1
|
Besson B, Overheul GJ, Wolfinger MT, Junglen S, van Rij RP. Pan-flavivirus analysis reveals sfRNA-independent, 3' UTR-biased siRNA production from an insect-specific flavivirus. J Virol 2024; 98:e0121524. [PMID: 39404457 PMCID: PMC11575252 DOI: 10.1128/jvi.01215-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 11/20/2024] Open
Abstract
RNA interference (RNAi) plays an essential role in mosquito antiviral immunity, but it is not known whether viral small interfering RNA (siRNA) profiles differ between mosquito-borne and mosquito-specific viruses. A pan-Orthoflavivirus analysis in Aedes albopictus cells revealed that viral siRNAs were evenly distributed across the viral genome of most representatives of the Flavivirus genus. In contrast, siRNA production was biased toward the 3' untranslated region (UTR) of the genomes of classical insect-specific flaviviruses (cISF), which was most pronounced for Kamiti River virus (KRV), a virus with a unique, 1.2 kb long 3' UTR. KRV-derived siRNAs were produced in high quantities and almost exclusively mapped to the 3' UTR. We mapped the 5' end of KRV subgenomic flavivirus RNAs (sfRNAs), products of the 5'-3' exoribonuclease XRN1/Pacman stalling on secondary RNA structures in the 3' UTR of the viral genome. We found that KRV produces high copy numbers of a long, 1,017 nt sfRNA1 and a short, 421 nt sfRNA2, corresponding to two predicted XRN1-resistant elements. Expression of both sfRNA1 and sfRNA2 was reduced in Pacman-deficient Aedes albopictus cells; however, this did not correlate with a shift in viral siRNA profiles. We suggest that cISFs, particularly KRV, developed a unique mechanism to produce high amounts of siRNAs as a decoy for the antiviral RNAi response in an sfRNA-independent manner.IMPORTANCEThe Flavivirus genus contains diverse mosquito viruses ranging from insect-specific viruses circulating exclusively in mosquito populations to mosquito-borne viruses that cause disease in humans and animals. Studying the mechanisms of virus replication and antiviral immunity in mosquitoes is important to understand arbovirus transmission and may inform the development of disease control strategies. In insects, RNA interference (RNAi) provides broad antiviral activity and constitutes a major immune response against viruses. Comparing diverse members of the Flavivirus genus, we found that all flaviviruses are targeted by RNAi. However, the insect-specific Kamiti River virus was unique in that small interfering RNAs are highly skewed toward its uniquely long 3' untranslated region. These results suggest that mosquito-specific viruses have evolved unique mechanisms for genome replication and immune evasion.
Collapse
Affiliation(s)
- Benoit Besson
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael T Wolfinger
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- RNA Forecast e.U., Vienna, Austria
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University, Humboldt University, Berlin Institute of Health, Berlin, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Rawle DJ, Hugo LE, Cox AL, Devine GJ, Suhrbier A. Generating prophylactic immunity against arboviruses in vertebrates and invertebrates. Nat Rev Immunol 2024; 24:621-636. [PMID: 38570719 DOI: 10.1038/s41577-024-01016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leon E Hugo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Wang Y, Lin X, Li C, Liu G, Wang S, Chen M, Wei X, Wen H, Tao Z, Xu Y. Metagenomic sequencing reveals viral diversity of mosquitoes from Shandong Province, China. Microbiol Spectr 2024; 12:e0393223. [PMID: 38466099 PMCID: PMC10986517 DOI: 10.1128/spectrum.03932-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Mosquitoes carry a large number of known and unknown viruses, some of which could cause serious diseases in humans or animals. Metagenomic sequencing for mosquito viromes is crucial for understanding the evolutionary history of viruses and preventing emerging mosquito-borne diseases. We collected 1,598 mosquitoes belonging to four species from five counties in Shandong Province, China in 2021. They were grouped by species and sampling locations and subjected to metagenomic next-generation sequencing for the analysis of the viromes. A total of 233,317,352 sequencing reads were classified into 30 viral families and an unclassified group. Comparative analysis showed that mosquitoes in Shandong Province generally possessed host-specific virome. We detected mosquito-borne viruses including Japanese encephalitis virus, Getah virus, and Kadipiro virus in Culex tritaeniorhynchus and Anopheles sinensis samples. Phylogenetic analysis showed that these pathogenic viruses may have existed in mosquitoes in Shandong Province for a long time. Meanwhile, we identified 22 novel viruses belonging to seven families and the genus Negevirus. Our study comprehensively described the viromes of several common mosquito species in Shandong Province, China, and demonstrated the major role of host species in shaping mosquito viromes. Furthermore, the metagenomic data provided valuable epidemiological information on multiple mosquito-borne viruses, highlighting the potential risk of infection transmission. IMPORTANCE Mosquitoes are known as the source of various pathogens for humans and animals. Culex tritaeniorhynchus, Armigeres subalbatus, and Anopheles sinensis have been found to transmit the Getah virus, which has recently caused increasing infections in China. Cx. tritaeniorhynchus and Culex pipiens are the main vectors of Japanese encephalitis virus and have caused epidemics of Japanese encephalitis in China in past decades. These mosquitoes are widely present in Shandong Province, China, leading to a great threat to public health and the breeding industry. This study provided a comprehensive insight into the viromes of several common mosquito species in Shandong Province, China. The metagenomic sequencing data revealed the risks of multiple pathogenic mosquito-borne viruses, including Japanese encephalitis virus, Getah virus, and Kadipiro virus, which are of great importance for preventing emerging viral epidemics.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaojuan Lin
- Division of EPI, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Chao Li
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guifang Liu
- Division of EPI, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Suting Wang
- Division of EPI, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Meng Chen
- Division of EPI, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xuemin Wei
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongling Wen
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zexin Tao
- Division of EPI, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yifei Xu
- Department of Microbiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Lamichhane B, Brockway C, Evasco K, Nicholson J, Neville PJ, Levy A, Smith D, Imrie A. Metatranscriptomic Sequencing of Medically Important Mosquitoes Reveals Extensive Diversity of RNA Viruses and Other Microbial Communities in Western Australia. Pathogens 2024; 13:107. [PMID: 38392845 PMCID: PMC10892203 DOI: 10.3390/pathogens13020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Mosquitoes harbor a wide diversity of microorganisms, including viruses that are human pathogens, or that are insect specific. We used metatranscriptomics, an unbiased high-throughput molecular approach, to describe the composition of viral and other microbial communities in six medically important mosquito species from across Western Australia: Aedes vigilax, Culex annulirostris, Cx. australicus, Cx. globocoxitus, Cx. pipiens biotype molestus, and Cx. quinquefasciatus. We identified 42 viral species, including 13 novel viruses, from 19 families. Culex mosquitoes exhibited a significantly higher diversity of viruses than Aedes mosquitoes, and no virus was shared between the two genera. Comparison of mosquito populations revealed a heterogenous distribution of viruses between geographical regions and between closely related species, suggesting that geography and host species may play a role in shaping virome composition. We also detected bacterial and parasitic microorganisms, among which Wolbachia bacteria were detected in three members of the Cx. pipiens complex, Cx. australicus, Cx. pipiens biotype molestus, and Cx. quinquefasciatus. In summary, our unbiased metatranscriptomics approach provides important insights into viral and other microbial diversity in Western Australian mosquitoes that vector medically important viruses.
Collapse
Affiliation(s)
- Binit Lamichhane
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Craig Brockway
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Kimberly Evasco
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Jay Nicholson
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Peter J. Neville
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Avram Levy
- PathWest Laboratory Medicine, Nedlands, WA 6009, Australia; (A.L.); (D.S.)
| | - David Smith
- PathWest Laboratory Medicine, Nedlands, WA 6009, Australia; (A.L.); (D.S.)
- UWA Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Allison Imrie
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| |
Collapse
|
5
|
Hermanns K, Marklewitz M, Zirkel F, Kopp A, Kramer-Schadt S, Junglen S. Mosquito community composition shapes virus prevalence patterns along anthropogenic disturbance gradients. eLife 2023; 12:e66550. [PMID: 37702388 PMCID: PMC10547478 DOI: 10.7554/elife.66550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
Previously unknown pathogens often emerge from primary ecosystems, but there is little knowledge on the mechanisms of emergence. Most studies analyzing the influence of land-use change on pathogen emergence focus on a single host-pathogen system and often observe contradictory effects. Here, we studied virus diversity and prevalence patterns in natural and disturbed ecosystems using a multi-host and multi-taxa approach. Mosquitoes sampled along a disturbance gradient in Côte d'Ivoire were tested by generic RT-PCR assays established for all major arbovirus and insect-specific virus taxa including novel viruses previously discovered in these samples based on cell culture isolates enabling an unbiased and comprehensive approach. The taxonomic composition of detected viruses was characterized and viral infection rates according to habitat and host were analyzed. We detected 331 viral sequences pertaining to 34 novel and 15 previously identified viruses of the families Flavi-, Rhabdo-, Reo-, Toga-, Mesoni- and Iflaviridae and the order Bunyavirales. Highest host and virus diversity was observed in pristine and intermediately disturbed habitats. The majority of the 49 viruses was detected with low prevalence. However, nine viruses were found frequently across different habitats of which five viruses increased in prevalence towards disturbed habitats, in congruence with the dilution effect hypothesis. These viruses were mainly associated with one specific mosquito species (Culex nebulosus), which increased in relative abundance from pristine (3%) to disturbed habitats (38%). Interestingly, the observed increased prevalence of these five viruses in disturbed habitats was not caused by higher host infection rates but by increased host abundance, an effect tentatively named abundance effect. Our data show that host species composition is critical for virus abundance. Environmental changes that lead to an uneven host community composition and to more individuals of a single species are a key driver of virus emergence.
Collapse
Affiliation(s)
- Kyra Hermanns
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Marco Marklewitz
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical CentreBerlinGermany
| | - Anne Kopp
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Stephanie Kramer-Schadt
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of Ecology, Technische Universität BerlinBerlinGermany
| | - Sandra Junglen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
6
|
Reporter Flaviviruses as Tools to Demonstrate Homologous and Heterologous Superinfection Exclusion. Viruses 2022; 14:v14071501. [PMID: 35891480 PMCID: PMC9317482 DOI: 10.3390/v14071501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/29/2022] Open
Abstract
Binjari virus (BinJV) is a lineage II or dual-host affiliated insect-specific flavivirus previously demonstrated as replication-deficient in vertebrate cells. Previous studies have shown that BinJV is tolerant to exchanging its structural proteins (prM-E) with pathogenic flaviviruses, making it a safe backbone for flavivirus vaccines. Here, we report generation by circular polymerase extension reaction of BinJV expressing zsGreen or mCherry fluorescent protein. Recovered BinJV reporter viruses grew to high titres (107−8 FFU/mL) in Aedes albopictus C6/36 cells assayed using immunoplaque assays (iPA). We also demonstrate that BinJV reporters could be semi-quantified live in vitro using a fluorescence microplate reader with an observed linear correlation between quantified fluorescence of BinJV reporter virus-infected C6/36 cells and iPA-quantitated virus titres. The utility of the BinJV reporter viruses was then examined in homologous and heterologous superinfection exclusion assays. We demonstrate that primary infection of C6/36 cells with BinJVzsGreen completely inhibits a secondary infection with homologous BinJVmCherry or heterologous ZIKVmCherry using fluorescence microscopy and virus quantitation by iPA. Finally, BinJVzsGreen infections were examined in vivo by microinjection of Aedes aegypti with BinJVzsGreen. At seven days post-infection, a strong fluorescence in the vicinity of salivary glands was detected in frozen sections. This is the first report on the construction of reporter viruses for lineage II insect-specific flaviviruses and establishes a tractable system for exploring flavivirus superinfection exclusion in vitro and in vivo.
Collapse
|
7
|
Slonchak A, Parry R, Pullinger B, Sng JDJ, Wang X, Buck TF, Torres FJ, Harrison JJ, Colmant AMG, Hobson-Peters J, Hall RA, Tuplin A, Khromykh AA. Structural analysis of 3'UTRs in insect flaviviruses reveals novel determinants of sfRNA biogenesis and provides new insights into flavivirus evolution. Nat Commun 2022; 13:1279. [PMID: 35277507 PMCID: PMC8917146 DOI: 10.1038/s41467-022-28977-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are virus-derived noncoding RNAs produced by pathogenic mosquito-borne flaviviruses (MBF) to counteract the host antiviral response. To date, the ability of non-pathogenic flaviviruses to produce and utilise sfRNAs remains largely unexplored, and it is unclear what role XRN1 resistance plays in flavivirus evolution and host adaptation. Herein the production of sfRNAs by several insect-specific flaviviruses (ISFs) that replicate exclusively in mosquitoes is shown, and the secondary structures of their complete 3'UTRs are determined. The xrRNAs responsible for the biogenesis of ISF sfRNAs are also identified, and the role of these sfRNAs in virus replication is demonstrated. We demonstrate that 3'UTRs of all classical ISFs, except Anopheles spp-asscoaited viruses, and of the dual-host associated ISF Binjari virus contain duplicated xrRNAs. We also reveal novel structural elements in the 3'UTRs of dual host-associated and Anopheles-associated classical ISFs. Structure-based phylogenetic analysis demonstrates that xrRNAs identified in Anopheles spp-associated ISF are likely ancestral to xrRNAs of ISFs and MBFs. In addition, our data provide evidence that duplicated xrRNAs are selected in the evolution of flaviviruses to provide functional redundancy, which preserves the production of sfRNAs if one of the structures is disabled by mutations or misfolding.
Collapse
Affiliation(s)
- Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Brody Pullinger
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Xiaohui Wang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Teresa F Buck
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Francisco J Torres
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Agathe M G Colmant
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
da Silva Ribeiro AC, Martins LC, da Silva SP, de Almeida Medeiros DB, Miranda KKP, Nunes Neto JP, de Oliveira Monteiro HA, do Nascimento BLS, Junior JWR, Cruz ACR, da Costa Vasconcelos PF, Carvalho VL, Rodrigues SG. Negeviruses isolated from mosquitoes in the Brazilian Amazon. Virol J 2022; 19:17. [PMID: 35062977 PMCID: PMC8778500 DOI: 10.1186/s12985-022-01743-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND There are several groups of viruses including Insect Specific Viruses (ISV) such as the taxon Negevirus, a group of viruses phylogenetically related to plant viruses. Negeviruses replicate in mosquito cells, but not in vertebrate cells. METHODS Pools of hematophagous arthropods were inoculated in Vero and C6/36 cells. The cells were observed to detect possible cytopathic effect. Then, indirect immunofluorescence, RT-PCR, and nucleotide sequencing were performed. RESULTS Seven samples which presented negative results for flaviviruses, alphaviruses and bunyaviruses, but showed cytopathic effect in C6/36 cells were sequenced. We identified the occurrence of a variety of ISVs, most of them belonging to the taxon Negevirus: The Brejeira, Negev, Cordoba and Wallerfield viruses, including a new virus for science, tentatively named Feitosa virus. CONCLUSIONS We detected negeviruses in the Amazon region, including two viruses that were isolated for the first time in Brazil: Cordoba virus and the Negev virus and, a new virus for science: the Feitosa virus.
Collapse
Affiliation(s)
- Ana Cláudia da Silva Ribeiro
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Lívia Caricio Martins
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Sandro Patroca da Silva
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Daniele Barbosa de Almeida Medeiros
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Keissy Karoline Pinheiro Miranda
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Joaquim Pinto Nunes Neto
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Hamilton Antônio de Oliveira Monteiro
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Bruna Lais Sena do Nascimento
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Jose Wilson Rosa Junior
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Ana Cecilia Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Valéria Lima Carvalho
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| | - Sueli Guerreiro Rodrigues
- Department of Arbovirology and Hemorrhagic Fevers and Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316 km 7 s/n, Levilândia, Ananindeua, Pará 67030-000 Brazil
| |
Collapse
|
9
|
Duarte MA, Campos FS, Araújo Neto OF, Silva LA, Silva AB, Aguiar TC, Santos RN, Souza UJB, Alves GB, Melo FL, Ardisson-Araujo DMP, Aguiar RWS, Ribeiro BM. Identification of potential new mosquito-associated viruses of adult Aedes aegypti mosquitoes from Tocantins state, Brazil. Braz J Microbiol 2021; 53:51-62. [PMID: 34727360 DOI: 10.1007/s42770-021-00632-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
Medically important arboviruses such as dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) are primarily transmitted by the globally distributed mosquito Aedes aegypti. Increasing evidence suggests that the transmission of some viruses can be influenced by mosquito-specific and mosquito-borne viruses. Advancements in high-throughput sequencing (HTS) and bioinformatics have expanded our knowledge on the richness of viruses harbored by mosquitoes. HTS was used to characterize the presence of virus sequences in wild-caught adult Ae. aegypti from Tocantins (TO) state, Brazil. Samples of mosquitoes were collected in four cities of Tocantins state and submitted to RNA isolation, followed by sequencing at an Illumina HiSeq platform. Our results showed initially by Krona the presence of 3% of the sequenced reads belonging to the viral database. After further analysis, the virus sequences were found to have homology to two viral families found in insects Phenuiviridae and Metaviridae. Three possible viral strains including putative new viruses were detected and named Phasi Charoen-like phasivirus isolate To-1 (PCLV To-1), Aedes aegypti To virus 1 (AAToV1), and Aedes aegypti To virus 2 (AAToV2). The results presented in this work contribute to the growing knowledge about the diversity of viruses in mosquitoes and might be useful for future studies on the interaction between insect-specific viruses and arboviruses.
Collapse
Affiliation(s)
- Matheus A Duarte
- Faculdade de Agronomia E Veterinária, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil
| | - Fabrício S Campos
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil.
| | - Osvaldo F Araújo Neto
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Leonardo A Silva
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil
| | - Arthur B Silva
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Thalita C Aguiar
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Raissa N Santos
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Ueric J B Souza
- Laboratório de Bioinformática E Biotecnologia, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Giselly B Alves
- Laboratório de Biologia Molecular, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Fernando L Melo
- Departamento de Fitopatologia, Instituto de Biologia, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil
| | - Daniel M P Ardisson-Araujo
- Laboratório de Virologia de Insetos, Universidade Federal de Santa Maria, Santa Maria, RS, 97.105-900, Brazil
| | - Raimundo W S Aguiar
- Laboratório de Biologia Molecular, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, TO, 77.402-970, Brazil
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil
| |
Collapse
|
10
|
Pyke AT, Shivas MA, Darbro JM, Onn MB, Johnson PH, Crunkhorn A, Montgomery I, Burtonclay P, Jansen CC, van den Hurk AF. Uncovering the genetic diversity within the Aedes notoscriptus virome and isolation of new viruses from this highly urbanised and invasive mosquito. Virus Evol 2021; 7:veab082. [PMID: 34712491 PMCID: PMC8546932 DOI: 10.1093/ve/veab082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
The Australian backyard mosquito, Aedes notoscriptus, is a highly urbanised pest species that has invaded New Zealand and the USA. Importantly, Ae. notoscriptus has been implicated as a vector of Ross River virus, a common and arthritogenic arbovirus in Australia, and is a laboratory vector of numerous other pathogenic viruses, including West Nile, yellow fever, and Zika viruses. To further explore live viruses harboured by field populations of Ae. notoscriptus and, more specifically, assess the genetic diversity of its virome, we processed 495 pools, comprising a total of 6,674 female Ae. notoscriptus collected across fifteen suburbs in Brisbane, Australia, between January 2018 and May 2019. Nine virus isolates were recovered and characterised by metagenomic sequencing and phylogenetics. The principal viral family represented was Flaviviridae. Known viruses belonging to the genera Flavivirus, Orbivirus, Mesonivirus, and Nelorpivirus were identified together with two novel virus species, including a divergent Thogoto-like orthomyxovirus and an insect-specific flavivirus. Among these, we recovered three Stratford virus (STRV) isolates and an isolate of Wongorr virus (WGRV), which for these viral species is unprecedented for the geographical area of Brisbane. Thus, the documented geographical distribution of STRV and WGRV, both known for their respective medical and veterinary importance, has now been expanded to include this major urban centre. Phylogenies of the remaining five viruses, namely, Casuarina, Ngewotan, the novel Thogoto-like virus, and two new flavivirus species, suggested they are insect-specific viruses. None of these viruses have been previously associated with Ae. notoscriptus or been reported in Brisbane. These findings exemplify the rich genetic diversity and viral abundance within the Ae. notoscriptus virome and further highlight this species as a vector of concern with the potential to transmit viruses impacting human or animal health. Considering it is a common pest and vector in residential areas and is expanding its global distribution, ongoing surveillance, and ecological study of Ae. notoscriptus, together with mapping of its virome and phenotypic characterisation of isolated viruses, is clearly warranted. Immanently, these initiatives are essential for future understanding of both the mosquito virome and the evolution of individual viral species.
Collapse
Affiliation(s)
- Alyssa T Pyke
- Department of Health, Public Health Virology Laboratory, Forensic and Scientific Services, Queensland Government, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Martin A Shivas
- Brisbane City Council, 20 Tradecoast Drive, Eagle Farm, Brisbane, QLD 4009, Australia
| | | | - Michael B Onn
- Brisbane City Council, 20 Tradecoast Drive, Eagle Farm, Brisbane, QLD 4009, Australia
| | | | - Andrew Crunkhorn
- Metro North Public Health Unit, Queensland Health, Bryden Street, Windsor, QLD 4030, Australia
| | - Ivan Montgomery
- Brisbane City Council, 20 Tradecoast Drive, Eagle Farm, Brisbane, QLD 4009, Australia
| | | | - Cassie C Jansen
- Communicable Diseases Branch, Queensland Health, 15 Butterfield Street, Herston, QLD 4006, Australia
| | - Andrew F van den Hurk
- Department of Health, Public Health Virology Laboratory, Forensic and Scientific Services, Queensland Government, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| |
Collapse
|
11
|
Langat SK, Eyase F, Bulimo W, Lutomiah J, Oyola SO, Imbuga M, Sang R. Profiling of RNA Viruses in Biting Midges ( Ceratopogonidae) and Related Diptera from Kenya Using Metagenomics and Metabarcoding Analysis. mSphere 2021; 6:e0055121. [PMID: 34643419 PMCID: PMC8513680 DOI: 10.1128/msphere.00551-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Vector-borne diseases (VBDs) cause enormous health burden worldwide, as they account for more than 17% of all infectious diseases and over 700,000 deaths each year. A significant number of these VBDs are caused by RNA virus pathogens. Here, we used metagenomics and metabarcoding analysis to characterize RNA viruses and their insect hosts among biting midges from Kenya. We identified a total of 15 phylogenetically distinct insect-specific viruses. These viruses fall into six families, with one virus falling in the recently proposed negevirus taxon. The six virus families include Partitiviridae, Iflaviridae, Tombusviridae, Solemoviridae, Totiviridae, and Chuviridae. In addition, we identified many insect species that were possibly associated with the identified viruses. Ceratopogonidae was the most common family of midges identified. Others included Chironomidae and Cecidomyiidae. Our findings reveal a diverse RNA virome among Kenyan midges that includes previously unknown viruses. Further, metabarcoding analysis based on COI (cytochrome c oxidase subunit 1 mitochondrial gene) barcodes reveal a diverse array of midge species among the insects used in the study. Successful application of metagenomics and metabarcoding methods to characterize RNA viruses and their insect hosts in this study highlights a possible simultaneous application of these two methods as cost-effective approaches to virus surveillance and host characterization. IMPORTANCE The majority of the viruses that currently cause diseases in humans and animals are RNA viruses, and more specifically arthropod-transmitted viruses. They cause diseases such as dengue, West Nile infection, bluetongue disease, Schmallenberg disease, and yellow fever, among others. Several sequencing investigations have shown us that a diverse array of RNA viruses among insect vectors remain unknown. Some of these could be ancient lineages that could aid in comprehensive studies on RNA virus evolution. Such studies may provide us with insights into the evolution of the currently pathogenic viruses. Here, we applied metagenomics to field-collected midges and we managed to characterize several RNA viruses, where we recovered complete and nearly complete genomes of these viruses. We also characterized the insect host species that are associated with these viruses. These results add to the currently known diversity of RNA viruses among biting midges as well as their associated insect hosts.
Collapse
Affiliation(s)
- Solomon K. Langat
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Fredrick Eyase
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate—Africa, Nairobi, Kenya
| | - Wallace Bulimo
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Joel Lutomiah
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Mabel Imbuga
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Rosemary Sang
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
12
|
Harrison JJ, Hobson-Peters J, Bielefeldt-Ohmann H, Hall RA. Chimeric Vaccines Based on Novel Insect-Specific Flaviviruses. Vaccines (Basel) 2021; 9:1230. [PMID: 34835160 PMCID: PMC8623431 DOI: 10.3390/vaccines9111230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Vector-borne flaviviruses are responsible for nearly half a billion human infections worldwide each year, resulting in millions of cases of debilitating and severe diseases and approximately 115,000 deaths. While approved vaccines are available for some of these viruses, the ongoing efficacy, safety and supply of these vaccines are still a significant problem. New technologies that address these issues and ideally allow for the safe and economical manufacture of vaccines in resource-poor countries where flavivirus vaccines are in most demand are urgently required. Preferably a new vaccine platform would be broadly applicable to all flavivirus diseases and provide new candidate vaccines for those diseases not yet covered, as well as the flexibility to rapidly pivot to respond to newly emerged flavivirus diseases. Here, we review studies conducted on novel chimeric vaccines derived from insect-specific flaviviruses that provide a potentially safe and simple system to produce highly effective vaccines against a broad spectrum of flavivirus diseases.
Collapse
Affiliation(s)
- Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| |
Collapse
|
13
|
Altinli M, Schnettler E, Sicard M. Symbiotic Interactions Between Mosquitoes and Mosquito Viruses. Front Cell Infect Microbiol 2021; 11:694020. [PMID: 34527601 PMCID: PMC8435781 DOI: 10.3389/fcimb.2021.694020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Mosquitoes not only transmit human and veterinary pathogens called arboviruses (arthropod-borne viruses) but also harbor mosquito-associated insect-specific viruses (mosquito viruses) that cannot infect vertebrates. In the past, studies investigating mosquito viruses mainly focused on highly pathogenic interactions that were easier to detect than those without visible symptoms. However, the recent advances in viral metagenomics have highlighted the abundance and diversity of viruses which do not generate mass mortality in host populations. Over the last decade, this has facilitated the rapid growth of virus discovery in mosquitoes. The circumstances around the discovery of mosquito viruses greatly affected how they have been studied so far. While earlier research mainly focused on the pathogenesis caused by DNA and some double-stranded RNA viruses during larval stages, more recently discovered single-stranded RNA mosquito viruses were heavily studied for their putative interference with arboviruses in female adults. Thus, many aspects of mosquito virus interactions with their hosts and host-microbiota are still unknown. In this context, considering mosquito viruses as endosymbionts can help to identify novel research areas, in particular in relation to their long-term interactions with their hosts (e.g. relationships during all life stages, the stability of the associations at evolutionary scales, transmission routes and virulence evolution) and the possible context-dependent range of interactions (i.e. beneficial to antagonistic). Here, we review the symbiotic interactions of mosquito viruses considering different aspects of their ecology, such as transmission, host specificity, host immune system and interactions with other symbionts within the host cellular arena. Finally, we highlight related research gaps in mosquito virus research.
Collapse
Affiliation(s)
- Mine Altinli
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Esther Schnettler
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University Hamburg, Hamburg, Germany
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
14
|
O'Brien CA, Harrison JJ, Colmant AMG, Traves RJ, Paramitha D, Hall-Mendelin S, Bielefeldt-Ohmann H, Vet LJ, Piyasena TBH, Newton ND, Yam AW, Hobson-Peters J, Hall RA. Improved detection of flaviviruses in Australian mosquito populations via replicative intermediates. J Gen Virol 2021; 102. [PMID: 34236957 DOI: 10.1099/jgv.0.001617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mosquito-borne flaviviruses are significant contributors to the arboviral disease burdens both in Australia and globally. While routine arbovirus surveillance remains a vital exercise to identify known flaviviruses in mosquito populations, novel or divergent and emerging species can be missed by these traditional methods. The MAVRIC (monoclonal antibodies to viral RNA intermediates in cells) system is an ELISA-based method for broad-spectrum isolation of positive-sense and double-stranded RNA (dsRNA) viruses based on detection of dsRNA in infected cells. While the MAVRIC ELISA has successfully been used to detect known and novel flaviviruses in Australian mosquitoes, we previously reported that dsRNA could not be detected in dengue virus-infected cells using this method. In this study we identified additional flaviviruses which evade detection of dsRNA by the MAVRIC ELISA. Utilising chimeric flaviviruses we demonstrated that this outcome may be dictated by the non-structural proteins and/or untranslated regions of the flaviviral genome. In addition, we report a modified fixation method that enables improved detection of flavivirus dsRNA and inactivation of non-enveloped viruses from mosquito populations using the MAVRIC system. This study demonstrates the utility of anti-dsRNA monoclonal antibodies for identifying viral replication in insect and vertebrate cell systems and highlights a unique characteristic of flavivirus replication.
Collapse
Affiliation(s)
- Caitlin A O'Brien
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Agathe M G Colmant
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,Aix Marseille Univ., CNRS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Marseille, France
| | - Renee J Traves
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, PO Box 594, Archerfield, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Laura J Vet
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Thisun B H Piyasena
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alice W Yam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
15
|
Nebbak A, Monteil-Bouchard S, Berenger JM, Almeras L, Parola P, Desnues C. Virome Diversity among Mosquito Populations in a Sub-Urban Region of Marseille, France. Viruses 2021; 13:v13050768. [PMID: 33925487 PMCID: PMC8145591 DOI: 10.3390/v13050768] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/28/2022] Open
Abstract
Some mosquito species have significant public health importance given their ability to transmit major diseases to humans and animals, making them the deadliest animals in the world. Among these, the Aedes (Ae.) genus is a vector of several viruses such as Dengue, Chikungunya, and Zika viruses that can cause serious pathologies in humans. Since 2004, Ae. albopictus has been encountered in the South of France, and autochthonous cases of Dengue, Chikungunya, and Zika diseases have recently been reported, further highlighting the need for a comprehensive survey of the mosquitoes and their associated viruses in this area. Using high throughput sequencing (HTS) techniques, we report an analysis of the DNA and RNA viral communities of three mosquito species Ae. albopictus, Culex (Cx.) pipiens, and Culiseta (Cs.) longiareolata vectors of human infectious diseases in a small sub-urban city in the South of France. Results revealed the presence of a significant diversity of viruses known to infect bacteria, plants, insects, and mammals. Several novel viruses were detected, including novel members of the Rhabdoviridae, Totiviridae, Iflaviviridae, Circoviridae, and Sobemoviridae families. No sequence related to major zoonotic viruses transmitted by mosquitoes was detected. The use of HTS on arthropod vector populations is a promising strategy for monitoring the emergence and circulation of zoonoses and epizooties. This study is a contribution to the knowledge of the mosquito microbiome.
Collapse
Affiliation(s)
- Amira Nebbak
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail RP 42004, Tipaza, Algeria
| | - Sonia Monteil-Bouchard
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI) UM 63, 13005 Marseille, France;
- Aix-Marseille Université, Université de Toulon, Centre National pour la Recherche Scientifique (CNRS), Intitut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Jean-Michel Berenger
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
| | - Lionel Almeras
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, 13005 Marseille, France; (A.N.); (J.-M.B.); (L.A.); (P.P.)
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Vecteurs Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
| | - Christelle Desnues
- Aix Marseille Université, Intitut de Recherche pour le Développement (IRD), Assistance Publique-Hopitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI) UM 63, 13005 Marseille, France;
- Aix-Marseille Université, Université de Toulon, Centre National pour la Recherche Scientifique (CNRS), Intitut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
- Correspondence:
| |
Collapse
|
16
|
Crava CM, Varghese FS, Pischedda E, Halbach R, Palatini U, Marconcini M, Gasmi L, Redmond S, Afrane Y, Ayala D, Paupy C, Carballar‐Lejarazu R, Miesen P, van Rij RP, Bonizzoni M. Population genomics in the arboviral vector Aedes aegypti reveals the genomic architecture and evolution of endogenous viral elements. Mol Ecol 2021; 30:1594-1611. [PMID: 33432714 PMCID: PMC8048955 DOI: 10.1111/mec.15798] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Horizontal gene transfer from viruses to eukaryotic cells is a pervasive phenomenon. Somatic viral integrations are linked to persistent viral infection whereas integrations into germline cells are maintained in host genomes by vertical transmission and may be co-opted for host functions. In the arboviral vector Aedes aegypti, an endogenous viral element from a nonretroviral RNA virus (nrEVE) was shown to produce PIWI-interacting RNAs (piRNAs) to limit infection with a cognate virus. Thus, nrEVEs may constitute a heritable, sequence-specific mechanism for antiviral immunity, analogous to piRNA-mediated silencing of transposable elements. Here, we combine population genomics and evolutionary approaches to analyse the genomic architecture of nrEVEs in A. aegypti. We conducted a genome-wide screen for adaptive nrEVEs and searched for novel population-specific nrEVEs in the genomes of 80 individual wild-caught mosquitoes from five geographical populations. We show a dynamic landscape of nrEVEs in mosquito genomes and identified five novel nrEVEs derived from two currently circulating viruses, providing evidence of the environmental-dependent modification of a piRNA cluster. Overall, our results show that virus endogenization events are complex with only a few nrEVEs contributing to adaptive evolution in A. aegypti.
Collapse
Affiliation(s)
- Cristina M. Crava
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
- Present address:
Institute of Biotechnology and BiomedicineUniversitat de ValènciaBurjassotSpain
| | - Finny S. Varghese
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Elisa Pischedda
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Rebecca Halbach
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Umberto Palatini
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | | | - Leila Gasmi
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Seth Redmond
- Institute of Vector Borne DiseaseMonash UniversityAustralia
| | - Yaw Afrane
- Department of Medical MicrobiologyUniversity of GhanaAccraGhana
| | - Diego Ayala
- MIVEGECUniv. MontpellierIRDCNRSMontpellierFrance
| | | | - Rebeca Carballar‐Lejarazu
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
- Present address:
Department of Molecular Biology and BiochemistryUniversity of California at IrvineIrvineCAUSA
| | - Pascal Miesen
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Ronald P. van Rij
- Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | | |
Collapse
|
17
|
Insect-Specific Flavivirus Replication in Mammalian Cells Is Inhibited by Physiological Temperature and the Zinc-Finger Antiviral Protein. Viruses 2021; 13:v13040573. [PMID: 33805437 PMCID: PMC8066048 DOI: 10.3390/v13040573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
The genus Flavivirus contains pathogenic vertebrate-infecting flaviviruses (VIFs) and insect-specific flaviviruses (ISF). ISF transmission to vertebrates is inhibited at multiple stages of the cellular infection cycle, via yet to be elucidated specific antiviral responses. The zinc-finger antiviral protein (ZAP) in vertebrate cells can bind CpG dinucleotides in viral RNA, limiting virus replication. Interestingly, the genomes of ISFs contain more CpG dinucleotides compared to VIFs. In this study, we investigated whether ZAP prevents two recently discovered lineage II ISFs, Binjari (BinJV) and Hidden Valley viruses (HVV) from replicating in vertebrate cells. BinJV protein and dsRNA replication intermediates were readily observed in human ZAP knockout cells when cultured at 34 °C. In ZAP-expressing cells, inhibition of the interferon response via interferon response factors 3/7 did not improve BinJV protein expression, whereas treatment with kinase inhibitor C16, known to reduce ZAP’s antiviral function, did. Importantly, at 34 °C, both BinJV and HVV successfully completed the infection cycle in human ZAP knockout cells evident from infectious progeny virus in the cell culture supernatant. Therefore, we identify vertebrate ZAP as an important barrier that protects vertebrate cells from ISF infection. This provides new insights into flavivirus evolution and the mechanisms associated with host switching.
Collapse
|
18
|
Hameed M, Wahaab A, Shan T, Wang X, Khan S, Di D, Xiqian L, Zhang JJ, Anwar MN, Nawaz M, Li B, Liu K, Shao D, Qiu Y, Wei J, Ma Z. A Metagenomic Analysis of Mosquito Virome Collected From Different Animal Farms at Yunnan-Myanmar Border of China. Front Microbiol 2021; 11:591478. [PMID: 33628201 PMCID: PMC7898981 DOI: 10.3389/fmicb.2020.591478] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Metagenomic analysis of mosquito-borne and mosquito-specific viruses is useful to understand the viral diversity and for the surveillance of pathogens of medical and veterinary importance. Yunnan province is located at the southwest of China and has rich abundance of mosquitoes. Arbovirus surveillance is not conducted regularly in this province particularly at animal farms, which have public health as well as veterinary importance. Here, we have analyzed 10 pools of mosquitoes belonging to Culex tritaeniorhyncus, Aedes aegypti, Anopheles sinensis, and Armigeres subalbatus species, collected from different animal farms located at Yunnan province of China by using metagenomic next-generation sequencing technique. The generated viral metagenomic data reveal that the viral community matched by the reads was highly diverse and varied in abundance among animal farms, which contained more than 19 viral taxonomic families, specific to vertebrates, invertebrates, fungi, plants, protozoa, and bacteria. Additionally, a large number of viral reads were related to viruses that are non-classified. The viral reads related to animal viruses included parvoviruses, anelloviruses, circoviruses, flaviviruses, rhabdoviruses, and seadornaviruses, which might be taken by mosquitoes from viremic animal hosts during blood feeding. Notably, the presence of viral reads matched with Japanese encephalitis virus, Getah virus, and porcine parvoviruses in mosquitoes collected from different geographic sites suggested a potential circulation of these viruses in their vertebrate hosts. Overall, this study provides a comprehensive knowledge of diverse viral populations present at animal farms of Yunnan province of China, which might be a potential source of diseases for humans and domestic animals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
19
|
Genetic, Morphological and Antigenic Relationships between Mesonivirus Isolates from Australian Mosquitoes and Evidence for Their Horizontal Transmission. Viruses 2020; 12:v12101159. [PMID: 33066222 PMCID: PMC7602028 DOI: 10.3390/v12101159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
The Mesoniviridae are a newly assigned family of viruses in the order Nidovirales. Unlike other nidoviruses, which include the Coronaviridae, mesoniviruses are restricted to mosquito hosts and do not infect vertebrate cells. To date there is little information on the morphological and antigenic characteristics of this new group of viruses and a dearth of mesonivirus-specific research tools. In this study we determined the genetic relationships of recent Australian isolates of Alphamesonivirus 4 (Casuarina virus—CASV) and Alphamesonivirus 1 (Nam Dinh virus—NDiV), obtained from multiple mosquito species. Australian isolates of NDiV showed high-level similarity to the prototype NDiV isolate from Vietnam (99% nucleotide (nt) and amino acid (aa) identity). Isolates of CASV from Central Queensland were genetically very similar to the prototype virus from Darwin (95–96% nt and 91–92% aa identity). Electron microscopy studies demonstrated that virion diameter (≈80 nm) and spike length (≈10 nm) were similar for both viruses. Monoclonal antibodies specific to CASV and NDiV revealed a close antigenic relationship between the two viruses with 13/34 mAbs recognising both viruses. We also detected NDiV RNA on honey-soaked nucleic acid preservation cards fed on by wild mosquitoes supporting a possible mechanism of horizontal transmission between insects in nature.
Collapse
|
20
|
O’Brien CA, Pegg CL, Nouwens AS, Bielefeldt-Ohmann H, Huang B, Warrilow D, Harrison JJ, Haniotis J, Schulz BL, Paramitha D, Colmant AMG, Newton ND, Doggett SL, Watterson D, Hobson-Peters J, Hall RA. A Unique Relative of Rotifer Birnavirus Isolated from Australian Mosquitoes. Viruses 2020; 12:v12091056. [PMID: 32971986 PMCID: PMC7552023 DOI: 10.3390/v12091056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 01/24/2023] Open
Abstract
The family Birnaviridae are a group of non-enveloped double-stranded RNA viruses which infect poultry, aquatic animals and insects. This family includes agriculturally important pathogens of poultry and fish. Recently, next-generation sequencing technologies have identified closely related birnaviruses in Culex, Aedes and Anopheles mosquitoes. Using a broad-spectrum system based on detection of long double-stranded RNA, we have discovered and isolated a birnavirus from Aedes notoscriptus mosquitoes collected in northern New South Wales, Australia. Phylogenetic analysis of Aedes birnavirus (ABV) showed that it is related to Rotifer birnavirus, a pathogen of microscopic aquatic animals. In vitro cell infection assays revealed that while ABV can replicate in Aedes-derived cell lines, the virus does not replicate in vertebrate cells and displays only limited replication in Culex- and Anopheles-derived cells. A combination of SDS-PAGE and mass spectrometry analysis suggested that the ABV capsid precursor protein (pVP2) is larger than that of other birnaviruses and is partially resistant to trypsin digestion. Reactivity patterns of ABV-specific polyclonal and monoclonal antibodies indicate that the neutralizing epitopes of ABV are SDS sensitive. Our characterization shows that ABV displays a number of properties making it a unique member of the Birnaviridae and represents the first birnavirus to be isolated from Australian mosquitoes.
Collapse
Affiliation(s)
- Caitlin A. O’Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Cassandra L. Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Amanda S. Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Bixing Huang
- Public Health Virology, Queensland Health Forensic and Scientific Services, Brisbane, QLD 4108, Australia; (B.H.); (D.W.)
| | - David Warrilow
- Public Health Virology, Queensland Health Forensic and Scientific Services, Brisbane, QLD 4108, Australia; (B.H.); (D.W.)
| | - Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - John Haniotis
- New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (J.H.); (S.L.D.)
| | - Benjamin L. Schulz
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Devina Paramitha
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Agathe M. G. Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Natalee D. Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Stephen L. Doggett
- New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (J.H.); (S.L.D.)
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
- Correspondence:
| |
Collapse
|
21
|
Abstract
When a mosquito feeds on a host, it ingests not only its blood meal but also an assortment of microorganisms that are present in the blood, thus acting as an environmental sampler. By using specific tests, it is possible to detect arthropod-borne viruses (arboviruses) like dengue and West Nile viruses in mosquito excreta. Here, we explored the use of next-generation sequencing (NGS) for unbiased detection of RNA viruses present in excreta from experimentally infected and field-collected mosquitoes. We have demonstrated that mosquito excreta provide a suitable template for NGS and that it is possible to recover and assemble near-full-length genomes of both arboviruses and insect-borne viruses, including potentially novel ones. These results importantly show the direct practicality of the use of mosquito excreta for NGS, which in the future could be used for virus discovery, environmental virome sampling, and arbovirus surveillance. Traditional screening for arboviruses in mosquitoes requires a priori knowledge and the utilization of appropriate assays for their detection. Mosquitoes can also provide other valuable information, including unexpected or novel arboviruses, nonarboviral pathogens ingested from hosts they feed on, and their own genetic material. Metagenomic analysis using next-generation sequencing (NGS) is a rapidly advancing technology that allows us to potentially obtain all this information from a mosquito sample without any prior knowledge of virus, host, or vector. Moreover, it has been recently demonstrated that pathogens, including arboviruses and parasites, can be detected in mosquito excreta by molecular methods. In this study, we investigated whether RNA viruses could be detected in mosquito excreta by NGS. Excreta samples were collected from Aedes vigilax and Culex annulirostris experimentally exposed to either Ross River or West Nile viruses and from field mosquitoes collected across Queensland, Australia. Total RNA was extracted from the excreta samples, reverse transcribed to cDNA, and sequenced using the Illumina NextSeq 500 platform. Bioinformatic analyses from the generated reads demonstrate that mosquito excreta provide sufficient RNA for NGS, allowing the assembly of near-full-length viral genomes. We detected Australian Anopheles totivirus, Wuhan insect virus 33, and Hubei odonate virus 5 and identified seven potentially novel viruses closely related to members of the order Picornavirales (2/7) and to previously described, but unclassified, RNA viruses (5/7). Our results suggest that metagenomic analysis of mosquito excreta has great potential for virus discovery and for unbiased arbovirus surveillance in the near future. IMPORTANCE When a mosquito feeds on a host, it ingests not only its blood meal but also an assortment of microorganisms that are present in the blood, thus acting as an environmental sampler. By using specific tests, it is possible to detect arthropod-borne viruses (arboviruses) like dengue and West Nile viruses in mosquito excreta. Here, we explored the use of next-generation sequencing (NGS) for unbiased detection of RNA viruses present in excreta from experimentally infected and field-collected mosquitoes. We have demonstrated that mosquito excreta provide a suitable template for NGS and that it is possible to recover and assemble near-full-length genomes of both arboviruses and insect-borne viruses, including potentially novel ones. These results importantly show the direct practicality of the use of mosquito excreta for NGS, which in the future could be used for virus discovery, environmental virome sampling, and arbovirus surveillance.
Collapse
|
22
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
23
|
Kubacki J, Flacio E, Qi W, Guidi V, Tonolla M, Fraefel C. Viral Metagenomic Analysis of Aedes albopictus Mosquitos from Southern Switzerland. Viruses 2020; 12:v12090929. [PMID: 32846980 PMCID: PMC7552062 DOI: 10.3390/v12090929] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
A metagenomic study was performed on 498 female and 40 male Aedes albopictus mosquitos collected in August and September 2019 in Ticino, a region in southern Switzerland, to address the question regarding the risk of the local transmission of zoonotic viruses. A total of 13 viruses from seven different virus families and several unclassified viral taxa were identified. Reads of insect-specific flaviviruses were present in all pools, and a complete genome of aedes flavivirus was assembled and phylogenetically analysed. The most abundant virus was Wenzhou sobemo-like virus, assembled from 1.3 × 105 to 3.6 × 106 reads in each pool. In a pool of male mosquitos, a complete genome of aedes Iflavi-like virus was detected and phylogenetically analysed. Most importantly, genomes of human pathogenic viruses were not found. This is the first study to determine the virome of Ae. albopictus from Switzerland and forms a baseline for future longitudinal investigations concerning the potential role of Ae. albopictus as a vector of clinically relevant viruses.
Collapse
Affiliation(s)
- Jakub Kubacki
- Institute of Virology, University of Zürich, CH-8057 Zürich, Switzerland
- Correspondence: (J.K.); (C.F.)
| | - Eleonora Flacio
- Laboratory of Applied Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland, CH-6500 Manno, Switzerland; (E.F.); (V.G.); (M.T.)
| | - Weihong Qi
- Functional Genomics Center Zurich, CH-8057 Zürich, Switzerland;
| | - Valeria Guidi
- Laboratory of Applied Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland, CH-6500 Manno, Switzerland; (E.F.); (V.G.); (M.T.)
| | - Mauro Tonolla
- Laboratory of Applied Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland, CH-6500 Manno, Switzerland; (E.F.); (V.G.); (M.T.)
| | - Cornel Fraefel
- Institute of Virology, University of Zürich, CH-8057 Zürich, Switzerland
- Correspondence: (J.K.); (C.F.)
| |
Collapse
|
24
|
Du J, Li F, Han Y, Fu S, Liu B, Shao N, Su H, Zhang W, Zheng D, Lei W, Dong J, Sun L, He Y, Wang J, Yang F, Wang H, Liang G, Wu Z, Jin Q. Characterization of viromes within mosquito species in China. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1089-1092. [PMID: 31834603 DOI: 10.1007/s11427-019-1583-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Fan Li
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Shihong Fu
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Nan Shao
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Weijia Zhang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Dandan Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Wenwen Lei
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ying He
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China
| | - Jianmin Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Huanyu Wang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China.
| | - Guodong Liang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, 102206, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
25
|
Antigenic Characterization of New Lineage II Insect-Specific Flaviviruses in Australian Mosquitoes and Identification of Host Restriction Factors. mSphere 2020; 5:5/3/e00095-20. [PMID: 32554715 PMCID: PMC7300350 DOI: 10.1128/msphere.00095-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We describe two new insect-specific flaviviruses (ISFs) isolated from mosquitoes in Australia, Binjari virus (BinJV) and Hidden Valley virus (HVV), that grow efficiently in mosquito cells but fail to replicate in a range of vertebrate cell lines. Phylogenetic analysis revealed that BinJV and HVV were closely related (90% amino acid sequence identity) and clustered with lineage II (dual-host affiliated) ISFs, including the Lammi and Nounané viruses. Using a panel of monoclonal antibodies prepared to BinJV viral proteins, we confirmed a close relationship between HVV and BinJV and revealed that they were antigenically quite divergent from other lineage II ISFs. We also constructed chimeric viruses between BinJV and the vertebrate-infecting West Nile virus (WNV) by swapping the structural genes (prM and E) to produce BinJ/WNVKUN-prME and WNVKUN/BinJV-prME. This allowed us to assess the role of different regions of the BinJV genome in vertebrate host restriction and revealed that while BinJV structural proteins facilitated entry to vertebrate cells, the process was inefficient. In contrast, the BinJV replicative components in wild-type BinJV and BinJ/WNVKUN-prME failed to initiate replication in a wide range of vertebrate cell lines at 37°C, including cells lacking components of the innate immune response. However, trace levels of replication of BinJ/WNVKUN-prME could be detected in some cultures of mouse embryo fibroblasts (MEFs) deficient in antiviral responses (IFNAR-/- MEFs or RNase L-/- MEFs) incubated at 34°C after inoculation. This suggests that BinJV replication in vertebrate cells is temperature sensitive and restricted at multiple stages of cellular infection, including inefficient cell entry and susceptibility to antiviral responses.IMPORTANCE The globally important flavivirus pathogens West Nile virus, Zika virus, dengue viruses, and yellow fever virus can infect mosquito vectors and be transmitted to humans and other vertebrate species in which they cause significant levels of disease and mortality. However, the subgroup of closely related flaviviruses, known as lineage II insect-specific flaviviruses (Lin II ISFs), only infect mosquitoes and cannot replicate in cells of vertebrate origin. Our data are the first to uncover the mechanisms that restrict the growth of Lin II ISFs in vertebrate cells and provides new insights into the evolution of these viruses and the mechanisms associated with host switching that may allow new mosquito-borne viral diseases to emerge. The new reagents generated in this study, including the first Lin II ISF-reactive monoclonal antibodies and Lin II ISF mutants and chimeric viruses, also provide new tools and approaches to enable further research advances in this field.
Collapse
|
26
|
Deciphering the Virome of Culex vishnui Subgroup Mosquitoes, the Major Vectors of Japanese Encephalitis, in Japan. Viruses 2020; 12:v12030264. [PMID: 32121094 PMCID: PMC7150981 DOI: 10.3390/v12030264] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Japanese encephalitis (JE) remains a public health concern in several countries, and the Culex mosquito plays a central role in its transmission cycle. Culex mosquitoes harbor a wide range of viruses, including insect-specific viruses (ISVs), and can transmit a variety of arthropod-borne viruses (arboviruses) that cause human and animal diseases. The current trend of studies displays enhanced efforts to characterize the mosquito virome through bulk RNA sequencing due to possible arbovirus-ISV interactions; however, the extent of viral diversity in the mosquito taxon is still poorly understood, particularly in some disease vectors. In this study, arboviral screening and RNA virome analysis of Culex tritaeniorhynchus and C. pseudovishnui, which are part of the Culex vishnui subgroup mosquitoes, were performed. Results from these two mosquito species, known as the major vectors of JE virus (JEV) in Asia, collected in three prefectures in Japan were also compared with the sympatric species C. inatomii. A total of 27 viruses, including JEV, were detected from these Culex mosquitoes. Molecular and phylogenetic analyses of the detected viruses classified 15 of the 27 viruses as novel species, notably belonging to the Flaviviridae, Rhabdoviridae, Totiviridae, and Iflaviridae families. The successful isolation of JEV genotype I confirmed its continuous presence in Japan, suggesting the need for periodic surveillance. Aside from JEV, this study has also reported the diversity of the RNA virome of disease vectors and broadened the knowledge on mosquito virome profiles containing both arbovirus and ISV. Mosquito taxon seemed to contribute largely to the virome structure (e.g., virome composition, diversity, and abundance) as opposed to the geographical location of the mosquito species. This study therefore offers notable insights into the ecology and evolution of each identified virus and viral family. To the authors' knowledge, this is the first study to characterize the viromes of the major JE vectors in Japan.
Collapse
|
27
|
Habarugira G, Moran J, Colmant AM, Davis SS, O’Brien CA, Hall-Mendelin S, McMahon J, Hewitson G, Nair N, Barcelon J, Suen WW, Melville L, Hobson-Peters J, Hall RA, Isberg SR, Bielefeldt-Ohmann H. Mosquito-Independent Transmission of West Nile virus in Farmed Saltwater Crocodiles ( Crocodylus porosus). Viruses 2020; 12:v12020198. [PMID: 32054016 PMCID: PMC7077242 DOI: 10.3390/v12020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
West Nile virus, Kunjin strain (WNVKUN) is endemic in Northern Australia, but rarely causes clinical disease in humans and horses. Recently, WNVKUN genomic material was detected in cutaneous lesions of farmed saltwater crocodiles (Crocodylus porosus), but live virus could not be isolated, begging the question of the pathogenesis of these lesions. Crocodile hatchlings were experimentally infected with either 105 (n = 10) or 104 (n = 11) TCID50-doses of WNVKUN and each group co-housed with six uninfected hatchlings in a mosquito-free facility. Seven hatchlings were mock-infected and housed separately. Each crocodile was rotationally examined and blood-sampled every third day over a 3-week period. Eleven animals, including three crocodiles developing typical skin lesions, were culled and sampled 21 days post-infection (dpi). The remaining hatchlings were blood-sampled fortnightly until experimental endpoint 87 dpi. All hatchlings remained free of overt clinical disease, apart from skin lesions, throughout the experiment. Viremia was detected by qRT-PCR in infected animals during 2–17 dpi and in-contact animals 11–21 dpi, indicating horizontal mosquito-independent transmission. Detection of viral genome in tank-water as well as oral and cloacal swabs, collected on multiple days, suggests that shedding into pen-water and subsequent mucosal infection is the most likely route. All inoculated animals and some in-contact animals developed virus-neutralizing antibodies detectable from 17 dpi. Virus-neutralizing antibody titers continued to increase in exposed animals until the experimental endpoint, suggestive of persisting viral antigen. However, no viral antigen was detected by immunohistochemistry in any tissue sample, including from skin and intestine. While this study confirmed that infection of saltwater crocodiles with WNVKUN was associated with the formation of skin lesions, we were unable to elucidate the pathogenesis of these lesions or the nidus of viral persistence. Our results nevertheless suggest that prevention of WNVKUN infection and induction of skin lesions in farmed crocodiles may require management of both mosquito-borne and water-borne viral transmission in addition to vaccination strategies.
Collapse
Affiliation(s)
- Gervais Habarugira
- School of Veterinary Science, University of Queensland, Gatton, Qld 4343, Australia;
| | - Jasmin Moran
- Centre for Crocodile Research, Noonamah, NT 0837, Australia;
| | - Agathe M.G. Colmant
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
- Australian Infectious Diseases Centre, University of Queensland, St Lucia, Qld 4072, Australia
| | - Steven S. Davis
- Berrimah Veterinary Laboratories, NT 0828, Australia; (S.S.D.); (L.M.)
| | - Caitlin A. O’Brien
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
- Australian Infectious Diseases Centre, University of Queensland, St Lucia, Qld 4072, Australia
| | - Sonja Hall-Mendelin
- Queensland Health, Forensic and Scientific Services, Public Health Virology, Coopers Plains, Qld 4108, Australia; (S.H.-M.); (J.M.); (G.H.); (N.N.); (J.B.)
| | - Jamie McMahon
- Queensland Health, Forensic and Scientific Services, Public Health Virology, Coopers Plains, Qld 4108, Australia; (S.H.-M.); (J.M.); (G.H.); (N.N.); (J.B.)
| | - Glen Hewitson
- Queensland Health, Forensic and Scientific Services, Public Health Virology, Coopers Plains, Qld 4108, Australia; (S.H.-M.); (J.M.); (G.H.); (N.N.); (J.B.)
| | - Neelima Nair
- Queensland Health, Forensic and Scientific Services, Public Health Virology, Coopers Plains, Qld 4108, Australia; (S.H.-M.); (J.M.); (G.H.); (N.N.); (J.B.)
| | - Jean Barcelon
- Queensland Health, Forensic and Scientific Services, Public Health Virology, Coopers Plains, Qld 4108, Australia; (S.H.-M.); (J.M.); (G.H.); (N.N.); (J.B.)
| | - Willy W. Suen
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
| | - Lorna Melville
- Berrimah Veterinary Laboratories, NT 0828, Australia; (S.S.D.); (L.M.)
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
- Australian Infectious Diseases Centre, University of Queensland, St Lucia, Qld 4072, Australia
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
- Australian Infectious Diseases Centre, University of Queensland, St Lucia, Qld 4072, Australia
- Correspondence: (R.A.H.); (S.R.I.); (H.B.-O.)
| | - Sally R. Isberg
- Centre for Crocodile Research, Noonamah, NT 0837, Australia;
- Correspondence: (R.A.H.); (S.R.I.); (H.B.-O.)
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland, Gatton, Qld 4343, Australia;
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia (C.A.O.); (W.W.S.); (J.H.-P.)
- Australian Infectious Diseases Centre, University of Queensland, St Lucia, Qld 4072, Australia
- Correspondence: (R.A.H.); (S.R.I.); (H.B.-O.)
| |
Collapse
|
28
|
Bishop C, Parry R, Asgari S. Effect of Wolbachia wAlbB on a positive-sense RNA negev-like virus: a novel virus persistently infecting Aedes albopictus mosquitoes and cells. J Gen Virol 2020; 101:216-225. [DOI: 10.1099/jgv.0.001361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Rhys Parry
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
29
|
Gondard M, Temmam S, Devillers E, Pinarello V, Bigot T, Chrétien D, Aprelon R, Vayssier-Taussat M, Albina E, Eloit M, Moutailler S. RNA Viruses of Amblyomma variegatum and Rhipicephalus microplus and Cattle Susceptibility in the French Antilles. Viruses 2020; 12:E144. [PMID: 31991915 PMCID: PMC7077237 DOI: 10.3390/v12020144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Ticks transmit a wide variety of pathogens including bacteria, parasites and viruses. Over the last decade, numerous novel viruses have been described in arthropods, including ticks, and their characterization has provided new insights into RNA virus diversity and evolution. However, little is known about their ability to infect vertebrates. As very few studies have described the diversity of viruses present in ticks from the Caribbean, we implemented an RNA-sequencing approach on Amblyomma variegatum and Rhipicephalus microplus ticks collected from cattle in Guadeloupe and Martinique. Among the viral communities infecting Caribbean ticks, we selected four viruses belonging to the Chuviridae, Phenuiviridae and Flaviviridae families for further characterization and designing antibody screening tests. While viral prevalence in individual tick samples revealed high infection rates, suggesting a high level of exposure of Caribbean cattle to these viruses, no seropositive animals were detected. These results suggest that the Chuviridae- and Phenuiviridae-related viruses identified in the present study are more likely tick endosymbionts, raising the question of the epidemiological significance of their occurrence in ticks, especially regarding their possible impact on tick biology and vector capacity. The characterization of these viruses might open the door to new ways of preventing and controlling tick-borne diseases.
Collapse
Affiliation(s)
- Mathilde Gondard
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
| | - Valérie Pinarello
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Thomas Bigot
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
- Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, USR 3756 CNRS, 75015 Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
| | - Rosalie Aprelon
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
- National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, 94704 Cedex, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
| |
Collapse
|
30
|
Tassetto M, Kunitomi M, Whitfield ZJ, Dolan PT, Sánchez-Vargas I, Garcia-Knight M, Ribiero I, Chen T, Olson KE, Andino R. Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements. eLife 2019; 8:41244. [PMID: 31621580 PMCID: PMC6797480 DOI: 10.7554/elife.41244] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/10/2019] [Indexed: 01/02/2023] Open
Abstract
Aedes aegypti transmit pathogenic arboviruses while the mosquito itself tolerates the infection. We examine a piRNA-based immunity that relies on the acquisition of viral derived cDNA (vDNA) and how this pathway discriminates between self and non-self. The piRNAs derived from these vDNAs are essential for virus control and Piwi4 has a central role in the pathway. Piwi4 binds preferentially to virus-derived piRNAs but not to transposon-targeting piRNAs. Analysis of episomal vDNA from infected cells reveals that vDNA molecules are acquired through a discriminatory process of reverse-transcription and recombination directed by endogenous retrotransposons. Using a high-resolution Ae. aegypti genomic sequence, we found that vDNAs integrated in the host genome as endogenous viral elements (EVEs), produce antisense piRNAs that are preferentially loaded onto Piwi4. Importantly, EVE-derived piRNAs are specifically loaded onto Piwi4 to inhibit virus replication. Thus, Ae. aegypti employs a sophisticated antiviral mechanism that promotes viral persistence and generates long-lasting adaptive immunity.
Collapse
Affiliation(s)
- Michel Tassetto
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Mark Kunitomi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Zachary J Whitfield
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Patrick T Dolan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Irma Sánchez-Vargas
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, United States
| | - Miguel Garcia-Knight
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Isabel Ribiero
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Taotao Chen
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Ken E Olson
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, United States
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
31
|
Scolari F, Casiraghi M, Bonizzoni M. Aedes spp. and Their Microbiota: A Review. Front Microbiol 2019; 10:2036. [PMID: 31551973 PMCID: PMC6738348 DOI: 10.3389/fmicb.2019.02036] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Aedes spp. are a major public health concern due to their ability to be efficient vectors of dengue, Chikungunya, Zika, and other arboviruses. With limited vaccines available and no effective therapeutic treatments against arboviruses, the control of Aedes spp. populations is currently the only strategy to prevent disease transmission. Host-associated microbes (i.e., microbiota) recently emerged as a promising field to be explored for novel environmentally friendly vector control strategies. In particular, gut microbiota is revealing its impact on multiple aspects of Aedes spp. biology, including vector competence, thus being a promising target for manipulation. Here we describe the technological advances, which are currently expanding our understanding of microbiota composition, abundance, variability, and function in the two main arboviral vectors, the mosquitoes Aedes aegypti and Aedes albopictus. Aedes spp. microbiota is described in light of its tight connections with the environment, with which mosquitoes interact during their various developmental stages. Unraveling the dynamic interactions among the ecology of the habitat, the mosquito and the microbiota have the potential to uncover novel physiological interdependencies and provide a novel perspective for mosquito control.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Maurizio Casiraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
32
|
Zhao L, Mwaliko C, Atoni E, Wang Y, Zhang Y, Zhan J, Hu X, Xia H, Yuan Z. Characterization of a Novel Tanay Virus Isolated From Anopheles sinensis Mosquitoes in Yunnan, China. Front Microbiol 2019; 10:1963. [PMID: 31507570 PMCID: PMC6714596 DOI: 10.3389/fmicb.2019.01963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Globally, mosquitoes are known to be competent vectors to various arboviruses that cause serious and debilitating diseases to humans and animals. Conversely, mosquitoes harbor a wide array of insect specific viruses (ISVs) that are generally neglected. Extensive characterization of these ISVs is important in understanding their persistence infection effect on host behavior and arbovirus transmission. Herein, we report first time isolation of Tanay virus (TANAV) isolate YN15_103_01 in Anopheles sinensis mosquitoes from Yunnan Province, China. Phylogenetically, the isolate’s nucleotide identity had more than 14.47% variance compared to previous TANAV isolates, and it clustered into an independent branch within the genus Sandewavirus in the newly proposed taxon Negevirus. TANAV growth and high titers was attained in Aag2 cells (107 PFU/mL) but with no CPE observed up to 7 days.p.i. compared to C6/36 cells that exhibited extensive CPE at 48 h.p.i. with titers of 107 PFU/mL. Contrarywise, the viral isolate did not replicate in vertebrate cell lines. Electron microscopy analyses showed that its final maturation process takes place in the cell cytoplasm. Notably, the predicted viral proteins were verified to be corresponding to the obtained SDS-PAGE protein bands. Our findings advance forth new and vital knowledge important in understanding insect specific viruses, especially TANAV.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunzhi Zhang
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Jianbo Zhan
- Division for Viral Disease with Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
33
|
Belda E, Nanfack-Minkeu F, Eiglmeier K, Carissimo G, Holm I, Diallo M, Diallo D, Vantaux A, Kim S, Sharakhov IV, Vernick KD. De novo profiling of RNA viruses in Anopheles malaria vector mosquitoes from forest ecological zones in Senegal and Cambodia. BMC Genomics 2019; 20:664. [PMID: 31429704 PMCID: PMC6702732 DOI: 10.1186/s12864-019-6034-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/15/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mosquitoes are colonized by a large but mostly uncharacterized natural virome of RNA viruses, and the composition and distribution of the natural RNA virome may influence the biology and immunity of Anopheles malaria vector populations. RESULTS Anopheles mosquitoes were sampled in malaria endemic forest village sites in Senegal and Cambodia, including Anopheles funestus, Anopheles gambiae group sp., and Anopheles coustani in Senegal, and Anopheles hyrcanus group sp., Anopheles maculatus group sp., and Anopheles dirus in Cambodia. The most frequent mosquito species sampled at both study sites are human malaria vectors. Small and long RNA sequences were depleted of mosquito host sequences, de novo assembled and clustered to yield non-redundant contigs longer than 500 nucleotides. Analysis of the assemblies by sequence similarity to known virus families yielded 115 novel virus sequences, and evidence supports a functional status for at least 86 of the novel viral contigs. Important monophyletic virus clades in the Bunyavirales and Mononegavirales orders were found in these Anopheles from Africa and Asia. The remaining non-host RNA assemblies that were unclassified by sequence similarity to known viruses were clustered by small RNA profiles, and 39 high-quality independent contigs strongly matched a pattern of classic RNAi processing of viral replication intermediates, suggesting they are entirely undescribed viruses. One thousand five hundred sixty-six additional high-quality unclassified contigs matched a pattern consistent with Piwi-interacting RNAs (piRNAs), suggesting that strand-biased piRNAs are generated from the natural virome in Anopheles. To functionally query piRNA effect, we analyzed piRNA expression in Anopheles coluzzii after infection with O'nyong nyong virus (family Togaviridae), and identified two piRNAs that appear to display specifically altered abundance upon arbovirus infection. CONCLUSIONS Anopheles vectors of human malaria in Africa and Asia are ubiquitously colonized by RNA viruses, some of which are monophyletic but clearly diverged from other arthropod viruses. The interplay between small RNA pathways, immunity, and the virome may represent part of the homeostatic mechanism maintaining virome members in a commensal or nonpathogenic state, and could potentially influence vector competence.
Collapse
Affiliation(s)
- Eugeni Belda
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
- Integromics Unit, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Ferdinand Nanfack-Minkeu
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
- Sorbonne Université, Graduate School of Life Sciences ED515, UPMC - Université Pierre et Marie Curie - Paris 6, 4 Place Jussieu, 75252 Paris, France
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Guillaume Carissimo
- Laboratory of Microbial Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | | | | | | | - Saorin Kim
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Kenneth D. Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| |
Collapse
|
34
|
High Prevalence of a Newly Discovered Wutai Mosquito Phasivirus in Mosquitoes from Rio de Janeiro, Brazil. INSECTS 2019; 10:insects10050135. [PMID: 31067759 PMCID: PMC6587333 DOI: 10.3390/insects10050135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 12/25/2022]
Abstract
Many RNA viruses have recently emerged, threatening humans and causing harm to animals and plants. Bunyaviruses represent one of the largest groups of RNA viruses and are able to infect a wide range of hosts (invertebrates, vertebrates, and plants). Recently, new insect-specific viruses have been isolated from mosquitoes and phlebotomine sandflies worldwide. Little is known regarding the impact of these viruses on the vector life cycles and the stages of oviposition, breeding, blood feeding, and the mosquito’s lifespan. This study describes, for the first time in South America, the detection and characterization of a recently discovered bunyavirus corresponding to the Wutai mosquito phasivirus, confirming its high prevalence in the Culex spp. and Aedes spp. mosquitoes collected in the urban environment of Rio de Janeiro city, Brazil. The knowledge of the mosquito’s insect-specific virus infection can improve virus evolution studies and may contribute to the understanding of intrinsic factors that influence vector competence to transmit pathogenic viruses.
Collapse
|
35
|
Souza-Neto JA, Powell JR, Bonizzoni M. Aedes aegypti vector competence studies: A review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 67:191-209. [PMID: 30465912 PMCID: PMC8135908 DOI: 10.1016/j.meegid.2018.11.009] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results.
Collapse
Affiliation(s)
- Jayme A Souza-Neto
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Multiuser Central Laboratory, Botucatu, Brazil; São Paulo State University (UNESP), Institute of Biotechnology, Botucatu, Brazil
| | | | | |
Collapse
|
36
|
Donald CL, Varjak M, Aguiar ERGR, Marques JT, Sreenu VB, Schnettler E, Kohl A. Antiviral RNA Interference Activity in Cells of the Predatory Mosquito, Toxorhynchites amboinensis. Viruses 2018; 10:v10120694. [PMID: 30563205 PMCID: PMC6316411 DOI: 10.3390/v10120694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
Arthropod vectors control the replication of arboviruses through their innate antiviral immune responses. In particular, the RNA interference (RNAi) pathways are of notable significance for the control of viral infections. Although much has been done to understand the role of RNAi in vector populations, little is known about its importance in non-vector mosquito species. In this study, we investigated the presence of an RNAi response in Toxorhynchites amboinensis, which is a non-blood feeding species proposed as a biological control agent against pest mosquitoes. Using a derived cell line (TRA-171), we demonstrate that these mosquitoes possess a functional RNAi response that is active against a mosquito-borne alphavirus, Semliki Forest virus. As observed in vector mosquito species, small RNAs are produced that target viral sequences. The size and characteristics of these small RNAs indicate that both the siRNA and piRNA pathways are induced in response to infection. Taken together, this data suggests that Tx. amboinensis are able to control viral infections in a similar way to natural arbovirus vector mosquito species. Understanding their ability to manage arboviral infections will be advantageous when assessing these and similar species as biological control agents.
Collapse
Affiliation(s)
- Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK.
| | - Margus Varjak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK.
| | - Eric Roberto Guimarães Rocha Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha-Belo Horizonte-MG, CEP 31270-901, Brazil.
| | - João T Marques
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha-Belo Horizonte-MG, CEP 31270-901, Brazil.
| | - Vattipally B Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK.
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK.
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK.
| |
Collapse
|
37
|
McLean BJ, Dainty KR, Flores HA, O'Neill SL. Differential suppression of persistent insect specific viruses in trans-infected wMel and wMelPop-CLA Aedes-derived mosquito lines. Virology 2018; 527:141-145. [PMID: 30503908 PMCID: PMC6340807 DOI: 10.1016/j.virol.2018.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023]
Abstract
Wolbachia suppresses the replication of +ssRNA viruses such as dengue and Zika viruses in Aedes aegypti mosquitoes. However, the range of viruses affected by this endosymbiont is yet to be explored. Recently, novel insect-specific viruses (ISVs) have been described from numerous mosquito species and mosquito-derived cell lines. Cell-fusing agent virus (Flaviviridae) and Phasi Charoen-like virus (Bunyaviridae) persistently infect the Ae. aegypti cell line Aag2 which has been used for experimental studies with both the wMel and wMelPop-CLA strains. Wolbachia was found to restrict the replication of CFAV but not the PCLV infection in these lines. Furthermore, an additional Ae. albopictus cell line (RML-12) which contained either wMel or wMelPop-CLA was assessed. While no infectious +ssRNA or dsRNA viruses were detected, a PCLV infection was identified. These observations provide additional evidence to support that insect-specific, +ssRNA viruses can be suppressed in cell culture by Wolbachia but -ssRNA viruses may not.
Collapse
Affiliation(s)
- Breeanna J McLean
- Institute of Vector-Borne Disease, Monash University, Clayton, Vic., Australia
| | - Kimberley R Dainty
- Institute of Vector-Borne Disease, Monash University, Clayton, Vic., Australia
| | - Heather A Flores
- Institute of Vector-Borne Disease, Monash University, Clayton, Vic., Australia
| | - Scott L O'Neill
- Institute of Vector-Borne Disease, Monash University, Clayton, Vic., Australia.
| |
Collapse
|
38
|
Colmant AMG, Hall-Mendelin S, Ritchie SA, Bielefeldt-Ohmann H, Harrison JJ, Newton ND, O’Brien CA, Cazier C, Johansen CA, Hobson-Peters J, Hall RA, van den Hurk AF. The recently identified flavivirus Bamaga virus is transmitted horizontally by Culex mosquitoes and interferes with West Nile virus replication in vitro and transmission in vivo. PLoS Negl Trop Dis 2018; 12:e0006886. [PMID: 30356234 PMCID: PMC6200184 DOI: 10.1371/journal.pntd.0006886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022] Open
Abstract
Arthropod-borne flaviviruses such as yellow fever (YFV), Zika and dengue viruses continue to cause significant human disease globally. These viruses are transmitted by mosquitoes when a female imbibes an infected blood-meal from a viremic vertebrate host and expectorates the virus into a subsequent host. Bamaga virus (BgV) is a flavivirus recently discovered in Culex sitiens subgroup mosquitoes collected from Cape York Peninsula, Australia. This virus phylogenetically clusters with the YFV group, but is potentially restricted in most vertebrates. However, high levels of replication in an opossum cell line (OK) indicate a potential association with marsupials. To ascertain whether BgV could be horizontally transmitted by mosquitoes, the vector competence of two members of the Cx. sitiens subgroup, Cx. annulirostris and Cx. sitiens, for BgV was investigated. Eleven to thirteen days after imbibing an infectious blood-meal, infection rates were 11.3% and 18.8% for Cx. annulirostris and Cx. sitiens, respectively. Cx. annulirostris transmitted the virus at low levels (5.6% had BgV-positive saliva overall); Cx. sitiens did not transmit the virus. When mosquitoes were injected intrathoracially with BgV, the infection and transmission rates were 100% and 82%, respectively, for both species. These results provided evidence for the first time that BgV can be transmitted horizontally by Cx. annulirostris, the primary vector of pathogenic zoonotic flaviviruses in Australia. We also assessed whether BgV could interfere with replication in vitro, and infection and transmission in vivo of super-infecting pathogenic Culex-associated flaviviruses. BgV significantly reduced growth of Murray Valley encephalitis and West Nile (WNV) viruses in vitro. While prior infection with BgV by injection did not inhibit WNV super-infection of Cx. annulirostris, significantly fewer BgV-infected mosquitoes could transmit WNV than mock-injected mosquitoes. Overall, these data contribute to our understanding of flavivirus ecology, modes of transmission by Australian mosquitoes and mechanisms for super-infection interference. Mosquito-borne flaviviruses include medically significant members such as the dengue viruses, yellow fever virus and Zika virus. These viruses regularly cause outbreaks globally, notably in tropical regions. The ability of mosquitoes to transmit these viruses to vertebrate hosts plays a major role in determining the scale of these outbreaks. It is essential to assess the risk of emergence of flaviviruses in a given region by investigating the vector competence of local mosquitoes for these viruses. Bamaga virus was recently discovered in Australia in Culex mosquitoes and shown to be related to yellow fever virus. In this article, we investigated the potential for Bamaga virus to emerge as an arthropod-borne viral pathogen by assessing the vector competence of Cx. annulirostris and Cx. sitiens mosquitoes for this virus. We showed that Bamaga virus could be detected in the saliva of Cx. annulirostris after an infectious blood-meal, demonstrating that the virus could be horizontally transmitted. In addition, we showed that Bamaga virus could interfere with the replication in vitro and transmission in vivo of the pathogenic flavivirus West Nile virus. These data provide further insight on how interactions between viruses in their vector can influence the efficiency of pathogen transmission.
Collapse
Affiliation(s)
- Agathe M. G. Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, Australia
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton Campus, QLD, Gatton Australia
| | - Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalee D. Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Caitlin A. O’Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Chris Cazier
- Technical Services, Biosciences Division, Faculty of Health, Queensland University of Technology, Gardens Point Campus, Brisbane, Qld, Australia
| | - Cheryl A. Johansen
- PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- * E-mail: (RAH); (AFVDH)
| | - Andrew F. van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, Australia
- * E-mail: (RAH); (AFVDH)
| |
Collapse
|
39
|
Fallon TR, Lower SE, Chang CH, Bessho-Uehara M, Martin GJ, Bewick AJ, Behringer M, Debat HJ, Wong I, Day JC, Suvorov A, Silva CJ, Stanger-Hall KF, Hall DW, Schmitz RJ, Nelson DR, Lewis SM, Shigenobu S, Bybee SM, Larracuente AM, Oba Y, Weng JK. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife 2018; 7:e36495. [PMID: 30324905 PMCID: PMC6191289 DOI: 10.7554/elife.36495] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.
Collapse
Affiliation(s)
- Timothy R Fallon
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
| | - Sarah E Lower
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
- Department of BiologyBucknell UniversityLewisburgUnited States
| | - Ching-Ho Chang
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - Manabu Bessho-Uehara
- Department of Environmental BiologyChubu UniversityKasugaiJapan
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
- Monterey Bay Aquarium Research InstituteMoss LandingUnited States
| | - Gavin J Martin
- Department of BiologyBrigham Young UniversityProvoUnited States
| | - Adam J Bewick
- Department of GeneticsUniversity of GeorgiaAthensUnited States
| | - Megan Behringer
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeUnited States
| | - Humberto J Debat
- Center of Agronomic Research, National Institute of Agricultural TechnologyCórdobaArgentina
| | - Isaac Wong
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - John C Day
- Centre for Ecology and Hydrology (CEH)WallingfordUnited Kingdom
| | - Anton Suvorov
- Department of BiologyBrigham Young UniversityProvoUnited States
| | - Christian J Silva
- Department of BiologyUniversity of RochesterRochesterUnited States
- Department of Plant SciencesUniversity of California DavisDavisUnited States
| | | | - David W Hall
- Department of GeneticsUniversity of GeorgiaAthensUnited States
| | | | - David R Nelson
- Department of Microbiology Immunology and BiochemistryUniversity of Tennessee HSCMemphisUnited States
| | - Sara M Lewis
- Department of BiologyTufts UniversityMedfordUnited States
| | - Shuji Shigenobu
- NIBB Core Research FacilitiesNational Institute for Basic BiologyOkazakiJapan
| | - Seth M Bybee
- Department of BiologyBrigham Young UniversityProvoUnited States
| | | | - Yuichi Oba
- Department of Environmental BiologyChubu UniversityKasugaiJapan
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
40
|
Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells. J Virol 2018; 92:JVI.00224-18. [PMID: 29950416 DOI: 10.1128/jvi.00224-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/30/2018] [Indexed: 01/21/2023] Open
Abstract
Insect-specific viruses (ISVs) of the yellow fever mosquito Aedes aegypti have been demonstrated to modulate transmission of arboviruses such as dengue virus (DENV) and West Nile virus by the mosquito. The diversity and composition of the virome of A. aegypti, however, remains poorly understood. In this study, we characterized Aedes anphevirus (AeAV), a negative-sense RNA virus from the order Mononegavirales AeAV identified from Aedes cell lines was infectious to both A. aegypti and Aedes albopictus cells but not to three mammalian cell lines. To understand the incidence and genetic diversity of AeAV, we assembled 17 coding-complete and two partial genomes of AeAV from available transcriptome sequencing (RNA-Seq) data. AeAV appears to transmit vertically and be present in laboratory colonies, wild-caught mosquitoes, and cell lines worldwide. Phylogenetic analysis of AeAV strains indicates that as the A. aegypti mosquito has expanded into the Americas and Asia-Pacific, AeAV has evolved into monophyletic African, American, and Asia-Pacific lineages. The endosymbiotic bacterium Wolbachia pipientis restricts positive-sense RNA viruses in A. aegypti Reanalysis of a small RNA library of A. aegypti cells coinfected with AeAV and Wolbachia produces an abundant RNA interference (RNAi) response consistent with persistent virus replication. We found Wolbachia enhances replication of AeAV compared to a tetracycline-cleared cell line, and AeAV modestly reduces DENV replication in vitro The results from our study improve understanding of the diversity and evolution of the virome of A. aegypti and adds to previous evidence that shows Wolbachia does not restrict a range of negative-strand RNA viruses.IMPORTANCE The mosquito Aedes aegypti transmits a number of arthropod-borne viruses (arboviruses), such as dengue virus and Zika virus. Mosquitoes also harbor insect-specific viruses that may affect replication of pathogenic arboviruses in their body. Currently, however, there are only a few insect-specific viruses described from A. aegypti in the literature. Here, we characterize a novel negative-strand virus, AeAV. Meta-analysis of A. aegypti samples showed that it is present in A. aegypti mosquitoes worldwide and is vertically transmitted. Wolbachia-transinfected mosquitoes are currently being used in biocontrol, as they effectively block transmission of several positive-sense RNA viruses in mosquitoes. Our results demonstrate that Wolbachia enhances the replication of AeAV and modestly reduces dengue virus replication in a cell line model. This study expands our understanding of the virome in A. aegypti as well as providing insight into the complexity of the Wolbachia virus restriction phenotype.
Collapse
|
41
|
A Systematic Review of the Natural Virome of Anopheles Mosquitoes. Viruses 2018; 10:v10050222. [PMID: 29695682 PMCID: PMC5977215 DOI: 10.3390/v10050222] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 12/15/2022] Open
Abstract
Anopheles mosquitoes are vectors of human malaria, but they also harbor viruses, collectively termed the virome. The Anopheles virome is relatively poorly studied, and the number and function of viruses are unknown. Only the o’nyong-nyong arbovirus (ONNV) is known to be consistently transmitted to vertebrates by Anopheles mosquitoes. A systematic literature review searched four databases: PubMed, Web of Science, Scopus, and Lissa. In addition, online and print resources were searched manually. The searches yielded 259 records. After screening for eligibility criteria, we found at least 51 viruses reported in Anopheles, including viruses with potential to cause febrile disease if transmitted to humans or other vertebrates. Studies to date have not provided evidence that Anopheles consistently transmit and maintain arboviruses other than ONNV. However, anthropophilic Anopheles vectors of malaria are constantly exposed to arboviruses in human bloodmeals. It is possible that in malaria-endemic zones, febrile symptoms may be commonly misdiagnosed. It is also possible that anophelines may be inherently less competent arbovirus vectors than culicines, but if true, the biological basis would warrant further study. This systematic review contributes a context to characterize the biology, knowledge gaps, and potential public health risk of Anopheles viruses.
Collapse
|
42
|
Dual Insect specific virus infection limits Arbovirus replication in Aedes mosquito cells. Virology 2018; 518:406-413. [PMID: 29625404 DOI: 10.1016/j.virol.2018.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022]
Abstract
Aedes mosquitoes are vectors for many pathogenic viruses. Cell culture systems facilitate the investigation of virus growth in the mosquito vector. We found Zika virus (ZIKV) growth to be consistent in A. albopictus cells but hypervariable in A. aegypti cell lines. As a potential explanation of this variability, we tested the hypothesis that our cells harbored opportunistic viruses. We screened Aedes cell lines for the presence of insect specific viruses (ISVs), Cell-fusing agent virus (CFAV) and Phasi charoen-like virus (PCLV). PCLV was present in the ZIKV-growth-variable A. aegypti cell lines but absent in A. albopictus lines, suggesting that these ISVs may interfere with ZIKV growth. In support of this hypothesis, PCLV infection of CFAV-positive A. albopictus cells inhibited the growth of ZIKV, dengue virus and La Crosse virus. These data suggest ISV infection of cell lines can impact arbovirus growth leading to significant changes in cell permissivity to arbovirus infection.
Collapse
|
43
|
Zakrzewski M, Rašić G, Darbro J, Krause L, Poo YS, Filipović I, Parry R, Asgari S, Devine G, Suhrbier A. Mapping the virome in wild-caught Aedes aegypti from Cairns and Bangkok. Sci Rep 2018; 8:4690. [PMID: 29549363 PMCID: PMC5856816 DOI: 10.1038/s41598-018-22945-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/02/2018] [Indexed: 12/12/2022] Open
Abstract
Medically important arboviruses such as dengue, Zika, and chikungunya viruses are primarily transmitted by the globally distributed mosquito Aedes aegypti. Increasing evidence suggests that transmission can be influenced by mosquito viromes. Herein RNA-Seq was used to characterize RNA metaviromes of wild-caught Ae. aegypti from Bangkok (Thailand) and from Cairns (Australia). The two mosquito populations showed a high degree of similarity in their viromes. BLAST searches of assembled contigs suggest up to 27 insect-specific viruses may infect Ae. aegypti, with up to 23 of these currently uncharacterized and up to 16 infecting mosquitoes from both Cairns and Bangkok. Three characterized viruses dominated, Phasi Charoen-like virus, Humaita-Tubiacanga virus and Cell fusing agent virus, and comparisons with other available RNA-Seq datasets suggested infection levels with these viruses may vary in laboratory-reared mosquitoes. As expected, mosquitoes from Bangkok showed higher mitochondrial diversity and carried alleles associated with knock-down resistance to pyrethroids. Blood meal reads primarily mapped to human genes, with a small number also showing homology with rat/mouse and dog genes. These results highlight the wide spectrum of data that can be obtained from such RNA-Seq analyses, and suggests differing viromes may need to be considered in arbovirus vector competence studies.
Collapse
Affiliation(s)
- Martha Zakrzewski
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Gordana Rašić
- Mosquito Control, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Jonathan Darbro
- Mosquito Control, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia.,Metro North Public Health Unit, Bryden Street, Windsor, QLD, 4030, Australia
| | - Lutz Krause
- Medical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia.,The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Yee S Poo
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Igor Filipović
- Mosquito Control, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Rhys Parry
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Greg Devine
- Mosquito Control, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia.
| |
Collapse
|
44
|
Bigot D, Atyame CM, Weill M, Justy F, Herniou EA, Gayral P. Discovery of Culex pipiens associated tunisia virus: a new ssRNA(+) virus representing a new insect associated virus family. Virus Evol 2018; 4:vex040. [PMID: 29340209 PMCID: PMC5763275 DOI: 10.1093/ve/vex040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In the global context of arboviral emergence, deep sequencing unlocks the discovery of new mosquito-borne viruses. Mosquitoes of the species Culex pipiens, C. torrentium, and C. hortensis were sampled from 22 locations worldwide for transcriptomic analyses. A virus discovery pipeline was used to analyze the dataset of 0.7 billion reads comprising 22 individual transcriptomes. Two closely related 6.8 kb viral genomes were identified in C. pipiens and named as Culex pipiens associated tunisia virus (CpATV) strains Ayed and Jedaida. The CpATV genome contained four ORFs. ORF1 possessed helicase and RNA-dependent RNA polymerase (RdRp) domains related to new viral sequences recently found mainly in dipterans. ORF2 and 4 contained a capsid protein domain showing strong homology with Virgaviridae plant viruses. ORF3 displayed similarities with eukaryotic Rhoptry domain and a merozoite surface protein (MSP7) domain only found in mosquito-transmitted Plasmodium, suggesting possible interactions between CpATV and vertebrate cells. Estimation of a strong purifying selection exerted on each ORFs and the presence of a polymorphism maintained in the coding region of ORF3 suggested that both CpATV sequences are genuine functional viruses. CpATV is part of an entirely new and highly diversified group of viruses recently found in insects, and that bears the genomic hallmarks of a new viral family.
Collapse
Affiliation(s)
- Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| | - Célestine M Atyame
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Fabienne Justy
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| |
Collapse
|
45
|
Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res 2017; 244:36-52. [PMID: 29103997 PMCID: PMC5801114 DOI: 10.1016/j.virusres.2017.10.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Abstract
Virus metagenomics is a young research filed but it has already transformed our understanding of virus diversity and evolution, and illuminated at a new level the connections between virus evolution and the evolution and ecology of the hosts. In this review article, we examine the new picture of the evolution of RNA viruses, the dominant component of the eukaryotic virome, that is emerging from metagenomic data analysis. The major expansion of many groups of RNA viruses through metagenomics allowed the construction of substantially improved phylogenetic trees for the conserved virus genes, primarily, the RNA-dependent RNA polymerases (RdRp). In particular, a new superfamily of widespread, small positive-strand RNA viruses was delineated that unites tombus-like and noda-like viruses. Comparison of the genome architectures of RNA viruses discovered by metagenomics and by traditional methods reveals an extent of gene module shuffling among diverse virus genomes that far exceeds the previous appreciation of this evolutionary phenomenon. Most dramatically, inclusion of the metagenomic data in phylogenetic analyses of the RdRp resulted in the identification of numerous, strongly supported groups that encompass RNA viruses from diverse hosts including different groups of protists, animals and plants. Notwithstanding potential caveats, in particular, incomplete and uneven sampling of eukaryotic taxa, these highly unexpected findings reveal horizontal virus transfer (HVT) between diverse hosts as the central aspect of RNA virus evolution. The vast and diverse virome of invertebrates, particularly nematodes and arthropods, appears to be the reservoir, from which the viromes of plants and vertebrates evolved via multiple HVT events.
Collapse
|
46
|
Shi M, Zhang YZ, Holmes EC. Meta-transcriptomics and the evolutionary biology of RNA viruses. Virus Res 2017; 243:83-90. [PMID: 29111455 PMCID: PMC7127328 DOI: 10.1016/j.virusres.2017.10.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022]
Abstract
Meta-transcriptomics (bulk RNA-Seq) is a powerful new way to characterise viromes. Meta-transcriptomic data are changing our understanding of virus evolution. Invertebrates harbor an enormous phylogenetic and genomic diversity of RNA viruses. Present sampling schemes have only revealed a miniscule fraction of the virosphere. The new wealth of virus genomic data presents a major challenge to classification.
Metagenomics is transforming the study of virus evolution, allowing the full assemblage of virus genomes within a host sample to be determined rapidly and cheaply. The genomic analysis of complete transcriptomes, so-called meta-transcriptomics, is providing a particularly rich source of data on the global diversity of RNA viruses and their evolutionary history. Herein we review some of the insights that meta-transcriptomics has provided on the fundamental patterns and processes of virus evolution, with a focus on the recent discovery of a multitude of novel invertebrate viruses. In particular, meta-transcriptomics shows that the RNA virus world is more fluid than previously realized, with relatively frequent changes in genome length and structure. As well as having a transformative impact on studies of virus evolution, meta-transcriptomics presents major new challenges for virus classification, with the greater sampling of host taxa now filling many of the gaps on virus phylogenies that were previously used to define taxonomic groups. Given that most viruses in the future will likely be characterized using metagenomics approaches, and that we have evidently only sampled a tiny fraction of the total virosphere, we suggest that proposals for virus classification pay careful attention to the wonders unearthed in this new age of virus discovery.
Collapse
Affiliation(s)
- Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia; State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia; State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
| |
Collapse
|
47
|
High-Resolution Metatranscriptomics Reveals the Ecological Dynamics of Mosquito-Associated RNA Viruses in Western Australia. J Virol 2017. [PMID: 28637756 DOI: 10.1128/jvi.00680-17] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mosquitoes harbor a high diversity of RNA viruses, including many that impact human health. Despite a growing effort to describe the extent and nature of the mosquito virome, little is known about how these viruses persist, spread, and interact with both their hosts and other microbes. To address this issue we performed a metatranscriptomics analysis of 12 Western Australian mosquito populations structured by species and geographic location. Our results identified the complete genomes of 24 species of RNA viruses from a diverse range of viral families and orders, among which 19 are newly described. Comparisons of viromes revealed a striking difference between the two mosquito genera, with viromes of mosquitoes of the Aedes genus exhibiting substantially less diversity and lower abundances than those of mosquitoes of the Culex genus, within which the viral abundance reached 16.87% of the total non-rRNA. In addition, there was little overlap in viral diversity between the two genera, although the viromes were very similar among the three Culex species studied, suggesting that the host taxon plays a major role in structuring virus diversity. In contrast, we found no evidence that geographic location played a major role in shaping RNA virus diversity, and several viruses discovered here exhibited high similarity (95 to 98% nucleotide identity) to those from Indonesia and China. Finally, using abundance-level and phylogenetic relationships, we were able to distinguish potential mosquito viruses from those present in coinfecting bacteria, fungi, and protists. In sum, our metatranscriptomics approach provides important insights into the ecology of mosquito RNA viruses.IMPORTANCE Studies of virus ecology have generally focused on individual viral species. However, recent advances in bulk RNA sequencing make it possible to utilize metatranscriptomic approaches to reveal both complete virus diversity and the relative abundance of these viruses. We used such a metatranscriptomic approach to determine key aspects of the ecology of mosquito viruses in Western Australia. Our results show that RNA viruses are some of the most important components of the mosquito transcriptome, and we identified 19 new virus species from a diverse set of virus families. A key result was that host genetic background plays a more important role in shaping virus diversity than sampling location, with Culex species harboring more viruses at higher abundance than those from Aedes mosquitoes.
Collapse
|
48
|
A New Clade of Insect-Specific Flaviviruses from Australian Anopheles Mosquitoes Displays Species-Specific Host Restriction. mSphere 2017; 2:mSphere00262-17. [PMID: 28713857 PMCID: PMC5506557 DOI: 10.1128/msphere.00262-17] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 12/03/2022] Open
Abstract
Flaviviruses like dengue, Zika, or West Nile virus infect millions of people each year and are transmitted to humans via infected-mosquito bites. A subset of flaviviruses can only replicate in the mosquito host, and recent studies have shown that some can interfere with pathogenic flaviviruses in mosquitoes and limit the replication and transmission of the latter. The insect-specific flaviviruses (ISFs) reported here form a new Anopheles mosquito-associated clade separate from the Aedes- and Culex-associated ISF clades. The identification of distinct clades for each mosquito genus provides new insights into the evolution and ecology of flaviviruses. One of these viruses was shown to replicate in the midgut of the mosquito host and exhibit the most specialized host restriction reported to date for ISFs. Understanding this unprecedented host restriction in ISFs could help identify the mechanisms involved in the evolution of flaviviruses and their emergence as mosquito-borne pathogens. Flaviviruses are arthropod-borne viruses found worldwide and are responsible for significant human and veterinary diseases, including dengue, Zika, and West Nile fever. Some flaviviruses are insect specific and replicate only in mosquitoes. We report a genetically divergent group of insect-specific flaviviruses from Anopheles mosquitoes that do not replicate in arthropod cell lines or heterologous Anopheles species, exhibiting unprecedented specialization for their host species. Determination of the complete sequences of the RNA genomes of three of these viruses, Karumba virus (KRBV), Haslams Creek virus, and Mac Peak virus (McPV), that are found in high prevalence in some Anopheles mosquito populations and detection of virus-specific proteins, replicative double-stranded RNA, and small interfering RNA responses in the host mosquito species provided strong evidence of a functional replicating virus in the mosquito midgut. Analysis of nucleotide composition in the KRBV and McPV sequences also revealed a pattern consistent with the virus evolving to replicate only in insects. These findings represent a significant advance in our knowledge of mosquito-borne flavivirus ecology, host restriction, and evolution. IMPORTANCE Flaviviruses like dengue, Zika, or West Nile virus infect millions of people each year and are transmitted to humans via infected-mosquito bites. A subset of flaviviruses can only replicate in the mosquito host, and recent studies have shown that some can interfere with pathogenic flaviviruses in mosquitoes and limit the replication and transmission of the latter. The insect-specific flaviviruses (ISFs) reported here form a new Anopheles mosquito-associated clade separate from the Aedes- and Culex-associated ISF clades. The identification of distinct clades for each mosquito genus provides new insights into the evolution and ecology of flaviviruses. One of these viruses was shown to replicate in the midgut of the mosquito host and exhibit the most specialized host restriction reported to date for ISFs. Understanding this unprecedented host restriction in ISFs could help identify the mechanisms involved in the evolution of flaviviruses and their emergence as mosquito-borne pathogens.
Collapse
|
49
|
Piyasena TBH, Setoh YX, Hobson-Peters J, Newton ND, Bielefeldt-Ohmann H, McLean BJ, Vet LJ, Khromykh AA, Hall RA. Infectious DNAs derived from insect-specific flavivirus genomes enable identification of pre- and post-entry host restrictions in vertebrate cells. Sci Rep 2017; 7:2940. [PMID: 28592864 PMCID: PMC5462777 DOI: 10.1038/s41598-017-03120-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses such as West Nile virus (WNV), dengue virus and Zika virus are mosquito-borne pathogens that cause significant human diseases. A novel group of insect-specific flaviviruses (ISFs), which only replicate in mosquitoes, have also been identified. However, little is known about the mechanisms of ISF host restriction. We report the generation of infectious cDNA from two Australian ISFs, Parramatta River virus (PaRV) and Palm Creek virus (PCV). Using circular polymerase extension cloning (CPEC) with a modified OpIE2 insect promoter, infectious cDNA was generated and transfected directly into mosquito cells to produce infectious virus indistinguishable from wild-type virus. When infectious PaRV cDNA under transcriptional control of a mammalian promoter was used to transfect mouse embryo fibroblasts, the virus failed to initiate replication even when cell entry steps were by-passed and the type I interferon response was lacking. We also used CPEC to generate viable chimeric viruses between PCV and WNV. Analysis of these hybrid viruses revealed that ISFs are also restricted from replication in vertebrate cells at the point of entry. The approaches described here to generate infectious ISF DNAs and chimeric viruses provide unique tools to further dissect the mechanisms of their host restriction.
Collapse
Affiliation(s)
- Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Yin X Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| |
Collapse
|
50
|
O'Brien CA, McLean BJ, Colmant AMG, Harrison JJ, Hall-Mendelin S, van den Hurk AF, Johansen CA, Watterson D, Bielefeldt-Ohmann H, Newton ND, Schulz BL, Hall RA, Hobson-Peters J. Discovery and Characterisation of Castlerea Virus, a New Species of Negevirus Isolated in Australia. Evol Bioinform Online 2017; 13:1176934317691269. [PMID: 28469377 PMCID: PMC5395271 DOI: 10.1177/1176934317691269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022] Open
Abstract
With advances in sequencing technologies, there has been an increase in the discovery of viruses that do not group with any currently described virus families. The newly described taxon Negevirus encompasses a group of viruses displaying an insect-specific phenotype which have been isolated from multiple host species on numerous continents. Using a broad-spectrum virus screening assay based on the detection of double-stranded RNA and next-generation sequencing, we have detected a novel species of negevirus, from Anopheles, Culex, and Aedes mosquitoes collected in 4 geographically separate regions of Australia. Bioinformatic analysis of the virus, tentatively named Castlerea virus, revealed that it is genetically distinct from previously described negeviruses but clusters in the newly proposed Nelorpivirus clade within this taxon. Analysis of virions confirmed the presence of 2 proteins of 24 and 40 kDa which support previous bioinformatic predictions of negevirus structural proteins.
Collapse
Affiliation(s)
- Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, Australia
| | - Cheryl A Johansen
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, WA, Australia.,Department of Health - Pathwest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|