1
|
Chen X, Zhang Y, Tong J, Ouyang P, Deng X, Zhang J, Liu H, Hu Y, Yao W, Wang J, Wang X, Hou S, Yao J. Catalytic mechanism, computational design, and crystal structure of a highly specific and efficient benzoylecgonine hydrolase. Int J Biol Macromol 2024; 283:137767. [PMID: 39561846 DOI: 10.1016/j.ijbiomac.2024.137767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Enzyme therapy for cocaine detoxification should break down both cocaine and its primary toxic metabolite, benzoylecgonine (BZE), which is also the main form of cocaine contaminant in the environment. An ideal BZE-metabolizing enzyme (BZEase) is expected to be highly efficient and selective in BZE hydrolysis. Here, BZEase4 was engineered from bacterial cocaine esterase (CocE) by our reactant state-based enzyme design theories (RED), which has a 34,977-fold improved substrate discrimination between BZE and the neurotransmitter acetylcholine (ACh), compared with wild-type CocE. Under the physiological concentrations of BZE and ACh, the reaction velocity of BZEase4 against BZE is 2.25 × 106-fold higher than it against ACh, suggesting BZEase4 has extremely high substrate selectivity for BZE over ACh to minimize the potential cholinergic side-effects. This study provides additional evidence supporting the further development of BZEase4 toward a promising therapeutic for cocaine overdose, a potentially effective and eco-friendly enzymatic method for BZE degradation in the environment.
Collapse
Affiliation(s)
- Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yun Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Junsen Tong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Pengfei Ouyang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xingyu Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jie Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huan Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yihui Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, Zhejiang 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, Zhejiang 310053, China
| | - Xia Wang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong 250022, China
| | - Shurong Hou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jianzhuang Yao
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong 250022, China.
| |
Collapse
|
2
|
Li S, Li P, Tian Y, Zeng R, Zhang Q, Pi C. A mini review of supramolecular antagonists based on macrocyclic host compounds. Bioorg Chem 2024; 153:107974. [PMID: 39571303 DOI: 10.1016/j.bioorg.2024.107974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
In the interdisciplinary domains of medicine and chemistry, addressing the issue of residual drugs (toxicants) that fail to fully exert therapeutic effects while potentially inducing toxic side effects has become increasingly critical. Researchers are actively seeking innovative solutions to this multifaceted challenge. Conventional small-molecule antagonists, commonly used in clinical settings, typically depend on "drug-receptor interactions" yet pose substantial developmental challenges. Recent advancements in the investigation of macrocyclic host compounds present a promising alternative. By leveraging the principles of host-guest chemistry, these macrocyclic hosts form stable inclusion complexes with residual drugs (toxicants), thereby decreasing their free concentration in the bloodstream and effectively mitigating associated toxic side effects. Consequently, macrocyclic host compounds represent a novel class of supramolecular antagonists (SAs). This article reviews recent progress in the application of macrocyclic host molecules-such as cyclodextrin, calix[n]arene, pillar[n]arene, and cucurbit[n]uril-as SA and examines current issues and future development prospects within the field.
Collapse
Affiliation(s)
- Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Pengcheng Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou, 635000, China.
| | - Chuan Pi
- Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou, 635000, China
| |
Collapse
|
3
|
Zhao CD, Cai W, Chen WJ, Yao H, Wang SM, Li K, Ma YL, Wang LL, Yang LP. Amide naphthotube as a novel supramolecular sequestration agent for tetracaine and decamethonium. Theranostics 2024; 14:5219-5234. [PMID: 39267791 PMCID: PMC11388068 DOI: 10.7150/thno.93654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
RATIONALE Anesthetics are widely used for optimizing surgical conditions, postoperative pain management, and treating various chronic pain conditions. Tetracaine and decamethonium are representative drugs of local anesthetics and neuromuscular blocking agents, respectively. However, overdose and toxicity of the drugs always lead to serious adverse events. Thus, there is a strong demand for effective antidotes. METHODS The binding interactions of amide naphthotubes with tetracaine and decamethonium were systematically studied using 1H NMR, ITC, and DFT calculations. The antidotal effects of amide naphthotube to tetracaine toxicity were assessed in vitro and in vivo, and the mechanism of detoxification was explored at a cellular level. Additionally, mouse models were established to evaluate the reversal activities of amide naphthotube on decamethonium-induced mortality and muscle relaxation, and the reversal mechanism was investigated through pharmacokinetic experiments. RESULTS We have demonstrated that the anti-isomer of amide naphthotube exhibits significant binding affinities towards tetracaine (K a = 1.89×107 M-1) and decamethonium (K a = 1.01×107 M-1) in water. The host displayed good biocompatibility both in vitro and in vivo. The administration of amide naphthotube following tetracaine overdose in mouse models notably increased the overall survival rate, indicating its effective antidotal properties. The host could reverse the tetracaine-induced Na+ channels blockage at the cellular level. Moreover, the injection of amide naphthotube also reversed the mortality and paralysis induced by decamethonium in mouse models following a pharmacokinetic mechanism. CONCLUSION An emerging artificial receptor, amide naphthotube, has strong binding affinities towards tetracaine and decamethonium. It functions as a supramolecular antidote for tetracaine poisoning and a reversal agent for decamethonium by selectively sequestering these compounds in vivo.
Collapse
Affiliation(s)
- Cheng-Da Zhao
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Wen-Jie Chen
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Huan Yao
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Song-Meng Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Yan-Long Ma
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Li-Li Wang
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liu-Pan Yang
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science and School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
4
|
Cho J, Park Y. Kahweol, a coffee diterpene, increases lifespan via insulin/insulin-like growth factor-1 and AMP-activated protein kinase signaling pathways in Caenorhabditiselegans. Curr Res Food Sci 2023; 7:100618. [PMID: 37886681 PMCID: PMC10598723 DOI: 10.1016/j.crfs.2023.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Coffee is one of the most widely consumed beverages and is known to have many health benefits. Our previous study reported that kahweol, a diterpene found in coffee, reduced fat accumulation by reducing food intake in Caenorhabditis elegans. Based on the widely known observation of caloric restriction and lifespan, we determined if kahweol extends lifespan in C. elegans. Kahweol significantly extended the lifespan of wild-type C. elegans. However, kahweol increased the lifespan of the eat-2 null mutant that has a reduced food intake phenotype, suggesting that kahweol extends lifespan independent of reduced food intake. Therefore, we further determine the target of kahweol on lifespan extension. Kahweol had no effects on the lifespan of both daf-2 (the homolog of insulin/insulin-like growth factor-1 receptor) and daf-16 (the homolog of Forkhead box O transcription factor and a major downstream target of daf-2) null mutants, suggesting kahweol extended lifespan via insulin/insulin-like growth factor-1 signaling pathway. In addition, kahweol failed to extend lifespan in tub-1 (the homolog of TUB bipartite transcription factor) and aak-2 (the homolog of AMP-activated protein kinase) null mutants, suggesting these roles on kahweol's effect on lifespan. However, the treatment of kahweol increased the lifespan in sir-2.1 (the homolog of NAD-dependent deacetylase sirtuin-1) and skn-1 (the homolog of nuclear factor erythroid 2-related factor 2) null mutants over the control, suggesting independent functions of these genes on kahweol's lifespan extension. These results indicate that the insulin/insulin-like growth factor-1 signaling and AMPK pathways may play critical roles in extending lifespan by kahweol in C. elegans.
Collapse
Affiliation(s)
- Junhyo Cho
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
5
|
Bogen IL, Boix F, Andersen JM, Steinsland S, Nerem E, Mørland J. Heroin metabolism in human blood and its impact for the design of an immunotherapeutic approach against heroin effects. Basic Clin Pharmacol Toxicol 2023; 133:418-427. [PMID: 37452619 DOI: 10.1111/bcpt.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Immunotherapeutic interventions that block drug effects by binding drug molecules to specific antibodies in the bloodstream have shown promising effects in animal studies. For heroin, which effects are mainly mediated by the metabolites 6-acetylmorphine (6-AM; also known as 6-monoacetylmorphine or 6-MAM) and morphine, the optimal antibody specificity has been discussed. In rodents, 6-AM specific antibodies have been recommended based on the rapid metabolism of heroin to 6-AM in the bloodstream. Since the metabolic rate of heroin in blood is unsettled in humans, we examined heroin metabolism with state-of-the-art analytical methodology (UHPLC-MS/MS) in freshly drawn human whole blood incubated with a wide range of heroin concentrations (1-500 μM). The half-life of heroin was highly concentration dependent, ranging from 1.2-1.7 min for concentrations at or above 25 μM, and gradually increasing to approximately 20 min for 1 μM heroin. At concentrations that can be attained in the bloodstream shortly after an i.v. injection, approximately 70% was transformed into 6-AM within 3 min, similar to previous observations in vivo. Our results indicate that blood enzymes play a more important role for the rapid metabolism of heroin in humans than previously assumed. This points to 6-AM as an important target for an efficient immunotherapeutic approach to block heroin effects in humans.
Collapse
Affiliation(s)
- Inger Lise Bogen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Jannike Mørch Andersen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Synne Steinsland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Elisabeth Nerem
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Jørg Mørland
- Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Eubanks LM, Pholcharee T, Oyen D, Natori Y, Zhou B, Wilson IA, Janda KD. An Engineered Human-Antibody Fragment with Fentanyl Pan-Specificity That Reverses Carfentanil-Induced Respiratory Depression. ACS Chem Neurosci 2023; 14:2849-2856. [PMID: 37534714 PMCID: PMC10791143 DOI: 10.1021/acschemneuro.3c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The opioid overdose crisis primarily driven by potent synthetic opioids resulted in more than 500,000 deaths in the US over the last 20 years. Though naloxone, a short-acting medication, remains the primary treatment option for temporarily reversing opioid overdose effects, alternative countermeasures are needed. Monoclonal antibodies present a versatile therapeutic opportunity that can be tailored to synthetic opioids and help prevent post-treatment renarcotization. The ultrapotent analog carfentanil is especially concerning due to its unique pharmacological properties. With this in mind, we generated a fully human antibody through a drug-specific B cell sorting strategy with a combination of carfentanil and fentanyl probes. The resulting pan-specific antibody was further optimized through scFv phage display, producing C10-S66K. This monoclonal antibody displays high affinity to carfentanil, fentanyl, and other analogs and reversed carfentanil-induced respiratory depression. Additionally, X-ray crystal structures with carfentanil and fentanyl bound provided structural insight into key drug:antibody interactions.
Collapse
Affiliation(s)
- Lisa M. Eubanks
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
| | - David Oyen
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
| | - Yoshihiro Natori
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
- The Skaggs Institute for Chemical Biology, La Jolla, CA
92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
- Worm Institute for Research and Medicine (WIRM), The
Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
7
|
Park H, Lin M, Zhou J, Eubanks LM, Zhou B, Janda KD. Development of a vaccine against the synthetic opioid U-47700. Front Pharmacol 2023; 14:1219985. [PMID: 37492086 PMCID: PMC10363602 DOI: 10.3389/fphar.2023.1219985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Opioid use disorders and overdose have become a major public health concern in recent years. U-47700, a New psychoactive substances (NPS) opioid, also known as "pinky" or "pink" has been identified as a new threat in the drug supply because of its potency and abuse potential. Conjugate vaccines that can produce antibodies against target drug molecules have emerged as a promising tool to treat substance use disorders. Herein, we report the design, synthesis, and in vivo characterization of a U-47700 vaccine. The vaccine demonstrated favorable results with rodents producing elevated levels of antibody titer and sub-micromolar affinity to U-47700. In addition, antibodies generated by the vaccine effectively mitigated drug-induced effects by preventing the drug from penetrating the blood-brain barrier, which was verified by antinociception and drug biodistribution studies. The development of a vaccine against U-47700 and other NPS opioids contributes to the continued advancement of non-conventional pharmacological treatments to address the global opioid epidemic.
Collapse
Affiliation(s)
- Hyeri Park
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Mingliang Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Jian Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
- The College of Chemistry, Nankai University, Tianjin, China
| | - Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
8
|
Eubanks LM, Pholcharee T, Oyen D, Natori Y, Zhou B, Wilson IA, Janda KD. An Engineered Human-Antibody Fragment with Fentanyl Pan-Specificity that Reverses Carfentanil-Induced Respiratory Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547721. [PMID: 37461607 PMCID: PMC10349930 DOI: 10.1101/2023.07.04.547721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The opioid overdose crisis primarily driven by potent synthetic opioids resulted in more than 500,000 deaths in the US over the last 20 years. Though naloxone, a short acting medication, remains the primary treatment option for temporarily reversing opioid overdose effects, alternative countermeasures are needed. Monoclonal antibodies present a versatile therapeutic opportunity that can be tailored for synthetic opioids and that can help prevent post-treatment renarcotization. The ultrapotent analog carfentanil, is especially concerning due to its unique pharmacological properties. With this in mind, we generated a fully human antibody through a drug-specific B cell sorting strategy with a combination of carfentanil and fentanyl probes. The resulting pan-specific antibody was further optimized through scFv phage display. This antibody, C10-S66K, displays high affinity to carfentanil, fentanyl, and other analogs, and reversed carfentanil-induced respiratory depression. Additionally, x-ray crystal structures with carfentanil and fentanyl bound provided structural insight into key drug:antibody interactions.
Collapse
Affiliation(s)
- Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Yoshihiro Natori
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
- Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
9
|
Lin M, Eubanks LM, Karadkhelkar NM, Blake S, Janda KD. Catalytic Antibody Blunts Carfentanil-Induced Respiratory Depression. ACS Pharmacol Transl Sci 2023; 6:802-811. [PMID: 37200811 PMCID: PMC10186356 DOI: 10.1021/acsptsci.3c00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 05/20/2023]
Abstract
Carfentanil, the most potent of the fentanyl analogues, is at the forefront of synthetic opioid-related deaths, second to fentanyl. Moreover, the administration of the opioid receptor antagonist naloxone has proven inadequate for an increasing number of opioid-related conditions, often requiring higher/additional doses to be effective, as such interest in alternative strategies to combat more potent synthetic opioids has intensified. Increasing drug metabolism would be one strategy to detoxify carfentanil; however, carfentanil's major metabolic pathways involve N-dealkylation or monohydroxylation, which do not lend themselves readily to exogenous enzyme addition. Herein, we report, to our knowledge, the first demonstration that carfentanil's methyl ester when hydrolyzed to its acid was found to be 40,000 times less potent than carfentanil in activating the μ-opioid receptor. Physiological consequences of carfentanil and its acid were also examined through plethysmography, and carfentanil's acid was found to be incapable of inducing respiratory depression. Based upon this information, a hapten was chemically synthesized and immunized, allowing the generation of antibodies that were screened for carfentanil ester hydrolysis. From the screening campaign, three antibodies were found to accelerate the hydrolysis of carfentanil's methyl ester. From this series of catalytic antibodies, the most active underwent extensive kinetic analysis, allowing us to postulate its mechanism of hydrolysis against this synthetic opioid. In the context of potential clinical applications, the antibody, when passively administered, was able to reduce respiratory depression induced by carfentanil. The data presented supports further development of antibody catalysis as a biologic strategy to complement carfentanil overdose reversal.
Collapse
Affiliation(s)
- Mingliang Lin
- Departments of Chemistry
and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute
of Research and Medicine (WIRM), The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Lisa M. Eubanks
- Departments of Chemistry
and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute
of Research and Medicine (WIRM), The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Nishant M. Karadkhelkar
- Departments of Chemistry
and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute
of Research and Medicine (WIRM), The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Steven Blake
- Departments of Chemistry
and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute
of Research and Medicine (WIRM), The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry
and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute
of Research and Medicine (WIRM), The Scripps
Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Brockett AT, Xue W, King D, Deng CL, Zhai C, Shuster M, Rastogi S, Briken V, Roesch MR, Isaacs L. Pillar[6]MaxQ: A Potent Supramolecular Host for In Vivo Sequestration of Methamphetamine and Fentanyl. Chem 2023; 9:881-900. [PMID: 37346394 PMCID: PMC10281757 DOI: 10.1016/j.chempr.2022.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pillar[6]MaxQ (P6AS) functions as an in vivo sequestration agent for methamphetamine and fentanyl. We use 1H NMR, isothermal titration calorimetry, and molecular modelling to deduce the geometry and strength of the P6AS•drug complexes. P6AS forms tight complexes with fentanyl (Kd=9.8 nM), PCP (17.1 nM), MDMA (25.5 nM), mephedrone (52.4 nM), and methamphetamine (101 nM). P6AS has good in vitro biocompatibility according to MTS metabolic, Adenylate Kinase cell death, and hERG ion channel inhibition assays, and the Ames fluctuation test. The no observed adverse effect level for P6AS is 45 mg/kg. The hyperlocomotion of mice treated with methamphetamine (0.5 mg/kg) can be ameliorated by treatment with P6AS (35.7 mg/kg) 5-minutes later, whereas the hyperlocomotion of mice treated with fentanyl (0.1 mg/kg) can be controlled by treatment with P6AS (5 mg/kg) up to 15-minutes later. P6AS has significant potential for development as a broad spectrum in vivo sequestration agent.
Collapse
Affiliation(s)
- Adam T. Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Shivangi Rastogi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Matthew R. Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
11
|
Vavilis T, Stamoula E, Sachinidis A, Lamprinou M, Dardalas I, Papazisis G. Biopharmaceuticals against substance use disorders - Present and future. Eur J Pharmacol 2023; 944:175587. [PMID: 36775113 DOI: 10.1016/j.ejphar.2023.175587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Pharmacological treatments available for substance use disorder (SUD) focus on pharmacodynamics, agonizing or antagonizing the drug of abuse (DOA) on receptor level. Drawbacks of this approach include the reliance on long-term patient compliance, on-target off-site effects, perpetuation of addiction and unavailability for many DOAs. Newer, pharmacokinetic approaches are needed that restrict DOA's access to the brain or disrupt DOA-instated brain changes maintaining addiction. Biotechnology might be able to provide the right biopharmaceutical tools to deliver a fine-tuned solution with less side effects compared to currently available treatments. METHODS This review examines the available literature on biopharmaceuticals developed to treat SUD. RESULTS Active and passive immunization, metabolic enhancers that augment DOA metabolism and clearance, as well as genetic/epigenetic modulation are promising next generation SUD treatments. Active immunization relies on production of antidrug antibodies by means of vaccination, while passive immunization constitutes of exogenous administration of such antibodies. Metabolic enhancers include drug-specific metabolizing enzymes that can be administered or secreted by modified skin grafts, as well as catalytic antibodies that hasten DOA metabolism. Nanotechnological advances can also allow for brain delivery of siRNAs, mRNAs or DNA in order to modulate central, common in all addictions, genetic or epigenetic targets attenuating drug seeking behavior and reversing drug-induced brain changes. CONCLUSIONS and Scientific Significance: Biopharmaceuticals can in the future complement or even replace traditional pharmacodynamics approaches in SUD treatment. While passive and active immunization biopharmaceuticals have entered human clinical trials, metabolic enhancers and genetic approaches are at the preclinical level.
Collapse
Affiliation(s)
- Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Department of Dentistry, European University Cyprus, Nicosia, 2404, Cyprus.
| | - Eleni Stamoula
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece; Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Malamatenia Lamprinou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
DiMaggio D, Brockett AT, Shuster M, Murkli S, Zhai C, King D, O'Dowd B, Cheng M, Brady K, Briken V, Roesch MR, Isaacs L. Anthracene-Walled Acyclic CB[n] Receptors: in vitro and in vivo Binding Properties toward Drugs of Abuse. ChemMedChem 2022; 17:e202200046. [PMID: 35238177 PMCID: PMC9119912 DOI: 10.1002/cmdc.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Indexed: 11/07/2022]
Abstract
We report studies of the interaction of six acyclic CB[n]-type receptors toward a panel of drugs of abuse by a combination of isothermal titration calorimetry and 1 H NMR spectroscopy. Anthracene walled acyclic CB[n] host (M3) displays highest binding affinity toward methamphetamine (Kd =15 nM) and fentanyl (Kd =4 nM). Host M3 is well tolerated by Hep G2 and HEK 293 cells up to 100 μM according to MTS metabolic and adenylate kinase release assays. An in vivo maximum tolerated dose study with Swiss Webster mice showed no adverse effects at the highest dose studied (44.7 mg kg-1 ). Host M3 is not mutagenic based on the Ames fluctuation test and does not inhibit the hERG ion channel. In vivo efficacy studies showed that pretreatment of mice with M3 significantly reduces the hyperlocomotion after treatment with methamphetamine, but M3 does not function similarly when administered 30 seconds after methamphetamine.
Collapse
Affiliation(s)
- Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Brona O'Dowd
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Kimberly Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
13
|
Zhao L, Chen J, Tian L, Zhang Y, Chen L, Du X, Ma M, Li J, Meng Q, Li C. Supramolecular Detoxification of Macromolecular Biotoxin through the Complexation by a Large-Sized Macrocycle. Adv Healthc Mater 2022; 11:e2200270. [PMID: 35543330 DOI: 10.1002/adhm.202200270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Biotoxins are diverse, complex, and hypertoxic, ultimately serving as grave and lasting menaces to humanity. Here, it is aimed to introduce a new detoxification methodology for macromolecular biotoxin through complexation by a very large macrocycle. A 25-mer peptide isolated from Lycosa erythrognatha spider venom (LyeTxI) is selected as the model macromolecular biotoxin. Quaterphen[4]arene, with a side length of ≈1.6 nm, has a sufficient cavity to bind LyeTxI. Hence, the water-soluble derivative of Quaterphen[4]arene (H) is designed and synthesized. H exhibits an overall host-guest complexation toward LyeTxI, resulting in a considerably high association constant of (7.01 ± 0.18) × 107 m-1 . This encapsulation of peptide is interesting as traditional macrocycles can only engulf the amino acid residues of peptides due to their limited cavity size. In vitro assay verifies that complexation by H inhibits the interactions of LyeTxI with cell membranes, thereby reducing its cytotoxicity, suppressing hemolysis, and decreasing the release of lactate dehydrogenase. Notably, the intravenous administration of H has a significant therapeutic effect on LyeTxI-poisoned mice, alleviating inflammation and tissue damage, and markedly improving the survival rate from 10% to 80%. An efficient and potentially versatile approach is provided to detoxify macromolecular biotoxins, with giant macrocycle serving as an antidote.
Collapse
Affiliation(s)
- Liang Zhao
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
- Key Laboratory of Inorganic‐Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Long Tian
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Xinbei Du
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Jian Li
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Chunju Li
- Key Laboratory of Inorganic‐Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
14
|
Hadizadeh H, Flores J, Nunes E, Mayerson T, Potenza MN, Angarita GA. Novel Pharmacological Agents for the Treatment of Cocaine Use Disorder. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Brockett AT, Deng C, Shuster M, Perera S, DiMaggio D, Cheng M, Murkli S, Briken V, Roesch MR, Isaacs L. In Vitro and In Vivo Sequestration of Methamphetamine by a Sulfated Acyclic CB[n]-Type Receptor. Chemistry 2021; 27:17476-17486. [PMID: 34613641 PMCID: PMC8665056 DOI: 10.1002/chem.202102919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 01/26/2023]
Abstract
We report the synthesis of two new acyclic sulfated acyclic CB[n]-type receptors (TriM0 and Me4 TetM0) and investigations of their binding properties toward a panel of drugs of abuse (1-13) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry. TetM0 is the most potent receptor with Ka ≥106 M-1 toward methamphetamine, fentanyl, MDMA and mephedrone. TetM0 is not cytotoxic toward HepG2 and HEK 293 cells below 100 μM according to MTS metabolic and adenylate kinase release assays and is well tolerated in vivo when dosed at 46 mg kg-1 . TetM0 does not inhibit the hERG ion channel and is not mutagenic based on the Ames fluctuation test. Finally, in vivo efficacy studies show that the hyperlocomotion of mice treated with methamphetamine can be greatly reduced by treatment with TetM0 up to 5 minutes later. TetM0 has potential as a broad spectrum in vivo sequestrant for drugs of abuse.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Chunlin Deng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, United States
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland at College Park, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, United States
| |
Collapse
|
16
|
Pan YC, Yue YX, Hu XY, Li HB, Guo DS. A Supramolecular Antidote to Macromolecular Toxins Prepared through Coassembly of Macrocyclic Amphiphiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104310. [PMID: 34418189 DOI: 10.1002/adma.202104310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Poisoning is a leading cause of admission to medical emergency departments and intensive care units. Supramolecular detoxification, which involves injecting supramolecular receptors that bind with toxins to suppress their biological activity, is an emerging strategy for poisoning treatment; it has few requirements and a broad application scope. However, it is still a formidable challenge to design supramolecular therapeutic materials as an antidote to macromolecular toxins, because the large size, flexible conformation, and presence of multiple and diverse binding sites of biomacromolecules hinder their recognition. Herein, a supramolecular antidote to macromolecular toxins is developed through the coassembly of macrocyclic amphiphiles, relying on heteromultivalent recognition between the coassembled components and toxic macromolecules. The coassembly of amphiphilic cyclodextrin and calixarene strongly and selectively captures melittin, a toxin studied herein; this imparts various therapeutic effects such as inhibiting the interactions of melittin with cell membranes, alleviating melittin cytotoxicity and hemolytic toxicity, reducing the mortality rate of melittin-poisoned mice, and mitigating damage to major organs. The use of the proposed antidote overcomes the limitation of supramolecular detoxification applicability to only small-molecular toxins. The antidote can also detoxify other macromolecular toxins as long as selective and strong binding is achieved because of the coassembling tunability.
Collapse
Affiliation(s)
- Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Xin Yue
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
17
|
Kumar P, Sharma A, Kumar D, Sharma L. Use of Spectroscopic Methods and Their Clinical Applications in Drug Abuse: A Review. Crit Rev Anal Chem 2021; 53:360-373. [PMID: 34376090 DOI: 10.1080/10408347.2021.1958196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Assurance of substance abuse in plasma and different parts of the body is vital in clinical and legal toxicology. Detection techniques are evaluated for their appropriateness in scientific and clinical sciences, where extraordinary prerequisites must be met. Recognition and affirmation are for the most part done by gas chromatography-Mass spectrometry (GC-MS) or liquid chromatography (LC-MS), Surface-enhanced Raman spectroscopy (SERS), Magnetic resonance imaging, Positron Emission Tomography, Infrared Spectroscopy, and UV Spectroscopy. Progressed spectroscopic techniques provided helpful quantitative or qualitative data about the natural chemistry and science of exploited substances. These spectroscopic techniques are assumed as quick, precise, and some of them are non-damaging investigation apparatus that may be assumed as a substitution for previously used compound investigation. Spectroscopy with its advances in technology is centralized to novel applications in the detection of abused drug substances and clinical toxicology. These techniques have attracted growing interest as forensic tools for the early detection and monitoring of exploited drugs. This review describes the principle, role, and clinical application of various spectroscopic techniques which are utilized for the identification of drug abuse like morphine, cocaine, codeine, alcohol, amphetamines, and their metabolites in whole blood, plasma, hair, and nails.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
18
|
Raleigh MD, Beltraminelli N, Fallot S, LeSage MG, Saykao A, Pentel PR, Fuller S, Thisted T, Biesova Z, Horrigan S, Sampey D, Zhou B, Kalnik MW. Attenuating nicotine's effects with high affinity human anti-nicotine monoclonal antibodies. PLoS One 2021; 16:e0254247. [PMID: 34329335 PMCID: PMC8323890 DOI: 10.1371/journal.pone.0254247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022] Open
Abstract
Use of nicotine-specific monoclonal antibodies (mAbs) to sequester and reduce nicotine distribution to brain has been proposed as a therapeutic approach to treat nicotine addiction (the basis of tobacco use disorder). A series of monoclonal antibodies with high affinity for nicotine (nic•mAbs) was isolated from B-cells of vaccinated smokers. Genes encoding 32 unique nicotine binding antibodies were cloned, and the mAbs expressed and tested by surface plasmon resonance to determine their affinity for S-(–)-nicotine. The highest affinity nic•mAbs had binding affinity constants (KD) between 5 and 67 nM. The 4 highest affinity nic•mAbs were selected to undergo additional secondary screening for antigen-specificity, protein properties (including aggregation and stability), and functional in vivo studies to evaluate their capacity for reducing nicotine distribution to brain in rats. The 2 most potent nic•mAbs in single-dose nicotine pharmacokinetic experiments were further tested in a dose-response in vivo study. The most potent lead, ATI-1013, was selected as the lead candidate based on the results of these studies. Pretreatment with 40 and 80 mg/kg ATI-1013 reduced brain nicotine levels by 56 and 95%, respectively, in a repeated nicotine dosing experiment simulating very heavy smoking. Nicotine self-administration was also significantly reduced in rats treated with ATI-1013. A pilot rat 30-day repeat-dose toxicology study (4x200mg/kg ATI-1013) in the presence of nicotine indicated no drug-related safety concerns. These data provide evidence that ATI-1013 could be a potential therapy for the treatment of nicotine addiction.
Collapse
Affiliation(s)
- Michael D. Raleigh
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | | | - Mark G. LeSage
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
| | - Amy Saykao
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
| | - Paul R. Pentel
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
| | - Steve Fuller
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
| | - Thomas Thisted
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
| | - Zuzanna Biesova
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
| | - Stephen Horrigan
- Noble Life Sciences, Woodbine, Maryland, United States of America
| | - Darryl Sampey
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Biofactura, Inc., Frederick, Maryland, United States of America
| | - Bin Zhou
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Matthew W. Kalnik
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Lin M, Ellis B, Eubanks LM, Janda KD. Pharmacokinetic Approach to Combat the Synthetic Cannabinoid PB-22. ACS Chem Neurosci 2021; 12:2573-2579. [PMID: 34254505 DOI: 10.1021/acschemneuro.1c00360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Synthetic cannabinoids are part of a group of drugs called new psychoactive substances. Most of these cannabinoids are unregulated, and there are no therapeutic treatments for their addictive properties or reversing a potential overdose. Vaccination and catalytic antibodies strategies were investigated to assess their ability to blunt the psychoactive properties of the cannabinoid PB-22. To complement these antibody concentric investigations, we also disclose the discovery of the enzymatic degradation of this cannabinoid. Serum factors including albumin and carboxylesterase were found to catalyze the hydrolysis of PB-22. Affinity, kinetics, animal behavior, and biodistribution studies were utilized to evaluate the efficiency of these pharmacokinetic approaches. Our findings suggest simple antibody binding as the most efficacious means for altering PB-22's effect on the brain. Catalytic approaches only translated to esterases being capable of PB-22's degradation with a catalytic antibody approach providing no proclivity for PB-22's hydrolysis. Pharmacokinetic approaches provide a powerful strategy for treating substance abuse disorders and overdose for drugs where no therapeutic is available.
Collapse
Affiliation(s)
- Mingliang Lin
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Beverly Ellis
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lisa M. Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D. Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
20
|
The Individualized Management Approach for Acute Poisoning. Adv Pharmacol Pharm Sci 2021; 2021:9926682. [PMID: 34056610 PMCID: PMC8133860 DOI: 10.1155/2021/9926682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Acute poisoning is a widespread emergency that mandates early management decisions for optimal outcomes. An individualized approach is an ideal way to provide those outcomes. Promoting awareness among healthcare professionals managing acute poisoning about the importance of incorporating the pharmacokinetics and following certain criteria to consider interventions such as activated charcoal, antidote, or specific investigations may improve their risk assessment strategies and management plans. To address the main aspects that should be considered to develop a customized poisoning management plan, we conducted this review based on relevant publications recovered by a careful search in PubMed. Our opinions as experts from the King Saud University (KSU) Drug and Poison Information Center (DPIC) were considered in the review.
Collapse
|
21
|
Murkli S, Klemm J, Brockett AT, Shuster M, Briken V, Roesch MR, Isaacs L. In Vitro and In Vivo Sequestration of Phencyclidine by Me 4 Cucurbit[8]uril*. Chemistry 2021; 27:3098-3105. [PMID: 33206421 PMCID: PMC7902406 DOI: 10.1002/chem.202004380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/19/2022]
Abstract
We report investigations of the use of cucurbit[8]uril (CB[8]) macrocycles as an antidote to counteract the in vivo biological effects of phencyclidine. We investigate the binding of CB[8] and its derivative Me4 CB[8] toward ten drugs of abuse (3-9, 12-14) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry in phosphate buffered water. We find that the cavity of CB[8] and Me4 CB[8] are able to encapsulate the 1-amino-1-aryl-cyclohexane ring system of phencyclidine (PCP) and ketamine as well as the morphinan skeleton of morphine and hydromorphone with Kd values ≤50 nm. In vitro cytotoxicity (MTS metabolic and adenylate kinase cell death assays in HEK293 and HEPG2 cells) and in vivo maximum tolerated dose studies (Swiss Webster mice) which were performed for Me4 CB[8] indicated good tolerability. The tightest host⋅guest pair (Me4 CB[8]⋅PCP; Kd =2 nm) was advanced to in vivo efficacy studies. The results of open field tests demonstrate that pretreatment of mice with Me4 CB[8] prevents subsequent hyperlocomotion induction by PCP and also that treatment of animals previously dosed with PCP with Me4 CB[8] significantly reduces the locomotion levels.
Collapse
Affiliation(s)
- Steven Murkli
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Jared Klemm
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Adam T. Brockett
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Department of Psychology, University of Maryland, College Park, MD 20742, United States
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Michael Shuster
- Mr. Michael Shuster, Prof. Dr. Volker Briken, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Volker Briken
- Mr. Michael Shuster, Prof. Dr. Volker Briken, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Matthew R. Roesch
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Department of Psychology, University of Maryland, College Park, MD 20742, United States
- Dr. Adam T. Brockett, Prof. Dr. Matthew R. Roesch, Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Lyle Isaacs
- Mr. Steven Murkli, Mr. Jared Klemm, Mr. David King, Dr. Peter Y. Zavalij, Prof. Dr. Lyle Isaacs, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
22
|
Deng CL, Murkli SL, Isaacs LD. Supramolecular hosts as in vivo sequestration agents for pharmaceuticals and toxins. Chem Soc Rev 2020; 49:7516-7532. [PMID: 33043945 PMCID: PMC7606718 DOI: 10.1039/d0cs00454e] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pharmaceutical agents, drugs of abuse, and toxic substances have a large impact, positive and negative, on modern society. Efforts to mitigate the side effects of pharmaceuticals and counteract the life threatening effects of drugs of abuse and toxins can occur either by pharmacodynamic (PD) approaches based on bioreceptor·drug antagonism or by pharmacokinetic (PK) approaches that seek to reduce the concentration of free drug. In this tutorial review, we present the use of supramolecular hosts (cyclodextrins, calixarenes, (acyclic) cucurbiturils, and pillararenes) as in vivo sequestration agents for neuromuscular blockers, drugs of abuse (methamphetamine and fentanyl), anesthetics, neurotoxins, the pesticide paraquat, and heparin anti-coagulants by the PK approach. The review presents the basic physical and molecular recognition features of the supramolecular hosts and some of the principles used in their selection and structural optimization for in vivo sequestration applications. The influence of host·guest complexation on other relevant in vivo properties of drugs (e.g. distribution, circulation time, excretion, redox properties) is also mentioned. The article concludes with a discussion of future directions.
Collapse
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
23
|
Belz TF, Bremer PT, Zhou B, Blake S, Ellis B, Eubanks LM, Janda KD. Sulfonate-isosteric replacement examined within heroin-hapten vaccine design. Bioorg Med Chem Lett 2020; 30:127388. [PMID: 32738981 PMCID: PMC7398700 DOI: 10.1016/j.bmcl.2020.127388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Heroin overdose and addiction remain significant health and economic burdens in the world today costing billions of dollars annually. Moreover, only limited pharmacotherapeutic options are available for treatment of heroin addiction. In our efforts to combat the public health threat posed by heroin addiction, we have developed vaccines against heroin. To expand upon our existing heroin-vaccine arsenal, we synthesized new aryl and alkyl sulfonate ester haptens; namely aryl-mono-sulfonate (HMsAc) and Aryl/alkyl-di-sulfonate (H(Ds)2) as carboxyl-isosteres of heroin then compared them to our model heroin-hapten (HAc) through vaccination studies. Heroin haptens were conjugated to the carrier protein CRM197 and the resulting CRM-immunoconjugates were used to vaccinate Swiss Webster mice following an established immunization protocol. Binding studies revealed that the highest affinity anti-heroin antibodies were generated by the HMsAc vaccine followed by the HAc and H(Ds)2 vaccines, respectively (HMsAc > HAc≫HDs2). However, neither the HMsAc nor H(Ds)2 vaccines were able to generate high affinity antibodies to the psychoactive metabolite 6-acetyl morphine (6-AM), in comparison to the HAc vaccine. Blood brain bio-distribution studies supported these binding results with vaccine efficiency following the trend HAc > HMsAc ≫ H(Ds)2 The work described herein provides insight into the use of hapten-isosteric replacement in vaccine drug design.
Collapse
Affiliation(s)
- Tyson F Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Paul T Bremer
- Cessation Therapeutics LLC, 3031 Tisch Way Ste 505, San Jose, CA 95128, United States
| | - Bin Zhou
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Steven Blake
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Beverly Ellis
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Lisa M Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
24
|
Larrimore KE, Kannan L, Kendle RP, Jamal T, Barcus M, Stefanko K, Kilbourne J, Brimijoin S, Zhan CG, Neisewander J, Mor TS. A plant-derived cocaine hydrolase prevents cocaine overdose lethality and attenuates cocaine-induced drug seeking behavior. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109961. [PMID: 32387315 PMCID: PMC7398606 DOI: 10.1016/j.pnpbp.2020.109961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
Cocaine use disorders include short-term and acute pathologies (e.g. overdose) and long-term and chronic disorders (e.g. intractable addiction and post-abstinence relapse). There is currently no available treatment that can effectively reduce morbidity and mortality associated with cocaine overdose or that can effectively prevent relapse in recovering addicts. One recently developed approach to treat these problems is the use of enzymes that rapidly break down the active cocaine molecule into inactive metabolites. In particular, rational design and site-directed mutagenesis transformed human serum recombinant butyrylcholinesterase (BChE) into a highly efficient cocaine hydrolase with drastically improved catalytic efficiency toward (-)-cocaine. A current drawback preventing the clinical application of this promising enzyme-based therapy is the lack of a cost-effective production strategy that is also flexible enough to rapidly scale-up in response to continuous improvements in enzyme design. Plant-based expression systems provide a unique solution as this platform is designed for fast scalability, low cost and the advantage of performing eukaryotic protein modifications such as glycosylation. A Plant-derived form of the Cocaine Super Hydrolase (A199S/F227A/S287G/A328W/Y332G) we designate PCocSH protects mice from cocaine overdose, counters the lethal effects of acute cocaine overdose, and prevents reinstatement of extinguished drug-seeking behavior in mice that underwent place conditioning with cocaine. These results demonstrate that the novel PCocSH enzyme may well serve as an effective therapeutic for cocaine use disorders in a clinical setting.
Collapse
Affiliation(s)
| | - Latha Kannan
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; Center of Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - R Player Kendle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Tameem Jamal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Matthew Barcus
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Kathryn Stefanko
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacquelyn Kilbourne
- Center of Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | - Janet Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Tsafrir S Mor
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; Center of Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287-4501, USA.
| |
Collapse
|
25
|
Belz TF, Bremer PT, Zhou B, Ellis B, Eubanks LM, Janda KD. Enhancement of a Heroin Vaccine through Hapten Deuteration. J Am Chem Soc 2020; 142:13294-13298. [PMID: 32700530 DOI: 10.1021/jacs.0c05219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The United States is in the midst of an unprecedented epidemic of opioid substance use disorder, and while pharmacotherapies including opioid agonists and antagonists have shown success, they can be inadequate and frequently result in high recidivism. With these challenges facing opioid use disorder treatments immunopharmacotherapy is being explored as an alternative therapy option and is based upon antibody-opioid sequestering to block brain entry. Development of a heroin vaccine has become a major research focal point; however, producing an efficient vaccine against heroin has been particularly challenging because of the need to generate not only a potent immune response but one against heroin and its multiple psychoactive molecules. In this study, we explored the consequence of regioselective deuteration of a heroin hapten and its impact upon the immune response against heroin and its psychoactive metabolites. Deuterium (HdAc) and cognate protium heroin (HAc) haptens were compared head to head in an inclusive vaccine study. Strikingly the HdAc vaccine granted greater efficacy in blunting heroin analgesia in murine behavioral models compared to the HAc vaccine. Binding studies confirmed that the HdAc vaccine elicited both greater quantities and equivalent or higher affinity antibodies toward heroin and 6-AM. Blood-brain biodistribution experiments corroborated these affinity tests. These findings suggest that regioselective hapten deuteration could be useful for the resurrection of previous drug of abuse vaccines that have met limited success in the past.
Collapse
Affiliation(s)
- Tyson F Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Paul T Bremer
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,Cessation Therapeutics LLC, 3031 Tisch Way Ste 505, San Jose, California 95128, United States
| | - Bin Zhou
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Beverly Ellis
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lisa M Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Leonard MZ, Rostin P, Hill KP, Grabitz SD, Eikermann M, Miczek KA. The Molecular-Container Calabadion-2 Prevents Methamphetamine-Induced Reinstatement in Rats: A Potential Approach to Relapse Prevention? Int J Neuropsychopharmacol 2020; 23:401-405. [PMID: 32531049 PMCID: PMC7311644 DOI: 10.1093/ijnp/pyz070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Reexposure to methamphetamine with a single "priming dose" can trigger intense cravings and precipitate relapse in methamphetamine-dependent individuals. The acyclic cucurbit[n]uril "molecular container" calabadion-2 shows a high affinity to bind and sequester methamphetamine in vitro and attenuates its locomotor-stimulating effect in rats. The present study investigates whether pretreatment with calabadion-2 is sufficient to prevent the reinstatement of drug seeking by a priming dose of methamphetamine in rats. METHODS Male Long-Evans rats were trained to self-administer i.v. methamphetamine (0.06 mg/kg/infusion). Following 10 days of stable self-administration, rats underwent extinction training and were subsequently tested on a multi-phase reinstatement procedure. Drug-primed reinstatement sessions (0.3 mg/kg methamphetamine, i.v.) were preceded by either saline or calabadion-2 (130 mg/kg). Additional reinstatement tests were conducted after administration of yohimbine (1.0 mg/kg, i.v.) to define the pharmacological specificity of calabadion-2. RESULTS Pretreatment with calabadion-2 significantly attenuated methamphetamine-induced reinstatement of responding. Cal2 did not affect drug-seeking behavior stimulated by the pharmacological stressor yohimbine, indicating a mechanism of action specific to methamphetamine. CONCLUSIONS These results demonstrate the effectiveness of calabadion-2 in a preclinical model relapse-like behavior. With further structural optimization, molecular containers may provide a novel and efficacious pharmacokinetic approach to relapse prevention for methamphetamine-dependent individuals.
Collapse
Affiliation(s)
| | - Paul Rostin
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Kevin P Hill
- Division of Addiction Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Stephanie D Grabitz
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Matthias Eikermann
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA,Department of Anesthesiology and Intensive Care Medicine, University Duisburg-Essen, Essen, Germany,Correspondence: Klaus Miczek, PhD, Department of Psychology, Tufts University Medford, 530 Boston Ave, 02155, MA () and Matthias Eikermann, MD, PhD, Department of Anaesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, 330 Brookline Avenue, MA 02215 ()
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, MA,Departments of Neuroscience and Pharmacology, Tufts University, Boston, MA,Correspondence: Klaus Miczek, PhD, Department of Psychology, Tufts University Medford, 530 Boston Ave, 02155, MA () and Matthias Eikermann, MD, PhD, Department of Anaesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, 330 Brookline Avenue, MA 02215 ()
| |
Collapse
|
27
|
Yu C, Resendiz-Gutierrez F, Hall FS. Molecular-container Calabadion-2: Can Sweeping the Brain of Drugs Promote Abstinence? Int J Neuropsychopharmacol 2020; 23:406-408. [PMID: 32403121 PMCID: PMC7311643 DOI: 10.1093/ijnp/pyaa037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Chen Yu
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, Ohio
| | | | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, Ohio,Correspondence: F. Scott Hall, PhD, Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, MS 1015, Toledo, OH 43614 ()
| |
Collapse
|
28
|
Costea T, Vlad OC, Miclea LC, Ganea C, Szöllősi J, Mocanu MM. Alleviation of Multidrug Resistance by Flavonoid and Non-Flavonoid Compounds in Breast, Lung, Colorectal and Prostate Cancer. Int J Mol Sci 2020; 21:E401. [PMID: 31936346 PMCID: PMC7013436 DOI: 10.3390/ijms21020401] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the manuscript is to discuss the influence of plant polyphenols in overcoming multidrug resistance in four types of solid cancers (breast, colorectal, lung and prostate cancer). Effective treatment requires the use of multiple toxic chemotherapeutic drugs with different properties and targets. However, a major cause of cancer treatment failure and metastasis is the development of multidrug resistance. Potential mechanisms of multidrug resistance include increase of drug efflux, drug inactivation, detoxification mechanisms, modification of drug target, inhibition of cell death, involvement of cancer stem cells, dysregulation of miRNAs activity, epigenetic variations, imbalance of DNA damage/repair processes, tumor heterogeneity, tumor microenvironment, epithelial to mesenchymal transition and modulation of reactive oxygen species. Taking into consideration that synthetic multidrug resistance agents have failed to demonstrate significant survival benefits in patients with different types of cancer, recent research have focused on beneficial effects of natural compounds. Several phenolic compounds (flavones, phenolcarboxylic acids, ellagitannins, stilbens, lignans, curcumin, etc.) act as chemopreventive agents due to their antioxidant capacity, inhibition of proliferation, survival, angiogenesis, and metastasis, modulation of immune and inflammatory responses or inactivation of pro-carcinogens. Moreover, preclinical and clinical studies revealed that these compounds prevent multidrug resistance in cancer by modulating different pathways. Additional research is needed regarding the role of phenolic compounds in the prevention of multidrug resistance in different types of cancer.
Collapse
Affiliation(s)
- Teodora Costea
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Cezara Vlad
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| | - Luminita-Claudia Miclea
- Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Research Excellence Center in Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Constanta Ganea
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Maria-Magdalena Mocanu
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| |
Collapse
|
29
|
Stevens MW, Rüedi-Bettschen D, Gunnell MG, Tawney R, West CM, Owens SM. Antibody production and pharmacokinetics of METH in rats following vaccination with the METH vaccine, IXT-v100, adjuvanted with GLA-SE. Drug Alcohol Depend 2019; 204:107484. [PMID: 31521953 PMCID: PMC6878175 DOI: 10.1016/j.drugalcdep.2019.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Methamphetamine use disorder continues to be inadequately treated, but improvements are being made in the field of immunotherapeutics, including vaccines, which could provide new options for treatment. Cocaine and nicotine vaccines have been tested clinically, but have yet to elicit the necessary antibody concentrations required to be effective. Methamphetamine vaccines have been tested in multiple nonclinical models and appear promising. Improved adjuvants have the potential to further stimulate the immune system to reach effective levels of antibodies. Previously, the methamphetamine vaccine IXT-v100 was administered with GLA-SE, a toll-like receptor 4 agonist, in mice to produce higher levels of antibodies than when it was administered with two other widely used adjuvants, Alhydrogel and Sigma Adjuvant System. METHODS The purpose of this research was to evaluate IXT-v100, given in combination with the adjuvant GLA-SE, to determine its efficacy in antagonizing methamphetamine disposition in a rat pharmacokinetic study. Additional rat studies were conducted to compare the ability of IXT-v100 manufactured with greater hapten densities to elicit higher antibody levels. RESULTS As expected based on prior studies with anti-methamphetamine monoclonal antibodies, the antibodies resulting from vaccination with IXT-v100 altered methamphetamine pharmacokinetics by increasing serum concentrations and extending the half-life. Furthermore, intentional variations in the ratio of components during manufacturing led to production of vaccines with higher hapten densities. The higher hapten densities resulted in production of antibodies that maintained the ability to bind methamphetamine with high affinity. CONCLUSIONS The results support continued development of IXT-v100 for the treatment of methamphetamine use disorder.
Collapse
Affiliation(s)
- Misty W. Stevens
- InterveXion Therapeutics, LLC, 4301 W. Markham St., #831, Little Rock, AR 72205, USA
| | - Daniela Rüedi-Bettschen
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St., #611, Little Rock, AR 72205, USA
| | - Melinda G. Gunnell
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St., #611, Little Rock, AR 72205, USA
| | - Rachel Tawney
- InterveXion Therapeutics, LLC, 4301 W. Markham St., #831, Little Rock, AR 72205, USA,Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St., #611, Little Rock, AR 72205, USA
| | - C. Michael West
- InterveXion Therapeutics, LLC, 4301 W. Markham St., #831, Little Rock, AR 72205, USA
| | - S. Michael Owens
- InterveXion Therapeutics, LLC, 4301 W. Markham St., #831, Little Rock, AR 72205, USA,Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham St., #611, Little Rock, AR 72205, USA
| |
Collapse
|
30
|
Ganapati S, Grabitz SD, Murkli S, Scheffenbichler F, Rudolph MI, Zavalij PY, Eikermann M, Isaacs L. Molecular Containers Bind Drugs of Abuse in Vitro and Reverse the Hyperlocomotive Effect of Methamphetamine in Rats. Chembiochem 2017; 18:1583-1588. [PMID: 28586110 PMCID: PMC5570556 DOI: 10.1002/cbic.201700289] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 01/20/2023]
Abstract
We measured the affinity of five molecular container compounds (calabadions 1 and 2, CB[7], sulfocalix[4]arene, and HP-β-CD) toward seven drugs of abuse in homogenous aqueous solution at physiological pH by various methods (1 H NMR, UV/Vis, isothermal titration calorimetry [ITC]) and found binding constants (Ka values) spanning from <102 to >108 m-1 . We also report X-ray crystal structures of CB[7]⋅methamphetamine and 1⋅methamphetamine. We found that 2, but not CB[7], was able to ameliorate the hyperlocomotive activity of rats treated with methamphetamine. The bioavailability of the calabadions and their convergent building block synthesis suggest potential for further structural optimization as reversal agents for intoxication with nonopioid drugs of abuse for which no treatments are currently available.
Collapse
Affiliation(s)
- Shweta Ganapati
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Stephanie D Grabitz
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Flora Scheffenbichler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Maíra I Rudolph
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Matthias Eikermann
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
31
|
Optimization of a methamphetamine conjugate vaccine for antibody production in mice. Int Immunopharmacol 2016; 35:137-141. [PMID: 27039212 DOI: 10.1016/j.intimp.2016.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/08/2016] [Accepted: 03/21/2016] [Indexed: 12/26/2022]
Abstract
There are still no approved medications for treating patients who abuse methamphetamine. Active vaccines for treating abuse of nicotine and cocaine are in clinical studies, but have not proven effective seemingly due to inadequate anti-drug antibody production. The current studies aimed to optimize the composition, adjuvant and route of administration of a methamphetamine conjugate vaccine, ICKLH-SMO9, in mice with the goal of generating significantly higher antibody levels. A range of hapten epitope densities were compared, as were the adjuvants Alhydrogel and a new Toll-like receptor 4 (TLR4) agonist called GLA-SE. While methamphetamine hapten density did not strongly affect the antibody response, the adjuvant did. Glucopyranosyl lipid A in a stable oil-in-water emulsion (GLA-SE) produced much higher levels of antibody in response to immunization compared with Alhydrogel; immunization with GLA-SE also produced antibodies with higher affinities for methamphetamine. GLA-SE has been used in human studies of vaccines for influenza among others and like some other clinical TLR4 agonists, it is safe and elicits a strong immune response. GLA-SE adjuvanted vaccines are typically administered by intramuscular injection and this also proved effective in these mouse studies. Clinical studies of the ICKLH-SMO9 methamphetamine vaccine adjuvanted with GLA-SE have the potential for demonstrating efficacy by generating much higher levels of antibody than substance abuse vaccines that have unsuccessfully used aluminum-based adjuvants.
Collapse
|
32
|
Chapy H, Saubaméa B, Tournier N, Bourasset F, Behar-Cohen F, Declèves X, Scherrmann JM, Cisternino S. Blood-brain and retinal barriers show dissimilar ABC transporter impacts and concealed effect of P-glycoprotein on a novel verapamil influx carrier. Br J Pharmacol 2016; 173:497-510. [PMID: 26507673 DOI: 10.1111/bph.13376] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The respective impact and interplay between ABC (P-glycoprotein/P-gp/Abcb1a, BCRP/ABCG2, MRP/ABCC) and SLC transporter functions at the blood-brain barrier (BBB) and blood-retinal barriers (BRB) are incompletely understood. EXPERIMENTAL APPROACH We measured the initial cerebral and retinal distribution of selected ABC substrates by in situ carotid perfusion using P-gp/Bcrp knockout mice and chemical ABC/SLC modulation strategies. P-gp, Bcrp, Mrp1 and Mrp4 were studied by confocal retina imaging. KEY RESULTS Chemical or physical disruption of P-gp increased [(3) H]-verapamil transport by ~10-fold at the BBB and ~1.5-fold at the BRB. [(3) H]-Verapamil transport involved influx-mediated by an organic cation clonidine-sensitive/diphenhydramine-sensitive proton antiporter at both barriers; this effect was unmasked when P-gp was partially or fully inhibited/disrupted at the BBB. Studies of [(3) H]-mitoxantrone and [(3) H]-zidovudine transport suggested, respectively, that Bcrp efflux was less involved at the BRB than BBB, whereas Mrps were significantly and similarly involved at both barriers. Confocal imaging showed that P-gp and Bcrp were expressed in intra-retinal vessels (inner BRB/iBRB) but absent from the blood/basal membrane of cells of the retinal pigment epithelium (outer BRB/oBRB/RPE) where, in contrast, Mrp1 and Mrp4 were localized. CONCLUSIONS AND IMPLICATIONS P-gp, Bcrp, Mrp1 and Mrp4 are differentially expressed at the outer and inner BRB, resulting in an altered ability to limit substrate distribution at the retina as compared with the BBB. [(3) H]-Verapamil distribution is not P-gp-specific and involves a proton antiporter at both the BBB and BRB. However, this transport is concealed by P-gp at the BBB, but not at the BRB, where P-gp activity is reduced.
Collapse
Affiliation(s)
- Hélène Chapy
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France
| | - Bruno Saubaméa
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France
| | - Nicolas Tournier
- INSERM, CEA, Université Paris Sud, UMR 1023 - ERL 9218 CNRS, IMIV, Orsay, France
| | - Fanchon Bourasset
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France
| | - Francine Behar-Cohen
- Université Paris Descartes, UMR-S 1138, Paris, France.,Physiopathologies des Maladies Oculaires, INSERM U1138, Paris, France
| | - Xavier Declèves
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France.,Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| | - Jean-Michel Scherrmann
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France.,Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| | - Salvatore Cisternino
- Variabilité de Réponse aux Psychotropes, INSERM, U1144, Paris, France.,Faculté de Pharmacie, Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Diderot, UMR-S 1144, Paris, France.,Assistance Publique des Hôpitaux de Paris - AP-HP, Paris, France
| |
Collapse
|
33
|
Tobin PH, Richards DH, Callender RA, Wilson CJ. Protein engineering: a new frontier for biological therapeutics. Curr Drug Metab 2015; 15:743-56. [PMID: 25495737 DOI: 10.2174/1389200216666141208151524] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/27/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Protein engineering holds the potential to transform the metabolic drug landscape through the development of smart, stimulusresponsive drug systems. Protein therapeutics are a rapidly expanding segment of Food and Drug Administration approved drugs that will improve clinical outcomes over the long run. Engineering of protein therapeutics is still in its infancy, but recent general advances in protein engineering capabilities are being leveraged to yield improved control over both pharmacokinetics and pharmacodynamics. Stimulus- responsive protein therapeutics are drugs which have been designed to be metabolized under targeted conditions. Protein engineering is being utilized to develop tailored smart therapeutics with biochemical logic. This review focuses on applications of targeted drug neutralization, stimulus-responsive engineered protein prodrugs, and emerging multicomponent smart drug systems (e.g., antibody-drug conjugates, responsive engineered zymogens, prospective biochemical logic smart drug systems, drug buffers, and network medicine applications).
Collapse
Affiliation(s)
| | | | | | - Corey J Wilson
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
| |
Collapse
|
34
|
Chapy H, Goracci L, Vayer P, Parmentier Y, Carrupt PA, Declèves X, Scherrmann JM, Cisternino S, Cruciani G. Pharmacophore-based discovery of inhibitors of a novel drug/proton antiporter in human brain endothelial hCMEC/D3 cell line. Br J Pharmacol 2015. [PMID: 26220580 DOI: 10.1111/bph.13258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE An influx drug/proton antiporter of unknown structure has been functionally demonstrated at the blood-brain barrier. This transporter, which handles some psychoactive drugs like diphenhydramine, clonidine, oxycodone, nicotine and cocaine, could represent a new pharmacological target in drug addiction therapy. However, at present there are no known drugs/inhibitors that effectively inhibit/modulate this transporter in vivo. EXPERIMENTAL APPROACH The FLAPpharm approach was used to establish a pharmacophore model for inhibitors of this transporter. The inhibitory potency of 44 selected compounds was determined against the specific substrate, [(3)H]-clonidine, in the human cerebral endothelial cell line hCMEC/D3 and ranked as good, medium, weak or non-inhibitor. KEY RESULTS The pharmacophore model obtained was used as a template to screen xenobiotic and endogenous compounds from databases [Specs, Recon2, Human Metabolome Database (HMDB), human intestinal transporter database], and hypothetical candidates were tested in vitro to determine their inhibitory capacity with [(3)H]-clonidine. According to the transporter database, 80% of the proton antiporter inhibitor candidates could inhibit P-glycoprotein/MDR1/ABCB1 and specificity is improved by reducing inhibitor size/shape and increasing water solubility. Virtual screening results using HMDB and Recon2 for endogenous compounds appropriately scored tryptamine as an inhibitor. CONCLUSIONS AND IMPLICATIONS The pharmacophore model for the proton-antiporter inhibitors was a good predictor of known inhibitors and allowed us to identify new good inhibitors. This model marks a new step towards the discovery of this drug/proton antiporter and will be of great use for the discovery and design of potent inhibitors that could potentially help to assess and validate its pharmacological role in drug addiction in vivo.
Collapse
Affiliation(s)
- Hélène Chapy
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, 06123, Italy
| | - Philippe Vayer
- Département de recherche biopharmaceutique, Technologie Servier, Orléans, 45000, France
| | - Yannick Parmentier
- Département de recherche biopharmaceutique, Technologie Servier, Orléans, 45000, France
| | - Pierre-Alain Carrupt
- Laboratoire de Pharmacochimie, Université de Genève, Genève, CH-1211, Switzerland
| | - Xavier Declèves
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Michel Scherrmann
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Salvatore Cisternino
- INSERM U1144, Variabilité de réponse aux psychotropes, Paris, 75006, France.,UMR-S 1144, Université Paris Descartes, Paris, 75006, France.,UMR-S 1144, Université Paris Diderot, Paris, 75013, France.,Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, 06123, Italy
| |
Collapse
|
35
|
Assessment of Pharmacokinetic and Pharmacodynamic Interactions Between Albumin-Fused Mutated Butyrylcholinesterase and Intravenously Administered Cocaine in Recreational Cocaine Users. J Clin Psychopharmacol 2015; 35:396-405. [PMID: 26082975 DOI: 10.1097/jcp.0000000000000347] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED Cocaine dependence presents a major public health issue, and to date, no pharmacotherapies are approved for its treatment. TV-1380 is a novel recombinant albumin-fused mutated butyrylcholinesterase (Albu-BChE) that has increased catalytic efficiency for cocaine compared with wild-type BChE and therefore has the potential to facilitate abstinence in cocaine-dependent subjects by decreasing exposure to cocaine and its reinforcing effects. METHODS This randomized, double-blind, placebo-controlled, parallel-group study in nondependent cocaine users was conducted to evaluate the effect of a single intramuscular dose of Albu-BChE (50, 100, and 300 mg) on the pharmacokinetic and metabolic profile of intravenous cocaine infusions (40 mg) administered at baseline and at 24, 96, and 168 hours after Albu-BChE dosing, to assess safety of coadministering Albu-BChE and cocaine, and to explore the subjective responses to cocaine infusions after Albu-BChE dosing. RESULTS Administration of Albu-BChE resulted in significant dose-dependent reductions in cocaine exposure (maximum concentration, area under the curve) and half-life. Effects were greatest at 24 hours after Albu-BChE dose, but were sustained up to 168 hours. Spearman correlations indicated a significant negative relationship between Albu-BChE concentration and cocaine clearance and exposure. Consistent with its mechanism of action, Albu-BChE also shifted cocaine metabolism toward preferential formation of ecgonine methyl ester. Administration of Albu-BChE was associated with modest decreases in subjective reports of feeling high and willingness to take cocaine again after cocaine infusion. Coadministration of Albu-BChE and cocaine was safe and well tolerated. CONCLUSIONS Administration of Albu-BChE at single doses of 50, 100, and 300 mg safely resulted in long-lasting decreases in cocaine exposure in recreational cocaine users.
Collapse
|
36
|
Negus SS, Henningfield J. Agonist Medications for the Treatment of Cocaine Use Disorder. Neuropsychopharmacology 2015; 40:1815-25. [PMID: 25563633 PMCID: PMC4839506 DOI: 10.1038/npp.2014.322] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jack Henningfield
- Pinney Associates, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Lockner JW, Lively JM, Collins KC, Vendruscolo JCM, Azar MR, Janda KD. A Conjugate Vaccine Using Enantiopure Hapten Imparts Superior Nicotine-Binding Capacity. J Med Chem 2014; 58:1005-11. [DOI: 10.1021/jm501625j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jonathan W. Lockner
- Departments
of Chemistry and Immunology, The Scripps Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jenny M. Lively
- Departments
of Chemistry and Immunology, The Scripps Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| | - Karen C. Collins
- Departments
of Chemistry and Immunology, The Scripps Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| | | | - Marc R. Azar
- Behavioral Pharma Inc., 505 Coast
Boulevard South, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments
of Chemistry and Immunology, The Scripps Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
38
|
Eubanks LM, Ellis BA, Cai X, Schlosburg JE, Janda KD. A human recombinant monoclonal antibody to cocaine: Preparation, characterization and behavioral studies. Bioorg Med Chem Lett 2014; 24:4664-4666. [PMID: 25205191 PMCID: PMC4185020 DOI: 10.1016/j.bmcl.2014.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/10/2014] [Accepted: 08/13/2014] [Indexed: 11/15/2022]
Abstract
Cocaine abuse remains prevalent worldwide and continues to be a major health concern; nonetheless, there is no effective therapy. Immunopharmacotherapy has emerged as a promising treatment strategy by which anti-cocaine antibodies bind to the drug blunting its effects. Previous passive immunization studies using our human monoclonal antibody, GNCgzk, resulted in protection against cocaine overdose and acute toxicity. To further realize the clinical potential of this antibody, a recombinant IgG form of the antibody has been produced in mammalian cells. This antibody displayed a high binding affinity for cocaine (low nanomolar) in line with the superior attributes of the GNCgzk antibody and reduced cocaine-induced ataxia in a cocaine overdose model.
Collapse
Affiliation(s)
- Lisa M Eubanks
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology and Microbial Sciences, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Beverly A Ellis
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology and Microbial Sciences, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xiaoqing Cai
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology and Microbial Sciences, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joel E Schlosburg
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology and Microbial Sciences, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Committee on Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kim D Janda
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology and Microbial Sciences, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Worm Institute of Medical Research (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Forray A, Sofuoglu M. Future pharmacological treatments for substance use disorders. Br J Clin Pharmacol 2014; 77:382-400. [PMID: 23039267 DOI: 10.1111/j.1365-2125.2012.04474.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/23/2012] [Indexed: 12/20/2022] Open
Abstract
Substance use disorders represent a serious public health and social issue worldwide. Recent advances in our understanding of the neurobiological basis of the addictive processes have led to the development of a growing number of pharmacological agents to treat addictions. Despite this progress, there are no approved pharmacological treatments for cocaine, methamphetamine and cannabis addiction. Moving treatment development to the next stage will require novel ways of approaching substance use disorders. One such novel approach is to target individual vulnerabilities, such as cognitive function, sex differences and psychiatric comorbidities. This review provides a summary of promising pharmacotherapies for alcohol, opiate, stimulant and nicotine addictions. Many medications that target positive and negative reinforcement of drugs, as well as individual vulnerabilities to addiction, are in different phases of development. Clinical trials testing the efficacy of these medications for substance use disorder are warranted.
Collapse
Affiliation(s)
- Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
40
|
Ramakrishnan M, Kinsey BM, Singh RA, Kosten TR, Orson FM. Hapten optimization for cocaine vaccine with improved cocaine recognition. Chem Biol Drug Des 2014; 84:354-63. [PMID: 24803171 DOI: 10.1111/cbdd.12326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/06/2014] [Indexed: 11/27/2022]
Abstract
In the absence of any effective pharmacotherapy for cocaine addiction, immunotherapy is being actively pursued as a therapeutic intervention. While several different cocaine haptens have been explored to develop anticocaine antibodies, none of the hapten was successfully designed, which had a protonated tropane nitrogen as is found in native cocaine under physiological conditions, including the succinyl norcocaine (SNC) hapten that has been tested in phase II clinical trials. Herein, we discuss three different cocaine haptens: hexyl norcocaine (HNC), bromoacetamido butyl norcocaine (BNC), and succinyl butyl norcocaine (SBNC), each with a tertiary nitrogen structure mimicking that of native cocaine which could optimize the specificity of anticocaine antibodies for better cocaine recognition. Mice immunized with these haptens conjugated to immunogenic proteins produced high titre anticocaine antibodies. However, during chemical conjugation of HNC and BNC haptens to carrier proteins, the 2β methyl ester group is hydrolyzed, and immunizing mice with these conjugate vaccines in mice produced antibodies that bound both cocaine and the inactive benzoylecgonine metabolite. While in the case of the SBNC conjugate, vaccine hydrolysis of the methyl ester did not appear to occur, leading to antibodies with high specificity to cocaine over BE. Although we observed similar specificity with a SNC hapten, the striking difference is that SBNC carries a positive charge on the tropane nitrogen atom, and therefore, it is expected to have better binding of cocaine. The 50% cocaine inhibitory concentration (IC50 ) value for SBNC antibodies (2.8 μm) was significantly better than the SNC antibodies (9.4 μm) when respective hapten-BSA was used as a substrate. In addition, antibodies from both sera had no inhibitory effect from BE. In contrast to BNC and HNC, the SBNC conjugate was also found to be highly stable without any noticeable hydrolysis for several months at 4 °C and 2-3 days in pH 10 buffer at 37 °C.
Collapse
Affiliation(s)
- Muthu Ramakrishnan
- Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, 77030, TX, USA; Department of Medicine and Clinical Immunology, Baylor College of Medicine, Houston, 77030, TX, USA
| | | | | | | | | |
Collapse
|
41
|
Howell LL, Nye JA, Stehouwer JS, Voll RJ, Mun J, Narasimhan D, Nichols J, Sunahara R, Goodman MM, Carroll FI, Woods JH. A thermostable bacterial cocaine esterase rapidly eliminates cocaine from brain in nonhuman primates. Transl Psychiatry 2014; 4:e407. [PMID: 24984194 PMCID: PMC4119218 DOI: 10.1038/tp.2014.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/12/2014] [Accepted: 05/22/2014] [Indexed: 11/09/2022] Open
Abstract
A long-acting, thermostable bacterial cocaine esterase (CocE) has been identified that rapidly degrades cocaine with a K(M) of 1.33+0.085 μM. In vivo evaluation of CocE has shown protection against convulsant and lethal effects of cocaine in rodents, confirming the therapeutic potential of CocE against cocaine overdose. However, the current study is the first to evaluate the effects of CocE on cocaine brain levels. Positron emission tomogrpahy neuroimaging of [(11)C]cocaine was used to evaluate the time course of cocaine elimination from brain in the presence and absence of CocE in nonhuman primates. Systemic administration of CocE eliminated cocaine from the rhesus-monkey brain approximately three times faster than control conditions via peripheral actions through attenuating the input function from blood plasma. The efficiency of this process is sufficient to alleviate or prevent adverse central nervous system effects induced by cocaine. Although the present study used tracer doses of cocaine to access brain clearance, these findings further support the development of CocE for the treatment of acute cocaine toxicity.
Collapse
Affiliation(s)
- L L Howell
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA,Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, 954 Gatewood Road, NE, Atlanta, GA 30329, USA. E-mail:
| | - J A Nye
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - J S Stehouwer
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - R J Voll
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - J Mun
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - D Narasimhan
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - J Nichols
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - R Sunahara
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - M M Goodman
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - F I Carroll
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - J H Woods
- Division of Neuropharmacology and Neurologic Diseases, Emory University, Yerkes National Primate Research Center, Atlanta, GA, USA
| |
Collapse
|
42
|
Catalytic antibodies and their applications in biotechnology: state of the art. Biotechnol Lett 2014; 36:1369-79. [PMID: 24652545 DOI: 10.1007/s10529-014-1503-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/20/2014] [Indexed: 01/06/2023]
Abstract
Catalytic antibodies are immunoglobulins endowed with enzymatic properties. Discovered in the second part of the 1980s, the enthusiasm they initially aroused was counterbalanced by the difficulty of their production and their low catalytic rates. Nevertheless, improvements in expression systems and engineering technologies, combined with various studies suggesting that catalytic antibodies play a role in the immune system, have opened the way to new applications for these proteins. Herein we review catalytic antibodies from a biotechnological point of view, focusing our study on the different production methods, expression systems and their potential clinical applications dedicated to these proteins.
Collapse
|
43
|
Lockner JW, Ho SO, McCague KC, Chiang SM, Do TQ, Fujii G, Janda KD. Enhancing nicotine vaccine immunogenicity with liposomes. Bioorg Med Chem Lett 2012; 23:975-8. [PMID: 23313243 DOI: 10.1016/j.bmcl.2012.12.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 11/30/2022]
Abstract
A major liability of existing nicotine vaccine candidates is the wide variation in anti-nicotine immune responses among clinical trial participants. In order to address this liability, significant emphasis has been directed at evaluating adjuvants and delivery systems that confer more robust potentiation of the anti-nicotine immune response. Toward that end, we have initiated work that seeks to exploit the adjuvant effect of liposomes, with or without Toll-like receptor agonist(s). The results of the murine immunization study described herein support the hypothesis that a liposomal nicotine vaccine formulation may provide a means for addressing the immunogenicity challenge.
Collapse
Affiliation(s)
- Jonathan W Lockner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|