1
|
Zhu Y, Nair RV, Xia X, Nahmou M, Li X, Yan W, Li J, Tanasa B, Goldberg JL, Kapiloff MS. Reversal of injury-associated retinal ganglion cell gene expression by a phosphodiesterase anchoring disruptor peptide. Exp Eye Res 2024; 246:110017. [PMID: 39097072 PMCID: PMC11330710 DOI: 10.1016/j.exer.2024.110017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Loss of retinal ganglion cells (RGCs) is central to the pathogenesis of optic neuropathies such as glaucoma. Increased RGC cAMP signaling is neuroprotective. We have shown that displacement of the cAMP-specific phosphodiesterase PDE4D3 from an RGC perinuclear compartment by expression of the modified PDE4D3 N-terminal peptide 4D3(E) increases perinuclear cAMP and protein kinase A activity in cultured neurons and in vivo RGC survival after optic nerve crush (ONC) injury. To explore mechanisms by which PDE4D3 displacement promotes neuroprotection, in this study mice intravitreally injected with an adeno-associated virus to express an mCherry-tagged 4D3(E) peptide were subjected to ONC injury and analyzed by single cell RNA-sequencing (scRNA-seq). 4D3(E)-mCherry expression was associated with an attenuation of injury-induced changes in gene expression, thereby supporting the hypothesis that enhanced perinuclear PKA signaling promotes neuroprotective RGC gene expression.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Ophthalmology, Byers Eye Institute, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA, 94034, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Xin Xia
- Department of Ophthalmology, Byers Eye Institute, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA, 94034, USA
| | - Michael Nahmou
- Department of Ophthalmology, Byers Eye Institute, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA, 94034, USA
| | - Xueyi Li
- Department of Ophthalmology, Byers Eye Institute, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA, 94034, USA
| | - Wenjun Yan
- Department of Ophthalmology, Byers Eye Institute, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA, 94034, USA
| | - Jinliang Li
- Department of Ophthalmology, Byers Eye Institute, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA, 94034, USA
| | - Bogdan Tanasa
- Department of Ophthalmology, Byers Eye Institute, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA, 94034, USA
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Byers Eye Institute, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA, 94034, USA
| | - Michael S Kapiloff
- Department of Ophthalmology, Byers Eye Institute, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA, 94034, USA.
| |
Collapse
|
2
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
3
|
Hingorani S, Paniagua Soriano G, Sánchez Huertas C, Villalba Riquelme EM, López Mocholi E, Martínez Rojas B, Alastrué Agudo A, Dupraz S, Ferrer Montiel AV, Moreno Manzano V. Transplantation of dorsal root ganglia overexpressing the NaChBac sodium channel improves locomotion after complete SCI. Mol Ther 2024; 32:1739-1759. [PMID: 38556794 PMCID: PMC11184342 DOI: 10.1016/j.ymthe.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition currently lacking treatment. Severe SCI causes the loss of most supraspinal inputs and neuronal activity caudal to the injury, which, coupled with the limited endogenous capacity for spontaneous regeneration, can lead to complete functional loss even in anatomically incomplete lesions. We hypothesized that transplantation of mature dorsal root ganglia (DRGs) genetically modified to express the NaChBac sodium channel could serve as a therapeutic option for functionally complete SCI. We found that NaChBac expression increased the intrinsic excitability of DRG neurons and promoted cell survival and neurotrophic factor secretion in vitro. Transplantation of NaChBac-expressing dissociated DRGs improved voluntary locomotion 7 weeks after injury compared to control groups. Animals transplanted with NaChBac-expressing DRGs also possessed higher tubulin-positive neuronal fiber and myelin preservation, although serotonergic descending fibers remained unaffected. We observed early preservation of the corticospinal tract 14 days after injury and transplantation, which was lost 7 weeks after injury. Nevertheless, transplantation of NaChBac-expressing DRGs increased the neuronal excitatory input by an increased number of VGLUT2 contacts immediately caudal to the injury. Our work suggests that the transplantation of NaChBac-expressing dissociated DRGs can rescue significant motor function, retaining an excitatory neuronal relay activity immediately caudal to injury.
Collapse
Affiliation(s)
- Sonia Hingorani
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Guillem Paniagua Soriano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Carlos Sánchez Huertas
- Development and Assembly of Bilateral Neural Circuits Laboratory, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Miguel Hernández, Avenida Santiago Ramon y Cajal, s/n, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Eva María Villalba Riquelme
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Eric López Mocholi
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Beatriz Martínez Rojas
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Ana Alastrué Agudo
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Sebastián Dupraz
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Antonio Vicente Ferrer Montiel
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| |
Collapse
|
4
|
Cameron EG, Nahmou M, Toth AB, Heo L, Tanasa B, Dalal R, Yan W, Nallagatla P, Xia X, Hay S, Knasel C, Stiles TL, Douglas C, Atkins M, Sun C, Ashouri M, Bian M, Chang KC, Russano K, Shah S, Woodworth MB, Galvao J, Nair RV, Kapiloff MS, Goldberg JL. A molecular switch for neuroprotective astrocyte reactivity. Nature 2024; 626:574-582. [PMID: 38086421 PMCID: PMC11384621 DOI: 10.1038/s41586-023-06935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.
Collapse
Affiliation(s)
- Evan G Cameron
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Michael Nahmou
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anna B Toth
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Lyong Heo
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Bogdan Tanasa
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Roopa Dalal
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wenjun Yan
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Pratima Nallagatla
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Xin Xia
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sarah Hay
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Cara Knasel
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Melissa Atkins
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Catalina Sun
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Masoumeh Ashouri
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Minjuan Bian
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kun-Che Chang
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kristina Russano
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sahil Shah
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- University of California, San Diego, La Jolla, CA, USA
| | - Mollie B Woodworth
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Joana Galvao
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Michael S Kapiloff
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Medicine and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
5
|
Moztarzadeh S, Sepic S, Hamad I, Waschke J, Radeva MY, García-Ponce A. Cortactin is in a complex with VE-cadherin and is required for endothelial adherens junction stability through Rap1/Rac1 activation. Sci Rep 2024; 14:1218. [PMID: 38216638 PMCID: PMC10786853 DOI: 10.1038/s41598-024-51269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Vascular permeability is mediated by Cortactin (Cttn) and regulated by several molecules including cyclic-adenosine-monophosphate, small Rho family GTPases and the actin cytoskeleton. However, it is unclear whether Cttn directly interacts with any of the junctional components or if Cttn intervenes with signaling pathways affecting the intercellular contacts and the cytoskeleton. To address these questions, we employed immortalized microvascular myocardial endothelial cells derived from wild-type and Cttn-knock-out mice. We found that lack of Cttn compromised barrier integrity due to fragmented membrane distribution of different junctional proteins. Moreover, immunoprecipitations revealed that Cttn is within the VE-cadherin-based adherens junction complex. In addition, lack of Cttn slowed-down barrier recovery after Ca2+ repletion. The role of Cttn for cAMP-mediated endothelial barrier regulation was analyzed using Forskolin/Rolipram. In contrast to Cttn-KO, WT cells reacted with increased transendothelial electrical resistance. Absence of Cttn disturbed Rap1 and Rac1 activation in Cttn-depleted cells. Surprisingly, despite the absence of Cttn, direct activation of Rac1/Cdc42/RhoA by CN04 increased barrier resistance and induced well-defined cortical actin and intracellular actin bundles. In summary, our data show that Cttn is required for basal barrier integrity by allowing proper membrane distribution of junctional proteins and for cAMP-mediated activation of the Rap1/Rac1 signaling pathway.
Collapse
Affiliation(s)
- Sina Moztarzadeh
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sara Sepic
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Ibrahim Hamad
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Alexander García-Ponce
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
6
|
Xu T, Gao P, Huang Y, Wu M, Yi J, Zhou Z, Zhao X, Jiang T, Liu H, Qin T, Yang Z, Wang X, Bao T, Chen J, Zhao S, Yin G. Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling. Redox Biol 2023; 62:102682. [PMID: 36963288 PMCID: PMC10053403 DOI: 10.1016/j.redox.2023.102682] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing, 210008, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Peng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Yifan Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Mengyuan Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xuan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Qin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zhenqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xiaowei Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tianyi Bao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
7
|
Zhang Z, Li H, Su Y, Ma J, Yuan Y, Yu Z, Shi M, Shao S, Zhang Z, Hölscher C. Neuroprotective Effects of a Cholecystokinin Analogue in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Parkinson’s Disease Mouse Model. Front Neurosci 2022; 16:814430. [PMID: 35368248 PMCID: PMC8964967 DOI: 10.3389/fnins.2022.814430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/11/2022] [Indexed: 01/13/2023] Open
Abstract
Parkinson’s disease (PD) is a chronic neurodegenerative disease. Type 2 diabetes mellitus (T2DM) has been identified as a risk factor for PD. Drugs originally developed for T2DM treatment such as liraglutide have shown neuroprotective effects in mouse models of PD. Cholecystokinin (CCK) is a peptide hormone with growth factor properties. Here, we demonstrate the neuroprotective effects of the (pGLu)-(Gln)-CCK8 analogue in an acute PD mouse model induced by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Administration of CCK analogue (50 nmol/kg ip.) for 14 days treatment improved the locomotor and exploratory activity of mice, and improved bradykinesia and movement balance of mice. The CCK analogue administration also restored tyrosine hydroxylase (TH) positive dopaminergic neurons number and synapse number (synaptophysin levels) in the substantia nigra pars compacta (SNpc). The CCK analogue decreased glia activation and neuroinflammation in the SNpc, and regulated autophagy dysfunction induced by MPTP. CCK analogue protected against mitochondrial damage and ER stress, and also decreased the ratio of apoptosis signaling molecules Bax/Bcl-2. Importantly, the CCK analogue improved the decrease of p-CREBS133 growth factor signaling in the SNpc. Therefore, the CCK analogue promotes cell survival of dopaminergic neuron in the SNpc by activating the cAMP/PKA/CREB pathway that also inhibits apoptosis and regulates autophagy impairment. The present results indicate that CCK analogue shows a promising potential for the treatment of PD.
Collapse
Affiliation(s)
- Zijuan Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hai Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunfang Su
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinlian Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ye Yuan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziyang Yu
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ming Shi
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Simai Shao
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Zhenqiang Zhang,
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Neurology Department of the Second Associated Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Christian Hölscher,
| |
Collapse
|
8
|
Zhou G, Wang Z, Han S, Chen X, Li Z, Hu X, Li Y, Gao J. Multifaceted Roles of cAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments. Front Mol Neurosci 2022; 15:808510. [PMID: 35283731 PMCID: PMC8904388 DOI: 10.3389/fnmol.2022.808510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/26/2022] [Indexed: 01/03/2023] Open
Abstract
Spinal cord injury (SCI) results in multiple pathophysiological processes, including blood–spinal cord barrier disruption, hemorrhage/ischemia, oxidative stress, neuroinflammation, scar formation, and demyelination. These responses eventually lead to severe tissue destruction and an inhibitory environment for neural regeneration.cAMP signaling is vital for neurite outgrowth and axonal guidance. Stimulating intracellular cAMP activity significantly promotes neuronal survival and axonal regrowth after SCI.However, neuronal cAMP levels in adult CNS are relatively low and will further decrease after injury. Targeting cAMP signaling has become a promising strategy for neural regeneration over the past two decades. Furthermore, studies have revealed that cAMP signaling is involved in the regulation of glial cell function in the microenvironment of SCI, including macrophages/microglia, reactive astrocytes, and oligodendrocytes. cAMP-elevating agents in the post-injury milieu increase the cAMP levels in both neurons and glial cells and facilitate injury repair through the interplay between neurons and glial cells and ultimately contribute to better morphological and functional outcomes. In recent years, combination treatments associated with cAMP signaling have been shown to exert synergistic effects on the recovery of SCI. Agents carried by nanoparticles exhibit increased water solubility and capacity to cross the blood–spinal cord barrier. Implanted bioscaffolds and injected hydrogels are potential carriers to release agents locally to avoid systemic side effects. Cell transplantation may provide permissive matrices to synergize with the cAMP-enhanced growth capacity of neurons. cAMP can also induce the oriented differentiation of transplanted neural stem/progenitor cells into neurons and increase the survival rate of cell grafts. Emerging progress focused on cAMP compartmentation provides researchers with new perspectives to understand the complexity of downstream signaling, which may facilitate the clinical translation of strategies targeting cAMP signaling for SCI repair.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyan Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shiyuan Han
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaokun Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhimin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xianghui Hu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Jun Gao
| |
Collapse
|
9
|
Moch Rizal D, Septiyorini N. Molecular Action of Herbal Medicine in Physiology of Erection and its Dysfunction. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224902002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Erection is a physiological process that involves vascular, hormonal, and nervous factors. Erectile dysfunction is one of the male sexual problems that occur globally and is reported to affect men's quality of life. Herbal plants have been widely used for disease treatment, including the problem of erectile dysfunction. This paper aims to review the molecular potential of various plants in the physiology of erection and to treat erectile dysfunction. The literature search was carried out through the Pubmed and Google Scholar databases regarding the molecular mechanisms of herbal plants and their potential involvement in the physiology of erection and overcoming erectile dysfunction. This paper focuses on six herbal plants: Panax ginseng, Ginkgo biloba, Epimedium, Black pepper, Tribulus terrestris, and Eurycoma longifolia. The six herbal plants have involvement in the erection process and have molecular potential in the treatment of erectile problems
Collapse
|
10
|
Choi WG, Choi W, Oh TJ, Cha HN, Hwang I, Lee YK, Lee SY, Shin H, Lim A, Ryu D, Suh JM, Park SY, Choi SH, Kim H. Inhibiting serotonin signaling through HTR2B in visceral adipose tissue improves obesity-related insulin resistance. J Clin Invest 2021; 131:145331. [PMID: 34618686 DOI: 10.1172/jci145331] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Insulin resistance is a cornerstone of obesity-related complications such as type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease. A high rate of lipolysis is known to be associated with insulin resistance, and inhibiting adipose tissue lipolysis improves obesity-related insulin resistance. Here, we demonstrate that inhibition of serotonin (5-hydroxytryptamine [5-HT]) signaling through serotonin receptor 2B (HTR2B) in adipose tissues ameliorates insulin resistance by reducing lipolysis in visceral adipocytes. Chronic high-fat diet (HFD) feeding increased Htr2b expression in epididymal white adipose tissue, resulting in increased HTR2B signaling in visceral white adipose tissue. Moreover, HTR2B expression in white adipose tissue was increased in obese humans and positively correlated with metabolic parameters. We further found that adipocyte-specific Htr2b-knockout mice are resistant to HFD-induced insulin resistance, visceral adipose tissue inflammation, and hepatic steatosis. Enhanced 5-HT signaling through HTR2B directly activated lipolysis through phosphorylation of hormone-sensitive lipase in visceral adipocytes. Moreover, treatment with a selective HTR2B antagonist attenuated HFD-induced insulin resistance, visceral adipose tissue inflammation, and hepatic steatosis. Thus, adipose HTR2B signaling could be a potential therapeutic target for treatment of obesity-related insulin resistance.
Collapse
Affiliation(s)
- Won Gun Choi
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - Wonsuk Choi
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea.,Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, South Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Inseon Hwang
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - Yun Kyung Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Yeon Lee
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - Hyemi Shin
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - Ajin Lim
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST, Daejeon, South Korea
| |
Collapse
|
11
|
Xu S, Cheng X, Wu J, Wang Y, Wang X, Wu L, Yu H, Bao J, Zhang L. Capsaicin restores sodium iodine symporter-mediated radioiodine uptake through bypassing canonical TSH‒TSHR pathway in anaplastic thyroid carcinoma cells. J Mol Cell Biol 2021; 13:791-807. [PMID: 34751390 PMCID: PMC8782610 DOI: 10.1093/jmcb/mjab072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 11/14/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly lethal disease. ATCs are resistant to standard therapies and are extremely difficult to manage. The stepwise cell dedifferentiation results in the impairment of the iodine-metabolizing machinery and the infeasibility of radioiodine treatment in ATC. Hence, re-inducing iodine-metabolizing gene expression to restore radioiodine avidity is considered as a promising strategy to fight against ATC. In the present study, capsaicin (CAP), a natural potent transient receptor potential vanilloid type 1 (TRPV1) agonist, was discovered to re-induce ATC cell differentiation and to increase the expression of thyroid transcription factors (TTFs including TTF-1, TTF-2, and PAX8) and iodine-metabolizing proteins, including thyroid stimulating hormone receptor (TSHR), thyroid peroxidase, and sodium iodine symporter (NIS), in two ATC cell lines, 8505C and FRO. Strikingly, CAP treatment promoted NIS glycosylation and its membrane trafficking, resulting in a significant enhancement of radioiodine uptake of ATC cells in vitro. Mechanistically, CAP activated TRPV1 channel and subsequently triggered Ca2+ influx, cyclic adenosine monophosphate (cAMP) generation, and cAMP responsive element binding protein (CREB) signal activation. Next, CREB recognized and bound to the promoter of SLC5A5 to facilitate its transcription. Moreover, the TRPV1 antagonist CPZ, the calcium chelator BAPTA, and the PKA inhibitor H-89 effectively alleviated the re-differentiation exerted by CAP, demonstrating that CAP might improve radioiodine avidity through the activation of the TRPV1‒Ca2+/cAMP/PKA/CREB signaling pathway. In addition, our study indicated that CAP might trigger a novel cascade to re-differentiate ATC cells and provide unprecedented opportunities for radioiodine therapy in ATC, bypassing canonical TSH‒TSHR pathway.
Collapse
Affiliation(s)
- Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Xiaowen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China.,School of Life Science and Technology, Southeast University, Nanjing, 210096 China
| |
Collapse
|
12
|
The Pathogenesis and Therapeutic Approaches of Diabetic Neuropathy in the Retina. Int J Mol Sci 2021; 22:ijms22169050. [PMID: 34445756 PMCID: PMC8396448 DOI: 10.3390/ijms22169050] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy is a major retinal disease and a leading cause of blindness in the world. Diabetic retinopathy is a neurovascular disease that is associated with disturbances of the interdependent relationship of cells composed of the neurovascular units, i.e., neurons, glial cells, and vascular cells. An impairment of these neurovascular units causes both neuronal and vascular abnormalities in diabetic retinopathy. More specifically, neuronal abnormalities including neuronal cell death and axon degeneration are irreversible changes that are directly related to the vision reduction in diabetic patients. Thus, establishment of neuroprotective and regenerative therapies for diabetic neuropathy in the retina is an emergent task for preventing the blindness of patients with diabetic retinopathy. This review focuses on the pathogenesis of the neuronal abnormalities in diabetic retina including glial abnormalities, neuronal cell death, and axon degeneration. The possible molecular cell death pathways and intrinsic survival and regenerative pathways are also described. In addition, therapeutic approaches for diabetic neuropathy in the retina both in vitro and in vivo are presented. This review should be helpful for providing clues to overcome the barriers for establishing neuroprotection and regeneration of diabetic neuropathy in the retina.
Collapse
|
13
|
Farokhi M, Mottaghitalab F, Saeb MR, Shojaei S, Zarrin NK, Thomas S, Ramakrishna S. Conductive Biomaterials as Substrates for Neural Stem Cells Differentiation towards Neuronal Lineage Cells. Macromol Biosci 2020; 21:e2000123. [PMID: 33015992 DOI: 10.1002/mabi.202000123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/10/2020] [Indexed: 01/23/2023]
Abstract
The injuries and defects in the central nervous system are the causes of disability and death of an affected person. As of now, there are no clinically available methods to enhance neural structural regeneration and functional recovery of nerve injuries. Recently, some experimental studies claimed that the injuries in brain can be repaired by progenitor or neural stem cells located in the neurogenic sites of adult mammalian brain. Various attempts have been made to construct biomimetic physiological microenvironment for neural stem cells to control their ultimate fate. Conductive materials have been considered as one the best choices for nerve regeneration due to the capacity to mimic the microenvironment of stem cells and regulate the alignment, growth, and differentiation of neural stem cells. The review highlights the use of conductive biomaterials, e.g., polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene), multi-walled carbon nanotubes, single-wall carbon nanotubes, graphene, and graphite oxide, for controlling the neural stem cells activities in terms of proliferation and neuronal differentiation. The effects of conductive biomaterials in axon elongation and synapse formation for optimal repair of central nervous system injuries are also discussed.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research CentreFaculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
| | | | - Shahrokh Shojaei
- Stem Cells Research CenterTissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran.,Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, 1316943551, Iran
| | - Negin Khaneh Zarrin
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Sabu Thomas
- School of Chemical Sciences, MG University, Kottayam, Kerala, 686560, India
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
14
|
Karakus S, Musicki B, La Favor JD, Burnett AL. cAMP-dependent post-translational modification of neuronal nitric oxide synthase neuroprotects penile erection in rats. BJU Int 2017; 120:861-872. [PMID: 28782252 DOI: 10.1111/bju.13981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To evaluate neuronal nitric oxide (NO) synthase (nNOS) phosphorylation, nNOS uncoupling, and oxidative stress in the penis and major pelvic ganglia (MPG), before and after the administration of the cAMP-dependent protein kinase A (PKA) agonist colforsin in a rat model of bilateral cavernous nerve injury (BCNI),which mimics nerve injury after prostatectomy. MATERIALS AND METHODS Adult male Sprague-Dawley rats were divided into BCNI and sham-operated groups. Each group included two subgroups: vehicle and colforsin (0.1 mg/kg/day i.p.). After 3 days, erectile function (intracavernosal pressure) was measured and penis and MPG were collected for molecular analyses of phospho (P)-nNOS (Ser-1412 and Ser-847), total nNOS, nNOS uncoupling, binding of protein inhibitor of nNOS (PIN) to nNOS, gp91phox subunit of NADPH oxidase, active caspase 3, PKA catalytic subunit α (PKA-Cα; by Western blot) and oxidative stress (hydrogen peroxide [H2 O2 ] and superoxide by Western blot and microdialysis method). RESULTS Erectile function was decreased 3 days after BCNI and normalized by colforsin. nNOS phosphorylation on both positive (Ser-1412) and negative (Ser-847) regulatory sites, and nNOS uncoupling, were increased after BCNI in the penis and MPG, and normalized by colforsin. H2 O2 and total reactive oxygen species production were increased in the penis after BCNI and normalized by colforsin. Protein expression of gp91phox was increased in the MPG after BCNI and was normalized by colforsin treatment. Binding of PIN to nNOS was increased in the penis after BCNI and was normalized by colforsin treatment. Protein expression of active Caspase 3 was increased in the MPG after BCNI and was normalized by colforsin treatment. Protein expression of PKA-Cα was decreased in the penis after BCNI and normalized by colforsin. CONCLUSION Collectively, BCNI impairs nNOS function in the penis and MPG by mechanisms involving its phosphorylation and uncoupling in association with increased oxidative stress, resulting in erectile dysfunction. PKA activation by colforsin reverses these molecular changes and preserves penile erection in the face of BCNI.
Collapse
Affiliation(s)
- Serkan Karakus
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin D La Favor
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|