1
|
Mousavinejad SN, Ferdosi F, Abdolghaderi S, Shahpasand S, Dadgostar E, Asadi A, Anoosheh S, Khatami SH. Long non-coding RNAs in bipolar disorder. Clin Chim Acta 2025; 572:120265. [PMID: 40132778 DOI: 10.1016/j.cca.2025.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025]
Abstract
Bipolar disorder is characterized by alternating episodes of mania or hypomania and depression, encompassing various forms such as cyclothymia, bipolar I disorder, and bipolar II disorder. Manic periods present with increased energy and decreased sleep, whereas depressive episodes involve poor energy and extended sleep duration. Despite the availability of treatments, approximately 30% of patients with bipolar disorder are drug resistant and require alternative strategies. Recent research highlights the role of long noncoding RNAs (lncRNAs) as potential biomarkers for bipolar disorder, aiding in distinguishing it from other mood disorders and improving diagnostic accuracy. LncRNAs such as GAS5 and FOXD3-AS1 are downregulated in bipolar disorder patients, suggesting their utility as diagnostic tools. LncRNAs regulate gene expression through interactions with DNA, RNA, and proteins, influencing various biological processes. Studies have identified several lncRNAs linked to bipolar disorder, including lincRNA-p21, lincRNA-ROR, and lincRNA-PINT. These findings underscore the potential of lncRNAs as biomarkers and therapeutic targets, facilitating more personalized treatment strategies. This review explores the diagnostic and therapeutic potential of lncRNAs in bipolar disorder, aiming to enhance the current understanding and management of this condition.
Collapse
Affiliation(s)
- Seyyed Navid Mousavinejad
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Felora Ferdosi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Siamand Abdolghaderi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheyda Shahpasand
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Asadi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Sanam Anoosheh
- Department of Psychiatry, school of medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sheffield Z, Paul P, Krishnakumar S, Pan D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411339. [PMID: 39688117 PMCID: PMC11791988 DOI: 10.1002/advs.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Most wearable biosensors aimed at capturing psychological state target stress biomarkers in the form of physical symptoms that can correlate with dysfunction in the central nervous system (CNS). However, such markers lack the specificity needed for diagnostic or preventative applications. Wearable biochemical sensors (WBSs) have the potential to fill this gap, however, the technology is still in its infancy. Most WBSs proposed thus far target cortisol. Although cortisol detection is demonstrated as a viable method for approximating the extent and severity of psychological stress, the hormone also lacks specificity. Multiplex WBSs that simultaneously target cortisol alongside other viable stress-related biochemical markers (SBMs) can prove to be indispensable for understanding how psychological stress contributes to the pathophysiology of neuropsychiatric illnesses (NPIs) and, thus, lead to the discovery of new biomarkers and more objective clinical tools. However, none target more than one SBM implicated in NPIs. Till this review, cortisol's connection to dysfunctions in the CNS, to other SBMs, and their implication in various NPIs has not been discussed in the context of developing WBS technology. As such, this review is meant to inform the biosensing and neuropsychiatric communities of viable future directions and possible challenges for WBS technology for neuropsychiatric applications.
Collapse
Affiliation(s)
- Zach Sheffield
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
- The Center for Advanced Sensing TechnologyUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
- Chemical, Biochemicaland Environmental Engineering DepartmentUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
| | - Priyanka Paul
- Department of PediatricsUniversity of Maryland Baltimore School of MedicineBaltimoreMD21201USA
| | - Shraddha Krishnakumar
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
| | - Dipanjan Pan
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
| |
Collapse
|
3
|
Bernard J, Tamouza R, Godin O, Berk M, Andreazza AC, Leboyer M. Mitochondria at the crossroad of dysregulated inflammatory and metabolic processes in bipolar disorders. Brain Behav Immun 2025; 123:456-465. [PMID: 39378969 DOI: 10.1016/j.bbi.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
In last few decades, considerable evidence has emphasized the significant involvement of mitochondria, often referred to as the "powerhouse of the cell," in the pathophysiology of bipolar disorder (BD). Given crucial mitochondrial functions in cellular metabolism and inflammation, both of which are compromised in BD, this perspective review examines the central role of mitochondria in inflammation and metabolism within the context of this disorder. We first describe the significance of mitochondria in metabolism before presenting the dysregulated inflammatory and metabolic processes. Then, we present a synthetic and hypothetical model of the importance of mitochondria in those dysfunctional pathways. The article also reviews different techniques for assessing mitochondrial function and discuss diagnostic and therapeutic implications. This review aims to improve the understanding of the inflammatory and metabolic comorbidities associated with bipolar disorders along with mitochondrial alterations within this context.
Collapse
Affiliation(s)
- Jérémy Bernard
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Ryad Tamouza
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Ophélia Godin
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, Mitochondrial Innovation Initiative (MITO2i) University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marion Leboyer
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), Fondation FondaMental, ECNP Immuno-NeuroPsychiatry Network, 94010 Créteil, France.
| |
Collapse
|
4
|
Lee H, Han D, Hong KS, Ha K, Kim H, Cho EY, Myung W, Rhee SJ, Kim J, Ha TH, Lee KE, Jung HW, Lee Y, Lee D, Yu H, Lee D, Park YS, Ahn YM, Baek JH, Kim SH. Integrated proteomic and genomic analysis to identify predictive biomarkers for valproate response in bipolar disorder: a 6-month follow-up study. Int J Bipolar Disord 2024; 12:19. [PMID: 38758284 PMCID: PMC11101393 DOI: 10.1186/s40345-024-00342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Several genetic studies have been undertaken to elucidate the intricate interplay between genetics and drug responses in bipolar disorder (BD). However, there has been notably limited research on biomarkers specifically linked to valproate, with only a few studies investigating integrated proteomic and genomic factors in response to valproate treatment. Therefore, this study aimed to identify biological markers for the therapeutic response to valproate treatment in BD. Patients with BD in remission were assessed only at baseline, whereas those experiencing acute mood episodes were evaluated at three points (baseline, 8 ± 2 weeks, and 6 ± 1 months). The response to valproate treatment was measured using the Alda scale, with individuals scoring an Alda A score ≥ 5 categorized into the acute-valproate responder (acute-VPAR) group. We analyzed 158 peptides (92 proteins) from peripheral blood samples using multiple reaction monitoring mass spectrometry, and proteomic result-guided candidate gene association analyses, with 1,627 single nucleotide variants (SNVs), were performed using the Korean chip. RESULTS The markers of 37 peptides (27 protein) showed temporal upregulation, indicating possible association with response to valproate treatment. A total of 58 SNVs in 22 genes and 37 SNVs in 16 genes showed nominally significant associations with the Alda A continuous score and the acute-VPAR group, respectively. No SNVs reached the genome-wide significance threshold; however, three SNVs (rs115788299, rs11563197, and rs117669164) in the secreted phosphoprotein 2 gene reached a gene-based false discovery rate-corrected significance threshold with response to valproate treatment. Significant markers were associated with the pathophysiological processes of bipolar disorders, including the immune response, acute phase reaction, and coagulation cascade. These results suggest that valproate effectively suppresses mechanisms associated with disease progression. CONCLUSIONS The markers identified in this study could be valuable indicators of the underlying mechanisms associated with response to valproate treatment.
Collapse
Affiliation(s)
- Hyunju Lee
- Department of Neuropsychiatry, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung Sue Hong
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, Lions Gate Hospital - Vancouver Coastal Health, British Columbia, Canada
| | - Kyooseob Ha
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, Lions Gate Hospital - Vancouver Coastal Health, British Columbia, Canada
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Young Cho
- Samsung Institute of Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Woojae Myung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sang Jin Rhee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jayoun Kim
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Tae Hyon Ha
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kang Eun Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hye Won Jung
- Samsung Institute of Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yejin Lee
- Samsung Institute of Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Dongbin Lee
- Department of Psychiatry, Samsung Medical Center, Sunkyunkwan University School of Medicine, 115 Irwon-Ro, Gangnam-Gu, Seoul, 03080, Republic of Korea
| | - Hyeona Yu
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Daseul Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yun Seong Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yong Min Ahn
- Department of Neuropsychiatry, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Ji Hyun Baek
- Department of Psychiatry, Samsung Medical Center, Sunkyunkwan University School of Medicine, 115 Irwon-Ro, Gangnam-Gu, Seoul, 03080, Republic of Korea.
| | - Se Hyun Kim
- Department of Neuropsychiatry, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
5
|
Watson M, Chaves AR, Gebara A, Desforges M, Broomfield A, Landry N, Lemoyne A, Shim S, Drodge J, Cuda J, Kiaee N, Nasr Y, Carleton C, Daskalakis ZJ, Taylor R, Tuominen L, Brender R, Antochi R, McMurray L, Tremblay S. A naturalistic study comparing the efficacy of unilateral and bilateral sequential theta burst stimulation in treating major depression - the U-B-D study protocol. BMC Psychiatry 2023; 23:739. [PMID: 37817124 PMCID: PMC10566125 DOI: 10.1186/s12888-023-05243-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a prevalent mental health condition affecting millions worldwide, leading to disability and reduced quality of life. MDD poses a global health priority due to its early onset and association with other disabling conditions. Available treatments for MDD exhibit varying effectiveness, and a substantial portion of individuals remain resistant to treatment. Repetitive transcranial magnetic stimulation (rTMS), applied to the left and/or right dorsolateral prefrontal cortex (DLPFC), is an alternative treatment strategy for those experiencing treatment-resistant MDD. The objective of this study is to investigate whether this newer form of rTMS, namely theta burst stimulation (TBS), when performed unilaterally or bilaterally, is efficacious in treatment-resistant MDD. METHODS In this naturalistic, randomized double-blinded non-inferiority trial, participants with a major depressive episode will be randomized to receive either unilateral (i.e., continuous TBS [cTBS] to the right and sham TBS to the left DLPFC) or bilateral sequential TBS (i.e., cTBS to the right and intermittent TBS [iTBS] to the left DLPFC) delivered 5 days a week for 4-6 weeks. Responders will move onto a 6-month flexible maintenance phase where TBS treatment will be delivered at a decreasing frequency depending on degree of symptom mitigation. Several clinical assessments and neuroimaging and neurophysiological biomarkers will be collected to investigate treatment response and potential associated biomarkers. A non-inferiority analysis will investigate whether bilateral sequential TBS is non-inferior to unilateral TBS and regression analyses will investigate biomarkers of treatment response. We expect to recruit a maximal of 256 participants. This trial is approved by the Research Ethics Board of The Royal's Institute of Mental Health Research (REB# 2,019,071) and will follow the Declaration of Helsinki. Findings will be published in peer-reviewed journals. DISCUSSION Comprehensive assessment of symptoms and neurophysiological biomarkers will contribute to understanding the differential efficacy of the tested treatment protocols, identifying biomarkers for treatment response, and shedding light into underlying mechanisms of TBS. Our findings will inform future clinical trials and aid in personalizing treatment selection and scheduling for individuals with MDD. TRIAL REGISTRATION The trial is registered on https://clinicaltrials.gov/ct2/home (#NCT04142996).
Collapse
Affiliation(s)
- Molly Watson
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Arthur R Chaves
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Faculty of Health Sciences, University of Ottawa, 125 University, Ottawa, ON, K1N6N5, Canada
| | - Abir Gebara
- School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Manon Desforges
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Département de Psychoéducation Et Psychologie, Université du Québec en Outaouais, 283 Alexandre-Taché Boul, Gatineau, QC, J8X 3X7, Canada
| | - Antoinette Broomfield
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Noémie Landry
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Département de Psychoéducation Et Psychologie, Université du Québec en Outaouais, 283 Alexandre-Taché Boul, Gatineau, QC, J8X 3X7, Canada
| | - Alexandra Lemoyne
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Département de Psychoéducation Et Psychologie, Université du Québec en Outaouais, 283 Alexandre-Taché Boul, Gatineau, QC, J8X 3X7, Canada
| | - Stacey Shim
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Jessica Drodge
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Jennifer Cuda
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Nasim Kiaee
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Youssef Nasr
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Christophe Carleton
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Département de Psychoéducation Et Psychologie, Université du Québec en Outaouais, 283 Alexandre-Taché Boul, Gatineau, QC, J8X 3X7, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Reggie Taylor
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Department of Psychiatry, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Ram Brender
- Department of Psychiatry, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Royal Ottawa Mental Health Centre, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Ruxandra Antochi
- Department of Psychiatry, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Royal Ottawa Mental Health Centre, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Lisa McMurray
- Department of Psychiatry, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Royal Ottawa Mental Health Centre, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Sara Tremblay
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada.
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
- Département de Psychoéducation Et Psychologie, Université du Québec en Outaouais, 283 Alexandre-Taché Boul, Gatineau, QC, J8X 3X7, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
6
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Guidara W, Messedi M, Naifar M, Charfi N, Grayaa S, Maalej M, Maalej M, Ayadi F. Predictive value of oxidative stress biomarkers in drug-free patients with bipolar disorder. Nord J Psychiatry 2022; 76:539-550. [PMID: 34965843 DOI: 10.1080/08039488.2021.2016954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Oxidative stress is one of the primary etiological mechanisms of bipolar disorder (BD). METHODS The present study was conducted over a period of 24 months on Tunisian on 34 drug‑free male patients with BD (mean age: 34.5 years) and 101 age and gender matched controls (mean age: 34.20 years) were enrolled in the study. RESULTS Plasma reduced glutathione (GSH) and total thiols levels were significantly decreased in patients compared to controls (respectively p < .001; p = .009). In addition, malondialdehyde (MDA), advanced oxidation protein products (AOPP), protein carbonyls (PC) and homocysteine (Hcys) concentrations and glutathione peroxidase (GSH-Px) activity were significantly increased in patients compared to controls (p = .002; p < .001; p = .001; p < .001 and p = .016, respectively). The binary logistic regression analysis revealed that MDA, AOPP and Hcys could be considered as independent risk factors for BD. When using CombiROC analysis, a remarkable increase in the area under the curve (AUC) with higher sensitivity (Se) and specificity (Sp) for MDA, AOPP, PC, GSH-Px and Hcys combined markers was observed. CONCLUSIONS Overall, the identification of the predictive value of these five selected biomarkers related to oxidative stress in drug free patients should lead to a better identification of the etiological mechanism of BD.
Collapse
Affiliation(s)
- Wassim Guidara
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Meriam Messedi
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Manel Naifar
- Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| | - Nada Charfi
- Psychiatry C- department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Sahar Grayaa
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C- department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C- department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Fatma Ayadi
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.,Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
8
|
Hu X, Yu C, Dong T, Yang Z, Fang Y, Jiang Z. Biomarkers and detection methods of bipolar disorder. Biosens Bioelectron 2022; 220:114842. [DOI: 10.1016/j.bios.2022.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2022]
|
9
|
Coradduzza D, Garroni G, Congiargiu A, Balzano F, Cruciani S, Sedda S, Nivoli A, Maioli M. MicroRNAs, Stem Cells in Bipolar Disorder, and Lithium Therapeutic Approach. Int J Mol Sci 2022; 23:ijms231810489. [PMID: 36142403 PMCID: PMC9502703 DOI: 10.3390/ijms231810489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Bipolar disorder (BD) is a severe, chronic, and disabling neuropsychiatric disorder characterized by recurrent mood disturbances (mania/hypomania and depression, with or without mixed features) and a constellation of cognitive, psychomotor, autonomic, and endocrine abnormalities. The etiology of BD is multifactorial, including both biological and epigenetic factors. Recently, microRNAs (miRNAs), a class of epigenetic regulators of gene expression playing a central role in brain development and plasticity, have been related to several neuropsychiatric disorders, including BD. Moreover, an alteration in the number/distribution and differentiation potential of neural stem cells has also been described, significantly affecting brain homeostasis and neuroplasticity. This review aimed to evaluate the most reliable scientific evidence on miRNAs as biomarkers for the diagnosis of BD and assess their implications in response to mood stabilizers, such as lithium. Neural stem cell distribution, regulation, and dysfunction in the etiology of BD are also dissected.
Collapse
Affiliation(s)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Nivoli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| |
Collapse
|
10
|
Youn H, Lee MS, Jeong HG, Kim SH. Evaluation of factors associated with medication adherence in patients with bipolar disorder using a medication event monitoring system: a 6-month follow-up prospective study. Ann Gen Psychiatry 2022; 21:33. [PMID: 35999628 PMCID: PMC9400298 DOI: 10.1186/s12991-022-00411-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/07/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Non-adherence in patients with bipolar disorder (BD) results in symptoms, such as aggravation, BD recurrence, emergency room visits, re-hospitalization, and poor psychosocial outcomes. Though non-adherence rates have been reported to range between 30-50% in patients with BD, the problem of adherence is often either overlooked by the physician or denied by the patient. An essential first step to enhancing medication adherence is to objectively estimate adherence. The Medication Event Monitoring System (MEMS), which is a pill bottle cap with a microprocessor, is an accurate device for assessing medication adherence. Using the MEMS, we aimed to measure medication adherence in patients with BD and evaluate the factors associated with and 6-month changes in medication adherence. METHODS Participants with BD were recruited from the psychiatric outpatient clinic of the Korea University Guro Hospital. The medication adherence of each participant was assessed using the MEMS, a self-report, pill count, and clinician rating. MEMS-measured adherence was reassessed after 6 months. Patient demographics were recorded and clinical assessments were conducted. Data were analyzed using Kappa statistics and Pearson's correlation analysis. RESULTS Of the 59 participants, 50 records were included in the analysis. Patient adherence and adherence rate assessed by the MEMS were lower than those assessed by the other measures. MEMS-measured adherence was correlated more closely with pill counts than with self-reports or clinician ratings. MEMS-measured adherence was negatively associated with prescription duration and the Brief Psychiatric Rating Scale-Affect Subscale Score. Six-month changes in MEMS-measured adherence were positively associated with attitude toward drugs and negatively associated with weight gain assessed by the Udvalg for Kliniske Undersøgelser Side Effect Rating Scale. CONCLUSIONS Clinicians may have to consider the limited accuracy of self-reporting and clinician rating methods and exercise caution when assessing the medication adherence of patients with BD using these methods. Our findings may assist clinicians in the assessment and improvement of medication adherence in patients with BD and, consequently, may be useful for the treatment and prevention of BD recurrence.
Collapse
Affiliation(s)
- HyunChul Youn
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Moon-Soo Lee
- Department of Child and Adolescent Psychiatry, Korea University Guro Hospital, Seoul, Republic of Korea.,Korea University Research Institute of Mental Health, Seoul, Republic of Korea
| | - Hyun-Ghang Jeong
- Korea University Research Institute of Mental Health, Seoul, Republic of Korea.,Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Seung-Hyun Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
11
|
Gillissie ES, Krupski JR, Jawad MY, Lui LMW, Di Vencenzo JD, Teopiz KM, Cao B, Phan L, Mansur RB, Kwan ATH, Gill H, Ho RC, McIntyre RS. Evaluating cognitive function in unaffected relatives of individuals with bipolar disorders: A meta-analysis. J Psychiatr Res 2022; 152:289-295. [PMID: 35763918 DOI: 10.1016/j.jpsychires.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Available studies have evaluated cognition in the unaffected relatives of bipolar disorder patients; however, to our knowledge, there has been no quantitative analysis evaluating the foregoing association. Herein, this meta-analysis aims to provide a quantitative synthesis of the extant literature reporting on the association between performance in cognitive domains (i.e., executive function, attention, learning and memory or global cognition) amongst unaffected individuals of probands with bipolar disorders. METHODS Online databases (i.e., PubMed, PsycINFO) and Google Scholar were searched from inception to 20 September 2021. Studies with unaffected, first-degree relatives of individuals with DSM-IV or DSM-5 defined bipolar disorders were included. The risk of bias was assessed using the ROBINS-1 tool, and the quality of the sources was evaluated using GRADE criteria. The results of the studies were quantitatively synthesized using Cohen's d effect sizes via a random-effects meta-analytic approach on JASP. RESULTS A total of 15 studies were included in the final review. Overall, results indicate that cognitive performance across all domains is moderately impaired in unaffected relatives of individuals with bipolar disorders (d = 0.488). Sub-analysis suggests there is a higher level of impairment in executive functioning (d = 0.612). DISCUSSION The identification of cognitive deficits in unaffected relatives of probands with bipolar disorders indicates that cognitive impairment is endophenotypic and a core disturbance in persons with bipolar disorders; future studies should endeavour to target cognition as a potential pre-emptive and prevention strategy of bipolar disorders.
Collapse
Affiliation(s)
- Emily S Gillissie
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jillian R Krupski
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Muhammad Youshay Jawad
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Leanna M W Lui
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua D Di Vencenzo
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Kayla M Teopiz
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, PR China
| | - Lee Phan
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Rodrigo B Mansur
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Angela Tian Hui Kwan
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Hartej Gill
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Roger C Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Roger S McIntyre
- Mood Disorder Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Guo X, Jia J, Zhang Z, Miao Y, Wu P, Bai Y, Ren Y. Metabolomic biomarkers related to non-suicidal self-injury in patients with bipolar disorder. BMC Psychiatry 2022; 22:491. [PMID: 35869468 PMCID: PMC9306041 DOI: 10.1186/s12888-022-04079-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Non-suicidal self-injury (NSSI) is an important symptom of bipolar disorder (BD) and other mental disorders and has attracted the attention of researchers lately. It is of great significance to study the characteristic markers of NSSI. Metabolomics is a relatively new field that can provide complementary insights into data obtained from genomic, transcriptomic, and proteomic analyses of psychiatric disorders. The aim of this study was to identify the metabolic pathways associated with BD with NSSI and assess important diagnostic and predictive indices of NSSI in BD. METHOD Nuclear magnetic resonance spectrometry was performed to evaluate the serum metabolic profiles of patients with BD with NSSI (n = 31), patients with BD without NSSI (n = 46), and healthy controls (n = 10). Data were analyzed using an Orthogonal Partial Least Square Discriminant Analysis and a t-test. Differential metabolites were identified (VIP > 1 and p < 0.05), and further analyzed using Metabo Analyst 3.0 to identify associated metabolic pathways. RESULTS Eight metabolites in the serum and two important metabolic pathways, the urea and glutamate metabolism cycles, were found to distinguish patients with BD with NSSI from healthy controls. Eight metabolites in the serum, glycine and serine metabolism pathway, and the glucose-alanine cycle were found to distinguish patients with BD without NSSI from healthy controls. Five metabolites in the serum and the purine metabolism pathway were found to distinguish patients with BD with NSSI from those with BD without NSSI. CONCLUSIONS Abnormalities in the urea cycle, glutamate metabolism, and purine metabolism played important roles in the pathogenesis of BD with NSSI.
Collapse
Affiliation(s)
- Xiangjie Guo
- grid.263452.40000 0004 1798 4018Department of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| | - Jiao Jia
- grid.470966.aDepartment of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng street, Taiyuan, 030032 Shanxi China ,grid.412793.a0000 0004 1799 5032Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Zhiyong Zhang
- grid.263452.40000 0004 1798 4018Department of Psychology, School of Humanities and Social Sciences, Shanxi Medical University, Taiyuan, China
| | - Yuting Miao
- grid.263452.40000 0004 1798 4018Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Peng Wu
- grid.263452.40000 0004 1798 4018Department of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yaqin Bai
- grid.263452.40000 0004 1798 4018Department of Forensic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yan Ren
- Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng street, Taiyuan, 030032, Shanxi, China. .,Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China. .,Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, Taiyuan, China.
| |
Collapse
|
13
|
Clinical Value of Inflammatory and Neurotrophic Biomarkers in Bipolar Disorder: A Systematic Review and Meta-Analysis. Biomedicines 2022; 10:biomedicines10061368. [PMID: 35740389 PMCID: PMC9220136 DOI: 10.3390/biomedicines10061368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Bipolar disorder (BD) is a multifactorial chronic psychiatric disease highly defined by genetic, clinical, environmental and social risk factors. The present systematic review and meta-analysis aimed to examine the relationship between inflammatory and neurotrophic factors and clinical, social and environmental factors involved in the development and the characterization of BD. Web of Science, PubMed, PsycINFO, Scopus and Science Direct were searched by two independent reviewers. The systematic review was registered in PROSPERO (CRD42020180626). A total of 51 studies with 4547 patients with a diagnosis of BD were selected for systematic review. Among them, 18 articles were included for meta-analysis. The study found some evidence of associations between BDNF and/or inflammatory factors and different stressors and functional and cognitive impairment, but limitations prevented firm conclusions. The main finding of the meta-analysis was a negative correlation between circulating levels of BDNF and depression severity score (standardized mean difference = −0.22, Confidence Interval 95% = −0.38, −0.05, p = 0.01). Evidence indicates that BDNF has a role in the depressive component of BD. However, the poor consistency found for other inflammatory mediators clearly indicates that highly controlled studies are needed to identity precise biomarkers of this disorder.
Collapse
|
14
|
Rahnama M, Mohammadian A, Aarabi S. Network Module analysis of bipolar disorder mechanism deciphers underlying pathways. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
16
|
Sosa-Moscoso B, Ullauri C, Chiriboga JD, Silva P, Haro F, Leon-Rojas JE. Magnetic Resonance Spectroscopy and Bipolar Disorder: How Feasible Is This Pairing? Cureus 2022; 14:e23690. [PMID: 35505758 PMCID: PMC9056012 DOI: 10.7759/cureus.23690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Bipolar disorder is a psychiatric disorder that affects a significant part of the world's population; however, its diagnosis is difficult, mainly because of the lack of biomarkers and objective tests that aid the clinical evaluation. Proton magnetic resonance spectroscopy (MRS) is a tool that is relatively unused in the medical field. Its application arises from conventional magnetic resonance, and allows non-invasive, in vivo, the study of various metabolites and compounds in the human brain. This method may allow the assessment of neurobiochemical alterations in bipolar patients. One of the main advantages of this study type is the simplicity in its use since it only needs a standard magnetic resonator. All these characteristics make it an attractive diagnostic tool that can be used anywhere, including in low-middle-income countries. In conclusion, MRS has potential as a diagnostic tool for bipolar disorder; nevertheless, using it for this purpose still requires additional steps.
Collapse
|
17
|
Zhao XP, Li H, Dai RP. Neuroimmune crosstalk through brain-derived neurotrophic factor and its precursor pro-BDNF: New insights into mood disorders. World J Psychiatry 2022; 12:379-392. [PMID: 35433323 PMCID: PMC8968497 DOI: 10.5498/wjp.v12.i3.379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/22/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Mood disorders are the most common mental disorders, affecting approximately 350 million people globally. Recent studies have shown that neuroimmune interaction regulates mood disorders. Brain-derived neurotrophic factor (BDNF) and its precursor pro-BDNF, are involved in the neuroimmune crosstalk during the development of mood disorders. BDNF is implicated in the pathophysiology of psychiatric and neurological disorders especially in antidepressant pharmacotherapy. In this review, we describe the functions of BDNF/pro-BDNF signaling in the central nervous system in the context of mood disorders. In addition, we summarize the developments for BDNF and pro-BDNF functions in mood disorders. This review aims to provide new insights into the impact of neuroimmune interaction on mood disorders and reveal a new basis for further development of diagnostic targets and mood disorders.
Collapse
Affiliation(s)
- Xiao-Pei Zhao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
18
|
Madireddy S, Madireddy S. Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress–Induced Damage in Patients with Bipolar Disorder. Int J Mol Sci 2022; 23:ijms23031844. [PMID: 35163764 PMCID: PMC8836876 DOI: 10.3390/ijms23031844] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Bipolar disorder (BD) is characterized by mood changes, including recurrent manic, hypomanic, and depressive episodes, which may involve mixed symptoms. Despite the progress in neurobiological research, the pathophysiology of BD has not been extensively described to date. Progress in the understanding of the neurobiology driving BD could help facilitate the discovery of therapeutic targets and biomarkers for its early detection. Oxidative stress (OS), which damages biomolecules and causes mitochondrial and dopamine system dysfunctions, is a persistent finding in patients with BD. Inflammation and immune dysfunction might also play a role in BD pathophysiology. Specific nutrient supplements (nutraceuticals) may target neurobiological pathways suggested to be perturbed in BD, such as inflammation, mitochondrial dysfunction, and OS. Consequently, nutraceuticals may be used in the adjunctive treatment of BD. This paper summarizes the possible roles of OS, mitochondrial dysfunction, and immune system dysregulation in the onset of BD. It then discusses OS-mitigating strategies that may serve as therapeutic interventions for BD. It also analyzes the relationship between diet and BD as well as the use of nutritional interventions in the treatment of BD. In addition, it addresses the use of lithium therapy; novel antipsychotic agents, including clozapine, olanzapine, risperidone, cariprazine, and quetiapine; and anti-inflammatory agents to treat BD. Furthermore, it reviews the efficacy of the most used therapies for BD, such as cognitive–behavioral therapy, bright light therapy, imagery-focused cognitive therapy, and electroconvulsive therapy. A better understanding of the roles of OS, mitochondrial dysfunction, and inflammation in the pathogenesis of bipolar disorder, along with a stronger elucidation of the therapeutic functions of antioxidants, antipsychotics, anti-inflammatory agents, lithium therapy, and light therapies, may lead to improved strategies for the treatment and prevention of bipolar disorder.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence:
| | | |
Collapse
|
19
|
Carta MG, Kalcev G, Fornaro M, Nardi AE. Novel experimental and early investigational drugs for the treatment of bipolar disorder. Expert Opin Investig Drugs 2021; 30:1081-1087. [PMID: 34844484 DOI: 10.1080/13543784.2021.2000965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The quest toward more effective treatments for bipolar disorder (BD) solicits novel drugs and further research on the underpinning neurobiology. The present review aims to critically appraise the existing evidence about the pharmacological treatment of BD toward the development of novel treatment avenues. AREAS COVERED The present review appraises animal and human studies concerning both the currently available psychotropic drugs, and the general medicine drugs which may represent a path toward the development of novel drugs for BD. PubMed and Scopus were last accessed on February 20th, 2021 for records indexed upon inception relevant to the pharmacological treatment of BD. Immune-modulating agents, anti-inflammatory agents, and glutamate antagonists represent the most intriguing potential targets for the development of new drugs for BD, thus receiving critical appraisal in the present text. EXPERT OPINION Regardless of the neurobiological pathways worthy of investigation toward the development of experimental drugs for BD, several unmet needs need to be addressed first. In particular, several biomarkers are altered in BD. However, it is the opinion herein expressed by the authors that it remains uncertain what comes first, that is peripheral changes or the disease.
Collapse
Affiliation(s)
- Mauro Giovanni Carta
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari Italy
| | - Goce Kalcev
- Department of Mechanical, Chemical and Materials Engineering, International Ph.D. In Innovation Sciences and Technologies, University of Cagliari, Cagliari Italy
| | - Michele Fornaro
- Department of Psychiatry, University of Federico II of Naples, Italy
| | - Antonio Egidio Nardi
- Laboratory Panic and Respiration, Institute of Psychiatry (Ipub), Federal University of Rio De Janeiro (Ufrj), Rio De Janeiro, Brazil
| |
Collapse
|
20
|
Dmitrzak-Weglarz M, Szczepankiewicz A, Rybakowski J, Kapelski P, Bilska K, Skibinska M, Reszka E, Lesicka M, Jablonska E, Wieczorek E, Bukowska-Olech E, Pawlak J. Transcriptomic profiling as biological markers of depression - A pilot study in unipolar and bipolar women. World J Biol Psychiatry 2021; 22:744-756. [PMID: 33821765 DOI: 10.1080/15622975.2021.1907715] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES A significant challenge in psychiatry is the differential diagnosis of depressive episodes in the course of mood disorders. Gene expression profiling may provide an opportunity for such distinguishment. METHODS We studied differentially expressed genes in women with a depressive episode in the course of unipolar depression (UD) (n = 24) and bipolar disorder types I (BDI) (n = 13) and II (BDII) (n = 19), and healthy controls (n = 15). RESULTS Different types of depression varied in the number and type of up or down-regulated genes. The pathway analysis showed: in UD, up-regulated rheumatoid arthritis pathway (including ITGB2, CXCL8, TEK, TLR4 genes), and down-regulated taste transduction pathway (TAS2R10, TAS2R46, TAS2R14, TAS2R43, TAS2R45, TAS2R19, TAS2R13, TAS2R20, GNG13); in BDI, eight down-regulated pathways: glutamatergic synapse, retrograde endocannabinoid signalling, axon guidance, calcium signalling, nicotine addiction, PI3K-Akt signalling, drug metabolism - cytochrome P450, and morphine addiction; in BDII, up-regulated osteoclast differentiation and Notch signalling pathway, and down-regulated type I diabetes mellitus pathway. Distinct expression markers analysis uncovered the unique for UD, up-regulated bladder cancer pathway (HBEGF and CXCL8 genes). CONCLUSIONS This pilot study suggests a probability of differentiating depression in the course of UD, BDI, and II, based on transcriptomic profiling.
Collapse
Affiliation(s)
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Skibinska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Monika Lesicka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Ewa Jablonska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | | | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
21
|
Neuroepigenetics of psychiatric disorders: Focus on lncRNA. Neurochem Int 2021; 149:105140. [PMID: 34298078 DOI: 10.1016/j.neuint.2021.105140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023]
Abstract
Understanding the pathology of psychiatric disorders is challenging due to their complexity and multifactorial origin. However, development of high-throughput technologies has allowed for better insight into their molecular signatures. Advancement of sequencing methodologies have made it possible to study not only the protein-coding but also the noncoding genome. It is now clear that besides the genetic component, different epigenetic mechanisms play major roles in the onset and development of psychiatric disorders. Among them, examining the role of long noncoding RNAs (lncRNAs) is a relatively new field. Here, we present an overview of what is currently known about the involvement of lncRNAs in schizophrenia, major depressive and bipolar disorders, as well as suicide. The diagnosis of psychiatric disorders mainly relies on clinical evaluation without using measurable biomarkers. In this regard, lncRNA may open new opportunities for development of molecular tests. However, so far only a small set of known lncRNAs have been characterized at molecular level, which means they have a long way to go before clinical implementation. Understanding how changes in lncRNAs affect the appearance and development of psychiatric disorders may lead to a more classified and objective diagnostic system, but also open up new therapeutic targets for these patients.
Collapse
|
22
|
Liu Y, Tong Y, Huang L, Chen J, Yan S, Yang F. Factors related to retinal nerve fiber layer thickness in bipolar disorder patients and major depression patients. BMC Psychiatry 2021; 21:301. [PMID: 34112131 PMCID: PMC8191183 DOI: 10.1186/s12888-021-03270-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND We analyzed the correlation of the clinical data with retinal nerve fiber layer (RNFL) thickness and macular thickness in bipolar disorder patients and major depression patients. The aim of this study is to explore factors that affect RNFL thickness in bipolar disorder patients and major depression patients, with a view to providing a new diagnostic strategy. METHODS Eighty-two bipolar disorder patients, 35 major depression patients and 274 people who were age and gender matched with the patients were enrolled. Demographic information and metabolic profile of all participants were collected. Best-corrected visual acuity of each eye, intraocular pressure (IOP), fundus examination was performed. RNFL and macular thickness were measured by optical coherence tomography (OCT). Correlations between RNFL and macular thickness and other data were analyzed. RESULTS RNFL and macula lutea in bipolar dipolar patients and major depression patients are thinner than normal people. Triglyceride and UA levels are the highest in the bipolar disorder group, while alanine aminotransferase (ALT) and glutamic oxalacetic transaminase (AST) levels in the depression group are the highest. Age onset and ALT are positively while uric acid (UA) is negatively correlated with RNFL thickness in bipolar dipolar patients. Cholesterol level is positively correlated with RNFL thickness while the duration of illness is correlated with RNFL thickness of left eye in major depression patients. CONCLUSIONS RNFL and macula lutea in bipolar dipolar patients and major depression patients are thinner than normal people. In bipolar disorder patients, age-onset and ALT are potential protective factors in the progress of RNFL thinning, while UA is the pathological factor.
Collapse
Affiliation(s)
- Yanhong Liu
- grid.11135.370000 0001 2256 9319Department of Psychiatry, Peking University Huilongguan Clinical Medical School, Nandian Road, Changping District, Beijing, 100096 China ,grid.414351.60000 0004 0530 7044Department of Psychiatry, Beijing Huilongguan Hospital, Beijing, China
| | - Yongsheng Tong
- grid.11135.370000 0001 2256 9319Department of Psychiatry, Peking University Huilongguan Clinical Medical School, Nandian Road, Changping District, Beijing, 100096 China ,grid.414351.60000 0004 0530 7044Department of Psychiatry, Beijing Huilongguan Hospital, Beijing, China
| | - Lvzhen Huang
- grid.411634.50000 0004 0632 4559Department of Ophthalmology, People’s Hospital of Peking University, Beijing, China
| | - Jingxu Chen
- grid.11135.370000 0001 2256 9319Department of Psychiatry, Peking University Huilongguan Clinical Medical School, Nandian Road, Changping District, Beijing, 100096 China ,grid.414351.60000 0004 0530 7044Department of Psychiatry, Beijing Huilongguan Hospital, Beijing, China
| | - Shaoxiao Yan
- grid.11135.370000 0001 2256 9319Department of Psychiatry, Peking University Huilongguan Clinical Medical School, Nandian Road, Changping District, Beijing, 100096 China ,grid.414351.60000 0004 0530 7044Department of Psychiatry, Beijing Huilongguan Hospital, Beijing, China
| | - Fude Yang
- Department of Psychiatry, Peking University Huilongguan Clinical Medical School, Nandian Road, Changping District, Beijing, 100096, China.
| |
Collapse
|
23
|
Wang Y, Sun K, Liu Z, Chen G, Jia Y, Zhong S, Pan J, Huang L, Tian J. Classification of Unmedicated Bipolar Disorder Using Whole-Brain Functional Activity and Connectivity: A Radiomics Analysis. Cereb Cortex 2021; 30:1117-1128. [PMID: 31408101 DOI: 10.1093/cercor/bhz152] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to develop and validate a method of disease classification for bipolar disorder (BD) by functional activity and connectivity using radiomics analysis. Ninety patients with unmedicated BD II as well as 117 healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI). A total of 4 types of 7018 features were extracted after preprocessing, including mean regional homogeneity (mReHo), mean amplitude of low-frequency fluctuation (mALFF), resting-state functional connectivity (RSFC), and voxel-mirrored homotopic connectivity (VMHC). Then, predictive features were selected by Mann-Whitney U test and removing variables with a high correlation. Least absolute shrinkage and selection operator (LASSO) method was further used to select features. At last, support vector machine (SVM) model was used to estimate the state of each subject based on the selected features after LASSO. Sixty-five features including 54 RSFCs, 7 mALFFs, 1 mReHo, and 3 VMHCs were selected. The accuracy and area under curve (AUC) of the SVM model built based on the 65 features is 87.3% and 0.919 in the training dataset, respectively, and the accuracy and AUC of this model validated in the validation dataset is 80.5% and 0.838, respectively. These findings demonstrate a valid radiomics approach by rs-fMRI can identify BD individuals from healthy controls with a high classification accuracy, providing the potential adjunctive approach to clinical diagnostic systems.
Collapse
Affiliation(s)
- Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Kai Sun
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100190, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- University of Chinese Academy of Science, Beijing, 100190, China
| | - Jiyang Pan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100190, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China
| |
Collapse
|
24
|
fNIRS study of prefrontal activation during emotion recognition-A Potential endophenotype for bipolar I disorder? J Affect Disord 2021; 282:869-875. [PMID: 33601730 DOI: 10.1016/j.jad.2020.12.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Facial emotion recognition (FER) deficit is documented in many psychiatric disorders, including bipolar disorder (BD). However, its role as a risk-marker in BD is not well researched. In the present study, we investigated the role of FER and the corresponding prefrontal neurohemodynamic changes (PNHC) with functional near infra-red spectroscopy (fNIRS) in patients with BD and subjects at high risk for BD compared to healthy subject. METHODS Using a cross-sectional case-control design we compared 14 patients with first episode mania (FEM) in remission (BD group), 14 healthy siblings of BD patients (HR group), and 13 matched healthy subjects (HC group). FER was assessed using a computer-based task called Tool for Recognition of Emotions in Neuropsychiatric Disorders (TRENDS). Simultaneously, the corresponding PNHC was recorded with fNIRS. Kruskal Wallis H test was used to analyze between-group differences and Spearman's rho for correlation analysis. RESULTS The three groups were comparable on socio-demographics (all p>0.09) except education (p = 0.03). HR group had the most hyper-activation in the bilateral DLPFC during the TRENDS task (all p<0.05). There was no significant between-group differences in the FER performance and no significant correlation between the FER performance and the PNHC in the HR and BD groups (all p>0.35). LIMITATIONS The potential confounding effect of medications in the BD group. CONCLUSIONS The hyper-activation of the DLPCF in HR group during FER could indicate an increased risk for BD. However, the lack of similar findings in the BD group might reflect a possible normalizing effect of medications. It is equally likely that differences in the PNHC are detectable earlier than the differences in FER task performance during the course of the illness. This requires further exploration.
Collapse
|
25
|
Todeva-Radneva A, Paunova R, Kandilarova S, St Stoyanov D. The Value of Neuroimaging Techniques in the Translation and Transdiagnostic Validation of Psychiatric Diagnoses - Selective Review. Curr Top Med Chem 2021; 20:540-553. [PMID: 32003690 DOI: 10.2174/1568026620666200131095328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023]
Abstract
Psychiatric diagnosis has long been perceived as more of an art than a science since its foundations lie within the observation, and the self-report of the patients themselves and objective diagnostic biomarkers are lacking. Furthermore, the diagnostic tools in use not only stray away from the conventional medical framework but also remain invalidated with evidence-based concepts. However, neuroscience, as a source of valid objective knowledge has initiated the process of a paradigm shift underlined by the main concept of psychiatric disorders being "brain disorders". It is also a bridge closing the explanatory gap among the different fields of medicine via the translation of the knowledge within a multidisciplinary framework. The contemporary neuroimaging methods, such as fMRI provide researchers with an entirely new set of tools to reform the current status quo by creating an opportunity to define and validate objective biomarkers that can be translated into clinical practice. Combining multiple neuroimaging techniques with the knowledge of the role of genetic factors, neurochemical imbalance and neuroinflammatory processes in the etiopathophysiology of psychiatric disorders is a step towards a comprehensive biological explanation of psychiatric disorders and a final differentiation of psychiatry as a well-founded medical science. In addition, the neuroscientific knowledge gained thus far suggests a necessity for directional change to exploring multidisciplinary concepts, such as multiple causality and dimensionality of psychiatric symptoms and disorders. A concomitant viewpoint transition of the notion of validity in psychiatry with a focus on an integrative validatory approach may facilitate the building of a collaborative bridge above the wall existing between the scientific fields analyzing the mind and those studying the brain.
Collapse
Affiliation(s)
- Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Drozdstoy St Stoyanov
- Department of Psychiatry and Medical Psychology and Scientific Research Institute, The Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
26
|
Reviewing applications of structural and functional MRI for bipolar disorder. Jpn J Radiol 2021; 39:414-423. [PMID: 33389525 DOI: 10.1007/s11604-020-01074-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Bipolar disorders (BDs) represent one of the leading causes of disability and morbidity globally. The use of functional magnetic resonance imaging (fMRI) is being increasingly studied as a tool to improve the diagnosis and treatment of BDs. While morphological biomarkers can be identified through the use of structural magnetic resonance imaging (sMRI), recent studies have demonstrated that varying degrees of both structural and functional impairments indicate differing bipolar subtypes. Within fMRI, resting-state fMRI has specifically drawn increased interest for its capability to detect different neuronal activation patterns compared to task-based fMRI. This study aims to review recently published literature regarding the use of fMRI to investigate structural-functional relationships in BD diagnosis and specifically resting-state fMRI to provide an opinion on fMRI's modern clinical application. All sources in this literature review were collected through searches on both PubMed and Google Scholar databases for terms such as 'resting-state fMRI' and 'functional neuroimaging biomarkers of bipolar disorder'. While there are promising results supporting the use of fMRI for improving differential accuracy and establishing clinically relevant biomarkers, additional evidence will be required before fMRI is considered a dependable component of the overall BD diagnostic process.
Collapse
|
27
|
Kuang L, Gao W, Long Z, Cao W, Cui D, Guo Y, Jiao Q, Qiu J, Su L, Lu G. Common and Specific Characteristics of Adolescent Bipolar Disorder Types I and II: A Combined Cortical Thickness and Structural Covariance Analysis. Front Psychiatry 2021; 12:750798. [PMID: 35126192 PMCID: PMC8814452 DOI: 10.3389/fpsyt.2021.750798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND By calculating cortical thickness (CT) and cortical structural covariance (SC), we aimed to investigate cortical morphology and cortical inter-regional correlation alterations in adolescent bipolar disorder type I (BD-I) and type II (BD-II) patients. METHODS T1-weighted images from 36 BD-I and 22 BD-II patients and 19 healthy controls (HCs) were processed to estimate CT. CT values of the whole brain were compared among three groups. Cortical regions showing CT differences in groups were regarded as seeds for analyzing cortical SC differences between groups. The relationship between CT and clinical indices was further assessed. RESULTS Both BD groups showed cortical thinning in several frontal and temporal areas vs. HCs, and CT showed no significant difference between two BD subtypes. Compared to HCs, both BD groups exhibited reduced SC connections between left superior frontal gyrus (SFG) and right postcentral gyrus (PCG), left superior temporal gyrus (STG) and right pars opercularis, and left STG and right PCG. Compared with HCs, decreased SC connections between left STG and right inferior parietal gyrus (IPG) and right pars opercularis and right STG were only observed in the BD-I group, and left PCG and left SFG only in the BD-II group. CT of right middle temporal gyrus was negatively correlated with number of episodes in BD-II patients. CONCLUSIONS Adolescent BD-I and BD-II showed commonly decreased CT while presenting commonly and distinctly declined SC connections. This study provides a better understanding of cortical morphology and cortical inter-regional correlation alterations in BD and crucial insights into neuroanatomical mechanisms and pathophysiology of different BD subtypes.
Collapse
Affiliation(s)
- Liangfeng Kuang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Weijia Gao
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiliang Long
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Weifang Cao
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yongxin Guo
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qing Jiao
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Linyan Su
- Mental Health Institute of The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Muneer A. The Discovery of Clinically Applicable Biomarkers for Bipolar Disorder: A Review of Candidate and Proteomic Approaches. Chonnam Med J 2020; 56:166-179. [PMID: 33014755 PMCID: PMC7520367 DOI: 10.4068/cmj.2020.56.3.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric condition which affects innumerable people across the globe. The etiopathogenesis of BD is multi-faceted with genetic, environmental and psychosocial factors playing a role. Hitherto, the diagnosis and management of BD are purely on empirical grounds as we lack confirmed biomarkers for this condition. In this regard, hypothesis-driven investigations have been unable to identify clinically applicable biomarkers, steering the field towards newer technologies. Innovative, state-of-the-art techniques like multiplex immunoassays and mass spectrometry can potentially investigate the entire proteome. By detecting up or down regulated proteins, novel biomarkers are identified and new postulates about the etiopathogenesis of BD are specified. Hence, biological pathways are uncovered which are involved in the initiation and advancement of the disease and new therapeutic targets are identified. In this manuscript, the extant literature is thoroughly reviewed and the latest findings on candidate BD biomarkers are provided, followed by an overview of the proteomic approaches. It was found that due to the heterogeneous nature of BD no single biomarker is feasible, instead a panel of tests is more likely to be useful. With the application of latest technologies, it is expected that validated biomarkers will be discovered which will be useful as diagnostic tools and help in the delivery of individually tailored therapies to the patients.
Collapse
Affiliation(s)
- Ather Muneer
- Islamic International Medical College, Riphah International University, Rawalpindi, Pakistan
| |
Collapse
|
29
|
Frajo-Apor B, Kemmler G, Pardeller S, Huber M, Macina C, Welte AS, Hoertnagl C, Hofer A. Emotional intelligence in bipolar-I-disorder: A comparison between patients, unaffected siblings, and control subjects. Eur Psychiatry 2020; 63:e69. [PMID: 32594936 PMCID: PMC7443786 DOI: 10.1192/j.eurpsy.2020.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Impairments in social and nonsocial cognition have been demonstrated in both patients suffering from bipolar disorder (BD) and their unaffected relatives and might therefore represent a heritable marker of risk. This study investigated the relevance of emotional intelligence (EI) as part of the emotion processing domain of social cognition in this regard. METHODS A total of 54 outpatients suffering from BD, 54 unaffected siblings, and 80 control subjects were investigated using the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) and the Brief Assessment of Cognition in Schizophrenia (BACS). Analyses of covariance (ANCOVAs) were performed with adjustment for the BACS composite score. The three groups were compared by one-way analysis of variance or chi-square test, depending on the variable type. As the three groups differed significantly in their level of education, additional ANCOVAs with adjustment for education were performed. RESULTS Patients achieved significantly lower levels of overall EI and overall nonsocial cognitive functioning compared to unaffected siblings and controls, whereas performance of the latter two groups was comparable in both domains. CONCLUSIONS Due to comparable levels of EI in unaffected siblings of patients suffering from BD and control subjects, EI assessed by means of the MSCEIT does not represent an endophenotype for BD.
Collapse
Affiliation(s)
- Beatrice Frajo-Apor
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Georg Kemmler
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Silvia Pardeller
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Markus Huber
- Department of Psychiatry, General Hospital Brunico, 39031 Brunico, Italy
| | - Christian Macina
- Department of Psychiatry, General Hospital Brunico, 39031 Brunico, Italy
| | - Anna-Sophia Welte
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Christine Hoertnagl
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Alex Hofer
- Department of Psychiatry, Psychotherapy and Psychosomatics: Division of Psychiatry I, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
30
|
Delvecchio G, Maggioni E, Squarcina L, Arighi A, Galimberti D, Scarpini E, Bellani M, Brambilla P. A Critical Review on Structural Neuroimaging Studies in BD: a Transdiagnostic Perspective from Psychosis to Fronto-Temporal Dementia. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00204-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Steardo L, Manchia M, Carpiniello B, Pisanu C, Steardo L, Squassina A. Clinical, genetic, and brain imaging predictors of risk for bipolar disorder in high-risk individuals. Expert Rev Mol Diagn 2020; 20:327-333. [PMID: 32054361 DOI: 10.1080/14737159.2020.1727743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Early detection and intervention in bipolar disorder (BD) might reduce illness severity, slow its progression, and, in specific cases, even ward off the full-blown disorder. Therefore, identifying at-risk individuals and targeting them promptly before the illness onset is of the utmost importance. In the last decades, there has been a significant effort aimed at identifying genetic and molecular factors able to modulate risk and pharmacological outcomes.Areas covered: We performed a narrative review of articles aimed at identifying clinical, genetics, molecular, and brain imaging markers of BD specifically focusing on samples of individuals at high-risk for BD. Special emphasis was put on studies applying an integrative design, e.g. studies combining different markers such as genetic and brain imaging.Expert opinion: Findings from studies in risk individuals are still too sparse to allow drawing definite conclusions. However, the high potentiality of longitudinal studies in individuals considered at risk to develop BD supports the need for more efforts. Future investigations should focus on more homogeneous subpopulations and evaluate the cross-linking between clinical, genetic, and brain morphostructural/functional neuroimaging characteristics as predictors of risk for BD.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
32
|
Personalized and precision medicine as informants for treatment management of bipolar disorder. Int Clin Psychopharmacol 2019; 34:189-205. [PMID: 30932919 DOI: 10.1097/yic.0000000000000260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DSM-5 diagnostic categories, defined by a set of psychopathological symptoms are heterogeneous conditions that may include different biological entities, with distinct etiopathogenesis, different courses and requiring different treatment management. For bipolar disorder the major evidences for this lack of validity are the long paths before a proper diagnosis, the inconsistence of treatment guidelines, the long phases of pharmacological adjustment and the low average of long-term treatment response rates. Personalized medicine for mental disorders aims to couple established clinical-pathological indexes with new molecular profiling to create diagnostic, prognostic and therapeutic strategies precisely tailored to each patient. Regarding bipolar disorder, the clinical history and presentation are still the most reliable markers in stratifying patients and guiding therapeutic management, despite the research goes to great lengths to develop new neuropsychological or biological markers that can reliably predict individual therapy effectiveness. We provide an overview of the advancements in personalized medicine in bipolar disorder, with particular attention to how psychopathology, age at onset, comorbidity, course and staging, genetic and epigenetic, imaging and biomarkers can influence treatment management and provide an integration to the conventional treatment guidelines. This approach may offer a new and rational path for the development of treatments for targeted subgroups of patients with bipolar disorder.
Collapse
|
33
|
TP53 Polymorphism Contributes to the Susceptibility to Bipolar Disorder but Not to Schizophrenia in the Chinese Han Population. J Mol Neurosci 2019; 68:679-687. [DOI: 10.1007/s12031-019-01330-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
|
34
|
Dos Santos Oliveira PM, Santos V, Coroa M, Ribeiro J, Madeira N. Serum uric acid as a predictor of bipolarity in individuals with a major depressive episode. Bipolar Disord 2019; 21:235-243. [PMID: 30375143 DOI: 10.1111/bdi.12708] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES There are no well-established biomarkers to predict the risk of conversion to bipolar disorder (BD) in patients with depression. Given the putative role of purinergic neurotransmission dysfunction in BD, the purpose of our study was to evaluate if higher serum uric acid (UA) levels could predict BD conversion in depressed inpatients. METHODS We reviewed retrospectively the records of subjects hospitalized between June 2007 and June 2010 with a diagnosis of major depressive disorder (MDD) who had undergone routine UA levels testing at admission. At an approximate 10-year follow-up we identified subjects with a subsequent diagnosis of BD. We compared UA levels between the BD-converter and non-BD converter groups, performed Receiver operating characteristic curve analysis to evaluate the prognostic accuracy of serum UA levels and calculated the clinical utility index (CUI) as a risk biomarker for conversion to BD. RESULTS The study included 250 subjects (55 "BD-converters" and 195 "No BD-converters"). "BD-converters" had significantly higher plasma UA levels compared to "No BD-converters" in their index hospitalization irrespective of gender (males: 403.84 ± 91.76 vs 270.81 ± 53.58 µmol/L; U = 94.5, P < 0.001 and females 302.19 ± 52.64 vs 202.69 ± 48.93 µmol/L; t = 10.75, P < 0.001). Serum UA levels showed a very good to excellent accuracy for predicting conversion to BD in inpatients with MDD (area under the curve [AUC]: 0.90; 95% CI: 0.86, 0.94) and had a good to excellent CUI- and a moderate to good CUI+ grading for discriminating BD-converter cases from non-BD converters. CONCLUSIONS Our study suggests that depressed patients with higher levels of serum UA are at greater risk of a subsequent manic or hypomanic episode. The purinergic system could prove a promising path for the search of biomarkers in BD.
Collapse
Affiliation(s)
- Pedro Miguel Dos Santos Oliveira
- Psychiatry Department, Coimbra Hospital and University Centre, Coimbra, Portugal.,Faculty of Medicine, Institute of Psychological Medicine, University of Coimbra, Coimbra, Portugal
| | - Vítor Santos
- Psychiatry Department, Coimbra Hospital and University Centre, Coimbra, Portugal.,Faculty of Medicine, Institute of Psychological Medicine, University of Coimbra, Coimbra, Portugal
| | - Manuel Coroa
- Psychiatry Department, Coimbra Hospital and University Centre, Coimbra, Portugal.,Faculty of Medicine, Institute of Psychological Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana Ribeiro
- Psychiatry Department, Coimbra Hospital and University Centre, Coimbra, Portugal.,Faculty of Medicine, Institute of Psychological Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Madeira
- Psychiatry Department, Coimbra Hospital and University Centre, Coimbra, Portugal.,Faculty of Medicine, Institute of Psychological Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Ghafouri-Fard S, Taheri M, Arsang-Jang S, Kholghi Oskooei V, Omrani MD. Sex-based dimorphisms in expression of BDNF and BACE1 in bipolar patients. Compr Psychiatry 2019; 91:29-33. [PMID: 30979423 DOI: 10.1016/j.comppsych.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/24/2022] Open
Abstract
Bipolar disorder (BD) is a chronic, serious mental disorder distinguished by repeated episodes of mania and depression. Previous studies have demonstrated dysregulation of a number of transcripts in brain tissue or peripheral blood of BD patients. In the present study, we compared expression of two protein coding genes (brain-derived neurotrophic factor (BDNF) and beta-secretase 1 (BACE1)) and their natural occurring anti-sense (AS) RNAs (BDNF-AS and BACE1-AS) in peripheral blood of 50 BD patients (mean age ± standard deviation (SD) = 36.5 ± 9.32) and 50 healthy subjects (mean age ± SD = 33.62 ± 8.59). BDNF and BACE1 were significantly up-regulated in peripheral blood of total BD patients compared with total healthy subjects (Expression ratio = 2.2, P value = 0.003; Expression ratio = 2.2, P value = 0.002 respectively). However, comparison of their levels in sex-based subgroups showed their up-regulations only in male patients compared with male health subjects (Expression ratio = 2.48, P value = 0.006; Expression ratio = 2.1, P value = 0.01). No significant differences were found in expressions of BDNF-AS and BACE1-AS between BD and health subjects. We detected a significant correlation between BDNF expression and age at disease onset in BD group after adjustment of the effects of sex (R = 0.26, P value = 0.03). Moreover, there were trends toward correlations between BDNF expression and disease duration in BD group and between BDNF expression and age in health subjects (P values = 0.05). Combination of BDNF, BDNF-AS and BACE1 expression levels could differentiate BD patients from healthy subjects with 68% sensitivity and 82% specificity (area under curve = 0.72, P value = 0.0001). The current study suggests a sex-based dimorphic pattern in expression of BDNF and BACE1. Moreover, our results imply that expression pattern of these genes could be diagnostic markers in BD. Future studies are needed to assess this speculation in larger patient samples.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Vahid Kholghi Oskooei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Spohr L, Soares MSP, Oliveira PS, da Silveira de Mattos B, Bona NP, Pedra NS, Teixeira FC, do Couto CAT, Chaves VC, Reginatto FH, Lisboa MT, Ribeiro AS, Lencina CL, Stefanello FM, Spanevello RM. Combined actions of blueberry extract and lithium on neurochemical changes observed in an experimental model of mania: exploiting possible synergistic effects. Metab Brain Dis 2019; 34:605-619. [PMID: 30535659 DOI: 10.1007/s11011-018-0353-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Bipolar disorder is a psychiatric disease characterized by recurrent episodes of mania and depression. Blueberries contain bioactive compounds with important pharmacological effects such as neuroprotective and antioxidant actions. The aim of this study was to investigate the effects of blueberry extract and/or lithium on oxidative stress, and acetylcholinesterase (AChE) and Na+, K+-ATPase activity in an experimental ketamine-induced model of mania. Male Wistar rats were pretreated with vehicle, blueberry extract (200 mg/kg), and/or lithium (45 mg/kg or 22.5 mg/kg twice daily) for 14 days. Between the 8th and 14th days, the animals also received an injection of ketamine (25 mg/kg) or vehicle. On the 15th day the animals received a single injection of ketamine; after 30 min, the locomotor activity was evaluated in an open field test. Ketamine administration induced an increase in locomotor activity. In the cerebral cortex, hippocampus and striatum, ketamine also induced an increase in reactive oxygen species, lipid peroxidation and nitrite levels, as well a decrease in antioxidant enzyme activity. Pretreatment with blueberry extract or lithium was able to prevent this change. Ketamine increased the AChE and Na+, K+-ATPase activity in brain structures, while the blueberry extract partially prevented these alterations. In addition, our results showed that the neuroprotective effect was not potentiated when lithium and blueberry extract treatment were given together. In conclusion, our findings suggest that blueberry extract has a neuroprotective effect against an experimental model of mania. However, more studies should be performed to evaluate its effects as an adjuvant therapy.
Collapse
Affiliation(s)
- Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pathise Souto Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bruna da Silveira de Mattos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carlus Augustu Tavares do Couto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vitor Clasen Chaves
- Programa de Pós-Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Flávio Henrique Reginatto
- Programa de Pós-Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Meibel Teixeira Lisboa
- Programa de Pós-Graduação em Química, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Laboratório de Metrologia Química, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Anderson Schwingel Ribeiro
- Programa de Pós-Graduação em Química, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Laboratório de Metrologia Química, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Claiton Leoneti Lencina
- Curso de Farmácia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
37
|
Quintero M, Stanisic D, Cruz G, Pontes JGM, Costa TBBC, Tasic L. Metabolomic Biomarkers in Mental Disorders: Bipolar Disorder and Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:271-293. [PMID: 30747428 DOI: 10.1007/978-3-030-05542-4_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Psychiatric disorders are some of the most impairing human diseases. Among them, bipolar disorder and schizophrenia are the most common. Both have complicated diagnostics due to their phenotypic, biological, and genetic heterogeneity, unknown etiology, and the underlying biological pathways, and molecular mechanisms are still not completely understood. Given the multifactorial complexity of these disorders, identification and implementation of metabolic biomarkers would assist in their early detection and diagnosis and facilitate disease monitoring and treatment responses. To date, numerous studies have utilized metabolomics to better understand psychiatric disorders, and findings from these studies have begun to converge. In this chapter, we briefly describe some of the metabolomic biomarkers found in these two disorders.
Collapse
Affiliation(s)
- Melissa Quintero
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Danijela Stanisic
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Cruz
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João G M Pontes
- Laboratory of Microbial Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tássia Brena Barroso Carneiro Costa
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
38
|
Teixeira AL, Colpo GD, Fries GR, Bauer IE, Selvaraj S. Biomarkers for bipolar disorder: current status and challenges ahead. Expert Rev Neurother 2018; 19:67-81. [PMID: 30451546 DOI: 10.1080/14737175.2019.1550361] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a chronic psychiatric disorder marked by clinical and pathophysiological heterogeneity. There is a high expectation that personalized approaches can improve the management of patients with BD. For that, identification and validation of potential biomarkers are fundamental. Areas covered: This manuscript will critically review the current status of different biomarkers for BD, including peripheral, genetic, neuroimaging, and neurophysiological candidates, discussing the challenges to move the field forward. Expert commentary: There are no lab or complementary tests currently recommended for the diagnosis or management of patients with BD. Panels composed by multiple biomarkers will probably contribute to stratifying patients according to their clinical stage, therapeutic response, and prognosis.
Collapse
Affiliation(s)
- Antonio L Teixeira
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA.,b Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina , Universidade Federal de Minas Gerais (UFMG) , Belo Horizonte , Brazil
| | - Gabriela D Colpo
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Gabriel R Fries
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Isabelle E Bauer
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| | - Sudhakar Selvaraj
- a Department of Psychiatry & Behavioral Sciences , McGovern Medical School, UT Health , Houston , TX , USA
| |
Collapse
|