1
|
Mahajani S, Salahi A, Gonzalez B, Nelson C, Hsiung F. Decoding complexity: the need to enhance precision and streamline spatial understanding in neuroscience. Neural Regen Res 2025; 20:801-802. [PMID: 38886946 PMCID: PMC11433921 DOI: 10.4103/nrr.nrr-d-23-02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/21/2024] [Indexed: 06/20/2024] Open
|
2
|
Wang M, Ma C, Liu A, Xiao H, Ren Y, Li Z, Wang Z, Xia Q, Dou P, Li B, Chen P. A bibliometric analysis of acupuncture for Parkinson's disease non-motor symptoms from 2003 to 2023. Complement Ther Med 2024; 87:103111. [PMID: 39542379 DOI: 10.1016/j.ctim.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Parkinson's disease non-motor symptoms (PD-NMS) significantly affect patients' quality of life. Acupuncture has emerged as a potential complementary therapy for PD-NMS. This study aims to investigate general research status, hotspots and trends of acupuncture as a treatment for PD-NMS. METHODS Literature on Web of Science Core Collection (WoSCC) from 2003 to 2023 was retrieved, and bibliometric analysis was conducted using VOSviewer and CiteSpace software. RESULTS 159 publications by 894 authors from 37 countries, 300 institutions, and 96 journals were retrieved and analyzed. The number of publications in this field is generally on the rise yearly. China was the leading contributor with 57 publications, and the United States followed with 36 publications and had the highest total citation count of 1562. Guangzhou University of Chinese Medicine ranked the highest with a total of 12 publications, while Harvard University had the highest average citation rate of 70 citations per publication. Evidence-Based Complementary and Alternative Medicine was the most prolific journal with 11 articles that had accumulated 122 citations. Park Hi-Joon was the leading contributor with seven articles and 314 citations. The keyword analysis highlighted emerging areas of interest like "deep brain stimulation" and "alpha-synuclein". CONCLUSION Different countries, institutions, and authors should enhance cooperations, and the underlying mechanisms of acupuncture for PD-NMS should be demonstrated. This study will be helpful for better understanding the current knowledge and gaps in the areas of acupuncture as a treatment of PD-NMS.
Collapse
Affiliation(s)
- Mina Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chunying Ma
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Anming Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongli Xiao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yashuo Ren
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuohao Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Zixi Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Qiuyu Xia
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Pu Dou
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China.
| | - Peng Chen
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China.
| |
Collapse
|
3
|
Nefodova A, Rudyk M, Dovhyi R, Dovbynchuk T, Dzubenko N, Tolstanova G, Skivka L. Systemic inflammation in Aβ 1-40-induced Alzheimer's disease model: New translational opportunities. Brain Res 2024; 1837:148960. [PMID: 38679313 DOI: 10.1016/j.brainres.2024.148960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer disease (AD) is the most frequent cause of dementia, and the most common neurodegenerative disease, which is characterized by memory impairment, neuronal death, and synaptic loss in the hippocampus. Sporadic late-onset AD, which accounts for over 95 % of disease cases, is a multifactorial pathology with complex etiology and pathogenesis. Nowadays, neuroinflammation is considered the third most important component of AD pathogenesis in addition to amyloid peptide generation and deposition. Neuroinflammation is associated with the impairment of blood-brain barrier and leakage of inflammatory mediators into the periphery with developing systemic inflammatory responses. Systemic inflammation is currently considered one of the therapeutic targets for AD treatment, that necessitates in-depth study of this phenomenon in appropriate non-transgenic animal models. This study was aimed to explore systemic inflammatory manifestations in rats with Aβ1-40-induced AD. The impairment of spatial memory and cognitive flexibility in Aβ1-40-lesioned rats was accompanied by pronounced systemic inflammation, which was confirmed by commonly accepted biomarkers: increased hematological indices of systemic inflammation (NLR, dNLR, LMR, PLR and SII), signs of anemia of inflammation or chronic diseases, and pro-inflammatory polarized activation of circulating phagocytes. In addition, markers of systemic inflammation strongly correlated with disorders of remote cognitive flexibility in Aβ1-40-lesioned rats. These results indicate, that Aβ1-40-induced AD model permits the investigation of specific element of the disease - systemic inflammation in addition to well reproduced neuroinflammation and impairment of spatial memory and cognitive flexibility. It increases translational value of this well-known model.
Collapse
Affiliation(s)
- Anastasiia Nefodova
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Mariia Rudyk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine.
| | - Roman Dovhyi
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Taisa Dovbynchuk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Nataliia Dzubenko
- Educational and Scientific Institute of High Technologies, Taras Shevchenko University of Kyiv, 4g, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Ganna Tolstanova
- Educational and Scientific Institute of High Technologies, Taras Shevchenko University of Kyiv, 4g, Hlushkov Avenue, Kyiv 03022, Ukraine
| | - Larysa Skivka
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv 03022, Ukraine
| |
Collapse
|
4
|
Bow H, Dang C, Hillsbery K, Markowski C, Black M, Strand C. Food for Thought: The Effects of Feeding on Neurogenesis in the Ball Python, Python regius. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:144-157. [PMID: 38657588 DOI: 10.1159/000539052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Pythons are a well-studied model of postprandial physiological plasticity. Consuming a meal evokes a suite of physiological changes in pythons including one of the largest documented increases in post-feeding metabolic rates relative to resting values. However, little is known about how this plasticity manifests in the brain. Previous work has shown that cell proliferation in the python brain increases 6 days following meal consumption. This study aimed to confirm these findings and build on them in the long term by tracking the survival and maturation of these newly created cells across a 2-month period. METHODS We investigated differences in neural cell proliferation in ball pythons 6 days after a meal with immunofluorescence using the cell-birth marker 5-bromo-12'-deoxyuridine (BrdU). We investigated differences in neural cell maturation in ball pythons 2 months after a meal using double immunofluorescence for BrdU and a reptilian ortholog of the neuronal marker Fox3. RESULTS We did not find significantly greater rates of cell proliferation in snakes 6 days after feeding, but we did observe more new cells in neurogenic regions in fed snakes 2 months after the meal. Feeding was not associated with higher rates of neurogenesis, but snakes that received a meal had higher numbers of newly created nonneuronal cells than fasted controls. We documented particularly high cell survival rates in the olfactory bulbs and lateral cortex. CONCLUSION Consuming a meal stimulates cell proliferation in the brains of ball pythons after digestion is complete, although this effect emerged at a later time point in this study than expected. Higher rates of proliferation partially account for greater numbers of newly created non-neuronal cells in the brains of fed snakes 2 months after the meal, but our results also suggest that feeding may have a mild neuroprotective effect. We captured a slight trend toward higher cell survival rates in fed snakes, and survival rates were particularly high in brain regions associated with olfactory perception and processing. These findings shed light on the relationship between energy balance and the creation of new neural cells in the brains of ball pythons.
Collapse
Affiliation(s)
- Hannah Bow
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Christina Dang
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Katherine Hillsbery
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Carly Markowski
- Biomedical Engineering Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Michael Black
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Christine Strand
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| |
Collapse
|
5
|
Asao K, Sonoda K, Kawaguchi SI, Kawazoe Y. 3-Amino-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carbonitrile: A fluorescent molecule that induces differentiation in PC12 cells. Bioorg Med Chem 2024; 101:117637. [PMID: 38368633 DOI: 10.1016/j.bmc.2024.117637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
Neural differentiation is triggered by the activation of multiple signaling pathways initiated by various neurotrophic factors. An elucidation of these mechanisms is anticipated to facilitate the prevention of diseases and the development of novel therapeutic approaches. Alternative small-molecule inducers for neuroscience studies are required instead of protein-based reagents for more efficient and convenient experiments. We demonstrated that small molecules of thieno[2,3-b]pyridine derivatives that induce neural differentiation, compounds 3a and 9a in particular, exhibited significant neuritogenic activity in rat pheochromocytoma (PC12) cells. Moreover, 3a displayed pronounced fluorescence and a discernible Stokes shift. Furthermore, the outcome of the experiment conducted on the NGF-insensitive clones of rat PC12 cells, and the results of the intercellular uptake analyses suggested that the 3a-mediated activation of neural differentiation occurred independently of the TrkA receptor. Therefore, 3a portrays potential applicability both as a small molecule reagent to replace novel neurotrophic factors and as a potent fluorescent reagent for various techniques, including bioimaging.
Collapse
Affiliation(s)
- Kazuya Asao
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho Karatsu, Saga 847-0021, Japan
| | - Kento Sonoda
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho Karatsu, Saga 847-0021, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho Karatsu, Saga 847-0021, Japan.
| | - Yoshinori Kawazoe
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho Karatsu, Saga 847-0021, Japan.
| |
Collapse
|
6
|
Ban XX, Wan H, Wan XX, Tan YT, Hu XM, Ban HX, Chen XY, Huang K, Zhang Q, Xiong K. Copper Metabolism and Cuproptosis: Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases. Curr Med Sci 2024; 44:28-50. [PMID: 38336987 DOI: 10.1007/s11596-024-2832-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024]
Abstract
Copper is an essential trace element, and plays a vital role in numerous physiological processes within the human body. During normal metabolism, the human body maintains copper homeostasis. Copper deficiency or excess can adversely affect cellular function. Therefore, copper homeostasis is stringently regulated. Recent studies suggest that copper can trigger a specific form of cell death, namely, cuproptosis, which is triggered by excessive levels of intracellular copper. Cuproptosis induces the aggregation of mitochondrial lipoylated proteins, and the loss of iron-sulfur cluster proteins. In neurodegenerative diseases, the pathogenesis and progression of neurological disorders are linked to copper homeostasis. This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases. This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis.
Collapse
Affiliation(s)
- Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Ya-Ting Tan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Hong-Xia Ban
- Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, China
| | - Xin-Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 430013, China.
| |
Collapse
|
7
|
Jahan S, Ansari UA, Srivastava AK, Aldosari S, Alabdallat NG, Siddiqui AJ, Khan A, Albadrani HM, Sarkar S, Khan B, Adnan M, Pant AB. A protein-miRNA biomic analysis approach to explore neuroprotective potential of nobiletin in human neural progenitor cells (hNPCs). Front Pharmacol 2024; 15:1343569. [PMID: 38348393 PMCID: PMC10860404 DOI: 10.3389/fphar.2024.1343569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
Chemical-induced neurotoxicity is increasingly recognized to accelerate the development of neurodegenerative disorders (NDs), which pose an increasing health burden to society. Attempts are being made to develop drugs that can cross the blood-brain barrier and have minimal or no side effects. Nobiletin (NOB), a polymethoxylated flavonoid with anti-oxidative and anti-inflammatory effects, has been demonstrated to be a promising compound to treat a variety of NDs. Here, we investigated the potential role of NOB in sodium arsenate (NA)-induced deregulated miRNAs and target proteins in human neural progenitor cells (hNPCs). The proteomics and microRNA (miRNA) profiling was done for different groups, namely, unexposed control, NA-exposed, NA + NOB, and NOB groups. Following the correlation analysis between deregulated miRNAs and target proteins, RT-PCR analysis was used to validate the selected genes. The proteomic analysis showed that significantly deregulated proteins were associated with neurodegeneration pathways, response to oxidative stress, RNA processing, DNA repair, and apoptotic process following exposure to NA. The OpenArray analysis confirmed that NA exposure significantly altered miRNAs that regulate P53 signaling, Wnt signaling, cell death, and cell cycle pathways. The RT-PCR validation studies concur with proteomic data as marker genes associated with autophagy and apoptosis (HO-1, SQSTM1, LC-3, Cas3, Apaf1, HSP70, and SNCA1) were altered following NA exposure. It was observed that the treatment of NOB significantly restored the deregulated miRNAs and proteins to their basal levels. Hence, it may be considered one of its neuroprotective mechanisms. Together, the findings are promising to demonstrate the potential applicability of NOB as a neuroprotectant against chemical-induced neurotoxicity.
Collapse
Affiliation(s)
- Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, 11952 Majmaah, Saudi Arabia
| | - Uzair Ahmad Ansari
- Developmental Toxicology Laboratory, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankur Kumar Srivastava
- Developmental Toxicology Laboratory, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India
| | - Sahar Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, 11952 Majmaah, Saudi Arabia
| | - Nessrin Ghazi Alabdallat
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, 11952 Majmaah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Sana Sarkar
- Developmental Toxicology Laboratory, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India
| | - Bushra Khan
- Developmental Toxicology Laboratory, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Aditya Bhushan Pant
- Developmental Toxicology Laboratory, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar JLG. Adult neurogenesis: a real hope or a delusion? Neural Regen Res 2024; 19:6-15. [PMID: 37488837 PMCID: PMC10479850 DOI: 10.4103/1673-5374.375317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neurogenesis, the process of creating new neurons, involves the coordinated division, migration, and differentiation of neural stem cells. This process is restricted to neurogenic niches located in two distinct areas of the brain: the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle, where new neurons are generated and then migrate to the olfactory bulb. Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells. Interestingly, recent years have seen tremendous progress in our understanding of adult brain neurogenesis, bridging the knowledge gap between embryonic and adult neurogenesis. Here, we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells. In this notion, we talk about the importance of intracellular signaling molecules in mobilizing endogenous neural stem cell proliferation. Based on the current understanding, we can declare that these molecules play a role in targeting neurogenesis in the mature brain. However, to achieve this goal, we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints, which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Tehreem Iman
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Chand Raza
- Department of Zoology, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Willinger Y, Friedland Cohen DR, Turgeman G. Exogenous IL-17A Alleviates Social Behavior Deficits and Increases Neurogenesis in a Murine Model of Autism Spectrum Disorders. Int J Mol Sci 2023; 25:432. [PMID: 38203599 PMCID: PMC10779042 DOI: 10.3390/ijms25010432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Among the proposed mechanisms for autism spectrum disorders (ASD) is immune dysregulation. The proinflammatory cytokine Interleukine-17A (IL-17A) was shown to play a key role in mediating immune-related neurodevelopmental impairment of social behavior. Nevertheless, post-developmental administration of IL-17A was found to increase social behavior. In the present study, we explored the effect of post-developmental administration of IL-17A on ASD-like behaviors induced by developmental exposure to valproic acid (VPA) at postnatal day 4. At the age of seven weeks, VPA-exposed mice were intravenously injected twice with recombinant murine IL-17A (8 μg), and a week later, they were assessed for ASD-like behavior. IL-17A administration increased social behavior and alleviated the ASD-like phenotype. Behavioral changes were associated with increased serum levels of IL-17 and Th17-related cytokines. Exogenous IL-17A also increased neuritogenesis in the dendritic tree of doublecortin-expressing newly formed neurons in the dentate gyrus. Interestingly, the effect of IL-17A on neuritogenesis was more noticeable in females than in males, suggesting a sex-dependent effect of IL-17A. In conclusion, our study suggests a complex role for IL-17A in ASD. While contributing to its pathology at the developmental stage, IL-17 may also promote the alleviation of behavioral deficits post-developmentally by promoting neuritogenesis and synaptogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Yehoshua Willinger
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
| | - Daniella R. Friedland Cohen
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
| | - Gadi Turgeman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (Y.W.); (D.R.F.C.)
- The Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
10
|
Wang YC, Wang V, Chen BH. Analysis of bioactive compounds in cinnamon leaves and preparation of nanoemulsion and byproducts for improving Parkinson's disease in rats. Front Nutr 2023; 10:1229192. [PMID: 37599679 PMCID: PMC10433916 DOI: 10.3389/fnut.2023.1229192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Cinnamomum osmophloeum Kanehira (C. osmophloeum), a broad-leaved tree species of Taiwan, contains phenolic acids, flavonoids, and phenylpropanoids such as cinnamaldehyde and cinnamic acid in leaves. Many reports have shown that the cinnamon leaf extract possesses anti-inflammatory, hypoglycemic, hypolipidemic and neuroprotective functions. This study aims to analyze bioactive compounds in C. osmophloeum (cinnamon leaves) by UPLC-MS/MS and prepare hydrosol, cinnamon leaf extract and cinnamon leaf nanoemulsion for comparison in improving Parkinson's disease (PD) in rats. Methods After extraction and determination of total phenolic and total flavonoid contents, cinnamaldehyde and the other bioactive compounds were analyzed in cinnamon leaves and hydrosol by UPLC-MS/MS. Cinnamon leaf nanoemulsion was prepared by mixing a suitable proportion of cinnamon leaf extract, soybean oil, lecithin, Tween 80 and deionized water, followed by characterization of particle size and polydispersity index by dynamic light scattering analyzer, particle size and shape by transmission electron microscope, encapsulation efficiency, as well as storage and heating stability. Fifty-six male Sprague-Dawley rats aged 8 weeks were divided into seven groups with group 1 as control (sunflower oil) and group 2 as induction (2 mg/kg bw rotenone in sunflower oil plus 10 mL/kg bw saline), while the other groups including rotenone injection (2 mg/kg bw) followed by high-dose of 60 mg/kg bw (group 3) or low-dose of 20 mg/kg bw (group 4) for tube feeding of cinnamon leaf extract or cinnamon leaf nanoemulsion at the same doses (groups 5 and 6) every day for 5 weeks as well as group 7 with rotenone plus hydrosol containing 0.5 g cinnamon leaf powder at a dose of 10 mL/kg bw. Biochemical analysis of brain tissue (striatum and midbrain) was done to determine dopamine, α-synuclein, tyrosine hydroxylase, superoxide dismutase, catalase, glutathione peroxidase and malondialdehyde contents by using commercial kits, while catalepsy performed by bar test. Results and discussion An extraction solvent of 80% ethanol was found to be the most optimal with a high yield of 15 bioactive compounds being obtained following UPLC analysis. A triple quadrupole tandem mass spectrometer with electrospray ionization mode was used for identification and quantitation, with cinnamaldehyde present at the highest amount (17985.2 µg/g). The cinnamon leaf nanoemulsion was successfully prepared with the mean particle size, zeta potential, polydispersity index and encapsulation efficiency being 30.1 nm, -43.1 mV, 0.149 and 91.6%, respectively. A high stability of cinnamon leaf nanoemulsion was shown over a 90-day storage period at 4 and heating at 100 for 2 h. Animal experiments revealed that the treatments of cinnamon leaf extract, nanoemulsion and hydrosol increased the dopamine contents from 17.08% to 49.39% and tyrosine hydroxylase levels from 17.07% to 25.59%, while reduced the α-synuclein levels from 17.56% to 15.95% in the striatum of rats. Additionally, in the midbrain of rats, an elevation of activities of superoxide dismutase (6.69-16.82%), catalase (8.56-16.94%), and glutathione peroxidase (2.09-16.94%) was shown, while the malondialdehyde content declined by 15.47-22.47%. Comparatively, the high-dose nanoemulsion exerted the most pronounced effect in improving PD in rats and may be a promising candidate for the development of health food or botanic drug.
Collapse
Affiliation(s)
- Yi Chun Wang
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Vinchi Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Bing Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Ji YB, Lee S, Ju HJ, Kim HE, Noh JH, Choi S, Park K, Lee HB, Kim MS. Preparation and evaluation of injectable microsphere formulation for longer sustained release of donepezil. J Control Release 2023; 356:43-58. [PMID: 36841288 DOI: 10.1016/j.jconrel.2023.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
In this study, donepezil-loaded PLGA and PLA microspheres (Dp-PLGA-M/Dp-PLA-M) and Dp-PLA-M wrapped in a polyethylene glycol-b-polycaprolactone (PC) hydrogel (Dp-PLA-M/PC) were prepared to reduce the dosing frequency of injections to treat Alzheimer's disease patients. Dp-PLGA-M and Dp-PLA-M with a uniform particle size distribution were repeatably fabricated in nearly quantitative yield and with high encapsulated Dp yields using an ultrasonic atomizer. The injectability and in vitro and in vivo Dp release, biodegradation, and inflammatory response elicited by the Dp-PLGA-M, Dp-PLA-M, and Dp-PLA-M/PC formulations were then compared. All injectable formulations showed good injectability with ease of injection, even flow, and no clogging using a syringe needle under 21-G. The injections required a force of <1 N. According to the biodegradation rate of micro-CT, GPC and NMR analyses, the biodegradation of Dp-PLA-M was slower than that of Dp-PLGA-M, and the biodegradation rate of Dp-PLA-M/PC was also slower. In the Dp release experiment, Dp-PLA-M sustained Dp for longer compared with Dp-PLGA-M. Dp-PLA-M/PC exhibited a longer sustained release pattern of two months. In vivo bioavailability of Dp-PLA-M/PC was almost 1.4 times higher than that of Dp-PLA-M and 1.9 times higher than that of Dp-PLGA-M. The variations in the Dp release patterns of Dp-PLGA-M and Dp-PLA-M were explained by differences in the degradation rates of PLGA and PLA. The sustained release of Dp by Dp-PLA-M/PC was attributed to the fact that the PC hydrogel served as a wrapping matrix for Dp-PLA-M, which could slow down the biodegradation of PLA-M, thus delaying the release of Dp from Dp-PLA-M. Dp-PLGA-M induced a higher inflammatory response compared to Dp-PLA-M/PC, suggesting that the rapid degradation of PLGA triggered a strong inflammatory response. In conclusion, Dp-PLA-M/PC is a promising injectable Dp formulation that could be used to reduce the dosing frequency of Dp injections.
Collapse
Affiliation(s)
- Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Soyeon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Hee Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Jung Hyun Noh
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Kinam Park
- Departments of Biomedical Engineering and Pharmaceutics, Purdue University, 206 S. Intramural Drive, West Lafayette, Indiana 47907-1791, United States of America
| | - Hai Bang Lee
- Research Institute, Medipolymers, Woncheon Dong 332-2, Suwon 16522, Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea; Research Institute, Medipolymers, Woncheon Dong 332-2, Suwon 16522, Republic of Korea.
| |
Collapse
|
12
|
Guan Y, Cao W, Li T, Qin J, He Q, Jia X, Li Y, Zhang Y, Liao J. NIR-excited upconversion nanoparticles used for targeted inhibition of Aβ42 monomers and disassembly of Aβ42 fibrils. J Mater Chem B 2023; 11:1445-1455. [PMID: 36628620 DOI: 10.1039/d2tb02104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Much attention has been paid to oxidising amyloid-β peptides (Aβ) for inhibiting their aggregation using photosensitive materials. However, the low penetration of ultraviolet/visible light into biological tissues and low targeting properties of the materials hinder their application. Here, we constructed a novel platform for attenuating the neurotoxicity of Aβ through functional upconversion nanoparticles (UCNPs@SiO2-ThS). UCNPs@SiO2-ThS can not only inhibit the aggregation of Aβ42 monomers, but also disassemble Aβ42 fibrils by its selective photooxidative capacity under the irradiation of near-infrared (NIR) light. Moreover, based on the enhancement of ThS fluorescence after attaching to Aβ42 fibrils, only Aβ42 fibrils exposed to both UCNPs@SiO2-ThS and light can be oxidized rather than other normal proteins. To further enhance Aβ-target photooxygenation, we introduced the Aβ-target peptide (KLVFF) on the surface. Compared to traditional chemotherapies and radiotherapies, this novel PDT strategy shows remarkably reduced side effects and improved targeting.
Collapse
Affiliation(s)
- Yijia Guan
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Weijie Cao
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Tao Li
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China. .,SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg DK-6400, Denmark
| | - Jieyi Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Qilong He
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Xiaofeng Jia
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Yuqing Li
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Yuhua Zhang
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Jianguo Liao
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| |
Collapse
|
13
|
Shkodrova M, Mishonova M, Chichova M, Sazdova I, Ilieva B, Doncheva-Stoimenova D, Raikova N, Keremidarska-Markova M, Gagov H. β-N-Methylamino-L-Alanine (BMAA) Modulates the Sympathetic Regulation and Homeostasis of Polyamines. Toxins (Basel) 2023; 15:141. [PMID: 36828455 PMCID: PMC9960692 DOI: 10.3390/toxins15020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria. Non-neuronal toxicity of BMAA is poorly studied with a reported increase in reactive oxygen species and a decrease in the antioxidant capacity of liver, kidney, and colorectal adenocarcinoma cells. The aim of this research is to study the toxicity of BMAA (0.1-1 mM) on mitochondria and submitochondrial particles with ATPase activity, on the semicarbazide-sensitive amino oxidases (SSAOs) activity of rat liver, and on an in vitro model containing functionally active excitable tissues-regularly contracting heart muscle preparation with a preserved autonomic innervation. For the first time the BMAA-dependent inhibition of SSAO activity, the elimination of the positive inotropic effect of adrenergic innervation, and the direct and reversible inhibition of adrenaline signaling in ventricular myocytes with 1 mM BMAA were observed. Additionally, it is confirmed that 1 mM BMAA can activate mitochondrial ATPase indirectly. It is concluded that a higher dose of BMAA may influence multiple physiological and pathological processes as it slows down the degradation of biogenic amines, downregulates the sympathetic neuromediation, and embarrasses the cell signaling of adrenergic receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
14
|
Loukanov A, Chichova M, Filipov C, Shkodrova M, Mishonova M, Mladenova K, Doumanov J, Gagov H. Photo-oxidase carbon dot-based nanozyme for breast cancer theranostics under normoxia condition. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
15
|
Olovnikov AM. Planetary Metronome as a Regulator of Lifespan and Aging Rate: The Metronomic Hypothesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1640-1650. [PMID: 36717453 DOI: 10.1134/s0006297922120197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A metronomic mechanism for the duration control of ontogenetic cycle periods of an animal is proposed. The components of the proposed metronomic system include the ventricular system of the brain, planet Earth as a generator of metronomic signals, and temporal DNA (tDNA) as a substrate that is epigenetically marked to measure elapsed time of ontogenesis. The metronomic system generates repetitive signals in the form of hydrodynamic disturbances in the cerebrospinal fluid (CSF). The metronomic effect arises due to the superposition of two processes - the near-wall unidirectional flow of CSF and oscillations in the movement of the planet. Hydrodynamic impacts of the metronome are transformed into nerve impulses that initiate epigenetic modification of tDNA in neurons, changing the content of factors expressed by this DNA for innervated targets of the body. The duration of ontogenetic cycle periods, including duration of the adult life, depends on the rate of addition of epigenetic marks to tDNA. This rate depends mainly on the frequency of the metronomic signals used by each particular species. But epigenetic modifications can also be influenced by factors that modulate metabolism and the rate of chromatin modifications, such as a calorie-restricted diet.
Collapse
Affiliation(s)
- Alexey M Olovnikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
16
|
Wu J, Zhang H, Wang Y, Yin G, Li Q, Zhuo L, Chen H, Wang Z. From tryptamine to the discovery of efficient multi-target directed ligands against cholinesterase-associated neurodegenerative disorders. Front Pharmacol 2022; 13:1036030. [PMID: 36518670 PMCID: PMC9742383 DOI: 10.3389/fphar.2022.1036030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2023] Open
Abstract
A novel class of benzyl-free and benzyl-substituted carbamylated tryptamine derivatives (CDTs) was designed and synthesized to serve as effective building blocks for the development of novel multi-target directed ligands (MTDLs) for the treatment of neurological disorders linked to cholinesterase (ChE) activity. The majority of them endowed butyrylcholinesterase (BuChE) with more substantial inhibition potency than acetylcholinesterase (AChE), according to the full study of ChE inhibition. Particularly, hybrids with dibenzyl groups (2b-2f, 2j, 2o, and 2q) showed weak or no neuronal toxicity and hepatotoxicity and single-digit nanomolar inhibitory effects against BuChE. Through molecular docking and kinetic analyses, the potential mechanism of action on BuChE was first investigated. In vitro H2O2-induced HT-22 cells assay demonstrated the favorable neuroprotective potency of 2g, 2h, 2j, 2m, 2o, and 2p. Besides, 2g, 2h, 2j, 2m, 2o, and 2p endowed good antioxidant activities and COX-2 inhibitory effects. This study suggested that this series of hybrids can be applied to treat various ChE-associated neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as promising building blocks for further structure modification to develop efficient MTDLs.
Collapse
Affiliation(s)
- Junbo Wu
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Honghua Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Gaofeng Yin
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qien Li
- Tibetan Medical College, Qinghai University, Xining, Qinghai, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hongjin Chen
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhen Wang
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
17
|
Khaliq F, Oberhauser J, Wakhloo D, Mahajani S. Decoding degeneration: the implementation of machine learning for clinical detection of neurodegenerative disorders. Neural Regen Res 2022; 18:1235-1242. [PMID: 36453399 PMCID: PMC9838151 DOI: 10.4103/1673-5374.355982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Machine learning represents a growing subfield of artificial intelligence with much promise in the diagnosis, treatment, and tracking of complex conditions, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. While no definitive methods of diagnosis or treatment exist for either disease, researchers have implemented machine learning algorithms with neuroimaging and motion-tracking technology to analyze pathologically relevant symptoms and biomarkers. Deep learning algorithms such as neural networks and complex combined architectures have proven capable of tracking disease-linked changes in brain structure and physiology as well as patient motor and cognitive symptoms and responses to treatment. However, such techniques require further development aimed at improving transparency, adaptability, and reproducibility. In this review, we provide an overview of existing neuroimaging technologies and supervised and unsupervised machine learning techniques with their current applications in the context of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Fariha Khaliq
- Department of Biomedical Engineering and Sciences (BMES), National University of Science and Technology, Islamabad, Pakistan,Correspondence to: Fariha Khaliq, ; Sameehan Mahajani, .
| | - Jane Oberhauser
- Department of Neuropathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Debia Wakhloo
- Department of Neuropathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sameehan Mahajani
- Department of Neuropathology, School of Medicine, Stanford University, Stanford, CA, USA,Correspondence to: Fariha Khaliq, ; Sameehan Mahajani, .
| |
Collapse
|
18
|
Carocci A, Barbarossa A, Leuci R, Carrieri A, Brunetti L, Laghezza A, Catto M, Limongelli F, Chaves S, Tortorella P, Altomare CD, Santos MA, Loiodice F, Piemontese L. Novel Phenothiazine/Donepezil-like Hybrids Endowed with Antioxidant Activity for a Multi-Target Approach to the Therapy of Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11091631. [PMID: 36139705 PMCID: PMC9495854 DOI: 10.3390/antiox11091631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex multi-factorial neurodegenerative disorder for which only few drugs (including donepezil, DPZ) are available as symptomatic treatments; thus, researchers are focusing on the development of innovative multi-target directed ligands (MTDLs), which could also alter the course of the disease. Among other pathological factors, oxidative stress has emerged as an important factor in AD that could affect several pathways involved in the onset and progression of the pathology. Herein, we propose a new series of hybrid molecules obtained by linking a phenothiazine moiety, known for its antioxidant properties, with N-benzylpiperidine or N-benzylpiperazine fragments, mimicking the core substructure of DPZ. The investigation of the resulting hybrids showed, in addition to their antioxidant properties, their activity against some AD-related targets, such as the inhibition of cholinesterases (both AChE and BChE) and in vitro Aβ1-40 aggregation, as well as the inhibition of the innovative target fatty acid amide hydrolase (FAAH). Furthermore, the drug-likeness properties of these compounds were assessed using cheminformatic tools. Compounds 11d and 12d showed the most interesting multi-target profiles, with all the assayed activities in the low micromolar range. In silico docking calculations supported the obtained results. Compound 13, on the other hand, while inactive in the DPPH assay, showed the best results in the in vitro antioxidant cell assays conducted on both HepG2 and SHSY-5Y cell lines. These results, paired with the low or absent cytotoxicity of these compounds at tested concentrations, allow us to aim our future research at the study of novel and effective drugs and pro-drugs with similar structural characteristics.
Collapse
Affiliation(s)
- Alessia Carocci
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
- Correspondence: (A.C.); (L.P.)
| | - Alexia Barbarossa
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Rosalba Leuci
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Laghezza
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Marco Catto
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Francesco Limongelli
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Paolo Tortorella
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Maria Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Fulvio Loiodice
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Luca Piemontese
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
- Correspondence: (A.C.); (L.P.)
| |
Collapse
|