extracellular domain (ECD) of p75 and the Fc fragment of human immunoglobulin IgG1 (p75ECD-Fc), as a multifaceted agent within the nervous system. This research aimed to assess the effects of p75ECD-Fc on neuronal growth and the restoration of neurological functions in rats afflicted with neonatal hypoxic-ischemic encephalopathy (NHIE). In vitro analyses revealed that 1 μM p75ECD-Fc treatment markedly increased cell viability and facilitated neurite outgrowth in neurons exposed to oxygen-glucose deprivation (OGD). Subsequent in vivo studies determined that a dose of 78.6 μg/3 μl of p75ECD-Fc significantly mitigated brain damage and both acute and long-term neurological impairments, outperforming the therapeutic efficacy of hypothermia, as evidenced through behavioral assessments. Additionally, in vivo immunostaining showed that p75ECD-Fc administration enhanced neuronal survival and regeneration, and reduced astrocytosis and microglia activation in the cortex and hippocampus of NHIE rats. A noteworthy shift from A1 to A2 astrocyte phenotypes and from M1 to M2 microglia phenotypes was observed after p75ECD-Fc treatment. Furthermore, a co-expression of the p75 neurotrophin receptor (p75NTR) and Nestin was identified, with an overexpression of Nestin alleviating the neurological dysfunction induced by NHIE. Mechanistically, the neuroprotective effects of p75ECD-Fc, particularly its inhibition of neuronal apoptosis post-OGD, may be attributed to Nestin. Taken together, these results highlight the neuroprotective and anti-inflammatory effects of p75ECD-Fc treatment through the modulation of glial cell phenotypes and the Nestin-mediated inhibition of neuronal apoptosis, positioning it as a viable therapeutic approach for NHIE.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China
| | - Lu-Lu Xue
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China
| | - Ya-Xin Tan
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Yunnan, China; Department of Pediatrics, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Li-Ren Huangfu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Yunnan, China
| | - Li Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Sichuan, China
| | - Chen-Yang Zhai
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Yunnan, China
| | - Rui-Fang Ma
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Yunnan, China
| | - Mohammed Al-Hawwas
- Clinical and Health Sciences, University of South Australia, South Australia, Australia
| | - Hong-Su Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China
| | - Ting-Hua Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China.
| | - Xin-Fu Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China.
| | - Liu-Lin Xiong
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China.
| |
Collapse
|
7
|
Pokharel PV, Newchurch AM, Overby SC, Spease CA, Darzi LG, Kraemer BR. LM11a-31 Inhibits p75 Neurotrophin Receptor (p75 NTR ) Cleavage and is Neuroprotective in a Cell Culture Model of Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612299. [PMID: 39314373 PMCID: PMC11419115 DOI: 10.1101/2024.09.10.612299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The p75 Neurotrophin Receptor (p75 NTR ) is a multifunctional transmembrane protein that mediates neuronal responses to pathological conditions in specific regions of the nervous system. In many biological contexts, p75 NTR signaling is initiated through sequential cleavage of the receptor by α- and γ-secretases, which releases receptor fragments for downstream signaling. Our previous work demonstrated that proteolytic processing of p75 NTR in this manner is stimulated by oxidative stress in Lund Human Mesencephalic (LUHMES) cells, a dopaminergic neuronal cell line derived from human mesencephalic tissue. Considering the vulnerability of dopaminergic neurons in the ventral mesencephalon to oxidative stress and neurodegeneration associated with Parkinson's disease (PD), we investigated the role of this signaling cascade in neurodegeneration and explored cellular processes that govern oxidative stress-induced p75 NTR signaling. In the present study, we provide evidence that oxidative stress induces cleavage of p75 NTR by promoting c-Jun N-terminal Kinase (JNK)-dependent internalization of p75 NTR from the cell surface. This activation of p75 NTR signaling is counteracted by tropomyosin-related kinase (Trk) receptor signaling; however, oxidative stress leads to Trk receptor downregulation, thereby enhancing p75 NTR processing. Importantly, we demonstrate that this pathway can be inhibited by LM11a-31, a small molecule modulator of p75 NTR , thereby conferring protection against neurodegeneration. Treatment with LM11a-31 significantly reduced p75 NTR cleavage and neuronal death associated with oxidative stress. These findings reveal novel mechanisms underlying activation of p75 NTR in response to oxidative stress, underscore a key role for p75 NTR in dopaminergic neurodegeneration, and highlight p75 NTR as a potential therapeutic target for reducing neurodegeneration in PD.
Collapse
|
8
|
Staib-Lasarzik I, Gölz C, Bobkiewiecz W, Somnuke P, Sebastiani A, Thal SC, Schäfer MK. Sortilin is dispensable for secondary injury processes following traumatic brain injury in mice. Heliyon 2024; 10:e35198. [PMID: 39170542 PMCID: PMC11336488 DOI: 10.1016/j.heliyon.2024.e35198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Traumatic brain injury (TBI) is characterized by complex secondary injury processes involving the p75 neurotrophin receptor (p75NTR), which has been proposed as a possible therapeutic target. However, the pathogenic role of the p75NTR co-receptor sortilin in TBI has not been investigated. In this study, we examined whether sortilin contributes to acute and early processes of secondary injury using a murine controlled cortical impact (CCI) model of TBI. Initial expression analysis showed a down-regulation of sortilin mRNA levels 1 and 5 day post injury (dpi) and a reduced expression of sortilin protein 1 dpi. Next, a total of 40 SortilinΔExon14 loss-of-function mouse mutants (Sort1-/-) and wild-type (Sort1+/+) littermate mice were subjected to CCI and examined at 1 and 5 dpi. Neither sensorimotor deficits or brain lesion size nor CCI-induced cell death or calcium-dependent excitotoxicity as evaluated by TUNEL staining or Western blot analysis of alpha II spectrin breakdown products were different between Sort1-/- and Sort1+/+ mice. In addition, CCI induced the up-regulation of pro-inflammatory marker mRNA expression (Il6, Tnfa, Aif1, and Gfap) irrespectively of the genotype. Similarly, the mRNA expressions of neurotrophins (Bdnf, Ngf, Nt3), VPS10P domain receptors others than sortilin (Ngfr, Sorl1, Sorcs2), and the sortilin interactor progranulin were not affected by genotype. Our results suggest that sortilin is a modulatory rather than a critical factor in the acute and early brain tissue response after TBI.
Collapse
Affiliation(s)
- Irina Staib-Lasarzik
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Wieslawa Bobkiewiecz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Pawit Somnuke
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Serge C. Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K.E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
9
|
Pang Y, Zhang L, Zhong Z, Yang N, Zheng Y, Ding W. Nobiletin restores HFD-induced enteric nerve injury by regulating enteric glial activation and the GDNF/AKT/FOXO3a/P21 pathway. Mol Med 2024; 30:113. [PMID: 39095693 PMCID: PMC11297793 DOI: 10.1186/s10020-024-00841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND To explore whether nobiletin has a protective effect on high-fat diet (HFD)-induced enteric nerve injury and its underlying mechanism. METHODS An obesity model was induced by a HFD. Nobiletin (100 mg/kg and 200 mg/kg) and vehicle were administered by gastric gavage for 4 weeks. Lee's index, body weight, OGTT and intestinal propulsion assays were performed before sacrifice. After sampling, lipids were detected using Bodipy 493/503; lipid peroxidation was detected using MDA and SOD kits and the expression of PGP 9.5, Trem2, GFAP, β-tubulin 3, Bax, Bcl2, Nestin, P75 NTR, SOX10 and EDU was detected using immunofluorescence. The GDNF, p-AKT, AKT, p-FOXO3a, FOXO3a and P21 proteins were detected using western blotting. The relative mRNA expression levels of NOS2 were detected via qPCR. Primary enteric neural stem cells (ENSCs) were cultured. After ENSCs were treated with palmitic acid (PA) and nobiletin, CCK-8 and caspase-3/7 activity assays were performed to evaluate proliferation and apoptosis. RESULTS HFD consumption caused colon lipid accumulation and peroxidation, induced enteric nerve damage and caused intestinal motor dysfunction. However, nobiletin reduced lipid accumulation and peroxidation in the colon; promoted Trem2, β-tubulin 3, Nestin, P75NTR, SOX10 and Bcl2 expression; inhibited Bax and GFAP expression; reduced NOS2 mRNA transcription; and regulated the GDNF/AKT/FOXO3a/P21 pathway. Nobiletin also promoted PA-induced impairment of ENSCs. CONCLUSIONS Nobiletin restored HFD-induced enteric nerve injury, which may be associated with inhibiting enteric nerve apoptosis, promoting enteric nerve survival and regulating the GDNF/AKT/FOXO3a/P21 pathway.
Collapse
Affiliation(s)
- Yueshan Pang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
- The Second Clinical Medical College, North Sichuan Medical College, Nanchong Central Hospital, Nanchong, 637000, China
| | - Li Zhang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Zhuoting Zhong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yali Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
10
|
Shanks HRC, Chen K, Reiman EM, Blennow K, Cummings JL, Massa SM, Longo FM, Börjesson-Hanson A, Windisch M, Schmitz TW. p75 neurotrophin receptor modulation in mild to moderate Alzheimer disease: a randomized, placebo-controlled phase 2a trial. Nat Med 2024; 30:1761-1770. [PMID: 38760589 PMCID: PMC11186782 DOI: 10.1038/s41591-024-02977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
p75 neurotrophin receptor (p75NTR) signaling pathways substantially overlap with degenerative networks active in Alzheimer disease (AD). Modulation of p75NTR with the first-in-class small molecule LM11A-31 mitigates amyloid-induced and pathological tau-induced synaptic loss in preclinical models. Here we conducted a 26-week randomized, placebo-controlled, double-blinded phase 2a safety and exploratory endpoint trial of LM11A-31 in 242 participants with mild to moderate AD with three arms: placebo, 200 mg LM11A-31 and 400 mg LM11A-31, administered twice daily by oral capsules. This trial met its primary endpoint of safety and tolerability. Within the prespecified secondary and exploratory outcome domains (structural magnetic resonance imaging, fluorodeoxyglucose positron-emission tomography and cerebrospinal fluid biomarkers), significant drug-placebo differences were found, consistent with the hypothesis that LM11A-31 slows progression of pathophysiological features of AD; no significant effect of active treatment was observed on cognitive tests. Together, these results suggest that targeting p75NTR with LM11A-31 warrants further investigation in larger-scale clinical trials of longer duration. EU Clinical Trials registration: 2015-005263-16 ; ClinicalTrials.gov registration: NCT03069014 .
Collapse
Grants
- R35 AG071476 NIA NIH HHS
- P30 AG072980 NIA NIH HHS
- SG-23-1038904 QC Alzheimer's Association
- 2022-00732 Vetenskapsrådet (Swedish Research Council)
- P20 GM109025 NIGMS NIH HHS
- R01 AG053798 NIA NIH HHS
- R35AG71476 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- ZEN-21-848495 Alzheimer's Association
- R01 AG051596 NIA NIH HHS
- P20GM109025 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- 453677 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- P20 AG068053 NIA NIH HHS
- 2017-00915 Vetenskapsrådet (Swedish Research Council)
- U01 AG024904 NIA NIH HHS
- R01AG053798 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R25 AG083721-01 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R25 AG083721 NIA NIH HHS
- Jonathan and Joshua Memorial Foundation Government of Ontario
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- State of Arizona
- Alzheimer’s Association
- the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), La Fondation Recherche Alzheimer (FRA), Paris, France, the Kirsten and Freddy Johansen Foundation, Copenhagen, Denmark, and Familjen Rönströms Stiftelse, Stockholm, Sweden.
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- Alzheimer’s Drug Discovery Foundation (ADDF)
- Ted and Maria Quirk Endowment; Joy Chambers-Grundy Endowment.
- San Francisco VA Health Care System
- National Institutes of Aging (NIA AD Pilot Trial 1R01AG051596) PharmatrophiX (Menlo Park, California)
- Alzheimer’s Society of Canada (176677)
Collapse
Affiliation(s)
- Hayley R C Shanks
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Western Institute for Neuroscience, Western University, London, Ontario, Canada.
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- College of Health Solutions, Arizona State University, Downtown, Phoenix, AZ, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Stephen M Massa
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Anne Börjesson-Hanson
- Clinical Trials, Department of Aging, Karolinska University Hospital, Stockholm, Sweden
| | | | - Taylor W Schmitz
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Western Institute for Neuroscience, Western University, London, Ontario, Canada.
| |
Collapse
|
11
|
Albano GA, Hackam AS. Repurposing development genes for axonal regeneration following injury: Examining the roles of Wnt signaling. Front Cell Dev Biol 2024; 12:1417928. [PMID: 38882059 PMCID: PMC11176474 DOI: 10.3389/fcell.2024.1417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
In this review, we explore the connections between developmental embryology and axonal regeneration. Genes that regulate embryogenesis and central nervous system (CNS) development are discussed for their therapeutic potential to induce axonal and cellular regeneration in adult tissues after neuronal injury. Despite substantial differences in the tissue environment in the developing CNS compared with the injured CNS, recent studies have identified multiple molecular pathways that promote axonal growth in both scenarios. We describe various molecular cues and signaling pathways involved in neural development, with an emphasis on the versatile Wnt signaling pathway. We discuss the capacity of developmental factors to initiate axonal regrowth in adult neural tissue within the challenging environment of the injured CNS. Our discussion explores the roles of Wnt signaling and also examines the potential of other embryonic genes including Pax, BMP, Ephrin, SOX, CNTF, PTEN, mTOR and STAT3 to contribute to axonal regeneration in various CNS injury model systems, including spinal cord and optic crush injuries in mice, Xenopus and zebrafish. Additionally, we describe potential contributions of Müller glia redifferentiation to neuronal regeneration after injury. Therefore, this review provides a comprehensive summary of the state of the field, and highlights promising research directions for the potential therapeutic applications of specific embryologic molecular pathways in axonal regeneration in adults.
Collapse
Affiliation(s)
- Gabrielle A Albano
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
12
|
Staszkiewicz R, Gładysz D, Sobański D, Bolechała F, Golec E, Dammermann W, Grabarek BO. The Impacts of Intervertebral Disc Degeneration of the Spine, Alcohol Consumption, Smoking Tobacco Products, and Glycemic Disorders on the Expression Profiles of Neurotrophins-3 and -4. Biomedicines 2024; 12:427. [PMID: 38398029 PMCID: PMC10886622 DOI: 10.3390/biomedicines12020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
In the etiology of discogenic pain, attention is paid to the role of neurotrophic factors, which include classic neurotrophins (NTs). This study aimed to assess changes in the concentrations of NT-3 and NT-4 in the intervertebral discs (IVDs) of the lumbosacral (L/S) spine depending on the advancement of degenerative changes, pain severity, habits, and comorbidities. The study group included 113 patients who underwent microdiscectomy due to degenerative IVD disease of the L/S spine. The severity of degenerative IVD changes was assessed using the five-point Pfirrmann scale, and the pain intensity was assessed according to the visual analog scale (VAS). In turn, the control group included 81 participants from whom IVDs of the L/S section of the spine were collected post-mortem during forensic autopsy or organ donation. At the mRNA level, we noted NT-3 overexpression in the test samples compared with the controls (fold change (FC) = 9.12 ± 0.56; p < 0.05), while NT-4 transcriptional activity was decreased in the test samples compared with the controls (FC = 0.33 ± 0.07; p < 0.05). However, at the protein level, the concentrations of NT-3 (134 ± 5.78 pg/mL vs. 6.78 ± 1.17 pg/mL; p < 0.05) and NT-4 (316.77 ± 8.19 pg/mL vs. 76.92 ± 4.82 pg/mL; p < 0.05) were significantly higher in the test samples compared with the control samples. Nevertheless, the concentration of both proteins did not statistically significantly change depending on the advancement of degenerative changes and the pain intensity (p > 0.05). In addition, higher levels of NT-3 and NT-4 were noted in IVD samples from patients who consumed alcohol, smoked tobacco, were overweight/obese, or had comorbid diabetes compared with patients without these risk factors (p < 0.05). Our analysis confirmed that differences in the degenerative process of IVD, energy metabolism, and lifestyle are related to changes in the concentration profiles of NT-3 and NT-4.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland;
- Department of Neurosurgery, 5th Military Clinical Hospital, SP ZOZ Polyclinic in Cracow, 30-901 Cracow, Poland;
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Dorian Gładysz
- Department of Neurosurgery, 5th Military Clinical Hospital, SP ZOZ Polyclinic in Cracow, 30-901 Cracow, Poland;
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Dawid Sobański
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland;
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, 30-693 Cracow, Poland
- Department of Neurosurgery, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Cracow, 30-705 Cracow, Poland
| | - Filip Bolechała
- Department of Forensic Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland;
| | - Edward Golec
- Department of Rehabilitation in Orthopaedics, Faculty of Motor Rehabilitation, Bronisław Czech University of Physical Education, 31-571 Cracow, Poland;
| | - Werner Dammermann
- Center of Internal Medicine II, University Hospital Brandenburg, 03048 Brandenburg, Germany;
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Beniamin Oskar Grabarek
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland;
- Gyncentrum, Laboratory of Molecular Biology and Virology, Department of Molecular Biology, 40-851 Katowice, Poland
| |
Collapse
|
13
|
Numakawa T, Kajihara R. An Interaction between Brain-Derived Neurotrophic Factor and Stress-Related Glucocorticoids in the Pathophysiology of Alzheimer's Disease. Int J Mol Sci 2024; 25:1596. [PMID: 38338875 PMCID: PMC10855648 DOI: 10.3390/ijms25031596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Both the brain-derived neurotrophic factor (BDNF) and glucocorticoids (GCs) play multiple roles in various aspects of neurons, including cell survival and synaptic function. BDNF and its receptor TrkB are extensively expressed in neurons of the central nervous system (CNS), and the contribution of the BDNF/TrkB system to neuronal function is evident; thus, its downregulation has been considered to be involved in the pathogenesis of Alzheimer's disease (AD). GCs, stress-related molecules, and glucocorticoid receptors (GRs) are also considered to be associated with AD in addition to mental disorders such as depression. Importantly, a growing body of evidence suggests a close relationship between BDNF/TrkB-mediated signaling and the GCs/GR system in the CNS. Here, we introduce the current studies on the interaction between the neurotrophic system and stress in CNS neurons and discuss their involvement in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
14
|
Hellström S, Sajanti A, Srinath A, Bennett C, Girard R, Cao Y, Frantzén J, Koskimäki F, Falter J, Lyne SB, Rantamäki T, Takala R, Posti JP, Roine S, Puolitaival J, Jänkälä M, Kolehmainen S, Rahi M, Rinne J, Castrén E, Koskimäki J. Brain Plasticity Modulator p75 Neurotrophin Receptor in Human Urine after Different Acute Brain Injuries-A Prospective Cohort Study. Biomedicines 2024; 12:112. [PMID: 38255217 PMCID: PMC10813252 DOI: 10.3390/biomedicines12010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Acute brain injuries (ABIs) pose a substantial global burden, demanding effective prognostic indicators for outcomes. This study explores the potential of urinary p75 neurotrophin receptor (p75NTR) concentration as a prognostic biomarker, particularly in relation to unfavorable outcomes. The study involved 46 ABI patients, comprising sub-cohorts of aneurysmal subarachnoid hemorrhage, ischemic stroke, and traumatic brain injury. Furthermore, we had four healthy controls. Samples were systematically collected from patients treated at the University Hospital of Turku between 2017 and 2019, at early (1.50 ± 0.70 days) and late (9.17 ± 3.40 days) post-admission time points. Urinary p75NTR levels, measured by ELISA and normalized to creatinine, were compared against patients' outcomes using the modified Rankin Scale (mRS). Early urine samples showed no significant p75NTR concentration difference between favorable and unfavorable mRS groups. In contrast, late samples exhibited a statistically significant increase in p75NTR concentrations in the unfavorable group (p = 0.033), demonstrating good prognostic accuracy (AUC = 70.9%, 95% CI = 53-89%, p = 0.03). Assessment of p75NTR concentration changes over time revealed no significant variation in the favorable group (p = 0.992) but a significant increase in the unfavorable group (p = 0.009). Moreover, p75NTR concentration was significantly higher in ABI patients (mean ± SD 40.49 ± 28.83-65.85 ± 35.04 ng/mg) compared to healthy controls (mean ± SD 0.54 ± 0.44 ng/mg), irrespective of sampling time or outcome (p < 0.0001). In conclusion, late urinary p75NTR concentrations emerged as a potential prognostic biomarker for ABIs, showing increased levels associated with unfavorable outcomes regardless of the specific type of brain injury. While early samples exhibited no significant differences, the observed late increases emphasize the time-dependent nature of this potential biomarker. Further validation in larger patient cohorts is crucial, highlighting the need for additional research to establish p75NTR as a reliable prognostic biomarker across various ABIs. Additionally, its potential role as a diagnostic biomarker warrants exploration.
Collapse
Affiliation(s)
- Santtu Hellström
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital, University of Turku, P.O. Box 52, Hämeentie 11, 20521 Turku, Finland
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Antti Sajanti
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital, University of Turku, P.O. Box 52, Hämeentie 11, 20521 Turku, Finland
| | - Abhinav Srinath
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, Chicago, IL 60637, USA (C.B.)
| | - Carolyn Bennett
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, Chicago, IL 60637, USA (C.B.)
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, Chicago, IL 60637, USA (C.B.)
| | - Ying Cao
- Department of Radiation Oncology, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Janek Frantzén
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital, University of Turku, P.O. Box 52, Hämeentie 11, 20521 Turku, Finland
| | - Fredrika Koskimäki
- Neurocenter, Acute Stroke Unit, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland
| | - Johannes Falter
- Department of Neurosurgery, University Medical Center of Regensburg, 93053 Regensburg, Germany
| | - Seán B. Lyne
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences and Drug Research Program, 00100 Helsinki, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Riikka Takala
- Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, University of Turku, P.O. Box 52, 20521 Turku, Finland
| | - Jussi P. Posti
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital, University of Turku, P.O. Box 52, Hämeentie 11, 20521 Turku, Finland
| | - Susanna Roine
- Neurocenter, Acute Stroke Unit, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland
| | - Jukka Puolitaival
- Department of Neurosurgery, Oulu University Hospital, P.O. Box 25, 90029 Oulu, Finland
| | - Miro Jänkälä
- Department of Neurosurgery, Oulu University Hospital, P.O. Box 25, 90029 Oulu, Finland
| | - Sulo Kolehmainen
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Melissa Rahi
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital, University of Turku, P.O. Box 52, Hämeentie 11, 20521 Turku, Finland
| | - Jaakko Rinne
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital, University of Turku, P.O. Box 52, Hämeentie 11, 20521 Turku, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Janne Koskimäki
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital, University of Turku, P.O. Box 52, Hämeentie 11, 20521 Turku, Finland
- Department of Neurosurgery, Oulu University Hospital, P.O. Box 25, 90029 Oulu, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Mirzahosseini G, Ismael S, Salman M, Kumar S, Ishrat T. Genetic and Pharmacological Modulation of P75 Neurotrophin Receptor Attenuate Brain Damage After Ischemic Stroke in Mice. Mol Neurobiol 2024; 61:276-293. [PMID: 37606717 DOI: 10.1007/s12035-023-03550-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
The precursor nerve growth factor (ProNGF) and its receptor p75 neurotrophin receptor (p75NTR) are upregulated in several brain diseases, including ischemic stroke. The activation of p75NTR is associated with neuronal apoptosis and inflammation. Thus, we hypothesized that p75NTR modulation attenuates brain damage and improves functional outcomes after ischemic stroke. Two sets of experiments were performed. (1) Adult wild-type (WT) C57BL/6 J mice were subjected to intraluminal suture-middle cerebral artery occlusion (MCAO) to induce cerebral ischemia. Pharmacological inhibitor of p75NTR, LM11A-31 (50 mg/kg), or normal saline was administered intraperitoneally (IP) 1 h post-MCAO, and animals survived for 24 h. (2) Adult p75NTR heterozygous knockout (p75NTR+/-) and WT were subjected to photothrombotic (pMCAO) to induce ischemic stroke, and the animals survived for 72 h. The sensory-motor function of animals was measured using Catwalk XT. The brain samples were collected to assess infarction volume, edema, hemorrhagic transformation, neuroinflammation, and signaling pathway at 24 and 72 h after the stroke. The findings described that pharmacological inhibition and genetic knocking down of p75NTR reduce infarction size, edema, and hemorrhagic transformation following ischemic stroke. Additionally, p75NTR modulation significantly decreased several anti-apoptosis markers and improved sensory motor function compared to the WT mice following ischemic stroke. Our observations exhibit that the involvement of p75NTR in ischemic stroke and modulation of p75NTR could improve the outcome of ischemic stroke by increasing cell survival and enhancing motor performance. LM11A-31 has the potential to be a promising therapeutic agent for ischemic stroke. However, more evidence is needed to illuminate the efficacy of LM11A-31 in ischemic stroke.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, TN, 38163, Memphis, USA
| | - Saifudeen Ismael
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, LA, 70112, New Orleans, USA
| | - Mohd Salman
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, TN, 38163, Memphis, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, TN, 38163, Memphis, USA.
- Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
16
|
Hromada C, Szwarc-Hofbauer D, Quyen Nguyen M, Tomasch J, Purtscher M, Hercher D, Teuschl-Woller AH. Strain-induced bands of Büngner formation promotes axon growth in 3D tissue-engineered constructs. J Tissue Eng 2024; 15:20417314231220396. [PMID: 38249993 PMCID: PMC10798132 DOI: 10.1177/20417314231220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Treatment of peripheral nerve lesions remains a major challenge due to poor functional recovery; hence, ongoing research efforts strive to enhance peripheral nerve repair. In this study, we aimed to establish three-dimensional tissue-engineered bands of Büngner constructs by subjecting Schwann cells (SCs) embedded in fibrin hydrogels to mechanical stimulation. We show for the first time that the application of strain induces (i) longitudinal alignment of SCs resembling bands of Büngner, and (ii) the expression of a pronounced repair SC phenotype as evidenced by upregulation of BDNF, NGF, and p75NTR. Furthermore, we show that mechanically aligned SCs provide physical guidance for migrating axons over several millimeters in vitro in a co-culture model with rat dorsal root ganglion explants. Consequently, these constructs hold great therapeutic potential for transplantation into patients and might also provide a physiologically relevant in vitro peripheral nerve model for drug screening or investigation of pathologic or regenerative processes.
Collapse
Affiliation(s)
- Carina Hromada
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dorota Szwarc-Hofbauer
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mai Quyen Nguyen
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
| | - Janine Tomasch
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Michaela Purtscher
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - David Hercher
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
| | - Andreas Herbert Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
17
|
Jara JS, Avci HX, Kouremenou I, Doulazmi M, Bakouche J, Dubacq C, Goyenvalle C, Mariani J, Lohof AM, Sherrard RM. Pax3 induces target-specific reinnervation through axon collateral expression of PSA-NCAM. Prog Neurobiol 2024; 232:102560. [PMID: 38097036 DOI: 10.1016/j.pneurobio.2023.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Damaged or dysfunctional neural circuits can be replaced after a lesion by axon sprouting and collateral growth from undamaged neurons. Unfortunately, these new connections are often disorganized and rarely produce clinical improvement. Here we investigate how to promote post-lesion axonal collateral growth, while retaining correct cellular targeting. In the mouse olivocerebellar path, brain-derived neurotrophic factor (BDNF) induces correctly-targeted post-lesion cerebellar reinnervation by remaining intact inferior olivary axons (climbing fibers). In this study we identified cellular processes through which BDNF induces this repair. BDNF injection into the denervated cerebellum upregulates the transcription factor Pax3 in inferior olivary neurons and induces rapid climbing fiber sprouting. Pax3 in turn increases polysialic acid-neural cell adhesion molecule (PSA-NCAM) in the sprouting climbing fiber path, facilitating collateral outgrowth and pathfinding to reinnervate the correct targets, cerebellar Purkinje cells. BDNF-induced reinnervation can be reproduced by olivary Pax3 overexpression, and abolished by olivary Pax3 knockdown, suggesting that Pax3 promotes axon growth and guidance through upregulating PSA-NCAM, probably on the axon's growth cone. These data indicate that restricting growth-promotion to potential reinnervating afferent neurons, as opposed to stimulating the whole circuit or the injury site, allows axon growth and appropriate guidance, thus accurately rebuilding a neural circuit.
Collapse
Affiliation(s)
- J Sebastian Jara
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Hasan X Avci
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Ioanna Kouremenou
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Mohamed Doulazmi
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Joelle Bakouche
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Caroline Dubacq
- Sorbonne Université, CNRS & INSERM, IBPS-NPS, Neurosciences Paris Seine, Paris France
| | - Catherine Goyenvalle
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Jean Mariani
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Ann M Lohof
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France
| | - Rachel M Sherrard
- Sorbonne Université & CNRS, IBPS-B2A, Biological Adaptation and Ageing, Paris France.
| |
Collapse
|
18
|
Ji Q, Shan F, Zhang B, Chen Y, Yang X, Gao F, Li X. Acupuncture on "Huantiao" (GB30) and "Yanglingquan" (GB34) acupoints promotes nerve regeneration in mice model of peripheral nerve injury. IBRO Neurosci Rep 2023; 15:158-164. [PMID: 37664821 PMCID: PMC10474605 DOI: 10.1016/j.ibneur.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Objective To investigate the effects of acupuncture on promoting nerve regeneration in mice with sciatic nerve crushed injury, an animal model of peripheral nerve injury (PNI). Methods Acupuncture was performed on the "Huantiao" (GB30) and "Yanglingquan" (GB34) acupoints in PNI mice model for 2 weeks. Gait analysis, toe spreading test, electrophysiological test, toluidine blue staining and immunostaining of myelin basic protein (MBP), neurofilament-200 (NF200), p75 neurotrophin receptor (p75NTR), and growth associated protein-43 (GAP43) were respectively performed to investigate the effects of acupuncture on crushed sciatic nerve. Results Acupuncture stimulation of "Huantiao" (GB30) and "Yanglingquan" (GB34) acupoints promoted the recovery of motor function and electrophysiological function in PNI mice model, which was indicated by a better gait level, toe spreading level and CMAP value in acupuncture group. The number of myelinated nerve fibers and the fluorescence intensity of MBP, NF200, p75NTR and GAP43 staining demonstrated that the acupuncture stimulation promoted the regeneration of injured nerves in PNI mice model. Conclusion Acupuncture significantly promoted the functional and morphological recovery of crushed sciatic nerve via promoting the expression of p75NTR in Schwann cells.
Collapse
Affiliation(s)
- Qingjie Ji
- School of Acupuncture-moxibustion and Tuina, School of Health and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Department of Rehabilitation, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Fangzhen Shan
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Baojuan Zhang
- Department of Rehabilitation, Jining Hospital of Traditional Chinese Medicine, Jining, Shandong Province, China
| | - Yunfeng Chen
- Department of Rehabilitation, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Xianzhang Yang
- Department of Rehabilitation, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Feng Gao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Xiang Li
- Department of Rehabilitation, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
19
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Klann IP, Fulco BCW, Nogueira CW. Subchronic exposure to Tamoxifen modulates the hippocampal BDNF/ERK/Akt/CREB pathway and impairs memory in intact female rats. Chem Biol Interact 2023; 382:110615. [PMID: 37392961 DOI: 10.1016/j.cbi.2023.110615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Tamoxifen (TAM), a Selective Estrogen Receptor Modulator (SERM), is commonly used to treat and prevent breast cancer. Memory impairment has been noticed in patients who experience hormone therapy in the case of TAM and other SERMs. Animal studies that mimic the TAM longer exposure effects are needed to better elucidate the adverse effects of continuous treatment in humans. This study evaluated the effects of TAM subchronic administration on the memory performance and hippocampal neural plasticity of intact female Wistar rats. Animals were treated intragastrically with TAM (0.25 and 2.5 mg/kg) for 59 days. The rats were subjected to the Object Location Test (OLT) and Object Recognition Test (ORT) to evaluate memory performance. After euthanasia, the hippocampus samples were excised and the protein levels of the BDNF/ERK/Akt/CREB pathway were evaluated. The rat's locomotor activity and hippocampal TrkB levels were similar among the experimental groups. TAM at both doses reduced the memory performance of female rats in the OLT and short-term memory of ORT, and impaired hippocampal levels of mBDNF, proBDNF, and pCREB/CREB. TAM only at the dose of 2.5 mg/kg reduced the memory performance of rats in the long-term memory of ORT and hippocampal pERK/ERK and pAkt/Akt ratios. TAM subchronic administration induced amnesic effects and modulated the hippocampal BDNF/ERK/Akt/CREB pathway in intact young adult female Wistar rats.
Collapse
Affiliation(s)
- Isabella P Klann
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, CCNE, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Bruna C W Fulco
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, CCNE, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, CCNE, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
21
|
Papadopoulou MA, Rogdakis T, Charou D, Peteinareli M, Ntarntani K, Gravanis A, Chanoumidou K, Charalampopoulos I. Neurotrophin Analog ENT-A044 Activates the p75 Neurotrophin Receptor, Regulating Neuronal Survival in a Cell Context-Dependent Manner. Int J Mol Sci 2023; 24:11683. [PMID: 37511441 PMCID: PMC10380564 DOI: 10.3390/ijms241411683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Neuronal cell fate is predominantly controlled based on the effects of growth factors, such as neurotrophins, and the activation of a variety of signaling pathways acting through neurotrophin receptors, namely Trk and p75 (p75NTR). Despite their beneficial effects on brain function, their therapeutic use is compromised due to their polypeptidic nature and blood-brain-barrier impermeability. To overcome these limitations, our previous studies have proven that DHEA-derived synthetic analogs can act like neurotrophins, as they lack endocrine side effects. The present study focuses on the biological characterization of a newly synthesized analog, ENT-A044, and its role in inducing cell-specific functions of p75NTR. We show that ENT-A044 can induce cell death and phosphorylation of JNK protein by activating p75NTR. Additionally, ENT-A044 can induce the phosphorylation of TrkB receptor, indicating that our molecule can activate both neurotrophin receptors, enabling the protection of neuronal populations that express both receptors. Furthermore, the present study demonstrates, for the first time, the expression of p75NTR in human-induced Pluripotent Stem Cells-derived Neural Progenitor Cells (hiPSC-derived NPCs) and receptor-dependent cell death induced via ENT-A044 treatment. In conclusion, ENT-A044 is proposed as a lead molecule for the development of novel pharmacological agents, providing new therapeutic approaches and research tools, by controlling p75NTR actions.
Collapse
Affiliation(s)
- Maria Anna Papadopoulou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Thanasis Rogdakis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Maria Peteinareli
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Katerina Ntarntani
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| |
Collapse
|
22
|
Aby K, Antony R, Li Y. ProBDNF Upregulation in Murine Hind Limb Ischemia Reperfusion Injury: A Driver of Inflammation. BIOLOGY 2023; 12:903. [PMID: 37508336 PMCID: PMC10375988 DOI: 10.3390/biology12070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Brain-derived neurotropic factor (BDNF) has been shown to be expressed in many nonneuronal tissues including skeletal muscle. Skeletal muscle BDNF has been studied regarding its function in metabolism and exercise; however, less is known about its role in skeletal muscle injury. The precursor to BDNF, proBDNF, has an unknown role in skeletal muscle. The levels of proBDNF, mature BDNF, and their receptors were compared in the skeletal muscle and brain tissues of C57BL/6J mice. Tourniquet-induced hind limb ischemia-reperfusion injury was used to assess the function of skeletal muscle-derived proBDNF in skeletal muscle injury. Skeletal muscle-specific knockout of BDNF and pharmacological inhibition of p75NTR, the proBDNF receptor, were used to determine the role of proBDNF-p75NTR signaling. We show for the first time that proBDNF is the predominantly expressed form of BDNF in skeletal muscle and that proBDNF is significantly upregulated in skeletal muscle following hind limb ischemia-reperfusion injury. Skeletal muscle-specific knockout of BDNF blunted the inflammatory response in the injured tissue and appears to be mediated by the proBDNF-p75NTR pathway, as shown by the pharmacological inhibition of p75NTR. These findings suggest that skeletal muscle proBDNF plays a critical role in driving the inflammatory response following skeletal muscle injury.
Collapse
Affiliation(s)
| | | | - Yifan Li
- Department of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (K.A.); (R.A.)
| |
Collapse
|
23
|
Dzhauari S, Basalova N, Primak A, Balabanyan V, Efimenko A, Skryabina M, Popov V, Velichko A, Bozov K, Akopyan Z, Malkov P, Stambolsky D, Tkachuk V, Karagyaur M. The Secretome of Mesenchymal Stromal Cells in Treating Intracerebral Hemorrhage: The First Step to Bedside. Pharmaceutics 2023; 15:1608. [PMID: 37376058 DOI: 10.3390/pharmaceutics15061608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Intracerebral hemorrhage is an unmet medical need that often leads to the disability and death of a patient. The lack of effective treatments for intracerebral hemorrhage makes it necessary to look for them. Previously, in our proof-of-concept study (Karagyaur M et al. Pharmaceutics, 2021), we have shown that the secretome of multipotent mesenchymal stromal cells (MSC) provides neuroprotection of the brain in a model of intracerebral hemorrhage in rats. Here, we have conducted a systematic study of the therapeutic potential of the MSC secretome in the model of hemorrhagic stroke and provided answers to the questions that need to be addressed in order to translate the secretome-based drug into clinical practice: routes and multiplicity of administration, optimal dose and door-to-treatment time. We have found that MSC secretome reveals prominent neuroprotective activity when administered intranasally or intravenously within 1-3 h after hemorrhage modeling, even in aged rats, and its multiple injections (even within 48 h) are able to reduce the delayed negative effects of hemorrhagic stroke. To our knowledge, this study provides the first systematic investigation of the therapeutic activity of a biomedical MSC-based cell-free drug in intracerebral hemorrhage and is an integral part of its preclinical studies.
Collapse
Affiliation(s)
- Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Vadim Balabanyan
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Anastasia Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Arkadiy Velichko
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Kirill Bozov
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Zhanna Akopyan
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Pavel Malkov
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Dmitry Stambolsky
- Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119192 Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10 Lomonosovsky Ave., 119192 Moscow, Russia
| |
Collapse
|
24
|
Dave BP, Shah KC, Shah MB, Chorawala MR, Patel VN, Shah PA, Shah GB, Dhameliya TM. Unveiling the modulation of Nogo receptor in neuroregeneration and plasticity: Novel aspects and future horizon in a new frontier. Biochem Pharmacol 2023; 210:115461. [PMID: 36828272 DOI: 10.1016/j.bcp.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Multiple Sclerosis, Hereditary Spastic Paraplegia, and Amyotrophic Lateral Sclerosis have emerged as the most dreaded diseases due to a lack of precise diagnostic tools and efficient therapies. Despite the fact that the contributing factors of NDs are still unidentified, mounting evidence indicates the possibility that genetic and cellular changes may lead to the significant production of abnormally misfolded proteins. These misfolded proteins lead to damaging effects thereby causing neurodegeneration. The association between Neurite outgrowth factor (Nogo) with neurological diseases and other peripheral diseases is coming into play. Three isoforms of Nogo have been identified Nogo-A, Nogo-B and Nogo-C. Among these, Nogo-A is mainly responsible for neurological diseases as it is localized in the CNS (Central Nervous System), whereas Nogo-B and Nogo-C are responsible for other diseases such as colitis, lung, intestinal injury, etc. Nogo-A, a membrane protein, had first been described as a CNS-specific inhibitor of axonal regeneration. Several recent studies have revealed the role of Nogo-A proteins and their receptors in modulating neurite outgrowth, branching, and precursor migration during nervous system development. It may also modulate or affect the inhibition of growth during the developmental processes of the CNS. Information about the effects of other ligands of Nogo protein on the CNS are yet to be discovered however several pieces of evidence have suggested that it may also influence the neuronal maturation of CNS and targeting Nogo-A could prove to be beneficial in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Maitri B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Vishvas N Patel
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Palak A Shah
- Department of Pharmacology, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar 380023, Gujarat, India
| | - Gaurang B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
25
|
Kruglov O, Vats K, Soman V, Tyurin VA, Tyurina YY, Wang J, Williams L, Zhang J, Donahue Carey C, Jaklitsch E, Chandran UR, Bayir H, Kagan VE, Bunimovich YL. Melanoma-associated repair-like Schwann cells suppress anti-tumor T-cells via 12/15-LOX/COX2-associated eicosanoid production. Oncoimmunology 2023; 12:2192098. [PMID: 36998620 PMCID: PMC10044150 DOI: 10.1080/2162402x.2023.2192098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
Peripheral glia, specifically the Schwann cells (SCs), have been implicated in the formation of the tumor microenvironment (TME) and in cancer progression. However, in vivo and ex vivo analyses of how cancers reprogram SC functions in different organs of tumor-bearing mice are lacking. We generated Plp1-CreERT/tdTomato mice which harbor fluorescently labeled myelinated and non-myelin forming SCs. We show that this model enables the isolation of the SCs with high purity from the skin and multiple other organs. We used this model to study phenotypic and functional reprogramming of the SCs in the skin adjacent to melanoma tumors. Transcriptomic analyses of the peritumoral skin SCs versus skin SCs from tumor-free mice revealed that the former existed in a repair-like state typically activated during nerve and tissue injury. Peritumoral skin SCs also downregulated pro-inflammatory genes and pathways related to protective anti-tumor responses. In vivo and ex vivo functional assays confirmed immunosuppressive activities of the peritumoral skin SCs. Specifically, melanoma-reprogrammed SCs upregulated 12/15-lipoxygenase (12/15-LOX) and cyclooxygenase (COX)-2, and increased production of anti-inflammatory polyunsaturated fatty acid (PUFA) metabolites prostaglandin E2 (PGE2) and lipoxins A4/B4. Inhibition of 12/15-LOX or COX2 in SCs, or EP4 receptor on lymphocytes reversed SC-dependent suppression of anti-tumor T-cell activation. Therefore, SCs within the skin adjacent to melanoma tumors demonstrate functional switching to repair-like immunosuppressive cells with dysregulated lipid oxidation. Our study suggests the involvement of the melanoma-associated repair-like peritumoral SCs in the modulation of locoregional and systemic anti-tumor immune responses.
Collapse
Affiliation(s)
- Oleg Kruglov
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavita Vats
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vishal Soman
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiefei Wang
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li’an Williams
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erik Jaklitsch
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uma R. Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Children’s Neuroscience Institute, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E. Kagan
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Children’s Neuroscience Institute, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Hillman Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yuri L. Bunimovich
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Free Radical and Antioxidant Health, Department of Environmental Health and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Hillman Cancer Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Sochal M, Ditmer M, Binienda A, Gabryelska A, Białasiewicz P, Talar-Wojnarowska R, Fichna J, Małecka-Wojciesko E. Relation between Selected Sleep Parameters, Depression, Anti-Tumor Necrosis Factor Therapy, and the Brain-Derived Neurotrophic Factor Pathway in Inflammatory Bowel Disease. Metabolites 2023; 13:450. [PMID: 36984890 PMCID: PMC10056410 DOI: 10.3390/metabo13030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Inflammatory bowel disease (IBD) patients often have sleep and mood disorders. Brain-derived neurotrophic factor (BDNF) and proBDNF were shown to modulate interactions between the central nervous system and the gastrointestinal tract, possibly contributing to psychological issues. Anti-tumor necrosis factor (TNF) therapy in IBD can alter BDNF expression and further affect the brain-gut axis. Eighty IBD patients and 44 healthy controls (HCs) were enrolled and divided into subsets based on disease activity and condition (ulcerative colitis (UC)/Crohn's disease (CD)). Questionnaires evaluating sleep parameters and depression as well as venous blood were collected. The IBD group had a lower expression of BDNF mRNA, but higher proBDNF and BDNF protein concentration than HCs. The UC group had a higher BDNF protein concentration than the CD. BDNF protein was positively correlated to sleep efficiency in the IBD group. Depression severity was associated positively with BDNF mRNA and negatively with BDNF protein in the remission group. Anti-TNF therapy enhanced BDNF mRNA expression. The BDNF pathway might be disturbed in IBD, linking it to sleep disorders and depression. Systemic inflammation could be the main cause of this disruption. BDNF mRNA is a more reliable parameter than protein due to numerous post-translational modifications.
Collapse
Affiliation(s)
- Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Agata Binienda
- Department of Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
27
|
Holzner C, Böttinger K, Blöchl C, Huber CG, Dahms SO, Dall E, Brandstetter H. Legumain Functions as a Transient TrkB Sheddase. Int J Mol Sci 2023; 24:ijms24065394. [PMID: 36982466 PMCID: PMC10049731 DOI: 10.3390/ijms24065394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
While primarily found in endo-lysosomal compartments, the cysteine protease legumain can also translocate to the cell surface if stabilized by the interaction with the RGD-dependent integrin receptor αVβ3. Previously, it has been shown that legumain expression is inversely related to BDNF-TrkB activity. Here we show that legumain can conversely act on TrkB-BDNF by processing the C-terminal linker region of the TrkB ectodomain in vitro. Importantly, when in complex with BDNF, TrkB was not cleaved by legumain. Legumain-processed TrkB was still able to bind BDNF, suggesting a potential scavenger function of soluble TrkB towards BDNF. The work thus presents another mechanistic link explaining the reciprocal TrkB signaling and δ-secretase activity of legumain, with relevance for neurodegeneration.
Collapse
|
28
|
The Nerve Growth Factor Receptor (NGFR/p75 NTR): A Major Player in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24043200. [PMID: 36834612 PMCID: PMC9965628 DOI: 10.3390/ijms24043200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) represents the most prevalent type of dementia in elderly people, primarily characterized by brain accumulation of beta-amyloid (Aβ) peptides, derived from Amyloid Precursor Protein (APP), in the extracellular space (amyloid plaques) and intracellular deposits of the hyperphosphorylated form of the protein tau (p-tau; tangles or neurofibrillary aggregates). The Nerve growth factor receptor (NGFR/p75NTR) represents a low-affinity receptor for all known mammalians neurotrophins (i.e., proNGF, NGF, BDNF, NT-3 e NT-4/5) and it is involved in pathways that determine both survival and death of neurons. Interestingly, also Aβ peptides can blind to NGFR/p75NTR making it the "ideal" candidate in mediating Aβ-induced neuropathology. In addition to pathogenesis and neuropathology, several data indicated that NGFR/p75NTR could play a key role in AD also from a genetic perspective. Other studies suggested that NGFR/p75NTR could represent a good diagnostic tool, as well as a promising therapeutic target for AD. Here, we comprehensively summarize and review the current experimental evidence on this topic.
Collapse
|
29
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
30
|
Demuth H, Hosseini S, Düsedeau HP, Dunay IR, Korte M, Zagrebelsky M. Deletion of p75 NTR rescues the synaptic but not the inflammatory status in the brain of a mouse model for Alzheimer's disease. Front Mol Neurosci 2023; 16:1163087. [PMID: 37213691 PMCID: PMC10198655 DOI: 10.3389/fnmol.2023.1163087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Alzheimer's disease (AD), is characterized by a gradual cognitive decline associated with the accumulation of Amyloid beta (Aβ)-oligomers, progressive neuronal degeneration and chronic neuroinflammation. Among the receptors shown to bind and possibly transduce the toxic effects of Aβ-oligomers is the p75 neurotrophin receptor (p75NTR). Interestingly, p75NTR mediates several crucial processes in the nervous system, including neuronal survival and apoptosis, maintenance of the neuronal architecture, and plasticity. Furthermore, p75NTR is also expressed in microglia, the resident immune cells of the brain, where it is markedly increased under pathological conditions. These observations indicate p75NTR as a potential candidate for mediating Aβ-induced toxic effects at the interface between the nervous and the immune system, thereby potentially participating in the crosstalk between these two systems. Methods Here we used APP/PS1 transgenic mice (APP/PS1tg) and compared the Aβ-induced alterations in neuronal function, chronic inflammation as well as their cognitive consequences between 10 months old APP/PS1tg and APP/PS1tg x p75NTRexonIV knockout mice. Results Electrophysiological recordings show that a loss of p75NTR rescues the impairment in long-term potentiation at the Schaffer collaterals in the hippocampus of APP/PS1tg mice. Interestingly, however loss of p75NTR does not influence the severity of neuroinflammation, microglia activation or the decline in spatial learning and memory processes observed in APP/PS1tg mice. Conclusion Together these results indicate that while a deletion of p75NTR rescues the synaptic defect and the impairment in synaptic plasticity, it does not affect the progression of the neuroinflammation and the cognitive decline in a mouse model for AD.
Collapse
Affiliation(s)
- Hendrik Demuth
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| | - Shirin Hosseini
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| | - Henning Peter Düsedeau
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von- Guericke University, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-von- Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| | - Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, Braunschweig, Germany
- *Correspondence: Marta Zagrebelsky,
| |
Collapse
|
31
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
32
|
Patterson FM, Miralami R, Olivier AK, McNulty K, Wood JW, Prabhu RK, Priddy LB. Increase in serum nerve growth factor but not intervertebral disc degeneration following whole-body vibration in rats. Clin Biomech (Bristol, Avon) 2022; 100:105823. [PMID: 36427488 PMCID: PMC9742305 DOI: 10.1016/j.clinbiomech.2022.105823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Low back pain is a leading cause of disability and is frequently associated with whole-body vibration exposure in industrial workers and military personnel. While the pathophysiological mechanisms by which whole-body vibration causes low back pain have been studied in vivo, there is little data to inform low back pain diagnosis. Using a rat model of repetitive whole-body vibration followed by recovery, our objective was to determine the effects of vibration frequency on hind paw withdrawal threshold, circulating nerve growth factor concentration, and intervertebral disc degeneration. METHODS Male Sprague-Dawley rats were vibrated for 30 min at an 8 Hz or 11 Hz frequency every other day for two weeks and then recovered (no vibration) for one week. Von Frey was used to determine hind paw mechanical sensitivity every two days. Serum nerve growth factor concentration was determined every four days. At the three-week endpoint, intervertebral discs were graded histologically for degeneration. FINDINGS The nerve growth factor concentration increased threefold in the 8 Hz group and twofold in the 11 Hz group. The nerve growth factor concentration did not return to baseline by the end of the one-week recovery period for the 8 Hz group. Nerve growth factor serum concentration did not coincide with intervertebral disc degeneration, as no differences in degeneration were observed among groups. Mechanical sensitivity generally decreased over time for all groups, suggesting a habituation (desensitization) effect. INTERPRETATION This study demonstrates the potential of nerve growth factor as a diagnostic biomarker for low back pain due to whole-body vibration.
Collapse
Affiliation(s)
- Folly M Patterson
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - Raheleh Miralami
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS 39762, USA.
| | - Kaylin McNulty
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS 39762, USA.
| | - John W Wood
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - R K Prabhu
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| | - Lauren B Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, 39762, USA; Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS 39759, USA.
| |
Collapse
|
33
|
Antidepressive Effect of Natural Products and Their Derivatives Targeting BDNF-TrkB in Gut-Brain Axis. Int J Mol Sci 2022; 23:ijms232314968. [PMID: 36499295 PMCID: PMC9737781 DOI: 10.3390/ijms232314968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Modern neurological approaches enable detailed studies on the pathophysiology and treatment of depression. An imbalance in the microbiota-gut-brain axis contributes to the pathogenesis of depression. This extensive review aimed to elucidate the antidepressive effects of brain-derived neurotrophic factor (BDNF)-targeting therapeutic natural products and their derivatives on the gut-brain axis. This information could facilitate the development of novel antidepressant drugs. BDNF is crucial for neuronal genesis, growth, differentiation, survival, plasticity, and synaptic transmission. Signaling via BDNF and its receptor tropomyosin receptor kinase B (TrkB) plays a vital role in the etiopathogenesis of depression and the therapeutic mechanism of antidepressants. This comprehensive review provides information to researchers and scientists for the identification of novel therapeutic approaches for neuropsychiatric disorders, especially depression and stress. Future research should aim to determine the possible causative role of BDNF-TrkB in the gut-brain axis in depression, which will require further animal and clinical research as well as the development of analytical approaches.
Collapse
|
34
|
Morano NC, Smith RS, Danelon V, Schreiner R, Patel U, Herrera NG, Smith C, Olson SM, Laerke MK, Celikgil A, Garforth SJ, Garrett-Thomson SC, Lee FS, Hempstead BL, Almo SC. Human immunomodulatory ligand B7-1 mediates synaptic remodeling via the p75 neurotrophin receptor. J Clin Invest 2022; 132:e157002. [PMID: 36107635 PMCID: PMC9663165 DOI: 10.1172/jci157002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 09/13/2022] [Indexed: 12/30/2023] Open
Abstract
Cell surface receptors, ligands, and adhesion molecules underlie development, circuit formation, and synaptic function of the central nervous system and represent important therapeutic targets for many neuropathologies. The functional contributions of interactions between cell surface proteins of neurons and nonneuronal cells have not been fully addressed. Using an unbiased protein-protein interaction screen, we showed that the human immunomodulatory ligand B7-1 (hB7-1) interacts with the p75 neurotrophin receptor (p75NTR) and that the B7-1:p75NTR interaction is a recent evolutionary adaptation present in humans and other primates, but absent in mice, rats, and other lower mammals. The surface of hB7-1 that engages p75NTR overlaps with the hB7-1 surface involved in CTLA-4/CD28 recognition, and these molecules directly compete for binding to p75NTR. Soluble or membrane-bound hB7-1 altered dendritic morphology of cultured hippocampal neurons, with loss of the postsynaptic protein PSD95 in a p75NTR-dependent manner. Abatacept, an FDA-approved therapeutic (CTLA-4-hFc fusion) inhibited these processes. In vivo injection of hB7-1 into the murine subiculum, a hippocampal region affected in Alzheimer's disease, resulted in p75NTR-dependent pruning of dendritic spines. Here, we report the biochemical interaction between B7-1 and p75NTR, describe biological effects on neuronal morphology, and identify a therapeutic opportunity for treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Nicholas C. Morano
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA
| | - Roshelle S. Smith
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Victor Danelon
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Uttsav Patel
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Natalia G. Herrera
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Carla Smith
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Steven M. Olson
- Department of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michelle K. Laerke
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Alev Celikgil
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Barbara L. Hempstead
- Department of Medicine, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
35
|
Cutuli D, Sampedro-Piquero P. BDNF and its Role in the Alcohol Abuse Initiated During Early Adolescence: Evidence from Preclinical and Clinical Studies. Curr Neuropharmacol 2022; 20:2202-2220. [PMID: 35748555 PMCID: PMC9886842 DOI: 10.2174/1570159x20666220624111855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial brain signaling protein that is integral to many signaling pathways. This neurotrophin has shown to be highly involved in brain plastic processes such as neurogenesis, synaptic plasticity, axonal growth, and neurotransmission, among others. In the first part of this review, we revise the role of BDNF in different neuroplastic processes within the central nervous system. On the other hand, its deficiency in key neural circuits is associated with the development of psychiatric disorders, including alcohol abuse disorder. Many people begin to drink alcohol during adolescence, and it seems that changes in BDNF are evident after the adolescent regularly consumes alcohol. Therefore, the second part of this manuscript addresses the involvement of BDNF during adolescent brain maturation and how this process can be negatively affected by alcohol abuse. Finally, we propose different BNDF enhancers, both behavioral and pharmacological, which should be considered in the treatment of problematic alcohol consumption initiated during the adolescence.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Medicine and Psychology Faculty, University Sapienza of Rome, Rome, Italy; ,I.R.C.C.S. Fondazione Santa Lucia, Laboratorio di Neurofisiologia Sperimentale e del Comportamento, Via del Fosso di Fiorano 64, 00143 Roma, Italy; ,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| | - Piquero Sampedro-Piquero
- Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| |
Collapse
|
36
|
Alfonsetti M, d’Angelo M, Castelli V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2022; 18:1220-1228. [PMID: 36453397 PMCID: PMC9838155 DOI: 10.4103/1673-5374.358619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline. This process represents the major risk factor for aging-related diseases such as Alzheimer's disease, Parkinson's disease, and ischemic stroke. The incidence of all these pathologies increases exponentially with age. Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies. Cognitive deficit and neurodegeneration, common features of aging-related pathologies, are related to the alteration of the activity and levels of neurotrophic factors, such as brain-derived neurotrophic factor, nerve growth factor, and glial cell-derived neurotrophic factor. For this reason, treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases. Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors, neurotrophins' binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies. Considering neurotrophins' crucial role in aging pathologies, here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,Correspondence to: Vanessa Castelli, .
| |
Collapse
|
37
|
Lisi L, Marinelli S, Ciotti GMP, Pizzoferrato M, Palmerio F, Chiavari M, Cattaneo A, Navarra P. The effects of painless nerve growth factor on human microglia polarization. Front Cell Neurosci 2022; 16:969058. [PMID: 36339818 PMCID: PMC9633670 DOI: 10.3389/fncel.2022.969058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2023] Open
Abstract
Previous studies in the rat suggest that microglial cells represent a potential druggable target for nerve growth factor (NGF) in the brain. The painless human Nerve Growth Factor (hNGFp) is a recombinant mutated form of human nerve growth factor (hNGF) that shows identical neurotrophic and neuroprotective properties of wild-type NGF but displays at least 10-fold lower algogenic activity. From the pharmacological point of view, hNGFp is a biased tropomyosin receptor kinase A (TrkA) agonist and displays a significantly lower affinity for the p75 neurotrophin receptor (p75NTR). This study aimed to evaluate the expression of TrkA and p75NTR NGF receptors in two different human microglia cell lines, and to investigate the effects of hNGFp and wild-type NGF (NGF) on L-arginine metabolism, taken as a marker of microglia polarization. Both NGF receptors are expressed in human microglia cell lines and are effective in transducing signals triggered by NGF and hNGFp. The latter and, to a lesser extent, NGF inhibit cytokine-stimulated inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in these cells. Conversely NGF but not hNGFp stimulates arginase-mediated urea production.
Collapse
Affiliation(s)
- Lucia Lisi
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Silvia Marinelli
- European Brain Research Institute-Fondazione Rita Levi Montalcini, Rome, Italy
| | - Gabriella Maria Pia Ciotti
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Michela Pizzoferrato
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Federica Palmerio
- European Brain Research Institute-Fondazione Rita Levi Montalcini, Rome, Italy
| | - Marta Chiavari
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute-Fondazione Rita Levi Montalcini, Rome, Italy
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | - Pierluigi Navarra
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
38
|
Sochal M, Ditmer M, Gabryelska A, Białasiewicz P. The Role of Brain-Derived Neurotrophic Factor in Immune-Related Diseases: A Narrative Review. J Clin Med 2022; 11:6023. [PMID: 36294343 PMCID: PMC9604720 DOI: 10.3390/jcm11206023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 07/26/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin regulating synaptic plasticity, neuronal excitability, and nociception. It seems to be one of the key molecules in interactions between the central nervous system and immune-related diseases, i.e., diseases with an inflammatory background of unknown etiology, such as inflammatory bowel diseases or rheumatoid arthritis. Studies show that BDNF levels might change in the tissues and serum of patients during the course of these conditions, e.g., affecting cell survival and modulating pain severity and signaling pathways involving different neurotransmitters. Immune-related conditions often feature psychiatric comorbidities, such as sleep disorders (e.g., insomnia) and symptoms of depression/anxiety; BDNF may be related as well to them as it seems to exert an influence on sleep structure; studies also show that patients with psychiatric disorders have decreased BDNF levels, which increase after treatment. BDNF also has a vital role in nociception, particularly in chronic pain, hyperalgesia, and allodynia, participating in the formation of central hypersensitization. In this review, we summarize the current knowledge on BDNF's function in immune-related diseases, sleep, and pain. We also discuss how BDNF is affected by treatment and what consequences these changes might have beyond the nervous system.
Collapse
|
39
|
Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol Neurobiol 2022; 59:6260-6280. [PMID: 35916975 PMCID: PMC9463196 DOI: 10.1007/s12035-022-02966-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/17/2022] [Indexed: 01/10/2023]
Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and therapeutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple sclerosis, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerging. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ameneh Zare-Chahoki
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany.
- Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
40
|
Li Y, Li F, Qin D, Chen H, Wang J, Wang J, Song S, Wang C, Wang Y, Liu S, Gao D, Wang ZH. The role of brain derived neurotrophic factor in central nervous system. Front Aging Neurosci 2022; 14:986443. [PMID: 36158555 PMCID: PMC9493475 DOI: 10.3389/fnagi.2022.986443] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) has multiple biological functions which are mediated by the activation of two receptors, tropomyosin receptor kinase B (TrkB) receptor and the p75 neurotrophin receptor, involving in physiological and pathological processes throughout life. The diverse presence and activity of BDNF indicate its potential role in the pathogenesis, progression and treatment of both neurological and psychiatric disorders. This review is to provide a comprehensive assessment of the current knowledge and future directions in BDNF-associated research in the central nervous system (CNS), with an emphasis on the physiological and pathological functions of BDNF as well as its potential treatment effects in CNS diseases, including depression, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, multiple sclerosis, and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shafei Song
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Zhi-Hao Wang,
| |
Collapse
|
41
|
Szarowicz CA, Steece-Collier K, Caulfield ME. New Frontiers in Neurodegeneration and Regeneration Associated with Brain-Derived Neurotrophic Factor and the rs6265 Single Nucleotide Polymorphism. Int J Mol Sci 2022; 23:ijms23148011. [PMID: 35887357 PMCID: PMC9319713 DOI: 10.3390/ijms23148011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022] Open
Abstract
Brain-derived neurotrophic factor is an extensively studied neurotrophin implicated in the pathology of multiple neurodegenerative and psychiatric disorders including, but not limited to, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, traumatic brain injury, major de-pressive disorder, and schizophrenia. Here we provide a brief summary of current knowledge on the role of BDNF and the common human single nucleotide polymorphism, rs6265, in driving the pathogenesis and rehabilitation in these disorders, as well as the status of BDNF-targeted therapies. A common trend has emerged correlating low BDNF levels, either detected within the central nervous system or peripherally, to disease states, suggesting that BDNF replacement therapies may hold clinical promise. In addition, we introduce evidence for a distinct role of the BDNF pro-peptide as a biologically active ligand and the need for continuing studies on its neurological function outside of that as a molecular chaperone. Finally, we highlight the latest research describing the role of rs6265 expression in mechanisms of neurodegeneration as well as paradoxical advances in the understanding of this genetic variant in neuroregeneration. All of this is discussed in the context of personalized medicine, acknowledging there is no “one size fits all” therapy for neurodegenerative or psychiatric disorders and that continued study of the multiple BDNF isoforms and genetic variants represents an avenue for discovery ripe with therapeutic potential.
Collapse
Affiliation(s)
- Carlye A. Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| | - Margaret E. Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Correspondence: ; Tel.: +1-616-234-0969; Fax: +1- 616-234-0991
| |
Collapse
|
42
|
The Role of Neurotrophin Signaling in Age-Related Cognitive Decline and Cognitive Diseases. Int J Mol Sci 2022; 23:ijms23147726. [PMID: 35887075 PMCID: PMC9320180 DOI: 10.3390/ijms23147726] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
Neurotrophins are a family of secreted proteins expressed in the peripheral nervous system and the central nervous system that support neuronal survival, synaptic plasticity, and neurogenesis. Brain-derived neurotrophic factor (BDNF) and its high affinity receptor TrkB are highly expressed in the cortical and hippocampal areas and play an essential role in learning and memory. The decline of cognitive function with aging is a major risk factor for cognitive diseases such as Alzheimer’s disease. Therefore, an alteration of BDNF/TrkB signaling with aging and/or pathological conditions has been indicated as a potential mechanism of cognitive decline. In this review, we summarize the cellular function of neurotrophin signaling and review the current evidence indicating a pathological role of neurotrophin signaling, especially of BDNF/TrkB signaling, in the cognitive decline in aging and age-related cognitive diseases. We also review the therapeutic approach for cognitive decline by the upregulation of the endogenous BDNF/TrkB-system.
Collapse
|
43
|
Dou SH, Cui Y, Huang SM, Zhang B. The Role of Brain-Derived Neurotrophic Factor Signaling in Central Nervous System Disease Pathogenesis. Front Hum Neurosci 2022; 16:924155. [PMID: 35814950 PMCID: PMC9263365 DOI: 10.3389/fnhum.2022.924155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have found abnormal levels of brain-derived neurotrophic factor (BDNF) in a variety of central nervous system (CNS) diseases (e.g., stroke, depression, anxiety, Alzheimer's disease, and Parkinson's disease). This suggests that BDNF may be involved in the pathogenesis of these diseases. Moreover, regulating BDNF signaling may represent a potential treatment for such diseases. With reference to recent research papers in related fields, this article reviews the production and regulation of BDNF in CNS and the role of BDNF signaling disorders in these diseases. A brief introduction of the clinical application status of BDNF is also provided.
Collapse
Affiliation(s)
- Shu-Hui Dou
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Cui
- Department of Veterinary Medicine, College of Agriculture, Hainan University, Haikou, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bo Zhang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
44
|
Trolese MC, Scarpa C, Melfi V, Fabbrizio P, Sironi F, Rossi M, Bendotti C, Nardo G. Boosting the peripheral immune response in the skeletal muscles improved motor function in ALS transgenic mice. Mol Ther 2022; 30:2760-2784. [PMID: 35477657 PMCID: PMC9372324 DOI: 10.1016/j.ymthe.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP1) is one of the most powerful pro-inflammatory chemokines. However, its signalling is pivotal in driving injured axon and muscle regeneration.
Collapse
Affiliation(s)
- Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Carlotta Scarpa
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Valentina Melfi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Martina Rossi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;.
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;.
| |
Collapse
|
45
|
Pellegatta M, Canevazzi P, Forese MG, Podini P, Valenzano S, Del Carro U, Quattrini A, Taveggia C. ADAM17 Regulates p75 NTR-Mediated Fibrinolysis and Nerve Remyelination. J Neurosci 2022; 42:2433-2447. [PMID: 35110388 PMCID: PMC8944234 DOI: 10.1523/jneurosci.1341-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
We previously reported that a-disintegrin and metalloproteinase (ADAM)17 is a key protease regulating myelin formation. We now describe a role for ADAM17 during the Wallerian degeneration (WD) process. Unexpectedly, we observed that glial ADAM17, by regulating p75NTR processing, cell autonomously promotes remyelination, while neuronal ADAM17 is dispensable. Accordingly, p75NTR abnormally accumulates specifically when ADAM17 is maximally expressed leading to a downregulation of tissue plasminogen activator (tPA) expression, excessive fibrin accumulation over time, and delayed remyelination. Mutant mice also present impaired macrophage recruitment and defective nerve conduction velocity (NCV). Thus, ADAM17 expressed in Schwann cells, controls the whole WD process, and its absence hampers effective nerve repair. Collectively, we describe a previously uncharacterized role for glial ADAM17 during nerve regeneration. Based on the results of our study, we posit that, unlike development, glial ADAM17 promotes remyelination through the regulation of p75NTR-mediated fibrinolysis.SIGNIFICANCE STATEMENT The α-secretase a-disintegrin and metalloproteinase (ADAM)17, although relevant for developmental PNS myelination, has never been investigated in Wallerian degeneration (WD). We now unravel a new mechanism of action for this protease and show that ADAM17 cleaves p75NTR, regulates fibrin clearance, and eventually fine-tunes remyelination. The results presented in this study provide important insights into the complex regulation of remyelination following nerve injury, identifying in ADAM17 and p75NTR a new signaling axis implicated in these events. Modulation of this pathway could have important implications in promoting nerve remyelination, an often-inefficient process, with the aim of restoring a functional axo-glial unit.
Collapse
Affiliation(s)
- Marta Pellegatta
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Research Hospital, Milan 20132, Italy
| | - Paolo Canevazzi
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Research Hospital, Milan 20132, Italy
| | - Maria Grazia Forese
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Research Hospital, Milan 20132, Italy
| | - Paola Podini
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Research Hospital, Milan 20132, Italy
| | - Serena Valenzano
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Research Hospital, Milan 20132, Italy
| | - Ubaldo Del Carro
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Research Hospital, Milan 20132, Italy
| | - Angelo Quattrini
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Research Hospital, Milan 20132, Italy
| | - Carla Taveggia
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Research Hospital, Milan 20132, Italy
| |
Collapse
|
46
|
Pietrasik S, Cichon N, Bijak M, Gorniak L, Saluk-Bijak J. Carotenoids from Marine Sources as a New Approach in Neuroplasticity Enhancement. Int J Mol Sci 2022; 23:ijms23041990. [PMID: 35216103 PMCID: PMC8877331 DOI: 10.3390/ijms23041990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people experience disorders related to the central nervous system (CNS). Thus, new forms of therapy, which may be helpful in repairing processes' enhancement and restoring declined brain functions, are constantly being sought. One of the most relevant physiological processes occurring in the brain for its entire life is neuroplasticity. It has tremendous significance concerning CNS disorders since neurological recovery mainly depends on restoring its structural and functional organization. The main factors contributing to nerve tissue damage are oxidative stress and inflammation. Hence, marine carotenoids, abundantly occurring in the aquatic environment, being potent antioxidant compounds, may play a pivotal role in nerve cell protection. Furthermore, recent results revealed another valuable characteristic of these compounds in CNS therapy. By inhibiting oxidative stress and neuroinflammation, carotenoids promote synaptogenesis and neurogenesis, consequently presenting neuroprotective activity. Therefore, this paper focuses on the carotenoids obtained from marine sources and their impact on neuroplasticity enhancement.
Collapse
Affiliation(s)
- Sylwia Pietrasik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (S.P.); (J.S.-B.)
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
- Correspondence:
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (S.P.); (J.S.-B.)
| |
Collapse
|
47
|
Kagan T, Stoyanova G, Lockshin RA, Zakeri Z. Ceramide from sphingomyelin hydrolysis induces neuronal differentiation, whereas de novo ceramide synthesis and sphingomyelin hydrolysis initiate apoptosis after NGF withdrawal in PC12 Cells. Cell Commun Signal 2022; 20:15. [PMID: 35101031 PMCID: PMC8802477 DOI: 10.1186/s12964-021-00767-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023] Open
Abstract
Background Ceramide, important for both neuronal differentiation and dedifferentiation, resides in several membranes, is synthesized in the endoplasmic reticulum, mitochondrial, and nuclear membranes, and can be further processed into glycosphingolipids or sphingomyelin. Ceramide may also be generated by hydrolysis of sphingomyelin by neutral or acidic sphingomyelinases in lysosomes and other membranes. Here we asked whether the differing functions of ceramide derived from different origins. Methods We added NGF to PC12 cells and to TrkA cells. These latter overexpress NGF receptors and are partially activated to differentiate, whereas NGF is required for PC12 cells to differentiate. We differentiated synthesis from hydrolysis by the use of appropriate inhibitors. Ceramide and sphingomyelin were measured by radiolabeling. Results When NGF is added, the kinetics and amounts of ceramide and sphingomyelin indicate that the ceramide comes primarily from hydrolysis but, when hydrolysis is inhibited, can also come from neosynthesis. When NGF is removed, the ceramide comes from both neosynthesis and hydrolysis. Conclusion We conclude that the function of ceramide depends heavily on its intracellular location, and that further understanding of its function will depend on resolving its location during changes of cell status. Graphical Abstract ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00767-2. Ceramide and sphingomyelin reportedly are important both for differentiation of nerve cells and for their death. We studied PC12 cells, which can differentiate into neuron-like cells in the presence of nerve growth factor and cells that overexpress receptors for nerve growth factor. By combining various inhibitors, we conclude that in the presence of nerve growth factor ceramide comes from hydrolysis of sphingomyelin, but when nerve growth factor is removed and the cells atrophy and die, sphingomyelin comes from both neosynthesis and hydrolysis.
Collapse
Affiliation(s)
- Terri Kagan
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
| | - Gloria Stoyanova
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA.,St. Johns University, Jamaica, NY, USA
| | | |
Collapse
|
48
|
Eggert S, Kins S, Endres K, Brigadski T. Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol Chem 2022; 403:43-71. [PMID: 34619027 DOI: 10.1515/hsz-2021-0330] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer's disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer's disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuroprotection and neuronal death. Common features of APP- and BDNF-signaling indicate a causal relationship in their mode of action. However, the interconnections of APP- and BDNF-signaling are not well understood. Therefore, we here discuss dimerization properties, localization, processing by α- and γ-secretase, relevance of the common interaction partners TrkB, p75, sorLA, and sortilin as well as shared signaling pathways of BDNF and sAPPα.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
49
|
Low-intensity extracorporeal shock wave therapy promotes recovery of sciatic nerve injury and the role of mechanical sensitive YAP/TAZ signaling pathway for nerve regeneration. Chin Med J (Engl) 2021; 134:2710-2720. [PMID: 34845995 PMCID: PMC8631414 DOI: 10.1097/cm9.0000000000001431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: Histological and functional recovery after peripheral nerve injury (PNI) is of significant clinical value as delayed surgical repair and longer distances to innervate terminal organs may account for poor outcomes. Low-intensity extracorporeal shock wave therapy (LiESWT) has already been proven to be beneficial for injured tissue recovery on various pathological conditions. The objective of this study was to explore the potential effect and mechanism of LiESWT on PNI recovery. Methods: In this project, we explored LiESWT's role using an animal model of sciatic nerve injury (SNI). Shockwave was delivered to the region of the SNI site with a special probe at 3 Hz, 500 shocks each time, and 3 times a week for 3 weeks. Rat Schwann cells (SCs) and rat perineurial fibroblasts (PNFs) cells, the two main compositional cell types in peripheral nerve tissue, were cultured in vitro, and LiESWT was applied through the cultured dish to the adherent cells. Tissues and cell cultures were harvested at corresponding time points for a reverse transcription-polymerase chain reaction, Western blotting, and immunofluorescence staining. Multiple groups were compared by using one-way analysis of variance followed by the Tukey-Kramer test for post hoc comparisons. Results: LiESWT treatment promoted the functional recovery of lower extremities with SNI. More nerve fibers and myelin sheath were found after LiESWT treatment associated with local upregulation of mechanical sensitive yes-associated protein (YAP)/transcriptional co-activator with a PDZ-binding domain (TAZ) signaling pathway. In vitro results showed that SCs were more sensitive to LiESWT than PNFs. LiESWT promoted SCs activation with more expression of p75 (a SCs dedifferentiation marker) and Ki67 (a SCs proliferation marker). The SCs activation process was dependent on the intact YAP/TAZ signaling pathway as knockdown of TAZ by TAZ small interfering RNA significantly attenuated this process. Conclusion: The LiESWT mechanical signal perception and YAP/TAZ upregulation in SCs might be one of the underlying mechanisms for SCs activation and injured nerve axon regeneration.
Collapse
|
50
|
Zorzin S, Corsi A, Ciarpella F, Bottani E, Dolci S, Malpeli G, Pino A, Amenta A, Fumagalli GF, Chiamulera C, Bifari F, Decimo I. Environmental Enrichment Induces Meningeal Niche Remodeling through TrkB-Mediated Signaling. Int J Mol Sci 2021; 22:ijms221910657. [PMID: 34638999 PMCID: PMC8508649 DOI: 10.3390/ijms221910657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neural precursors (NPs) present in the hippocampus can be modulated by several neurogenic stimuli, including environmental enrichment (EE) acting through BDNF-TrkB signaling. We have recently identified NPs in meninges; however, the meningeal niche response to pro-neurogenic stimuli has never been investigated. To this aim, we analyzed the effects of EE exposure on NP distribution in mouse brain meninges. Following neurogenic stimuli, although we did not detect modification of the meningeal cell number and proliferation, we observed an increased number of neural precursors in the meninges. A lineage tracing experiment suggested that EE-induced β3-Tubulin+ immature neuronal cells present in the meninges originated, at least in part, from GLAST+ radial glia cells. To investigate the molecular mechanism responsible for meningeal reaction to EE exposure, we studied the BDNF-TrkB interaction. Treatment with ANA-12, a TrkB non-competitive inhibitor, abolished the EE-induced meningeal niche changes. Overall, these data showed, for the first time, that EE exposure induced meningeal niche remodeling through TrkB-mediated signaling. Fluoxetine treatment further confirmed the meningeal niche response, suggesting it may also respond to other pharmacological neurogenic stimuli. A better understanding of the neurogenic stimuli modulation for meninges may be useful to improve the effectiveness of neurodegenerative and neuropsychiatric treatments.
Collapse
Affiliation(s)
- Stefania Zorzin
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Andrea Corsi
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Francesca Ciarpella
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Emanuela Bottani
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Sissi Dolci
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy;
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Alessia Amenta
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (A.A.); (F.B.)
| | - Guido Franceso Fumagalli
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy; (A.A.); (F.B.)
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (S.Z.); (A.C.); (F.C.); (E.B.); (S.D.); (A.P.); (G.F.F.); (C.C.)
- Correspondence: ; Tel.: +39-045-802-7509; Fax: +39-045-802-7452
| |
Collapse
|