1
|
Kou Y, Jin Z, Yuan Y, Ma B, Xie W, Han N. FK506 contributes to peripheral nerve regeneration by inhibiting neuroinflammatory responses and promoting neuron survival. Neural Regen Res 2025; 20:2108-2115. [PMID: 39254569 DOI: 10.4103/nrr.nrr-d-22-00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/17/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00031/figure1/v/2024-09-09T124005Z/r/image-tiff FK506 (Tacrolimus) is a systemic immunosuppressant approved by the U.S. Food and Drug Administration. FK506 has been shown to promote peripheral nerve regeneration, however, its precise mechanism of action and its pathways remain unclear. In this study, we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve, increased the numbers of motor and sensory neurons, reduced inflammatory responses, markedly improved the conduction function of the injured nerve, and promoted motor function recovery. These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons.
Collapse
Affiliation(s)
- Yuhui Kou
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
- National Center for Trauma Medicine, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Zongxue Jin
- National Center for Trauma Medicine, Peking University People's Hospital, Beijing, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China
| | - Yusong Yuan
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Bo Ma
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Wenyong Xie
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Na Han
- National Center for Trauma Medicine, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Wang Y, Yuan T, Lyu T, Zhang L, Wang M, He Z, Wang Y, Li Z. Mechanism of inflammatory response and therapeutic effects of stem cells in ischemic stroke: current evidence and future perspectives. Neural Regen Res 2025; 20:67-81. [PMID: 38767477 PMCID: PMC11246135 DOI: 10.4103/1673-5374.393104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 05/22/2024] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingli Yuan
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiying He
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
3
|
Wang ZQ, Ran R, Ma CW, Zhao GH, Zhou KS, Zhang HH. Lentivirus-mediated Knockdown of Ski Improves Neurological Function After Spinal Cord Injury in Rats. Neurochem Res 2024; 50:15. [PMID: 39549172 DOI: 10.1007/s11064-024-04261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 11/18/2024]
Abstract
The glial scar that forms at the site of injury after spinal cord injury (SCI) is an important physical and biochemical barrier that prevents axonal regeneration and thus delays functional recovery. Ski is a multifunctional transcriptional co-regulator that is involved in a wide range of physiological and pathological processes in humans. Previous studies by our group found that Ski is significantly upregulated in the spinal cord after in vivo injury and in astrocytes after in vitro activation, suggesting that Ski may be a novel molecule regulating astrocyte activation after spinal cord injury. Further studies revealed that knockdown or overexpression intervention of Ski expression could significantly affect the proliferation and migration of activated astrocytes. To further verify the effect of knockdown of Ski expression in vivo on glial scar formation and neurological function after spinal cord injury, we prepared a rat spinal cord injury model using Allen's percussion method and used lentivirus as a vector to mediate the downregulation of Ski in the injured spinal cord. The results showed that knockdown of Ski expression after spinal cord injury significantly suppressed the expression of glial fibrillary acidic protein (Gfap) and vimentin, hallmark molecules of glial scarring, and increased the expression of neurofilament protein-200 (Nf-200) and growth-associated protein (Gap43), key molecules of axon regeneration, as well as Synaptophysin, a key molecule of synapse formation expression. In addition, knockdown of Ski after spinal cord injury also promoted the recovery of motor function. Taken together, these results suggest that Ski is able to inhibit the expression of key molecules of glial scar formation, and at the same time promotes the expression of molecules that are markers of axonal regeneration and synapse formation after spinal cord injury, making it a potential target for targeted therapy after spinal cord injury.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Rui Ran
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Chun-Wei Ma
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Guang-Hai Zhao
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Kai-Sheng Zhou
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, LanzhouGansu, 730000, China.
- Orthopaedics Key Laboratory of Gansu Province, LanzhouGansu, 730000, China.
| |
Collapse
|
4
|
Li Q, Gao S, Qi Y, Shi N, Wang Z, Saiding Q, Chen L, Du Y, Wang B, Yao W, Sarmento B, Yu J, Lu Y, Wang J, Cui W. Regulating Astrocytes via Short Fibers for Spinal Cord Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406742. [PMID: 39120009 PMCID: PMC11538653 DOI: 10.1002/advs.202406742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Reactive astrogliosis is the main cause of secondary injury to the central nerves. Biomaterials can effectively suppress astrocyte activation, but the mechanism remains unclear. Herein, Differentially Expressed Genes (DEGs) are identified through whole transcriptome sequencing in a mouse model of spinal cord injury, revealing the VIM gene as a pivotal regulator in the reactive astrocytes. Moreover, DEGs are predominantly concentrated in the extracellular matrix (ECM). Based on these, 3D injectable electrospun short fibers are constructed to inhibit reactive astrogliosis. Histological staining and functional analysis indicated that fibers with unique 3D network spatial structures can effectively constrain the reactive astrocytes. RNA sequencing and single-cell sequencing results reveal that short fibers downregulate the expression of the VIM gene in astrocytes by modulating the "ECM receptor interaction" pathway, inhibiting the transcription of downstream Vimentin protein, and thereby effectively suppressing reactive astrogliosis. Additionally, fibers block the binding of Vimentin protein with inflammation-related proteins, downregulate the NF-κB signaling pathway, inhibit neuron apoptosis, and consequently promote the recovery of spinal cord neural function. Through mechanism elucidation-material design-feedback regulation, this study provides a detailed analysis of the mechanism chain by which short fibers constrain the abnormal spatial expansion of astrocytes and promote spinal cord neural function.
Collapse
Affiliation(s)
- Qianyi Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Shuaiyun Gao
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Yang Qi
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Nuo Shi
- Peterson's LabShanghai200030P. R. China
| | | | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Liang Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Bo Wang
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Wenfei Yao
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Bruno Sarmento
- I3‐Instituto de Investigação e Inovação Em Saúde and INEB‐Instituto de Engenharia BiomédicaUniversidade Do PortoRua Alfredo Allen 208Porto4200‐135Portugal
- IUCS‐Instituto Universitário de Ciências da SaúdeCESPURua Central de Gandra 1317Gandra4585‐116Portugal
| | - Jie Yu
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Yiming Lu
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
- Division of Critical CareNanxiang Hospital of Jiading DistrictShanghai201802P. R. China
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
5
|
Ding L, Wang J, Qiu S, Ren Z, Li Y, An P. Bioinformatics Approach to Identify the Pathogenetic Link of Gut Microbiota-Derived Short-Chain Fatty Acids and Ischemic Stroke. Mol Neurobiol 2024; 61:9478-9490. [PMID: 38649659 PMCID: PMC11496340 DOI: 10.1007/s12035-024-04176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Stroke is a life-threatening condition that impairs the arteries and causes neurological impairment. The incidence of stroke is increasing year by year with the arrival of the aging population. Thus, there is an urgent need for early stroke diagnosis. Short-chain fatty acids (SCFAs) can modulate the central nervous system and directly and indirectly impact behavioral and cognitive functions. This study aimed to investigate the connection between SCFA metabolism and stroke development via bioinformatic analysis. Initially, the Gene Set Enrichment Analysis (GSEA) and immune cell infiltration analysis were performed based on RNA data from stroke patients to comprehend the mechanisms governing stroke pathogenesis. The functional analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI), was performed based on the Differentially Expressed Gene (DEG) selected by the limma package. 1220 SCFA metabolism-related genes screened from Genecards databases were intersected with 242 genes in main modules determined by Weighted Gene Co-Expression Network Analysis (WGCNA), and the final 10 SCFA key genes were obtained. GO analysis revealed that these genes were involved in immune response processes. Through lasso regression analyses, we established a stroke early diagnosis model and selected 6 genes with diagnostic value. The genes were validated by the area under curve (AUC) values and had a relatively good diagnostic performance. Finally, 4 potential therapeutic drugs targeting these genes were predicted using the Drug Signatures Database (DSigDB) via Enrichr. In conclusion, this paper analyzes the involvement of SCFAs in the complex gut-brain axis mechanism, which contributes to developing new targets for treating central nervous system diseases and provides new ideas for early ischemic stroke diagnosis.
Collapse
Affiliation(s)
- Liang Ding
- Department of Traditional Chinese Medicine, Qingdao Third People's Hospital, Qingdao City, Shandong Province, China
| | - Jianing Wang
- Neurology Department, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao City, Shandong Province, China
| | - Sha Qiu
- Department of Traditional Chinese Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao City, Shandong Province, China
| | - Zhizhen Ren
- Department of Traditional Chinese Medicine, Community Health Service Center of Shi'nan District in Qingdao, Qingdao City, Shandong Province, China
| | - Yuantao Li
- Acupuncture and Moxibustion Department, Qingdao Third People's Hospital, Qingdao City, Shandong Province, China
| | - Pengpeng An
- Emergency Internal Medicine Department, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao City, Shandong Province, China.
| |
Collapse
|
6
|
Bochynska D, Sharpe A, Toland B, Demeter EA. Schwannosis in the brain of a neonatal calf. J Vet Diagn Invest 2024:10406387241283161. [PMID: 39359129 PMCID: PMC11559825 DOI: 10.1177/10406387241283161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Schwannosis is a rare, non-neoplastic, perivascular proliferation of aberrant Schwann cells within the CNS with simultaneous partial myelination of axons. A single report exists in veterinary medicine of schwannosis in the spinal cord of 3 foals and 1 calf. Here we describe a case of schwannosis in the brain of a 1-d-old Holstein-Friesian calf, submitted for autopsy due to arthrogryposis and premature death, with no other gross abnormalities observed. Histologically, the brain had multifocal, mainly perivascular, spindle-cell proliferations within the white matter of the medulla oblongata and focally within the gray matter of the midbrain. These cells immunolabeled with periaxin, myelin protein zero, SOX10, S100, and equivocally for vimentin, indicating Schwann cell origin. No changes were identified within other organs. Ancillary tests did not support an infectious etiology. Schwannosis should be considered as a differential diagnosis when investigating cases of arthrogryposis in calves with negative ancillary tests for infectious conditions.
Collapse
Affiliation(s)
- Diana Bochynska
- Ross University School of Veterinary Medicine, St Kitts and Nevis
| | - Ann Sharpe
- Department of Agriculture, Food and the Marine Central Veterinary Research Laboratory–Backweston Campus, Kilkenny, Ireland
| | - Brian Toland
- Department of Agriculture, Food and the Marine Central Veterinary Research Laboratory–Backweston Campus, Kilkenny, Ireland
| | - Elena Alina Demeter
- Department of Population Medicine and Diagnostic Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| |
Collapse
|
7
|
Wang X, Zhu Z, Zhang Z, Liang Z, Li K, Ma Y, Zhou J, Wu T, Wang Z, Hu X. Astrocyte-derived lipocalin 2 promotes inflammation and scarring after spinal cord injury by activating SMAD in mice. Exp Neurol 2024; 380:114915. [PMID: 39122167 DOI: 10.1016/j.expneurol.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The inflammatory response and scar formation after spinal cord injury (SCI) limit nerve regeneration and functional recovery. Our research group has previously shown that the expression of astrocyte-derived lipocalin 2 (Lcn2) is upregulated after SCI, which correlates with neuronal apoptosis and functional recovery. Therefore, we speculate that astrocyte-specific knockdown of Lcn2 after SCI may lead to a better prognosis. METHODS Tissue RNA sequencing, Western blotting, PCR, and immunofluorescence assays were conducted to assess the expression of Lcn2 following SCI in mice. Adeno-associated virus 9 (AAV9) transfection was employed to specifically reduce the expression of Lcn2 in astrocytes, and subsequent evaluations of scarring and inflammation were conducted. In vitro experiments involved treating primary astrocytes with TGF-β or an A1-induced mixture (C1q, TNF-α and IL-1α) following Lcn2 knockdown. Finally, the intrathecal injection of recombinant Lcn2 (ReLcn2) protein was conducted post-injury to further confirm the role of Lcn2 and its underlying mechanism in SCI. RESULTS Lcn2 expression was elevated in astrocytes after SCI at 7 dpi (days post injury). Lcn2 knockdown in astrocytes is beneficial for neuronal survival and functional recovery after SCI, and is accompanied by a reduced inflammatory response and inhibited scar formation. The inhibition of SMAD-associated signaling activation was identified as a possible mechanism, and in vitro experiments further confirmed this finding. ReLcn2 further activated SMAD-associated signaling and aggravated motor function after SCI. CONCLUSION The upregulation of Lcn2 expression in astrocytes is involved in neuroinflammation and scar formation after SCI, and the activation of SMAD-associated signaling is one of the underlying mechanisms.
Collapse
Affiliation(s)
- Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Surgery, Rocket Force 96110 Military Hospital of PLA, Yinchuan 750000, China
| | - Zhijie Zhu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Orthopedics, Eastern Theater Air Force Hospital of PLA, Nanjing 210000, China
| | - Zhihao Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhuowen Liang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kun Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Tingyu Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
8
|
Chen J, Zhang C, Yang Z, Wu W, Zou W, Xin Z, Zheng S, Liu R, Yang L, Peng H. Intestinal microbiota imbalance resulted by anti-Toxoplasma gondii immune responses aggravate gut and brain injury. Parasit Vectors 2024; 17:284. [PMID: 38956725 PMCID: PMC11221008 DOI: 10.1186/s13071-024-06349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.
Collapse
Affiliation(s)
- Jiating Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Chi Zhang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zihan Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weiling Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weihao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zixuan Xin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Shuyu Zheng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Runchun Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Lili Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Gao P, Li H, Qiao Y, Nie J, Cheng S, Tang G, Dai X, Cheng H. A cuproptosis-related gene DLAT as a novel prognostic marker and its relevance to immune infiltration in low-grade gliomas. Heliyon 2024; 10:e32270. [PMID: 38961981 PMCID: PMC11219321 DOI: 10.1016/j.heliyon.2024.e32270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
DLAT has been recognized as a cuproptosis-related gene that is crucial for cuproptosis in earlier research. The study is to look at how DLAT affects individuals with low-grade glioma's prognosis and immune infiltration. The Genotype-Tissue Expression (GTEx) database and the TCGA database were used in this work to download RNAseq data in TPM format. DLAT was found to be overexpressed in LGG by comparing DLAT expression levels between LGG and normal brain tissue, and the expression of DLAT was verified by immunohistochemistry and semi-quantitative analysis. Then, the functional enrichment analysis revealed that the biological functional pathways and possible signal transduction pathways involved were primarily focused on extracellular matrix organization, transmembrane transporter complex, ion channel complex, channel activity, neuroactive ligand-receptor interaction, complement and coagulation cascades, and channel activity. The level of immune cell infiltration by plasmacytoid dendritic cells and CD8 T cells was subsequently evaluated using single-sample gene set enrichment analysis, which showed that high DLAT expression was inversely connected with that level of infiltration. The link between the methylation and mRNA transcription of DLAT was then further investigated via the MethSurv database, and the results showed that DLAT's hypomethylation status was linked to a poor outcome. Finally, by evaluating the prognostic value of DLAT using the Cox regression analysis and Kaplan-Meier technique, a column line graph was created to forecast the overall survival (OS) rate at 1, 3, and 5 years after LGG identification. The aforementioned results demonstrated that high DLAT expression significantly decreased OS and DSS, and that overexpression of DLAT in LGG was significantly linked with WHO grade, IDH status, primary therapy outcome, overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) events. DLAT was discovered as a separate predictive sign of OS in the end. DLAT might thus represent a brand-new predictive biomarker.
Collapse
Affiliation(s)
- Peng Gao
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Huaixu Li
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Yang Qiao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Jianyu Nie
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Sheng Cheng
- Department of Clinical Medicine, The First Clinical College of Anhui Medical University, Hefei, 230022, PR China
| | - Guozhang Tang
- Department of Clinical Medicine, The Second Clinical College of Anhui Medical University, Hefei, 230022, PR China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
- Department of Research & Development, East China Institute of Digital Medical Engineering, Shangrao, 334000, PR China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| |
Collapse
|
10
|
Yadikar H, Ansari MA, Abu-Farha M, Joseph S, Thomas BT, Al-Mulla F. Deciphering Early and Progressive Molecular Signatures in Alzheimer's Disease through Integrated Longitudinal Proteomic and Pathway Analysis in a Rodent Model. Int J Mol Sci 2024; 25:6469. [PMID: 38928172 PMCID: PMC11203991 DOI: 10.3390/ijms25126469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia worldwide, remains a challenge due to its complex origin and degenerative character. The need for accurate biomarkers and treatment targets hinders early identification and intervention. To fill this gap, we used a novel longitudinal proteome methodology to examine the temporal development of molecular alterations in the cortex of an intracerebroventricular streptozotocin (ICV-STZ)-induced AD mouse model for disease initiation and progression at one, three-, and six-weeks post-treatment. Week 1 revealed metabolic protein downregulation, such as Aldoa and Pgk1. Week 3 showed increased Synapsin-1, and week 6 showed cytoskeletal protein alterations like Vimentin. The biological pathways, upstream regulators, and functional effects of proteome alterations were dissected using advanced bioinformatics methods, including Ingenuity Pathway Analysis (IPA) and machine learning algorithms. We identified Mitochondrial Dysfunction, Synaptic Vesicle Pathway, and Neuroinflammation Signaling as disease-causing pathways. Huntington's Disease Signaling and Synaptogenesis Signaling were stimulated while Glutamate Receptor and Calcium Signaling were repressed. IPA also found molecular connections between PPARGC1B and AGT, which are involved in myelination and possible neoplastic processes, and MTOR and AR, which imply mechanistic involvements beyond neurodegeneration. These results help us comprehend AD's molecular foundation and demonstrate the promise of focused proteomic techniques to uncover new biomarkers and therapeutic targets for AD, enabling personalized medicine.
Collapse
Affiliation(s)
- Hamad Yadikar
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sabah AlSalem University City, Kuwait City 13060, Kuwait
- OMICS Research Unit, Research Core Facility, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait;
| | - Mubeen A. Ansari
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait;
| | - Mohamed Abu-Farha
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| | - Shibu Joseph
- Department of Special Service Facility, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| | - Betty T. Thomas
- OMICS Research Unit, Research Core Facility, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait;
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (F.A.-M.)
| |
Collapse
|
11
|
Bae SG, Yin GN, Ock J, Suh JK, Ryu JK, Park J. Single-cell transcriptome analysis of cavernous tissues reveals the key roles of pericytes in diabetic erectile dysfunction. eLife 2024; 12:RP88942. [PMID: 38856719 PMCID: PMC11164535 DOI: 10.7554/elife.88942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Erectile dysfunction (ED) affects a significant proportion of men aged 40-70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.
Collapse
Affiliation(s)
- Seo-Gyeong Bae
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
| | - Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urolog, Inha University School of MedicineIncheonRepublic of Korea
- Program in Biomedical Science & Engineering, Inha UniversityIncheonRepublic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
| |
Collapse
|
12
|
Xu Y, Sun H, Chen J, Qin L, Wu M, Zhong Z, Zhang X. Loss of SIL1 Affects Actin Dynamics and Leads to Abnormal Neural Migration. Mol Neurobiol 2024:10.1007/s12035-024-04272-8. [PMID: 38850350 DOI: 10.1007/s12035-024-04272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
SIL1 is a nucleotide exchange factor for the molecular chaperone protein Bip in the endoplasmic reticulum that plays a crucial role in protein folding. The Sil1 gene is currently the only known causative gene of Marinesco-Sjögren syndrome (MSS). Intellectual developmental disability is the main symptom of MSS, and its mechanism has not been fully elucidated. Studies have shown that mutations in the Sil1 gene can delay neuronal migration during cortical development, but the underlying molecular mechanisms remain unclear. To further identify potential molecules involved in the regulation of central nervous system development by SIL1, we established a cortical neuron model with SIL1 protein deficiency and used proteomic analysis to screen for differentially expressed proteins after Sil1 silencing, followed by GO functional enrichment and protein‒protein interaction (PPI) network analysis. We identified 68 upregulated and 137 downregulated proteins in total, and among them, 10 upregulated and 3 downregulated proteins were mainly related to actin cytoskeleton dynamics. We further validated the differential changes in actin-related molecules using qRT‒PCR and Western blotting of a Sil1 gene knockout (Sil1-/-) mouse model. The results showed that the protein levels of ACTN1 and VIM decreased, while their mRNA levels increased as a compensatory response to protein deficiency. The mRNA and protein levels of IQGAP1 both showed a secondary increase. In conclusion, we identified ACTN1 and VIM as the key molecules regulated by SIL1 that are involved in neuronal migration during cortical development.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Hongji Sun
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Junyang Chen
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Liuting Qin
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Mengxue Wu
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Zhaoming Zhong
- Department of Medical Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Xiaomin Zhang
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
13
|
Ávila-Fernández P, Etayo-Escanilla M, Sánchez-Porras D, Blanco-Elices C, Campos F, Carriel V, García-García ÓD, Chato-Astrain J. A Novel In Vitro Pathological Model for Studying Neural Invasion in Non-Melanoma Skin Cancer. Gels 2024; 10:252. [PMID: 38667671 PMCID: PMC11049316 DOI: 10.3390/gels10040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Neural Invasion (NI) is a key pathological feature of cancer in the colonization of distant tissues, and its underlying biological mechanisms are still scarcely known. The complex interactions between nerve and tumor cells, along with the stroma, make it difficult to reproduce this pathology in effective study models, which in turn has limited the understanding of NI pathogenesis. In this study, we have designed a three-dimensional model of NI squamous cell carcinoma combining human epidermoid carcinoma cells (hECCs) with a complete peripheral nerve segment encapsulated in a fibrine-agarose hydrogel. We recreated two vital processes of NI: a pre-invasive NI model in which hECCs were seeded on the top of the nerve-enriched stroma, and an invasive NI model in which cancer cells were immersed with the nerve in the hydrogel. Histological, histochemical and immunohistochemical analyses were performed to validate the model. Results showed that the integration of fibrin-agarose advanced hydrogel with a complete nerve structure and hECCs successfully generated an environment in which tumor cells and nerve components coexisted. Moreover, this model correctly preserved components of the neural extracellular matrix as well as allowing the proliferation and migration of cells embedded in hydrogel. All these results suggest the suitability of the model for the study of the mechanisms underlaying NI.
Collapse
Affiliation(s)
- Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, 18071 Granada, Spain
| | - Miguel Etayo-Escanilla
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (P.Á.-F.); (M.E.-E.); (D.S.-P.); (C.B.-E.); (F.C.); (J.C.-A.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
14
|
Alieva IB, Shakhov AS, Dayal AA, Churkina AS, Parfenteva OI, Minin AA. Unique Role of Vimentin in the Intermediate Filament Proteins Family. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:726-736. [PMID: 38831508 DOI: 10.1134/s0006297924040114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 03/21/2024] [Indexed: 06/05/2024]
Abstract
Intermediate filaments (IFs), being traditionally the least studied component of the cytoskeleton, have begun to receive more attention in recent years. IFs are found in different cell types and are specific to them. Accumulated data have shifted the paradigm about the role of IFs as structures that merely provide mechanical strength to the cell. In addition to this role, IFs have been shown to participate in maintaining cell shape and strengthening cell adhesion. The data have also been obtained that point out to the role of IFs in a number of other biological processes, including organization of microtubules and microfilaments, regulation of nuclear structure and activity, cell cycle control, and regulation of signal transduction pathways. They are also actively involved in the regulation of several aspects of intracellular transport. Among the intermediate filament proteins, vimentin is of particular interest for researchers. Vimentin has been shown to be associated with a range of diseases, including cancer, cataracts, Crohn's disease, rheumatoid arthritis, and HIV. In this review, we focus almost exclusively on vimentin and the currently known functions of vimentin intermediate filaments (VIFs). This is due to the structural features of vimentin, biological functions of its domains, and its involvement in the regulation of a wide range of basic cellular functions, and its role in the development of human diseases. Particular attention in the review will be paid to comparing the role of VIFs with the role of intermediate filaments consisting of other proteins in cell physiology.
Collapse
Affiliation(s)
- Irina B Alieva
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anton S Shakhov
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexander A Dayal
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Aleksandra S Churkina
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Olga I Parfenteva
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexander A Minin
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
15
|
Liu K, Aierken A, Liu M, Parhat N, Kong W, Yin X, Liu G, Yu D, Hong J, Ni J, Quan Z, Liu X, Ji S, Mao J, Peng W, Chen C, Yan Y, Qing H. The decreased astrocyte-microglia interaction reflects the early characteristics of Alzheimer's disease. iScience 2024; 27:109281. [PMID: 38455972 PMCID: PMC10918213 DOI: 10.1016/j.isci.2024.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease often associated with olfactory dysfunction. Aβ is a typical AD hall marker, but Aβ-induced molecular alterations in olfactory memory remain unclear. In this study, we used a 5xFAD mouse model to investigate Aβ-induced olfactory changes. Results showed that 4-month-old 5xFAD have olfactory memory impairment accompanied by piriform cortex neuron activity decline and no sound or working memory impairment. In addition, synapse and glia functional alteration is consistent across different ages at the proteomic level. Microglia and astrocyte specific proteins showed strong interactions in the conserved co-expression network module. Moreover, this interaction declines only in mild cognitive impairment patients in human postmortem brain proteomic data. This suggests that astrocytes-microglia interaction may play a leading role in the early stage of Aβ-induced olfactory memory impairment, and the decreasing of their synergy may accelerate the neurodegeneration.
Collapse
Affiliation(s)
- Kefu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ailikemu Aierken
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Mengyao Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Nazakat Parhat
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xingyu Yin
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410083, Hunan, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Ding Yu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jie Hong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyun Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Simei Ji
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410083, Hunan, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| |
Collapse
|
16
|
Suprewicz Ł, Zakrzewska M, Okła S, Głuszek K, Sadzyńska A, Deptuła P, Fiedoruk K, Bucki R. Extracellular vimentin as a modulator of the immune response and an important player during infectious diseases. Immunol Cell Biol 2024; 102:167-178. [PMID: 38211939 DOI: 10.1111/imcb.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Vimentin, an intermediate filament protein primarily recognized for its intracellular role in maintaining cellular structure, has recently garnered increased attention and emerged as a pivotal extracellular player in immune regulation and host-pathogen interactions. While the functions of extracellular vimentin were initially overshadowed by its cytoskeletal role, accumulating evidence now highlights its significance in diverse physiological and pathological events. This review explores the multifaceted role of extracellular vimentin in modulating immune responses and orchestrating interactions between host cells and pathogens. It delves into the mechanisms underlying vimentin's release into the extracellular milieu, elucidating its unconventional secretion pathways and identifying critical molecular triggers. In addition, the future perspectives of using extracellular vimentin in diagnostics and as a target protein in the treatment of diseases are discussed.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Sławomir Okła
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Katarzyna Głuszek
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Alicja Sadzyńska
- State Higher Vocational School of Prof. Edward F. Szczepanik in Suwałki, Suwałki, Poland
| | - Piotr Deptuła
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Białystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
17
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
18
|
Carpo N, Tran V, Biancotti JC, Cepeda C, Espinosa-Jeffrey A. Space Flight Enhances Stress Pathways in Human Neural Stem Cells. Biomolecules 2024; 14:65. [PMID: 38254665 PMCID: PMC10813251 DOI: 10.3390/biom14010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Mammalian cells have evolved to function under Earth's gravity, but how they respond to microgravity remains largely unknown. Neural stem cells (NSCs) are essential for the maintenance of central nervous system (CNS) functions during development and the regeneration of all CNS cell populations. Here, we examined the behavior of space (SPC)-flown NSCs as they readapted to Earth's gravity. We found that most of these cells survived the space flight and self-renewed. Yet, some showed enhanced stress responses as well as autophagy-like behavior. To ascertain if the secretome from SPC-flown NSCs contained molecules inducing these responses, we incubated naïve, non-starved NSCs in a medium containing SPC-NSC secretome. We found a four-fold increase in stress responses. Proteomic analysis of the secretome revealed that the protein of the highest content produced by SPC-NSCs was secreted protein acidic and rich in cysteine (SPARC), which induces endoplasmic reticulum (ER) stress, resulting in the cell's demise. These results offer novel knowledge on the response of neural cells, particularly NSCs, subjected to space microgravity. Moreover, some secreted proteins have been identified as microgravity sensing, paving a new venue for future research aiming at targeting the SPARC metabolism. Although we did not establish a direct relationship between microgravity-induced stress and SPARC as a potential marker, these results represent the first step in the identification of gravity sensing molecules as targets to be modulated and to design effective countermeasures to mitigate intracranial hypertension in astronauts using structure-based protein design.
Collapse
Affiliation(s)
- Nicholas Carpo
- Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA (V.T.); (C.C.)
| | - Victoria Tran
- Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA (V.T.); (C.C.)
| | - Juan Carlos Biancotti
- Department of Surgery, Division of Pediatric Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Carlos Cepeda
- Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA (V.T.); (C.C.)
| | | |
Collapse
|
19
|
Li J, Zhao J, Sun S, Shen S, Zhong B, Dong X. Peptidomics insights: neutrophil extracellular traps (NETs) related to the chronic subdural hemorrhage. PeerJ 2023; 11:e16676. [PMID: 38144176 PMCID: PMC10749094 DOI: 10.7717/peerj.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Chronic subdural hemorrhage (CSDH) refers to a hematoma with an envelope between the dura mater and the arachnoid membrane and is more common among the elderly. It was reported that the dura mater, which is highly vascularized with capillary beds, precapillary arterioles and postcapillary venules play an important role in the protection of the central nervous system (CNS). Numerous evidences suggests that peptides play an important role in neuroprotection of CNS. However, whether dura mater derived endogenous peptides participate in the pathogenesis of CSDH remains undetermined. In the current study, the peptidomic profiles were performed in human dura of CSDH (three patients) and the relative control group (three non-CSDH samples) by LC-MS (liquid chromatography-mass spectrometry). The results suggested that a total of 569 peptides were differentially expressed in the dura matter of CSDH compared with relative controls, including 217 up-regulated peptides and 352 down-regulated peptides. Gene Ontology (GO) analysis demonstrated that the precursor proteins of those differentially expressed peptides were involved in the various biological processes. Interestingly, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that NETs participated in the pathogenies of CSDH. Further investigate showed that H3Cit was significantly elevated in the dural and hematoma membranes of patients with CSDH compared to patients without CSDH. Taken together, our results showed the differentially expressed peptides in human dura mater of CSDH and demonstrated that NETs formation in the dural and hematoma membranes might be involved in the pathogenesis of CSDH. It is worth noting that pharmacological inhibition of NETs may have potential therapeutic implications for CSDH.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuchen Sun
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Shen
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bincheng Zhong
- Department of Emergency, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Dong
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Thalla DG, Lautenschläger F. Extracellular vimentin: Battle between the devil and the angel. Curr Opin Cell Biol 2023; 85:102265. [PMID: 37866018 DOI: 10.1016/j.ceb.2023.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/24/2023]
Abstract
Vimentin, an intracellular cytoskeletal protein, can be secreted by various cells in response to conditions such as injury, stress, senescence, and cancer. Once vimentin is secreted outside of the cell, it is called extracellular vimentin. This extracellular vimentin is significantly involved in pathological conditions, particularly in the areas of viral infection, cancer, immune response, and wound healing. The effects of extracellular vimentin can be either positive or negative, for example it can enhance axonal repair but also mediates SARS-CoV-2 infection. In this review, we categorize the functional implications of extracellular vimentin based on its localization outside the cell. Specifically, we classify extracellular vimentin into two distinct forms: surface vimentin, which remains bound to the cell surface, and secreted vimentin, which refers to the free form that is completely released outside the cell. Overall, extracellular vimentin has a dual nature that encompasses both beneficial and detrimental effects on the functionality of cells, organs and whole organisms. Here, we summarize its effects in viral infection, cancer, immune response and wound healing. We find that surface vimentin is often associated with negative consequences, whereas secreted vimentin manifests predominantly with positive influences. We found that the observed effects of extracellular vimentin strongly depend on the specific circumstances under which its expression occurs in cells.
Collapse
Affiliation(s)
| | - Franziska Lautenschläger
- Experimental Physics, Saarland University, Saarbrücken, Germany; Centre for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
21
|
Dong Z, Min F, Zhang S, Zhang H, Zeng T. EGR1-Driven METTL3 Activation Curtails VIM-Mediated Neuron Injury in Epilepsy. Neurochem Res 2023; 48:3349-3362. [PMID: 37268752 DOI: 10.1007/s11064-023-03950-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023]
Abstract
Uncovering mechanisms underlying epileptogenesis aids in preventing further epilepsy progression and to lessen seizure severity and frequency. The purpose of this study is to explore the antiepileptogenic and neuroprotective mechanisms of EGR1 in neuron injuries encountered in epilepsy. Bioinformatics analysis was conducted to identify the key genes related to epilepsy. The mice were rendered epileptic using the kainic acid protocol, followed by measurement of seizure severity, high amplitude and frequency, pathological changes of hippocampal tissues and neuron apoptosis. Furthermore, an in vitro epilepsy model was constructed in the neurons isolated from newborn mice, which was then subjected to loss- and gain-of-function investigations, followed by neuron injury and apoptosis assessment. Interactions among EGR1, METTL3, and VIM were analyzed by a series of mechanistic experiments. In the mouse and cell models of epilepsy, VIM was robustly induced. However, its knockdown reduced hippocampal neuron injury and apoptosis. Meanwhile, VIM knockdown decreased inflammatory response and neuron apoptosis in vivo. Mechanistic investigations indicated that EGR1 transcriptionally activated METTL3, which in turn downregulated VIM expression through m6A modification. EGR1 activated METTL3 and reduced VIM expression, thereby impairing hippocampal neuron injury and apoptosis, preventing epilepsy progression. Taken together, this study demonstrates that EGR1 alleviates neuron injuries in epilepsy by inducing METTL3-mediated inhibition of VIM, which provides clues for the development of novel antiepileptic treatments.
Collapse
Affiliation(s)
- Zhaofei Dong
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, People's Republic of China
| | - Fuli Min
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, Guangdong Province, People's Republic of China
| | - Sai Zhang
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, Guangdong Province, People's Republic of China
| | - Huili Zhang
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, Guangdong Province, People's Republic of China
| | - Tao Zeng
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, Guangdong Province, People's Republic of China.
| |
Collapse
|
22
|
Miyoshi K, Hishinuma E, Matsukawa N, Shirasago Y, Watanabe M, Sato T, Sato Y, Kumondai M, Kikuchi M, Koshiba S, Fukasawa M, Maekawa M, Mano N. Global Proteomics for Identifying the Alteration Pathway of Niemann-Pick Disease Type C Using Hepatic Cell Models. Int J Mol Sci 2023; 24:15642. [PMID: 37958627 PMCID: PMC10648601 DOI: 10.3390/ijms242115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive neurodegeneration. Although the causative genes were previously identified, NPC has unclear pathophysiological aspects, and patients with NPC present various symptoms and onset ages. However, various novel biomarkers and metabolic alterations have been investigated; at present, few comprehensive proteomic alterations have been reported in relation to NPC. In this study, we aimed to elucidate proteomic alterations in NPC and perform a global proteomics analysis for NPC model cells. First, we developed two NPC cell models by knocking out NPC1 using CRISPR/Cas9 (KO1 and KO2). Second, we performed a label-free (LF) global proteomics analysis. Using the LF approach, more than 300 proteins, defined as differentially expressed proteins (DEPs), changed in the KO1 and/or KO2 cells, while the two models shared 35 DEPs. As a bioinformatics analysis, the construction of a protein-protein interaction (PPI) network and an enrichment analysis showed that common characteristic pathways such as ferroptosis and mitophagy were identified in the two model cells. There are few reports of the involvement of NPC in ferroptosis, and this study presents ferroptosis as an altered pathway in NPC. On the other hand, many other pathways and DEPs were previously suggested to be associated with NPC, supporting the link between the proteome analyzed here and NPC. Therapeutic research based on these results is expected in the future.
Collapse
Affiliation(s)
- Keitaro Miyoshi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Seizo Koshiba
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|
23
|
Qin G, Yu X, Zhao Y, Li X, Yu B, Peng H, Yang D. NLRP9 involved in antiviral innate immunity via binding VIM in IPEC-J2 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104895. [PMID: 37473827 DOI: 10.1016/j.dci.2023.104895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD)-containing protein 9 (NLRP9) was the first nucleotide-binding region receptor (NLR) proposed to be expressed and function only in the reproductive system. Recent evidence suggests that NLRP9 is also capable of playing a role in infectious and inflammatory diseases. RESULTS AND CONCLUSIONS In this study, we examined the expression of NLRP9 in various tissues of piglets and IPEC-J2 cells. The results showed that high expression of NLRP9 mRNA and protein were detected in both intestine of piglets and IPEC-J2 cells. Both LPS and poly I:C significantly up-regulated NLRP9 protein levels in the IPEC-J2 cells. Besides, poly I:C upregulated the level of transcriptional elements NF-κB, IRF3, IRF7, ISG15, ISG56, OAS1, and IFNB1. Furthermore, interference with the NLRP9 gene in the presence of poly I:C strongly downregulated the expression of all the above genes. Moreover, we demonstrated for the first time that NLRP9 acts in combination with VIM (Vimentin). These results suggested that NLRP9 may participate in the antiviral innate immune by binding to VIM in the porcine intestine. The findings provide preliminary insights into the molecular mechanisms involved in the regulation of mucosal immunity in the porcine intestine by NLRP9.
Collapse
Affiliation(s)
- Ge Qin
- School of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China; College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, PR China
| | - Xiang Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, PR China
| | - Yuanjie Zhao
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, PR China
| | - Xiaoping Li
- School of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China
| | - Beibei Yu
- School of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China
| | - Hui Peng
- School of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China.
| | - Diqi Yang
- School of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China.
| |
Collapse
|
24
|
Sitovskaya D, Zabrodskaya Y, Parshakov P, Sokolova T, Kudlay D, Starshinova A, Samochernykh K. Expression of Cytoskeletal Proteins (GFAP, Vimentin), Proapoptotic Protein (Caspase-3) and Protective Protein (S100) in the Epileptic Focus in Adults and Children with Drug-Resistant Temporal Lobe Epilepsy Associated with Focal Cortical Dysplasia. Int J Mol Sci 2023; 24:14490. [PMID: 37833937 PMCID: PMC10572279 DOI: 10.3390/ijms241914490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
The European Commission of the International League Against Epilepsy (ILAE) has identified glial mechanisms of seizures and epileptogenesis as top research priorities. The aim of our study was to conduct a comparative analysis of the expression levels of cytoskeletal proteins (glial fibrillar acidic protein (GFAP) and vimentin), protective protein S100, and proapoptotic caspase-3 protein in patients with drug-resistant epilepsy (DRE) associated with focal cortical dysplasia (FCD). We aimed to investigate how the expression levels of these proteins depend on age (both in children and adults), gender, and disease duration, using immunohistochemistry. Nonparametric statistical methods were employed for data analysis. In the epileptic focus area of the cortex and white matter in patients with FCD-associated temporal lobe DRE, a higher level of expression of these proteins was observed. Age and gender differences were found for vimentin and S100. In the early stages of disease development, there was a compensatory sequential increase in the expression of cytoskeletal and protective proteins. In patients with DRE, depending on the disease duration, patterns of development of neurodegeneration were noted, which is accompanied by apoptosis of gliocytes. These results provide insights into epilepsy mechanisms and may contribute to improving diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Darya Sitovskaya
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
- Department of Pathology with a Course of Forensic Medicine Named after D.D. Lochov, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Yulia Zabrodskaya
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
- Department of Pathology, Mechnikov North-West State Medical University, 191015 St. Petersburg, Russia
| | - Petr Parshakov
- International Laboratory of Intangible-Driven Economy, National Research University Higher School of Economics, 614070 Perm, Russia;
| | - Tatyana Sokolova
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
| | - Dmitry Kudlay
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- NRC Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
| | - Anna Starshinova
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
| | - Konstantin Samochernykh
- Polenov Neurosurgical Institute—Branch of Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (Y.Z.); (T.S.); (A.S.); (K.S.)
| |
Collapse
|
25
|
Zeng CW, Tsai HJ. The Promising Role of a Zebrafish Model Employed in Neural Regeneration Following a Spinal Cord Injury. Int J Mol Sci 2023; 24:13938. [PMID: 37762240 PMCID: PMC10530783 DOI: 10.3390/ijms241813938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in a wide range of physical impairments and disabilities. Despite the advances in our understanding of the biological response to injured tissue, no effective treatments are available for SCIs at present. Some studies have addressed this issue by exploring the potential of cell transplantation therapy. However, because of the abnormal microenvironment in injured tissue, the survival rate of transplanted cells is often low, thus limiting the efficacy of such treatments. Many studies have attempted to overcome these obstacles using a variety of cell types and animal models. Recent studies have shown the utility of zebrafish as a model of neural regeneration following SCIs, including the proliferation and migration of various cell types and the involvement of various progenitor cells. In this review, we discuss some of the current challenges in SCI research, including the accurate identification of cell types involved in neural regeneration, the adverse microenvironment created by SCIs, attenuated immune responses that inhibit nerve regeneration, and glial scar formation that prevents axonal regeneration. More in-depth studies are needed to fully understand the neural regeneration mechanisms, proteins, and signaling pathways involved in the complex interactions between the SCI microenvironment and transplanted cells in non-mammals, particularly in the zebrafish model, which could, in turn, lead to new therapeutic approaches to treat SCIs in humans and other mammals.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
26
|
Katsura M, Urade Y, Nansai H, Kobayashi M, Taguchi A, Ishikawa Y, Ito T, Fukunaga H, Tozawa H, Chikaoka Y, Nakaki R, Echigo A, Kohro T, Sone H, Wada Y. Low-dose radiation induces unstable gene expression in developing human iPSC-derived retinal ganglion organoids. Sci Rep 2023; 13:12888. [PMID: 37558727 PMCID: PMC10412642 DOI: 10.1038/s41598-023-40051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
The effects of low-dose radiation on undifferentiated cells carry important implications. However, the effects on developing retinal cells remain unclear. Here, we analyzed the gene expression characteristics of neuronal organoids containing immature human retinal cells under low-dose radiation and predicted their changes. Developing retinal cells generated from human induced pluripotent stem cells (iPSCs) were irradiated with either 30 or 180 mGy on days 4-5 of development for 24 h. Genome-wide gene expression was observed until day 35. A knowledge-based pathway analysis algorithm revealed fluctuations in Rho signaling and many other pathways. After a month, the levels of an essential transcription factor of eye development, the proportion of paired box 6 (PAX6)-positive cells, and the proportion of retinal ganglion cell (RGC)-specific transcription factor POU class 4 homeobox 2 (POU4F2)-positive cells increased with 30 mGy of irradiation. In contrast, they decreased after 180 mGy of irradiation. Activation of the "development of neurons" pathway after 180 mGy indicated the dedifferentiation and development of other neural cells. Fluctuating effects after low-dose radiation exposure suggest that developing retinal cells employ hormesis and dedifferentiation mechanisms in response to stress.
Collapse
Affiliation(s)
- Mari Katsura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Reiwa Eye Clinic, Hatsukaichi, Hiroshima, Japan
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Hiroko Nansai
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mika Kobayashi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yukiko Ishikawa
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ito
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hisako Fukunaga
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideto Tozawa
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoko Chikaoka
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | | | - Takahide Kohro
- Department of Clinical Informatics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, Yokohama, Japan.
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
27
|
Oyagbemi AA, Adebayo AK, Adebiyi OE, Adigun KO, Folarin OR, Esan OO, Ajibade TO, Ogunpolu BS, Falayi OO, Ogunmiluyi IO, Olutayo Omobowale T, Ola-Davies OE, Olopade JO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Yakubu MA, Nwulia E, Oguntibeju OO. Leaf extract of Anacardium occidentale ameliorates biomarkers of neuroinflammation, memory loss, and neurobehavioral deficit in N(ω)-nitro-L-arginine methyl ester (L-NAME) treated rats. Biomarkers 2023; 28:263-272. [PMID: 36632742 DOI: 10.1080/1354750x.2022.2164354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Anacardium occidentale commonly known as Cashew is a plant that is widely used in African traditional medicine. It is endowed with phytochemical constituents that are responsible for its medicinal properties. METHODS Twenty-five male Wistar rats were grouped as follows: Control (Group A), Group B (L-NAME 40 mg/kg), Group C (100 mg/kg Anacardium occidentale extract plus 40 mg/kg L-NAME), Group D (200 mg/kg extract plus 40 mg/kg L-NAME) and Group E (10 mg/kg of Lisinopril plus 40 mg/kg L-NAME). The animals were treated with oral administration of either the extracts or Lisnopril daily for 4 weeks. Neuro-behavioural tests such as the Morris Water Maze and Hanging Wire Grip tests were carried out to evaluate memory/spatial learning and muscular strength, respectively. Makers of oxidative stress, antioxidant enzymes and immunohistochemical staining of Glial Fibrillary Acidic Protein and Ionised Calcium Binding Adaptor molecule 1 were assessed. RESULTS L-NAME administration caused significant increases in biomarkers of oxidative stress, decreased antioxidant status, acetylcholinesterase activity, altered neuro-behavioural changes, astrocytosis, and microgliosis. However, Anacardium occidentale reversed exaggerated oxidative stress biomarkers and improved neuro-behavioural changes. CONCLUSIONS Combining all, Anacardium occidentale enhanced brain antioxidant defence status, improved memory and muscular strength, thus, suggesting the neuroprotective properties of Anacardium occidentale.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedeji Kolawole Adebayo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olamide Elizabeth Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kabirat Oluwaseun Adigun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Sciences, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Iyanuoluwa Omolola Ogunmiluyi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa Florida Campus, University of South Africa, Roodepoort, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria, Faculty of Veterinary Science, Pretoria, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, Texas, USA
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Howard University Hospital, Howard University, Washington, District of Columbia, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|