1
|
Penna F, Rubini G, Costelli P. Immunomodulation: A new approach to cancer cachexia, potentially suitable for aging. Mol Aspects Med 2024; 100:101318. [PMID: 39260232 DOI: 10.1016/j.mam.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Cancer cachexia is the prototypical example of comorbidity, occurring in most of cancer patients. It is a direct consequence of tumor growth and of the associated inflammatory/immune response. Cachexia can be exacerbated by anti-cancer therapies, frequently resulting in dose limitation and/or treatment delay or discontinuation. The pathogenesis of cancer cachexia is still unclear and includes nutritional, metabolic, hormonal and immunological components. Tumor ability to shape the immune response to its own advantage is now well accepted, while the possibility that such an altered immune response could play a role in the onset of cachexia is still an undefined issue. Indeed, most of the immune-related research on cachexia mainly focused on pro-inflammatory mediators, almost totally disregarding the interactions among immune cells and the homeostasis of peripheral tissues. The present review provides an overview of the immune system dysregulations occurring in cancer cachexia, focusing on the possibility that immunomodulating strategies, mainly developed to stimulate the anti-cancer immune response, could be useful to counteract cachexia as well. Cancer and cachexia are frequent comorbidities of aging. Along this line, cancer- and aging-associated muscle wasting likely coexist in the same patients. Since both conditions share some of the underlying mechanisms, the potential effectiveness of immunomodulation on sarcopenia of aging is discussed.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Giacomo Rubini
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Italy.
| |
Collapse
|
2
|
Ielpo S, Barberini F, Dabbagh Moghaddam F, Pesce S, Cencioni C, Spallotta F, De Ninno A, Businaro L, Marcenaro E, Bei R, Cifaldi L, Barillari G, Melaiu O. Crosstalk and communication of cancer-associated fibroblasts with natural killer and dendritic cells: New frontiers and unveiled opportunities for cancer immunotherapy. Cancer Treat Rev 2024; 131:102843. [PMID: 39442289 DOI: 10.1016/j.ctrv.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Natural killer (NK) cells and dendritic cells (DCs) are critical mediators of anti-cancer immune responses. In addition to their individual roles, NK cells and DCs are involved in intercellular crosstalk which is essential for the initiation and coordination of adaptive immunity against cancer. However, NK cell and DC activity is often compromised in the tumor microenvironment (TME). Recently, much attention has been paid to one of the major components of the TME, the cancer-associated fibroblasts (CAFs), which not only contribute to extracellular matrix (ECM) deposition and tumor progression but also suppress immune cell functions. It is now well established that CAFs support T cell exclusion from tumor nests and regulate their cytotoxic activity. In contrast, little is currently known about their interaction with NK cells, and DCs. In this review, we describe the interaction of CAFs with NK cells and DCs, by secreting and expressing various mediators in the TME of adult solid tumors. We also provide a detailed overview of ongoing clinical studies evaluating the targeting of stromal factors alone or in combination with immunotherapy based on immune checkpoint inhibitors. Finally, we discuss currently available strategies for the selective depletion of detrimental CAFs and for a better understanding of their interaction with NK cells and DCs.
Collapse
Affiliation(s)
- Simone Ielpo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Barberini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185, Rome, Italy; Pasteur Institute Italy-Fondazione Cenci Bolognetti, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
3
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Singh R, Kumar R, Roy A, Behera PM, Atri AK, Kumar K, Manna D, Dixit A, Patil MT, Mankamna Kumari R, Nimesh S, Salunke DB. Imidazo[2,1-b]thiazole based indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor: Structure based design, synthesis, bio-evaluation and docking studies. Bioorg Med Chem Lett 2023; 96:129532. [PMID: 37866714 DOI: 10.1016/j.bmcl.2023.129532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme known to catalyse the initial and rate limiting step of kynurenine pathway of l-tryptophan metabolism. IDO1 enzyme over expression plays a crucial role in progression of cancer, malaria, multiple sclerosis and other life-threatening diseases. Several efforts over the last two decades have been invested by the researchers for the discovery of different IDO1 inhibitors and the plasticity of the IDO1 enzyme ligand binding pocket provide ample opportunities to develop new heterocyclic scaffolds targeting this enzyme. In the present work, based on the X-ray crystal structure of human IDO1 coordinated with few ligands, we designed and synthesized new fused heterocyclic compounds and evaluated their potential human IDO1 inhibitory activity (compound 30 and 41 showed IC50 values of 23 and 13 µM, respectively). The identified HITs were observed to be non-toxic to HEK293 cells at 100 µM concentration. The observed activity of the synthesized compounds was correlated with the specific interactions of their structures at the enzyme pocket using docking studies. A detailed analysis of docking results of the synthesized analogues as well as selected known IDO1 inhibitors revealed that most of the inhibitors have some reasonable docking scores in at least two crystal structures and have similar orientation as that of co-crystal ligands.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ravinder Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ashalata Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Pabitra Mohan Behera
- Institute of Life Science, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Ankit K Atri
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Kushvinder Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Madhuri T Patil
- Department of Chemistry, Mehr Chand Mahajan DAV College for Women, Chandigarh 160 036, India
| | - R Mankamna Kumari
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 801, India
| | - Surendra Nimesh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 801, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
5
|
Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in Polymeric Micelles: Responsive and Targeting Approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics 2023; 15:2622. [PMID: 38004600 PMCID: PMC10675796 DOI: 10.3390/pharmaceutics15112622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, to treat a diverse array of cancer forms, considerable advancements have been achieved in the field of cancer immunotherapies. However, these therapies encounter multiple challenges in clinical practice, such as high immune-mediated toxicity, insufficient accumulation in cancer tissues, and undesired off-target reactions. To tackle these limitations and enhance bioavailability, polymer micelles present potential solutions by enabling precise drug delivery to the target site, thus amplifying the effectiveness of immunotherapy. This review article offers an extensive survey of recent progress in cancer immunotherapy strategies utilizing micelles. These strategies include responsive and remodeling approaches to the tumor microenvironment (TME), modulation of immunosuppressive cells within the TME, enhancement of immune checkpoint inhibitors, utilization of cancer vaccine platforms, modulation of antigen presentation, manipulation of engineered T cells, and targeting other components of the TME. Subsequently, we delve into the present state and constraints linked to the clinical utilization of polymeric micelles. Collectively, polymer micelles demonstrate excellent prospects in tumor immunotherapy by effectively addressing the challenges associated with conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Tangna Hao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Wenshuo Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Guiru Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| |
Collapse
|
6
|
Oljuskin T, Azodi N, Volpedo G, Bhattacharya P, Markle HL, Hamano S, Matlashewski G, Satoskar AR, Gannavaram S, Nakhasi HL. Leishmania major centrin knock-out parasites reprogram tryptophan metabolism to induce a pro-inflammatory response. iScience 2023; 26:107593. [PMID: 37744403 PMCID: PMC10517402 DOI: 10.1016/j.isci.2023.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Leishmaniasis is a parasitic disease that is prevalent in 90 countries, and yet no licensed human vaccine exists against it. Toward control of leishmaniasis, we have developed Leishmania major centrin gene deletion mutant strains (LmCen-/-) as a live attenuated vaccine, which induces a strong IFN-γ-mediated protection to the host. However, the immune mechanisms of such protection remain to be understood. Metabolomic reprogramming of the host cells following Leishmania infection has been shown to play a critical role in pathogenicity and shaping the immune response following infection. Here, we applied untargeted mass spectrometric analysis to study the metabolic changes induced by infection with LmCen-/- and compared those with virulent L. major parasite infection to identify the immune mechanism of protection. Our data show that immunization with LmCen-/- parasites, in contrast to virulent L. major infection promotes a pro-inflammatory response by utilizing tryptophan to produce melatonin and downregulate anti-inflammatory kynurenine-AhR and FICZ-AhR signaling.
Collapse
Affiliation(s)
- Timur Oljuskin
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Nazli Azodi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Greta Volpedo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Hannah L. Markle
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan
- Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki, Japan
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| |
Collapse
|
7
|
Asano A, Ri M, Masaki A, Maeda Y, Tachita T, Hirade K, Marumo Y, Nakashima T, Hagiwara S, Kinoshita S, Suzuki T, Narita T, Kusumoto S, Komatsu H, Inagaki H, Iida S. Aberrant tryptophan metabolism leads to unfavorable outcomes in lenalidomide-treated myeloma patients. Hematol Oncol 2023; 41:424-433. [PMID: 36426594 DOI: 10.1002/hon.3108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO), an enzyme that metabolizes tryptophan (Trp) to kynurenine (Kyn), is an important microenvironmental factor suppressing antitumor immunity. Here, we investigated the clinical impact of aberrant Trp metabolism in patients with multiple myeloma (MM) treated with lenalidomide (Len) and evaluated its effects on T cell immunity ex vivo. Kyn and Trp concentrations were quantified in sera from 72 patients with relapsed or refractory MM prior to the initiation of therapy with Len plus dexamethasone (Ld). Associations of the Kyn/Trp ratio with progression-free survival (PFS) and overall survival (OS) were analyzed. The expressions of IDO in tumor and stromal cells were evaluated during co-culture, and the effects of culture medium containing low Trp and high Kyn concentrations on T cells in the presence of Len were investigated. Patients with high serum Kyn/Trp ratios (≥46.0, n = 22) had significantly shorter PFS and OS than those with low ratios (4.9 vs. 12.6 months, and 15.5 vs. 45.7 months, respectively). MM cells promoted IDO expression in stromal cells during co-culture in both a direct contact and an indirect manner. Incubation in medium with a high Kyn/Trp ratio significantly inhibited T cell cytokine production and upregulated the expression of inhibitory immune receptors. These effects were sustained even in the presence of Len. In conclusion, a high serum Kyn/Trp ratio is associated with poor prognosis in patients with MM. We propose that aberrant Trp metabolism reduces anti-tumor immunity and the efficacy of Len therapy.
Collapse
Affiliation(s)
- Arisa Asano
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
- Department of Blood Transfusion and Cell Therapy, Nagoya City University Hospital, Nagoya, Japan
| | - Ayako Masaki
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
- Department of Pathology and Molecular Diagnostics, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Yasuhiro Maeda
- Open Facility Center, Fujita Health University, Toyoake, Japan
| | - Takuto Tachita
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Hirade
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Yoshiaki Marumo
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Takahiro Nakashima
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Shinya Hagiwara
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Shiori Kinoshita
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Tomotaka Suzuki
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Tomoko Narita
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Hirokazu Komatsu
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, Japan
| |
Collapse
|
8
|
Chen SY, Cao JL, Li KP, Wan S, Yang L. BIN1 in cancer: biomarker and therapeutic target. J Cancer Res Clin Oncol 2023; 149:7933-7944. [PMID: 36890396 DOI: 10.1007/s00432-023-04673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The bridging integrator 1 (BIN1) protein was originally identified as a pro-apoptotic tumor suppressor that binds to and inhibits oncogenic MYC transcription factors. BIN1 has complex physiological functions participating in endocytosis, membrane cycling, cytoskeletal regulation, DNA repair deficiency, cell-cycle arrest, and apoptosis. The expression of BIN1 is closely related to the development of various diseases such as cancer, Alzheimer's disease, myopathy, heart failure, and inflammation. PURPOSE Because BIN1 is commonly expressed in terminally differentiated normal tissues and is usually undetectable in refractory or metastatic cancer tissues, this differential expression has led us to focus on human cancers associated with BIN1. In this review, we discuss the potential pathological mechanisms of BIN1 during cancer development and its feasibility as a prognostic marker and therapeutic target for related diseases based on recent findings on its molecular, cellular, and physiological roles. CONCLUSION BIN1 is a tumor suppressor that regulates cancer development through a series of signals in tumor progression and microenvironment. It also makes BIN1 a feasible early diagnostic or prognostic marker for cancer.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jin-Long Cao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kun-Peng Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Shun Wan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
9
|
Budhiraja S, Najem H, Tripathi S, Wadhawani NR, Horbinski C, McCord M, Lenzen AC, Heimberger AB, DeCuypere M. Immunobiology and Cytokine Modulation of the Pediatric Brain Tumor Microenvironment: A Scoping Review. Cancers (Basel) 2023; 15:3655. [PMID: 37509316 PMCID: PMC10377457 DOI: 10.3390/cancers15143655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Utilizing a Scoping Review strategy in the domain of immune biology to identify immune therapeutic targets, knowledge gaps for implementing immune therapeutic strategies for pediatric brain tumors was assessed. The analysis demonstrated limited efforts to date to characterize and understand the immunological aspects of tumor biology with an over-reliance on observations from the adult glioma population. Foundational knowledge regarding the frequency and ubiquity of immune therapeutic targets is an area of unmet need along with the development of immune-competent pediatric tumor models to test therapeutics and especially combinatorial treatment. Opportunities arise in the evolution of pediatric tumor classification from histological to molecular with targeted immune therapeutics.
Collapse
Affiliation(s)
- Shreya Budhiraja
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shashwat Tripathi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nitin R Wadhawani
- Division of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew McCord
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alicia C Lenzen
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplantation, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michael DeCuypere
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Li W, Pan X, Chen L, Cui H, Mo S, Pan Y, Shen Y, Shi M, Wu J, Luo F, Liu J, Li N. Cell metabolism-based optimization strategy of CAR-T cell function in cancer therapy. Front Immunol 2023; 14:1186383. [PMID: 37342333 PMCID: PMC10278966 DOI: 10.3389/fimmu.2023.1186383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR)-modified T cells has revolutionized the field of immune-oncology, showing remarkable efficacy against hematological malignancies. However, its success in solid tumors is limited by factors such as easy recurrence and poor efficacy. The effector function and persistence of CAR-T cells are critical to the success of therapy and are modulated by metabolic and nutrient-sensing mechanisms. Moreover, the immunosuppressive tumor microenvironment (TME), characterized by acidity, hypoxia, nutrient depletion, and metabolite accumulation caused by the high metabolic demands of tumor cells, can lead to T cell "exhaustion" and compromise the efficacy of CAR-T cells. In this review, we outline the metabolic characteristics of T cells at different stages of differentiation and summarize how these metabolic programs may be disrupted in the TME. We also discuss potential metabolic approaches to improve the efficacy and persistence of CAR-T cells, providing a new strategy for the clinical application of CAR-T cell therapy.
Collapse
Affiliation(s)
- Wenshuai Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanxuan Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lirong Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoshu Cui
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yida Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuru Shen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Menglin Shi
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
11
|
Markwalder JA, Balog AJ, Williams DK, Nara SJ, Reddy R, Roy S, Kanyaboina Y, Li X, Johnston K, Fan Y, Lewis H, Marsilio F, Yan C, Critton D, Newitt JA, Traeger SC, Wu DR, Jure-Kunkel MN, Jayaraman L, Lin TA, Sinz MW, Hunt JT, Seitz SP. Synthesis and Biological Evaluation of Biaryl Alkyl Ethers as Inhibitors of IDO1. Bioorg Med Chem Lett 2023; 88:129280. [PMID: 37054759 DOI: 10.1016/j.bmcl.2023.129280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
Starting from the dialkylaniline indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor lead 3 (IDO1 HeLa IC50 = 7.0 nM), an iterative process of synthesis and screening led to cyclized analog 21 (IDO1 HeLa IC50 = 3.6 nM) which maintained the high potency of 3 while addressing issues of lipophilicity, cytochrome P450 (CYP) inhibition, hERG (human potassium ion channel Kv11.1) inhibition, Pregnane X Receptor (PXR) transactivation, and oxidative metabolic stability. An x-ray crystal structure of a biaryl alkyl ether 11 bound to IDO1 was obtained. Consistent with our earlier results, compound 11 was shown to bind to the apo form of the enzyme.
Collapse
Affiliation(s)
- Jay A Markwalder
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States.
| | - Aaron J Balog
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - David K Williams
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States.
| | - Susheel J Nara
- Discovery Chemistry, Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Ratnakar Reddy
- Discovery Chemistry, Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Saumya Roy
- Former Bristol Myers Squibb Employee, USA
| | - Yadagiri Kanyaboina
- Discovery Chemistry, Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Xin Li
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | | | - Yi Fan
- Former Bristol Myers Squibb Employee, USA
| | - Hal Lewis
- Former Bristol Myers Squibb Employee, USA
| | - Frank Marsilio
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - Chunhong Yan
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - David Critton
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - John A Newitt
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - Sarah C Traeger
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - Dauh-Rurng Wu
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | | | | | - Tai-An Lin
- Former Bristol Myers Squibb Employee, USA
| | - Michael W Sinz
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | | | | |
Collapse
|
12
|
Tahaghoghi-Hajghorbani S, Yazdani M, Nikpoor AR, Hatamipour M, Ajami A, Jaafari MR, Badiee A, Rafiei A. Targeting the tumor microenvironment by liposomal Epacadostat in combination with liposomal gp100 vaccine. Sci Rep 2023; 13:5802. [PMID: 37037839 PMCID: PMC10086071 DOI: 10.1038/s41598-023-31007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023] Open
Abstract
Indoleamine-2,3-dioxygenase (IDO1) pathway has vital role in cancer immune escape and its upregulation leads to immunosuppressive environment which is associated with poor prognosis and progression in various cancers like melanoma. Previously, we showed the antitumoral efficacy of nanoliposomal form of Epacadostat (Lip-EPA), as an IDO1 inhibitor. Herein, we used Lip-EPA as a combination approach with liposomal gp100 (Lip-gp100) anti-cancer vaccine in melanoma model. Here, we showed that B16F10 tumor express IDO1 so using Lip-EPA will enhance the efficacy of vaccine therapy. The biodistribution of ICG-labelled liposomal form of EPA showed the remarkable accumulation of drug at tumor site. In an in vivo study, Lip-EPA enhanced the antitumor efficacy of Lip-gp100 in which the IDO mRNA expression was decreased (~ fourfold) in tumor samples. Also, we identified a significant increase in the number of infiltrated T lymphocytes (p < 0.0001) with enhanced in interferon gamma (IFN-γ) production (p < 0.0001). Additionally, Lip-EPA + Lip-gp100 significantly modulated intratumoral regulatory T cells which altogether resulted in the highest delay in tumor growth (TGD = 56.54%) and increased life span (ILS > 47.36%) in treated mice. Our study demonstrated that novel combination of Lip-EPA and Lip-gp100 was effective treatment with capability of being used in further clinical studies.
Collapse
Affiliation(s)
- Sahar Tahaghoghi-Hajghorbani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Ajami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
Sun P, Wang X, Zhong J, Yu D, Xuan H, Xu T, Song D, Yang C, Wang P, Liu Y, Meng X, Cai J. Development and validation of a pyroptosis-related genes signature for risk stratification in gliomas. Front Genet 2023; 14:1087563. [PMID: 36861130 PMCID: PMC9968976 DOI: 10.3389/fgene.2023.1087563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Background: Glioma is a highly heterogeneous disease, causing the prognostic prediction a challenge. Pyroptosis, a programmed cell death mediated by gasdermin (GSDM), is characterized by cell swelling and the release of inflammatory factors. Pyroptosis occurs in several types of tumor cells, including gliomas. However, the value of pyroptosis-related genes (PRGs) in the prognosis of glioma remains to be further clarified. Methods: In this study, mRNA expression profiles and clinical data of glioma patients were acquired from TCGA and CGGA databases, and one hundred and eighteen PRGs were obtained from the Molecular Signatures Database and GeneCards. Then, consensus clustering analysis was performed to cluster glioma patients. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used to establish a polygenic signature. Functional verification of the pyroptosis-related gene GSDMD was achieved by gene knockdown and western blotting. Moreover, the immune infiltration status between two different risk groups were analyzed through the "gsva" R package. Results: Our results demonstrated that the majority of PRGs (82.2%) were differentially expressed between lower-grade gliomas (LGG) and glioblastoma (GBM) in the TCGA cohort. In univariate Cox regression analysis, eighty-three PRGs were shown to be associated with overall survival (OS). A five-gene signature was constructed to divide patients into two risk groups. Compared with patients in the low-risk group, patients in the high-risk group had obviously shorter OS (p < 0.001). Also, we found that the high-risk group showed a higher infiltrating score of immune cells and immune-related functions. Risk score was an independent predictor of OS (HR > 1, p < 0.001). Furthermore, knockdown of GSDMD decreased the expression of IL-1β and cleaved caspase-1. Conclusion: Our study constructed a new PRGs signature, which can be used to predict the prognosis of glioma patients. Targeting pyroptosis might serve as a potential therapeutic strategy for glioma.
Collapse
Affiliation(s)
| | | | - Junzhe Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanwen Xuan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianye Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Song
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changxiao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pandeng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Jinquan Cai
- *Correspondence: Jinquan Cai, ; Xiangqi Meng,
| |
Collapse
|
14
|
Ding Y, Ye B, Sun Z, Mao Z, Wang W. Reactive Oxygen Species‐Mediated Pyroptosis with the Help of Nanotechnology: Prospects for Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310009 China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| |
Collapse
|
15
|
Zalpoor H, Aziziyan F, Liaghat M, Bakhtiyari M, Akbari A, Nabi-Afjadi M, Forghaniesfidvajani R, Rezaei N. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Commun Signal 2022; 20:186. [PMID: 36419156 PMCID: PMC9684800 DOI: 10.1186/s12964-022-00951-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
Innate and adaptive immune cells patrol and survey throughout the human body and sometimes reside in the tumor microenvironment (TME) with a variety of cell types and nutrients that may differ from those in which they developed. The metabolic pathways and metabolites of immune cells are rooted in cell physiology, and not only provide nutrients and energy for cell growth and survival but also influencing cell differentiation and effector functions. Nowadays, there is a growing awareness that metabolic processes occurring in cancer cells can affect immune cell function and lead to tumor immune evasion and angiogenesis. In order to safely treat cancer patients and prevent immune checkpoint blockade-induced toxicities and autoimmunity, we suggest using anti-angiogenic drugs solely or combined with Immune checkpoint blockers (ICBs) to boost the safety and effectiveness of cancer therapy. As a consequence, there is significant and escalating attention to discovering techniques that target metabolism as a new method of cancer therapy. In this review, a summary of immune-metabolic processes and their potential role in the stimulation of intracellular signaling in TME cells that lead to tumor angiogenesis, and therapeutic applications is provided. Video abstract.
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Fatemeh Aziziyan
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Liaghat
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Maryam Bakhtiyari
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412606.70000 0004 0405 433XDepartment of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abdullatif Akbari
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razieh Forghaniesfidvajani
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.411705.60000 0001 0166 0922Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Pallotta MT, Rossini S, Suvieri C, Coletti A, Orabona C, Macchiarulo A, Volpi C, Grohmann U. Indoleamine 2,3-dioxygenase 1 (IDO1): an up-to-date overview of an eclectic immunoregulatory enzyme. FEBS J 2022; 289:6099-6118. [PMID: 34145969 PMCID: PMC9786828 DOI: 10.1111/febs.16086] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the initial rate-limiting step in the degradation of the essential amino acid tryptophan along the kynurenine pathway. When discovered more than 50 years ago, IDO1 was thought to be an effector molecule capable of mediating a survival strategy based on the deprivation of bacteria and tumor cells of the essential amino acid tryptophan. Since 1998, when tryptophan catabolism was discovered to be crucially involved in the maintenance of maternal T-cell tolerance, IDO1 has become the focus of several laboratories around the world. Indeed, IDO1 is now considered as an authentic immune regulator not only in pregnancy, but also in autoimmune diseases, chronic inflammation, and tumor immunity. However, in the last years, a bulk of new information-including structural, biological, and functional evidence-on IDO1 has come to light. For instance, we now know that IDO1 has a peculiar conformational plasticity and, in addition to a complex and highly regulated catalytic activity, is capable of performing a nonenzymic function that reprograms the expression profile of immune cells toward a highly immunoregulatory phenotype. With this state-of-the-art review, we aimed at gathering the most recent information obtained for this eclectic protein as well as at highlighting the major unresolved questions.
Collapse
Affiliation(s)
| | - Sofia Rossini
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | - Chiara Suvieri
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | - Alice Coletti
- Department of Pharmaceutical SciencesUniversity of PerugiaItaly
| | - Ciriana Orabona
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | | | - Claudia Volpi
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | - Ursula Grohmann
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| |
Collapse
|
17
|
Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201734. [PMID: 35652198 PMCID: PMC9353475 DOI: 10.1002/advs.202201734] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Indexed: 02/05/2023]
Abstract
Tumor immunotherapy is only effective in a fraction of patients due to a low response rate and severe side effects, and these challenges of immunotherapy in clinics can be addressed through induction of immunogenic cell death (ICD). ICD is elicited from many antitumor therapies to release danger associated molecular patterns (DAMPs) and tumor-associated antigens to facilitate maturation of dendritic cells (DCs) and infiltration of cytotoxic T lymphocytes (CTLs). The process can reverse the tumor immunosuppressive microenvironment to improve the sensitivity of immunotherapy. Nanostructure-based drug delivery systems (NDDSs) are explored to induce ICD by incorporating therapeutic molecules for chemotherapy, photosensitizers (PSs) for photodynamic therapy (PDT), photothermal conversion agents for photothermal therapy (PTT), and radiosensitizers for radiotherapy (RT). These NDDSs can release loaded agents at a right dose in the right place at the right time, resulting in greater effectiveness and lower toxicity. Immunotherapeutic agents can also be combined with these NDDSs to achieve the synergic antitumor effect in a multi-modality therapeutic approach. In this review, NDDSs are harnessed to load multiple agents to induce ICD by chemotherapy, PDT, PTT, and RT in combination of immunotherapy to promote the therapeutic effect and reduce side effects associated with cancer treatment.
Collapse
Affiliation(s)
- Zhilin Li
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaoqin Lai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Shiqin Fu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Long Ren
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hao Cai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hu Zhang
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Amgen Bioprocessing CentreKeck Graduate InstituteClaremontCA91711USA
| | - Zhongwei Gu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelei Ma
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Luo
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provinceand Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
18
|
LI XM, YUAN DY, LIU YH, ZHU L, QIN HK, YANG YB, LI Y, YAN F, WANG YJ. Panax notoginseng saponins prevent colitis-associated colorectal cancer via inhibition IDO1 mediated immune regulation. Chin J Nat Med 2022; 20:258-269. [DOI: 10.1016/s1875-5364(22)60179-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 12/11/2022]
|
19
|
Sorrentino C, D'Antonio L, Fieni C, Ciummo SL, Di Carlo E. Colorectal Cancer-Associated Immune Exhaustion Involves T and B Lymphocytes and Conventional NK Cells and Correlates With a Shorter Overall Survival. Front Immunol 2022; 12:778329. [PMID: 34975867 PMCID: PMC8716410 DOI: 10.3389/fimmu.2021.778329] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer worldwide, with a growing impact on public health and clinical management. Immunotherapy has shown promise in the treatment of advanced cancers, but needs to be improved for CRC, since only a limited fraction of patients is eligible for treatment, and most of them develop resistance due to progressive immune exhaustion. Here, we identify the transcriptional, molecular, and cellular traits of the immune exhaustion associated with CRC and determine their relationships with the patient's clinic-pathological profile. Bioinformatic analyses of RNA-sequencing data of 594 CRCs from TCGA PanCancer collection, revealed that, in the wide range of immune exhaustion genes, those coding for PD-L1, LAG3 and T-bet were associated (Cramér's V=0.3) with MSI/dMMR tumors and with a shorter overall survival (log-rank test: p=0.0004, p=0.0014 and p=0.0043, respectively), whereas high levels of expression of EOMES, TRAF1, PD-L1, FCRL4, BTLA and SIGLEC6 were associated with a shorter overall survival (log-rank test: p=0.0003, p=0.0188, p=0.0004, p=0.0303, p=0.0052 and p=0.0033, respectively), independently from the molecular subtype of CRC. Expression levels of PD-L1, PD-1, LAG3, EOMES, T-bet, and TIGIT were significantly correlated with each other and associated with genes coding for CD4+ and CD8+CD3+ T cell markers and NKp46+CD94+EOMES+T-bet+ cell markers, (OR >1.5, p<0.05), which identify a subset of group 1 innate lymphoid cells, namely conventional (c)NK cells. Expression of TRAF1 and BTLA co-occurred with both T cell markers, CD3γ, CD3δ, CD3ε, CD4, and B cell markers, CD19, CD20 and CD79a (OR >2, p<0.05). Expression of TGFβ1 was associated only with CD4 + and CD8+CD3ε+ T cell markers (odds ratio >2, p<0.05). Expression of PD-L2 and IDO1 was associated (OR >1.5, p<0.05) only with cNK cell markers, whereas expression of FCRL4, SIGLEC2 and SIGLEC6 was associated (OR >2.5; p<0.05) with CD19+CD20+CD79a+ B cell markers. Morphometric examination of immunostained CRC tissue sections, obtained from a validation cohort of 53 CRC patients, substantiated the biostatistical findings, showing that the highest percentage of immune exhaustion gene expressing cells were found in tumors from short-term survivors and that functional exhaustion is not confined to T lymphocytes, but also involves B cells, and cNK cells. This concept was strengthened by CYBERSORTx analysis, which revealed the expression of additional immune exhaustion genes, in particular FOXP1, SIRT1, BATF, NR4A1 and TOX, by subpopulations of T, B and NK cells. This study provides novel insight into the immune exhaustion landscape of CRC and emphasizes the need for a customized multi-targeted therapeutic approach to overcome resistance to current immunotherapy.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
20
|
Volovat SR, Ursulescu CL, Moisii LG, Volovat C, Boboc D, Scripcariu D, Amurariti F, Stefanescu C, Stolniceanu CR, Agop M, Lungulescu C, Volovat CC. The Landscape of Nanovectors for Modulation in Cancer Immunotherapy. Pharmaceutics 2022; 14:397. [PMID: 35214129 PMCID: PMC8875018 DOI: 10.3390/pharmaceutics14020397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy represents a promising strategy for the treatment of cancer, which functions via the reprogramming and activation of antitumor immunity. However, adverse events resulting from immunotherapy that are related to the low specificity of tumor cell-targeting represent a limitation of immunotherapy's efficacy. The potential of nanotechnologies is represented by the possibilities of immunotherapeutical agents being carried by nanoparticles with various material types, shapes, sizes, coated ligands, associated loading methods, hydrophilicities, elasticities, and biocompatibilities. In this review, the principal types of nanovectors (nanopharmaceutics and bioinspired nanoparticles) are summarized along with the shortcomings in nanoparticle delivery and the main factors that modulate efficacy (the EPR effect, protein coronas, and microbiota). The mechanisms by which nanovectors can target cancer cells, the tumor immune microenvironment (TIME), and the peripheral immune system are also presented. A possible mathematical model for the cellular communication mechanisms related to exosomes as nanocarriers is proposed.
Collapse
Affiliation(s)
- Simona-Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Corina Lupascu Ursulescu
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Liliana Gheorghe Moisii
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
- Department of Medical Oncology, “Euroclinic” Center of Oncology, 2 Vasile Conta Str., 700106 Iaşi, Romania
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Dragos Scripcariu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania;
| | - Florin Amurariti
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (S.-R.V.); (D.B.); (F.A.)
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.S.); (C.R.S.)
| | - Maricel Agop
- Physics Department, “Gheorghe Asachi” Technical University, Prof. Dr. Docent Dimitrie Mangeron Rd., No. 59A, 700050 Iaşi, Romania;
| | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Cristian Constantin Volovat
- Department of Radiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iaşi, Romania; (C.L.U.); (L.G.M.); (C.C.V.)
| |
Collapse
|
21
|
Targeting immune checkpoints in gynecologic cancer: updates & perspectives for pathologists. Mod Pathol 2022; 35:142-151. [PMID: 34493822 DOI: 10.1038/s41379-021-00882-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Checkpoint inhibitor-based immunotherapy is increasingly used in the treatment of gynecologic cancers, and most often targets the PD-1/PD-L1 axis. Pathologists should be familiar with the biomarkers required to determine candidacy for these treatments based on existing FDA approvals, including mismatch repair protein immunohistochemistry, microsatellite instability testing, tumor mutation burden testing, and PD-L1 immunohistochemistry. This review summarizes the rationale behind these treatments and their associated biomarkers and delivers guidance on how to utilize and readout these tests. It also introduces additional biomarkers which may provide information regarding immunotherapeutic vulnerability in the future such as neoantigen load; POLE mutation status; and immunohistochemical expression of immunosuppressive checkpoints like LAG-3, TIM-3, TIGIT, and VISTA; immune-activating checkpoints such as CD27, CD40, CD134, and CD137; enzymes such as IDO-1 and adenosine-related compounds; and MHC class I.
Collapse
|
22
|
Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials 2022; 282:121433. [DOI: 10.1016/j.biomaterials.2022.121433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
|
23
|
Biros E, Malabu UH, Vangaveti VN, Birosova E, Moran CS. The IFN-γ-mini/TrpRS signaling axis: an insight into the pathophysiology of osteoporosis and therapeutic potential. Cytokine Growth Factor Rev 2022; 64:7-11. [DOI: 10.1016/j.cytogfr.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
|
24
|
Eskiler G, Bilir C, Bilir F. The cytotoxic effects of indoleamine 2, 3-dioxygenase inhibitors on triple negative breast cancer cells upon tumor necrosis factor α stimulation. J Cancer Res Ther 2022; 19:S74-S80. [PMID: 37147986 DOI: 10.4103/jcrt.jcrt_2365_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Context Overexpressed indoleamine 2,3-dioxygenase (IDO) has been observed in many types of cancer and plays an essential role in the tumor microenvironment through immune cells function. Aims In our study, the therapeutic potentials of two different IDO inhibitors (Epacadostat [EPA] and 1-methyl-L-tryptophan [L-1MT]) in triple-negative breast cancer (TNBC) cells were assessed with and without tumor necrosis factor-α (TNF-α) stimulation. Materials and Methods The anticancer activity of EPA and L-1MT alone and in combination with TNF-α was analyzed by WST-1, annexin V, cell cycle analysis, and acridine orange/ethidium bromide staining. In addition, the relationship between IDO1 and programmed death-ligand 1 (PD-L1) expressions in TNBC cells upon treatment with IDO inhibitors was evaluated by reverse transcription-polymerase chain reaction analysis. Statistical Analysis Used SPSS 22.0 was conducted for statistical analysis. The one-way analysis of variance with Tukey's multiple comparison test was performed for multiple groups. Independent (unpaired) t -test was used for the comparison of two groups. Results EPA and L-1MT alone significantly suppressed the TNBC cell viability through the induction of apoptotic cell death and G0/G1 arrest (P < 0.05). TNF-α alone induced the overexpression of IDO1 and PD-L1 in TNBC cells compared with MCF-10A control cells. However, IDO inhibitors significantly inhibited overexpressed IDO1 mRNA levels. Furthermore, EPA alone and co-treated with TNF-α suppressed the mRNA level of PD-L1 in TNBC cells. Therefore, TNF-α stimulation enhanced the therapeutic effects of IDO inhibitors on TNBC. Conclusions Our findings showed that the efficacy of IDO inhibitors was mediated by pro-inflammatory cytokine. However, different molecular signaling pathways are associated with pro-inflammatory cytokines production, and the expression of IDO1 and PD-L1 calls for further investigations.
Collapse
|
25
|
Guan J, Wu Y, Liu X, Wang H, Ye N, Li Z, Xiao C, Zhang Z, Li Z, Yang X. A novel prodrug and its nanoformulation suppress cancer stem cells by inducing immunogenic cell death and inhibiting indoleamine 2, 3-dioxygenase. Biomaterials 2021; 279:121180. [PMID: 34768152 DOI: 10.1016/j.biomaterials.2021.121180] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSCs) present grand challenges for triple-negative breast cancer (TNBC). Conventional chemotherapy drugs, including Camptothecin (CPT), not only cannot eradicate CSCs but also foster a suppressive immune microenvironment for the initiation and proliferation of CSCs. Herein, we report a novel prodrug CPT-SS-NLG919 (CN) and its nanoformulation CN@PLA-HES-FA (CN@PHF), which potently suppress CSCs by regulating CSCs niche in murine TNBC 4T1 tumors. Via inducing immunogenic cell death (ICD) and simultaneous inhibiting indoleamine 2, 3-dioxygenase (IDO), CN and CN@PHF promote DC maturation, decrease Treg cells, mitigate tryptophan consumption, and reduce the amount of IL-6, IL-13, and TGF-β, converting CSCs niche to a hostile condition for CSCs to live in and eliminating CSCs efficiently, thereby inducing efficient tumor inhibition in 4T1 tumor models. Our work represents a new paradigm of eliminating CSCs by regulating tumor immune microenvironment and suggests that CN and its nanoformulation CN@PHF are promising candidates for the treatment of intractable TNBC.
Collapse
Affiliation(s)
- Jiankun Guan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Yuxin Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xin Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Huimin Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ningbing Ye
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zheng Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Wuhan Institute of Biotechnology, High Tech Road 666, East Lake High Tech Zone, Wuhan, 430040, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, PR China
| |
Collapse
|
26
|
Mok DZL, Chan CYY, Ooi EE, Chan KR. The effects of aging on host resistance and disease tolerance to SARS-CoV-2 infection. FEBS J 2021; 288:5055-5070. [PMID: 33124149 PMCID: PMC8518758 DOI: 10.1111/febs.15613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/08/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a large-scale pandemic that is afflicting millions of individuals in over 200 countries. The clinical spectrum caused by SARS-CoV-2 infections can range from asymptomatic infection to mild undifferentiated febrile illness to severe respiratory disease with multiple complications. Elderly patients (aged 60 and above) with comorbidities such as cardiovascular diseases and diabetes mellitus appear to be at highest risk of a severe disease outcome. To protect against pulmonary immunopathology caused by SARS-CoV-2 infection, the host primarily depends on two distinct defense strategies: resistance and disease tolerance. Resistance is the ability of the host to suppress and eliminate incoming viruses. By contrast, disease tolerance refers to host responses that promote host health regardless of their impact on viral replication. Disruption of either resistance or disease tolerance mechanisms or both could underpin predisposition to elevated risk of severe disease during viral infection. Aging can disrupt host resistance and disease tolerance by compromising immune functions, weakening of the unfolded protein response, progressive mitochondrial dysfunction, and altering metabolic processes. A comprehensive understanding of the molecular mechanisms underlying declining host defense in elderly individuals could thus pave the way to provide new opportunities and approaches for the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Darren Z. L. Mok
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| | | | - Eng Eong Ooi
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
- Viral Research & Experimental Medicine Center @ SingHealth/Duke‐NUS (ViREMiCS)SingaporeSingapore
- Singapore‐MIT Alliance in Research and TechnologyAntimicrobial Resistance Interdisciplinary Research GroupSingaporeSingapore
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
- Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Kuan Rong Chan
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
27
|
Zhang Y, Li X, Sun Y, Liu X, Wang W, Tian J. Pharmacokinetics of S-epacadostat, an indoleamine 2,3-dioxygenase 1 inhibitor, in dog plasma and identification of its metabolites in vivo and in vitro. Biomed Chromatogr 2021; 35:e5226. [PMID: 34388261 DOI: 10.1002/bmc.5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/06/2022]
Abstract
S-epacadostat (S-EPA) is an efficient and selective small-molecule inhibitor of indoleamine 2,3-dioxygenase 1. It is an EPA analog with a sulfur atom instead of a nitrogen atom at the furazan C3 position. This study documents the pharmacokinetics of S-EPA in dogs and its metabolic pathway. After an oral administration of 15 mg/kg of S-EPA in dogs, the time to peak concentration was 0.80 h, the mean elimination half-life was 7.3 h, and the absolute bioavailability was 55.8%. Furthermore, we identified S-EPA metabolites in dog plasma and dog liver microsomes by UPLC-Q Exactive Orbitrap HRMS. In dog plasma, we found five metabolites, which came from glucuronidation (M1 and M2), deoxygenation (the amidine M4), glucuronidation of M4 (M3), and desulfonamidation and oxidation of M4 (the carboxylic acid M5). In dog liver microsomes, we identified three major metabolites, namely, the glucuronide conjugate (M6), a mono-oxidation product (M7), and a desulfonamidation and oxidation product (M8). Gut microbiota may cause the differences between in vivo and in vitro oxidation metabolisms. Contrary to EPA, S-EPA did not undergo dealkylation, suggesting that substituting the nitrogen with sulfur affects the metabolism of the adjacent alkyl side chain.
Collapse
Affiliation(s)
- Yumu Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Yufei Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xinghua Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| |
Collapse
|
28
|
Qin R, Zhao C, Wang CJ, Xu W, Zhao JY, Lin Y, Yuan YY, Lin PC, Li Y, Zhao S, Huang Y. Tryptophan potentiates CD8 + T cells against cancer cells by TRIP12 tryptophanylation and surface PD-1 downregulation. J Immunother Cancer 2021; 9:jitc-2021-002840. [PMID: 34326168 PMCID: PMC8323461 DOI: 10.1136/jitc-2021-002840] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Tryptophan catabolites suppress immunity. Therefore, blocking tryptophan catabolism with indoleamine 2,3-dioxygenase (IDO) inhibitors is pursued as an anticancer strategy. METHODS The intracellular level of tryptophan and kynurenine was detected by mass spectrum analysis. The effect of tryptophan and IDO inhibitors on cell surface programmed cell death protein 1 (PD-1) level were measured by flow cytometry. A set of biochemical analyses were used to figure out the underlying mechanism. In vitro co-culture system, syngeneic mouse models, immunofluorescent staining, and flow cytometry analysis were employed to investigate the role of tryptophan and IDO inhibitor in regulating the cytotoxicity of CD8+ T cells. RESULTS Here, we reported that IDO inhibitors activated CD8+ T cells also by accumulating tryptophan that downregulated PD-1. Tryptophan and IDO inhibitors administration, both increased intracellular tryptophan, and tryptophanyl-tRNA synthetase (WARS) overexpression decreased Jurkat and mice CD8+ T cell surface PD-1. Mechanistically, WARS tryptophanylated lysine 1136 of and activated E3 ligase TRIP12 to degrade NFATc1, a PD-1 transcription activator. SIRT1 de-tryptophanylated TRIP12 and reversed the effects of tryptophan and WARS on PD-1. Tryptophan or IDO inhibitors potentiated CD8+ T cells to induce apoptosis of co-cultured cancer cells, increased cancer-infiltrating CD8+ T cells and slowed down tumor growth of lung cancer in mice. CONCLUSIONS Our results revealed the immune-activating efficacy of tryptophan, and suggested tryptophan supplemental may benefit IDO inhibitors and PD-1 blockade during anticancer treatments.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Chen Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Chen-Ji Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Wei Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Metabolic Remodeling, Institute of Metabolism and Integrative Biology and Institutes of Biomedical Sciences, Shanghai, China.,Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Jian-Yuan Zhao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Metabolic Remodeling, Institute of Metabolism and Integrative Biology and Institutes of Biomedical Sciences, Shanghai, China.,Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Yan Lin
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Metabolic Remodeling, Institute of Metabolism and Integrative Biology and Institutes of Biomedical Sciences, Shanghai, China.,Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Yi-Yuan Yuan
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Metabolic Remodeling, Institute of Metabolism and Integrative Biology and Institutes of Biomedical Sciences, Shanghai, China.,Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Shimin Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China .,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Metabolic Remodeling, Institute of Metabolism and Integrative Biology and Institutes of Biomedical Sciences, Shanghai, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
29
|
Jiang CH, Lin PF, Chen FC, Chen JY, Xie WJ, Li M, Hu XJ, Chen WL, Cheng Y, Lin XX. Metabolic Profiling Revealed Prediction Biomarkers for Infantile Hemangioma in Umbilical Cord Blood Sera: A Prospective Study. J Proteome Res 2021; 21:822-832. [PMID: 34319108 DOI: 10.1021/acs.jproteome.1c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infantile hemangioma (IH), the most common benign tumor in infancy, mostly arises and has rapid growth before 3 months of age. Because irreversible skin changes occur in the early proliferative stage, early medical treatment is essential to reduce the permanent sequelae caused by IH. Yet there are still no early screening biomarkers for IH before its visible emergence. This study aimed to explore prediction biomarkers using noninvasive umbilical cord blood (UCB). A prospective study of the metabolic profiling approach was performed on UCB sera from 28 infants with IH and 132 matched healthy controls from a UCB population comprising over 1500 infants (PeptideAtlas: PASS01675) using liquid chromatography-mass spectrometry. The metabolic profiling results exhibited the characteristic metabolic aberrance of IH. Machine learning suggested a panel of biomarkers to predict the occurrence of IH, with the area under curve (AUC) values in the receiver operating characteristic analysis all >0.943. Phenylacetic acid had potential to predict infants with large IH (diameter >2 cm) from those with small IH (diameter <2 cm), with an AUC of 0.756. The novel biomarkers in noninvasive UCB sera for predicting IH before its emergence might lead to a revolutionary clinical utility.
Collapse
Affiliation(s)
- Cheng-Hong Jiang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 35001, China.,Tissue and Organ Regeneration Engineering Center of Fujian Higher Education, Fuzhou 350001, China
| | - Peng-Fei Lin
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Fa-Chun Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jia-Yao Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 51000, China
| | - Wen-Jun Xie
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Ming Li
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiao-Jie Hu
- Department of Plastic and Reconstruction Surgery, School of Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200010, China
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu Cheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,School of Pharmacy, Shanghai Jiao Tong University Shanghai, 200240, China
| | - Xiao-Xi Lin
- Department of Plastic and Reconstruction Surgery, School of Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200010, China
| |
Collapse
|
30
|
Chauhan J, Maddi SR, Dubey KD, Sen S. Developing C2-Aroyl Indoles as Novel Inhibitors of IDO1 and Understanding Their Mechanism of Inhibition via Mass Spectroscopy, QM/MM Calculations and Molecular Dynamics Simulation. Front Chem 2021; 9:691319. [PMID: 34336787 PMCID: PMC8319603 DOI: 10.3389/fchem.2021.691319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Indoleamine-2,3-dioxygenase (IDO1) and tryptophan dioxygenases are two heme based metalloenzymes that catalyze the tryptophan oxidation reaction by inserting molecular dioxygen to cleave the pyrrole ring. The mechanism of such ring cleavage reaction is of carcinogenic importance as the malignant tumors recruit this mechanism for immune invasion. In the presence study, we have synthesized a Novel C2 aroyl indoles inhibitor, 8d, which shows significant inhibition of 180 nM at IC50 scale. The binding and conformational changes that transpire after inhibitor binding were thoroughly studied by molecular docking and MD simulations. The subsequent QM/MM (Quantum Mechanical/Molecular Mechanical) calculations were used to proposed the mechanism of inhibition. The QM/MM calculations show that the reaction proceeds via multistep processes where the dioxygen insertion to the substrate 8a is the rate determining process. Theoretical mechanism is further supported by mass spectroscopy, and drug metabolism/pharmacokinetics study (DMPK) and metabolic stability of compound 8d was investigated in rat and human liver microsomes.
Collapse
Affiliation(s)
- Jyoti Chauhan
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | | | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
31
|
Lucido MJ, Bekhbat M, Goldsmith DR, Treadway MT, Haroon E, Felger JC, Miller AH. Aiding and Abetting Anhedonia: Impact of Inflammation on the Brain and Pharmacological Implications. Pharmacol Rev 2021; 73:1084-1117. [PMID: 34285088 PMCID: PMC11060479 DOI: 10.1124/pharmrev.120.000043] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Exogenous administration of inflammatory stimuli to humans and laboratory animals and chronic endogenous inflammatory states lead to motivational deficits and ultimately anhedonia, a core and disabling symptom of depression present in multiple other psychiatric disorders. Inflammation impacts neurotransmitter systems and neurocircuits in subcortical brain regions including the ventral striatum, which serves as an integration point for reward processing and motivational decision-making. Many mechanisms contribute to these effects of inflammation, including decreased synthesis, release and reuptake of dopamine, increased synaptic and extrasynaptic glutamate, and activation of kynurenine pathway metabolites including quinolinic acid. Neuroimaging data indicate that these inflammation-induced neurotransmitter effects manifest as decreased activation of ventral striatum and decreased functional connectivity in reward circuitry involving ventral striatum and ventromedial prefrontal cortex. Neurocircuitry changes in turn mediate nuanced effects on motivation that include decreased willingness to expend effort for reward while maintaining the ability to experience reward. Taken together, the data reveal an inflammation-induced pathophysiologic phenotype that is agnostic to diagnosis. Given the many mechanisms involved, this phenotype represents an opportunity for development of novel and/or repurposed pharmacological strategies that target inflammation and associated cellular and systemic immunometabolic changes and their downstream effects on the brain. To date, clinical trials have failed to capitalize on the unique nature of this transdiagnostic phenotype, leaving the field bereft of interpretable data for meaningful clinical application. However, novel trial designs incorporating established targets in the brain and/or periphery using relevant outcome variables (e.g., anhedonia) are the future of targeted therapy in psychiatry. SIGNIFICANCE STATEMENT: Emerging understanding of mechanisms by which peripheral inflammation can affect the brain and behavior has created unprecedented opportunities for development of pharmacological strategies to treat deficits in motivation including anhedonia, a core and disabling symptom of depression well represented in multiple psychiatric disorders. Mechanisms include inflammation and cellular and systemic immunometabolism and alterations in dopamine, glutamate, and kynurenine metabolites, revealing a target-rich environment that nevertheless has yet to be fully exploited by current clinical trial designs and drugs employed.
Collapse
Affiliation(s)
- Michael J Lucido
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Mandy Bekhbat
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - David R Goldsmith
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Michael T Treadway
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Ebrahim Haroon
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Jennifer C Felger
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Andrew H Miller
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| |
Collapse
|
32
|
Ghazi A, Le Corre D, Pilati C, Taieb J, Aparicio T, Didelot A, Dedhar S, Mulot C, Le Malicot K, Djouadi F, de Reynies A, Launay JM, Laurent-Puig P, Mouillet-Richard S. Prognostic value of the PrP C-ILK-IDO1 axis in the mesenchymal colorectal cancer subtype. Oncoimmunology 2021; 10:1940674. [PMID: 34249475 PMCID: PMC8244775 DOI: 10.1080/2162402x.2021.1940674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The CMS4 mesenchymal subtype of colorectal cancer (CRC) is associated with poor prognosis and resistance to treatment. The cellular prion protein PrPC is overexpressed in CMS4 tumors and controls the expression of a panel of CMS4-specific genes in CRC cell lines. Here, we sought to investigate PrPC downstream pathways that may underlie its role in CMS4 CRC. By combining gene set enrichment analyses and gain and loss of function approaches in CRC cell lines, we identify the integrin-linked kinase ILK as a proximal effector of PrPC that mediates its control on the CMS4 phenotype. We further leveraged three independent large CRC cohorts to assess correlations in gene expression pattern with patient outcomes and found that ILK is overexpressed in CMS4 mesenchymal tumors and confers a poor prognosis, especially when combined with high expression of the PrPC encoding gene PRNP. Of note, we discovered that the PrPC-ILK signaling axis controls the expression and activity of the tryptophan metabolizing enzyme indoleamine 2,3 dioxygenase IDO1, a key player in immune tolerance. In addition, we monitored alterations in the levels of tryptophan and its metabolites of the kynurenine pathway in the plasma of metastatic CRC patients (n = 325) and we highlight their prognostic value in combination with plasma PrPC levels. Thus, the PrPC-ILK-IDO1 axis plays a key role in the mesenchymal subtype of CRC. PrPC and IDO1-targeted strategies may represent new avenues for patient stratification and treatment in CRC.
Collapse
Affiliation(s)
- Alexandre Ghazi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Delphine Le Corre
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Camilla Pilati
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Julien Taieb
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Department of Gastroenterology and GI Oncology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Thomas Aparicio
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Saint-Louis, Université de Paris, Université Paris Diderot, Paris, France
| | - Audrey Didelot
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Shoukat Dedhar
- Genetics Unit, Integrative Oncology, BC Cancer, Vancouver, Canada
| | - Claire Mulot
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Karine Le Malicot
- Fédération Francophone de Cancérologie Digestive, Epicad Inserm, Université de Bourgogne et and Franche Comté, Dijon, France
| | - Fatima Djouadi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Aurélien de Reynies
- Programme carte d'identité des tumeurs, Ligue Nationale Contre Le Cancer, Paris, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, INSERM U942 Lariboisière Hospital, Paris, France.,Pharma Research Department, F. Hoffmann-La-Roche Ltd., Basel, Switzerland
| | - Pierre Laurent-Puig
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Department of Biology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Sophie Mouillet-Richard
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
33
|
Schreiber S, Hammers CM, Kaasch AJ, Schraven B, Dudeck A, Kahlfuss S. Metabolic Interdependency of Th2 Cell-Mediated Type 2 Immunity and the Tumor Microenvironment. Front Immunol 2021; 12:632581. [PMID: 34135885 PMCID: PMC8201396 DOI: 10.3389/fimmu.2021.632581] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The function of T cells is critically dependent on their ability to generate metabolic building blocks to fulfil energy demands for proliferation and consecutive differentiation into various T helper (Th) cells. Th cells then have to adapt their metabolism to specific microenvironments within different organs during physiological and pathological immune responses. In this context, Th2 cells mediate immunity to parasites and are involved in the pathogenesis of allergic diseases including asthma, while CD8+ T cells and Th1 cells mediate immunity to viruses and tumors. Importantly, recent studies have investigated the metabolism of Th2 cells in more detail, while others have studied the influence of Th2 cell-mediated type 2 immunity on the tumor microenvironment (TME) and on tumor progression. We here review recent findings on the metabolism of Th2 cells and discuss how Th2 cells contribute to antitumor immunity. Combining the evidence from both types of studies, we provide here for the first time a perspective on how the energy metabolism of Th2 cells and the TME interact. Finally, we elaborate how a more detailed understanding of the unique metabolic interdependency between Th2 cells and the TME could reveal novel avenues for the development of immunotherapies in treating cancer.
Collapse
Affiliation(s)
- Simon Schreiber
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Achim J. Kaasch
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
34
|
Liang Q, Zhou L, Li Y, Liu J, Liu Y. Nano drug delivery system reconstruct tumour vasculature for the tumour vascular normalisation. J Drug Target 2021; 30:119-130. [PMID: 33960252 DOI: 10.1080/1061186x.2021.1927056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The abnormal structure and function of blood vessels in the TME are obvious characteristics of the tumour. Abnormal blood vessels with high leakage support the occurrence of malignant tumours and increase the possibility of tumour cell invasion and metastasis. The formation of abnormal vascular also enhances immunosuppression and prevents the delivery of chemotherapy drugs to deeper tumours. Therefore, the normalisation of tumour blood vessels is a very promising approach to improve anti-tumour efficacy, aiming to restore the structural integrity of vessels and improve drug delivery efficiency and anti-tumour immunity. In this review, we have summarised strategies to improve cancer treatment that via nano drug delivery technology regulates the normalisation of tumour blood vessels. The treatment strategies related to the structure and function of tumour blood vessels such as angiogenesis factors, tumour-associated macrophages, tumour vascular endothelial cells, tumour-associated fibroblasts and immune checkpoints in the TME were mainly discussed. The normalisation of tumour blood vessels presents new opportunities and challenges for the more efficient delivery of nanoparticles to tumour tissues and cells and an innovative combination of treatments for cancer.
Collapse
Affiliation(s)
- Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
35
|
Gao Z, Li C, Shen J, Ding D. Organic optical agents for image-guided combined cancer therapy. Biomed Mater 2021; 16. [PMID: 33873169 DOI: 10.1088/1748-605x/abf980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/19/2021] [Indexed: 01/10/2023]
Abstract
As a promising non-invasive treatment method, phototherapy has attracted extensive attention in the field of combined cancer therapy. Among various optical agents, organic ones have been considered as a promising clinical phototheranostic agent due to its high safety and non-toxic property. In addition, due to the clear structure, facile processability, organic optical agents can be easily endowed with multiple imaging and phototherapeutic functions, significantly simplifying the relatively complex system of imaging-guided combined cancer therapy. This review summarizes the recent research on organic optical agents in imaging-guided combined cancer therapy. The application of organic optical agents in a variety of combined cancer therapeutic modes guided by imaging are introduced respectively, including photodynamic and photothermal combined therapy, phototherapy-combined cancer chemotherapy, and phototherapy-combined cancer immunotherapy. Finally, the concluding remarks and the future prospects are discussed.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China.,Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Cong Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China
| | - Dan Ding
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, People's Republic of China.,Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
36
|
Mondanelli G, Mandarano M, Belladonna ML, Suvieri C, Pelliccia C, Bellezza G, Sidoni A, Carvalho A, Grohmann U, Volpi C. Current Challenges for IDO2 as Target in Cancer Immunotherapy. Front Immunol 2021; 12:679953. [PMID: 33968089 PMCID: PMC8097162 DOI: 10.3389/fimmu.2021.679953] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized the clinical approach of untreatable tumors and brought a breath of fresh air in cancer immunotherapy. However, the therapeutic effects of these drugs only cover a minority of patients and alternative immunotherapeutic targets are required. Metabolism of l-tryptophan (Trp) via the kynurenine pathway represents an important immune checkpoint mechanism that controls adaptive immunity and dampens exaggerated inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the enzyme catalyzing the first, rate–limiting step of the pathway, is expressed in several human tumors and IDO1 catalytic inhibitors have reached phase III clinical trials, unfortunately with disappointing results. Although much less studied, the IDO1 paralog IDO2 may represent a valid alternative as drug target in cancer immunotherapy. Accumulating evidence indicates that IDO2 is much less effective than IDO1 in metabolizing Trp and its functions are rather the consequence of interaction with other, still undefined proteins that may vary in distinct inflammatory and neoplastic contexts. As a matter of fact, the expression of IDO2 gene variants is protective in PDAC but increases the risk of developing tumor in NSCLC patients. Therefore, the definition of the IDO2 interactome and function in distinct neoplasia may open innovative avenues of therapeutic interventions.
Collapse
Affiliation(s)
- Giada Mondanelli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Martina Mandarano
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Maria Laura Belladonna
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Chiara Suvieri
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Cristina Pelliccia
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ursula Grohmann
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| |
Collapse
|
37
|
Tang K, Wu YH, Song Y, Yu B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J Hematol Oncol 2021; 14:68. [PMID: 33883013 PMCID: PMC8061021 DOI: 10.1186/s13045-021-01080-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme enzyme that catalyzes the oxidation of L-tryptophan. Functionally, IDO1 has played a pivotal role in cancer immune escape via catalyzing the initial step of the kynurenine pathway, and overexpression of IDO1 is also associated with poor prognosis in various cancers. Currently, several small-molecule candidates and peptide vaccines are currently being assessed in clinical trials. Furthermore, the "proteolysis targeting chimera" (PROTAC) technology has also been successfully used in the development of IDO1 degraders, providing novel therapeutics for cancers. Herein, we review the biological functions of IDO1, structural biology and also extensively summarize medicinal chemistry strategies for the development of IDO1 inhibitors in clinical trials. The emerging PROTAC-based IDO1 degraders are also highlighted. This review may provide a comprehensive and updated overview on IDO1 inhibitors and their therapeutic potentials.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya-Hong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yihui Song
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
38
|
Öztürk S, Kalter V, Roessner PM, Sunbul M, Seiffert M. IDO1-Targeted Therapy Does Not Control Disease Development in the Eµ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13081899. [PMID: 33920868 PMCID: PMC8071295 DOI: 10.3390/cancers13081899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The tryptophan-catabolizing enzyme IDO1 and its metabolite kynurenine were shown to be enhanced in patients with chronic lymphocytic leukemia (CLL), and their involvement in T cell suppression and immune escape was suggested. As we have observed increased IDO1 expression and kynurenine serum levels in the Eµ-TCL1 mouse model of CLL, we evaluated the therapeutic potential of targeting IDO1 in preclinical treatment studies with two IDO1 inhibitors in mice developing CLL. As both studies revealed only minor effects of IDO1 inhibition on leukemia development and the immune compartment at early time points of treatment which disappeared over time, our data suggest that even though IDO1 might be involved in immunosuppressive mechanisms in CLL, its targeting is not sufficient for preventing immune escape. Thus, compensatory mechanisms beyond IDO1 seem to be of relevance to prevent clinically relevant benefits with IDO1-targeting drugs. Abstract Indoleamine-2,3-dioxygenase 1 (IDO1), a tryptophan (Trp)-catabolizing enzyme producing metabolites such as kynurenine (Kyn), is expressed by myeloid-derived suppressor cells (MDSCs) and associated with cancer immune escape. IDO1-expressing monocytic MDSCs were shown to accumulate in patients with chronic lymphocytic leukemia (CLL) and to suppress T cell activity and induce suppressive regulatory T cells (Tregs) in vitro. In the Eµ-TCL1 mouse model of CLL, we observed a strong upregulation of IDO1 in monocytic and granulocytic MDSCs, and a significantly increased Kyn to Trp serum ratio. To explore the potential of IDO1 as a therapeutic target for CLL, we treated mice after adoptive transfer of Eµ-TCL1 leukemia cells with the IDO1 modulator 1-methyl-D-tryptophan (1-MT) which resulted in a minor reduction in leukemia development which disappeared over time. 1-MT treatment further led to a partial rescue of the immune cell changes that are induced with CLL development. Similarly, treatment of leukemic mice with the clinically investigated IDO1 inhibitor epacadostat reduced the frequency of Tregs and initially delayed CLL development slightly, an effect that was, however, lost at later time points. In sum, despite the observed upregulation of IDO1 in CLL, its inhibition is not sufficient to control leukemia development in the Eµ-TCL1 adoptive transfer model.
Collapse
Affiliation(s)
- Selcen Öztürk
- Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.Ö.); (V.K.); (P.M.R.)
| | - Verena Kalter
- Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.Ö.); (V.K.); (P.M.R.)
| | - Philipp M. Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.Ö.); (V.K.); (P.M.R.)
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany;
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.Ö.); (V.K.); (P.M.R.)
- Correspondence:
| |
Collapse
|
39
|
Abdulla M, Alexsson A, Sundström C, Ladenvall C, Mansouri L, Lindskog C, Berglund M, Cavelier L, Enblad G, Hollander P, Amini RM. PD-L1 and IDO1 are potential targets for treatment in patients with primary diffuse large B-cell lymphoma of the CNS. Acta Oncol 2021; 60:531-538. [PMID: 33579170 DOI: 10.1080/0284186x.2021.1881161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Programmed cell death 1 (PD-1) and its ligands PD-L1 and PD-L2, as well as Indoleamine 2,3-deoxygenase (IDO1) can be expressed both by tumor and microenvironmental cells and are crucial for tumor immune escape. We aimed to evaluate the role of PD-1, its ligands and IDO1 in a cohort of patients with primary diffuse large B-cell lymphoma of the CNS (PCNSL). MATERIAL AND METHODS Tissue microarrays (TMAs) were constructed in 45 PCNSL cases. RNA extraction from whole tissue sections and RNA sequencing were successfully performed in 33 cases. Immunohistochemical stainings for PD-1, PD-L1/paired box protein 5 (PAX-5), PD-L2/PAX-5 and IDO1, and Epstein-Barr virus encoding RNA (EBER) in situ hybridization were analyzed. RESULTS High proportions of PD-L1 and PD-L2 positive tumor cells were observed in 11% and 9% of cases, respectively. High proportions of PD-L1 and PD-L2 positive leukocytes were observed in 55% and 51% of cases, respectively. RNA sequencing revealed that gene expression of IDO1 was high in patients with high proportion of PD-L1 positive leukocytes (p = .01). Protein expression of IDO1 in leukocytes was detected in 14/45 cases, in 79% of these cases a high proportion of PD-L1 positive leukocytes was observed. Gene expression of IDO1 was high in EBER-positive cases (p = .0009) and protein expression of IDO1 was detected in five of six EBER-positive cases. CONCLUSION Our study shows a significant association between gene and protein expression of IDO1 and protein expression of PD-L1 in the tumor microenvironment of PCNSL, possibly of importance for prediction of response to immunotherapies.
Collapse
Affiliation(s)
- Maysaa Abdulla
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| | - Andrei Alexsson
- Clinical Genomics Uppsala, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christer Sundström
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| | - Claes Ladenvall
- Clinical Genomics Uppsala, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mattias Berglund
- Experimental and Clinical Oncology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lucia Cavelier
- Clinical Genomics Uppsala, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gunilla Enblad
- Experimental and Clinical Oncology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peter Hollander
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| | - Rose-Marie Amini
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| |
Collapse
|
40
|
Redirecting the Immune Microenvironment in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061423. [PMID: 33804676 PMCID: PMC8003817 DOI: 10.3390/cancers13061423] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Despite remarkable progress in the outcome of childhood acute myeloid leukemia (AML), risk of relapse and refractory diseases remains high. Treatment of the chemo-refractory disease is restricted by dose-limiting therapy-related toxicities which necessitate alternative tolerable efficient therapeutic modalities. By disrupting its immune environment, leukemic blasts are known to gain the ability to evade immune surveillance and promote disease progression; therefore, many efforts have been made to redirect the immune system against malignant blasts. Deeper knowledge about immunologic alterations has paved the way to the discovery and development of novel targeted therapeutic concepts, which specifically override the immune evasion mechanisms to eradicate leukemic blasts. Herein, we review innovative immunotherapeutic strategies and their mechanisms of action in pediatric AML. Abstract Acute myeloid leukemia is a life-threatening malignant disorder arising in a complex and dysregulated microenvironment that, in part, promotes the leukemogenesis. Treatment of relapsed and refractory AML, despite the current overall success rates in management of pediatric AML, remains a challenge with limited options considering the heavy but unsuccessful pretreatments in these patients. For relapsed/refractory (R/R) patients, hematopoietic stem cell transplantation (HSCT) following ablative chemotherapy presents the only opportunity to cure AML. Even though in some cases immune-mediated graft-versus-leukemia (GvL) effect has been proven to efficiently eradicate leukemic blasts, the immune- and chemotherapy-related toxicities and adverse effects considerably restrict the feasibility and therapeutic power. Thus, immunotherapy presents a potent tool against acute leukemia but needs to be engineered to function more specifically and with decreased toxicity. To identify innovative immunotherapeutic approaches, sound knowledge concerning immune-evasive strategies of AML blasts and the clinical impact of an immune-privileged microenvironment is indispensable. Based on our knowledge to date, several promising immunotherapies are under clinical evaluation and further innovative approaches are on their way. In this review, we first focus on immunological dysregulations contributing to leukemogenesis and progression in AML. Second, we highlight the most promising therapeutic targets for redirecting the leukemic immunosuppressive microenvironment into a highly immunogenic environment again capable of anti-leukemic immune surveillance.
Collapse
|
41
|
Xu X, Wang L, Zang Q, Li S, Li L, Wang Z, He J, Qiang B, Han W, Zhang R, Peng X, Abliz Z. Rewiring of purine metabolism in response to acidosis stress in glioma stem cells. Cell Death Dis 2021; 12:277. [PMID: 33723244 PMCID: PMC7961141 DOI: 10.1038/s41419-021-03543-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023]
Abstract
Glioma stem cells (GSCs) contribute to therapy resistance and poor outcomes for glioma patients. A significant feature of GSCs is their ability to grow in an acidic microenvironment. However, the mechanism underlying the rewiring of their metabolism in low pH remains elusive. Here, using metabolomics and metabolic flux approaches, we cultured GSCs at pH 6.8 and pH 7.4 and found that cells cultured in low pH exhibited increased de novo purine nucleotide biosynthesis activity. The overexpression of glucose-6-phosphate dehydrogenase, encoded by G6PD or H6PD, supports the metabolic dependency of GSCs on nucleotides when cultured under acidic conditions, by enhancing the pentose phosphate pathway (PPP). The high level of reduced glutathione (GSH) under acidic conditions also causes demand for the PPP to provide NADPH. Taken together, upregulation of G6PD/H6PD in the PPP plays an important role in acidic-driven purine metabolic reprogramming and confers a predilection toward glioma progression. Our findings indicate that targeting G6PD/H6PD, which are closely related to glioma patient survival, may serve as a promising therapeutic target for improved glioblastoma therapeutics. An integrated metabolomics and metabolic flux analysis, as well as considering microenvironment and cancer stem cells, provide a precise insight into understanding cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Xiaoyu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Limei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Biomedical Primate Research Center, Neuroscience Center Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Centre for Bioimaging and Systems Biology, Minzu University of China, Beijing, China.
| |
Collapse
|
42
|
Sakharkar MK, Dhillon SK, Rajamanickam K, Heng B, Braidy N, Guillemin GJ, Yang J. Alteration in Gene Pair Correlations in Tryptophan Metabolism as a Hallmark in Cancer Diagnosis. Int J Tryptophan Res 2020; 13:1178646920977013. [PMID: 33354111 PMCID: PMC7734567 DOI: 10.1177/1178646920977013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/02/2020] [Indexed: 02/01/2023] Open
Abstract
Tryptophan metabolism plays essential roles in both immunomodulation and cancer development. Indoleamine 2,3-dioxygenase, a rate-limiting enzyme in the metabolic pathway, is overexpressed in different types of cancer. To get a better understanding of the involvement of tryptophan metabolism in cancer development, we evaluated the expression and pairwise correlation of 62 genes in the metabolic pathway across 12 types of cancer. Only gene AOX1, encoding aldehyde oxidase 1, was ubiquitously downregulated, Furthermore, we observed that the 62 genes were widely and strongly correlated in normal controls, however, the gene pair correlations were significantly lost in tumor patients for all 12 types of cancer. This implicated that gene pair correlation coefficients of the tryptophan metabolic pathway could be applied as a prognostic and/or diagnostic biomarker for cancer.
Collapse
Affiliation(s)
- Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarinder Kaur Dhillon
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Karthic Rajamanickam
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Benjamin Heng
- Neuroinflammation Research Group, MND Research Centre, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nady Braidy
- Neuroinflammation Research Group, MND Research Centre, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Faculty of Medicine, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Research Group, MND Research Centre, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
43
|
Zhu Y, Jiang C, Liu Y, Li Y, Wu H, Feng J, Xu Y. Association between IDO activity and prognosis in patients with non-small cell lung cancer after radiotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1169. [PMID: 33241018 PMCID: PMC7576049 DOI: 10.21037/atm-20-5634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Indoleamine 2,3-dioxygenase (IDO), a limiting enzyme in the IDO/kynurenine (Kyn) pathway, converts tryptophan (Trp) into Kyn, and plays a significant role in immune suppression and tumor immune evasion. This study aimed to investigate the association between IDO activity and clinical outcomes in non-small cell lung cancer (NSCLC) patients who underwent radiotherapy (RT). Methods Serum Kyn and Trp levels were measured in 104 NSCLC patients by high-performance liquid chromatography at baseline, and the following RT. The correlation between IDO activity, as computed by Kyn: Trp ratios and survival was estimated using Kaplan-Meier curves. Cox proportional hazard models are used in the univariate and multivariate analyses. Results Both the Kyn levels and Kyn:Trp ratios were reduced after RT at a biologically equivalent dose (BED) of <70 Gy, while these increased at a BED of ≥70 Gy. Post/pre-Kyn levels were positively correlated with an objective response. Patients with a higher Kyn:Trp ratio pre-RT had the worse median progression-free survival (mPFS, 13.5 vs. 24.5 months, P=0.049). Higher post/pre-Kyn:Trp ratios were correlated with improved median overall survival (mOS, 23.8 months vs. not reached, P=0.032). On the multivariate analysis, pre-RT Kyn:Trp and post/pre-Kyn:Trp ratios remained as independent predictive factors for PFS and OS, respectively. Conclusions It was proved that RT could alter IDO-mediated immune activity and establish strong correlations between IDO activity and survival outcomes in NSCLC patients treated with RT. These present findings suggest that the profiling of IDO activity might allow for the prompt adjustment of RT doses and better predict patient response to RT.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,First Clinical Medical School, Wenzhou Medical University, Wenzhou, China
| | - Chenxue Jiang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanjun Liu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,First Clinical Medical School, Wenzhou Medical University, Wenzhou, China
| | - Yefei Li
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - He Wu
- First Clinical Medical School, Wenzhou Medical University, Wenzhou, China
| | - Jianguo Feng
- Laboratory Research Centre, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,First Clinical Medical School, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
44
|
Heidari F, Ramezani A, Erfani N, Razmkhah M. Indoleamine 2, 3-Dioxygenase: A Professional Immunomodulator and Its Potential Functions in Immune Related Diseases. Int Rev Immunol 2020; 41:346-363. [DOI: 10.1080/08830185.2020.1836176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Wesch D, Kabelitz D, Oberg HH. Tumor resistance mechanisms and their consequences on γδ T cell activation. Immunol Rev 2020; 298:84-98. [PMID: 33048357 DOI: 10.1111/imr.12925] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Human γδ T lymphocytes are predominated by two major subsets, defined by the variable domain of the δ chain. Both, Vδ1 and Vδ2 T cells infiltrate in tumors and have been implicated in cancer immunosurveillance. Since the localization and distribution of tumor-infiltrating γδ T cell subsets and their impact on survival of cancer patients are not completely defined, this review summarizes the current knowledge about this issue. Different intrinsic tumor resistance mechanisms and immunosuppressive molecules of immune cells in the tumor microenvironment have been reported to negatively influence functional properties of γδ T cell subsets. Here, we focus on selected tumor resistance mechanisms including overexpression of cyclooxygenase (COX)-2 and indolamine-2,3-dioxygenase (IDO)-1/2, regulation by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL-R4 pathway and the release of galectins. These inhibitory mechanisms play important roles in the cross-talk of γδ T cell subsets and tumor cells, thereby influencing cytotoxicity or proliferation of γδ T cells and limiting a successful γδ T cell-based immunotherapy. Possible future directions of a combined therapy of adoptively transferred γδ T cells together with γδ-targeting bispecific T cell engagers and COX-2 or IDO-1/2 inhibitors or targeting sialoglycan-Siglec pathways will be discussed and considered as attractive therapeutic options to overcome the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
46
|
Chinnadurai R, Scandolara R, Alese OB, Arafat D, Ravindranathan D, Farris AB, El-Rayes BF, Gibson G. Correlation Patterns Among B7 Family Ligands and Tryptophan Degrading Enzymes in Hepatocellular Carcinoma. Front Oncol 2020; 10:1632. [PMID: 33014820 PMCID: PMC7494748 DOI: 10.3389/fonc.2020.01632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/27/2020] [Indexed: 12/30/2022] Open
Abstract
Mechanisms of dysfunctional T cell immunity in Hepatocellular Carcinoma (HCC) need to be well defined. B7 family molecules provide both co-stimulatory and co-inhibitory signals to T cells while tryptophan degrading enzymes like Indoleamine 2,3 dioxygenase (IDO) and Tryptophan 2,3 Dioxygenase (TDO) mediate tumor immune tolerance. It is necessary to identify their in situ correlative expression, which informs targets for combined immunotherapy approaches. We investigated B7 family molecules, IDO, TDO and immune responsive effectors in the tumor tissues of patients with HCC (n = 28) using a pathway-focused quantitative nanoscale chip real-time PCR. Four best correlative expressions, namely (1) B7-1 & PD-L2, (2) B7-H2 & B7-H3, (3) B7-2 & PD-L1, (4) PD-L1 & PD-L2, were identified among B7 family ligands, albeit they express at different levels. Although TDO expression is higher than IDO, PD-L1 correlates only with IDO but not TDO. Immune effector (Granzyme B) and suppressive (PD-1 and TGF-β) genes correlate with IDO and B7-1, B7-H5, PD-L2. Identification of the in situ correlation of PD-L1, PD-L2 and IDO suggest their cumulative immuno suppressive role in HCC. The distinct correlations among B7-1, B7-2, B7-H2, and B7-H3, correlation of PD-1 with non-cognate ligands such as B7-1 and B7-H5, and correlation of tumor lytic enzyme Granzyme B with IDO and PD-L2 suggest that HCC microenvironment is complexly orchestrated with both stimulatory and inhibitory molecules which together neutralize and blunt anti-HCC immunity. Functional assays demonstrate that both PDL-1 and IDO synergistically inhibit T cell responses. Altogether, the present data suggest the usage of combined immune checkpoint blocking strategies targeting co-inhibitory B7 molecules and IDO for HCC management.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Rafaela Scandolara
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Olatunji B Alese
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Dalia Arafat
- School of Biology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Deepak Ravindranathan
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Greg Gibson
- School of Biology, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
47
|
Flerin NC, Pinioti S, Menga A, Castegna A, Mazzone M. Impact of Immunometabolism on Cancer Metastasis: A Focus on T Cells and Macrophages. Cold Spring Harb Perspect Med 2020; 10:a037044. [PMID: 31615868 PMCID: PMC7461771 DOI: 10.1101/cshperspect.a037044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite improved treatment options, cancer remains the leading cause of morbidity and mortality worldwide, with 90% of this mortality correlated to the development of metastasis. Since metastasis has such an impact on treatment success, disease outcome, and global health, it is important to understand the different steps and factors playing key roles in this process, how these factors relate to immune cell function and how we can target metabolic processes at different steps of metastasis in order to improve cancer treatment and patient prognosis. Recent insights in immunometabolism direct to promising therapeutic targets for cancer treatment, however, the specific contribution of metabolism on antitumor immunity in different metastatic niches warrant further investigation. Here, we provide an overview of what is so far known in the field of immunometabolism at different steps of the metastatic cascade, and what may represent the next steps forward. Focusing on metabolic checkpoints in order to translate these findings from in vitro and mouse studies to the clinic has the potential to revolutionize cancer immunotherapy and greatly improve patient prognosis.
Collapse
Affiliation(s)
- Nina C Flerin
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Sotiria Pinioti
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Alessio Menga
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70125, Italy
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| |
Collapse
|
48
|
Sun L. Advances in the discovery and development of selective heme-displacing IDO1 inhibitors. Expert Opin Drug Discov 2020; 15:1223-1232. [DOI: 10.1080/17460441.2020.1781811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Mardiana S, Gill S. CAR T Cells for Acute Myeloid Leukemia: State of the Art and Future Directions. Front Oncol 2020; 10:697. [PMID: 32435621 PMCID: PMC7218049 DOI: 10.3389/fonc.2020.00697] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022] Open
Abstract
Relapse after conventional chemotherapy remains a major problem in patients with myeloid malignancies such as acute myeloid leukemia (AML), and the major cause of death after diagnosis of AML is from relapsed disease. The only potentially curative treatment option currently available is allogeneic hematopoietic stem cell transplantation (allo-HSCT), which through its graft-vs.-leukemia effects has the ability to eliminate residual leukemia cells. Despite its long history of success however, relapse following allo-HSCT is still a major challenge and is associated with poor prognosis. In the field of adoptive therapy, CD19-targeted chimeric antigen receptor (CAR) T cells have yielded remarkable clinical success in certain types of B-cell malignancies, and substantial efforts aimed at translating this success to myeloid malignancies are currently underway. While complete ablation of CD19-expressing B cells, both cancerous and healthy, is clinically tolerated, the primary challenge limiting the use of CAR T cells in myeloid malignancies is the absence of a dispensable antigen, as myeloid antigens are often co-expressed on normal hematopoietic stem/progenitor cells (HSPCs), depletion of which would lead to intolerable myeloablation. This review provides a discussion on the current state of CAR T cell therapy in myeloid malignancies, limitations for clinical translation, as well as the most recent approaches to overcome these barriers, through various genetic modification and combinatorial strategies in an attempt to make CAR T cell therapy a safe and viable option for patients with myeloid malignancies.
Collapse
Affiliation(s)
- Sherly Mardiana
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
- Division of Hematology-Oncology and Center for Cellular Immunotherapies, University of Pennsylvania, PA, United States
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
- Division of Hematology-Oncology and Center for Cellular Immunotherapies, University of Pennsylvania, PA, United States
| |
Collapse
|
50
|
Zhao C, Kong X, Han S, Li X, Wu T, Zhou J, Guo Y, Bu Z, Liu C, Zhang C, Jia Y. Analysis of differential metabolites in lung cancer patients based on metabolomics and bioinformatics. Future Oncol 2020; 16:1269-1287. [PMID: 32356461 DOI: 10.2217/fon-2019-0818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Based on metabonomics, the metabolic markers of lung cancer patients were analyzed, combined with bioinformatics to explore the underlying disease mechanism. Materials & methods: Based on case-control design, using UPLC-Q-TOF/MS, urine metabolites were detected in discovery and validation set. Multivariate statistical analysis were performed to identify potential markers for lung cancer. A network analysis was constructed to integrate lung cancer disease targets with the above metabolic markers, and its possible mechanism and biological significance were explained. Results: A total of 35 potential markers were identified, 11 of which overlapped. Five key markers have a good linear correlation with serum biochemical indicators. Conclusion: The occurrence and development of lung cancer are closely related to disturbance of D-Glutamine and D-glutamate metabolism, amino acid imbalance. This test was registered on China clinical trial registration center (www.chictr.org.cn/index.aspx), registration number was ChiCTR1900025543.
Collapse
Affiliation(s)
- Chenchen Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 88, Chang Ling Road, Li Qi Zhuang Jie, Xi Qing District, Tianjin 300381, PR China.,Graduate School, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, PR China
| | - Xianbin Kong
- Graduate School, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, PR China
| | - Shuang Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing 102488, PR China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 88, Chang Ling Road, Li Qi Zhuang Jie, Xi Qing District, Tianjin 300381, PR China
| | - Tong Wu
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.69, Zeng Chan Road, He Bei district, Tianjin 300250, PR China
| | - Jie Zhou
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.69, Zeng Chan Road, He Bei district, Tianjin 300250, PR China
| | - Yuzhu Guo
- Department of Oncology, Second Affliated Hospital of Tianjin University of Traditional Chinese Medicine, No.69, Zeng Chan Road, He Bei district, Tianjin 300250, PR China
| | - Zhichao Bu
- Graduate School, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, PR China
| | - Chuanxin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing 102488, PR China
| | - Chenning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing 102488, PR China.,Institute of Wudang Traditional Chinese Medicine, Taihe hospital, Hubei University of Medicine, Remmin South Road 32, Shiyan City 442000, Hubei Province, PR China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 88, Chang Ling Road, Li Qi Zhuang Jie, Xi Qing District, Tianjin 300381, PR China
| |
Collapse
|