1
|
Lory W, Chowdhury N, Wellslager B, Pandruvada S, Huang Y, Yilmaz Ö, Yu H. CD38 Inhibitor 78c Attenuates Pro-Inflammatory Cytokine Expression and Osteoclastogenesis in Macrophages. Cells 2024; 13:1971. [PMID: 39682719 DOI: 10.3390/cells13231971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
CD38, a nicotinamide adenine dinucleotide (NAD+) glycohydrolase, increases during infection or inflammation. Therefore, we aimed to evaluate the effects of a CD38 inhibitor (78c) on NAD+ levels, IL-1β, IL-6, TNF-α cytokine expressions, and osteoclastogenesis. The results show that treatment with 78c on murine BMMs dose-dependently reduced CD38, reversed the decline of NAD+, and inhibited IL-1β, IL-6, and TNF-α pro-inflammatory cytokine levels induced by oral pathogen Porphyromonas gingivalis (Pg) or Aggregatibacter actinomycetemcomitans (Aa) or by advanced glycation end products (AGEs). Additionally, treatment with 78c dose-dependently suppressed osteoclastogenesis and bone resorption induced by RANKL. Treatment with 78c suppressed CD38, nuclear factor kappa-B (NF-κB), phosphoinositide 3-kinase (PI3K), and mitogen-activated protein kinases (MAPKs) induced by Pg, Aa, or AGEs, and suppressed podosome components (PI3K, Pyk2, Src, F-actin, integrins, paxillin, and talin) induced by RANKL. These results from our studies support the finding that the inhibition of CD38 by 78c is a promising therapeutic strategy to treat inflammatory bone loss diseases. However, treatment with a CD38 shRNA only significantly reduced IL-1β, IL-6, and TNF-α pro-inflammatory cytokine levels induced by AGEs. Compared with controls, it had limited effects on cytokine levels induced by Pg or Aa. Treatment with the CD38 shRNA enhanced RANKL-induced osteoclastogenesis, suggesting that 78c has some off-target effects.
Collapse
Affiliation(s)
- William Lory
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nityananda Chowdhury
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bridgette Wellslager
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Subramanya Pandruvada
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yan Huang
- Department of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Özlem Yilmaz
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hong Yu
- Department of Biomedical and Community Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Sabe H, Yahara Y, Ishii M. Cell fusion dynamics: mechanisms of multinucleation in osteoclasts and macrophages. Inflamm Regen 2024; 44:49. [PMID: 39605032 PMCID: PMC11600601 DOI: 10.1186/s41232-024-00360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Cell-cell fusion is a vital biological process where the membranes of two or more cells merge to form a syncytium. This phenomenon is critical in various physiological and pathological contexts, including embryonic development, tissue repair, immune responses, and the progression of several diseases. Osteoclasts, which are cells from the monocyte/macrophage lineage responsible for bone resorption, have enhanced functionality due to cell fusion. Additionally, other multinucleated giant cells (MGCs) also arise from the fusion of monocytes and macrophages, typically during chronic inflammation and reactions to foreign materials such as prostheses or medical devices. Foreign body giant cells (FBGCs) and Langhans giant cells (LGCs) emerge only under pathological conditions and are involved in phagocytosis, antigen presentation, and the secretion of inflammatory mediators. This review provides a comprehensive overview of the mechanisms underlying the formation of multinucleated cells, with a particular emphasis on macrophages and osteoclasts. Elucidating the intracellular structures, signaling cascades, and fusion-mediating proteins involved in cell-cell fusion enhances our understanding of this fundamental biological process and helps identify potential therapeutic targets for disorders mediated by cell fusion.
Collapse
Affiliation(s)
- Hideaki Sabe
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasuhito Yahara
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Young PS, Greer AIM, Smith CA, Silverwood RK, Tsimbouri PM, Meek D, Goodyear C, Gadegaard N, Dalby MJ. Titanium Surface Synergy: Strontium Incorporation and Controlled Disorder Nanotopography Optimize Osteoinduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63129-63141. [PMID: 39509174 DOI: 10.1021/acsami.4c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Osteoporotic fractures and arthritis represent a major socioeconomic health burden. Fragility fracture fixation and joint replacement are often undertaken using titanium (Ti) or Ti alloy implants. Ideally these should induce bone formation and reduce osteoclast formation. Nanoscale topographies are potent inducers of osteogenesis, and strontium (Sr) has both osteogenic and antiosteoclastic effects. We incorporated strontium into a titanium surface with an osteogenic disordered nanoscale topography. The surface comprises 120 nm diameter, 100 nm deep pits in a near-square order with deliberate offset from the center pit position up to ±50 nm, providing a pattern with an average center-center pit spacing of 300 nm (called near-square 50, NSQ50). Several surfaces were assessed, including NSQ50 alone, strontium incorporated alone, and combined, compared with control surfaces. We assessed the surfaces using a human bone marrow stromal cell (BMSC)/ bone marrow hematopoietic cell (BHSC) coculture capable of osteogenesis and osteoclastogenesis. The samples eluted Sr over long-term culture, and uptake of Sr was better with eluted Sr than with Sr added to the culture media. The NSQ50 pattern in Ti was osteogenic, and addition of Sr elution increased osteogenesis further for both flat and NSQ50 samples. Interestingly, BMSCs on all Ti samples did not secrete the receptor activator of nuclear factor kappa-Β ligand (RANKL) or macrophage colony-stimulating factor (M-CSF) while secreting osteoprotegrin (OPG) at high levels. This meant that no osteoclast formation was observed on any Ti surface. Therefore, using Sr-incorporated nanotopographical imprinting, we generated highly osteogenic Ti surfaces that inhibited osteoclast formation.
Collapse
Affiliation(s)
- Peter S Young
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, The Advanced Research Centre, 11 Chapel Lane, Glasgow G11 6EW, Scotland, U.K
- Department of Trauma and Orthopaedics, University Hospital Ayr, Ayr, KA6 6DX, Scotland, U.K
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Andrew I M Greer
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, Scotland, U.K
| | - Carol-Anne Smith
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, The Advanced Research Centre, 11 Chapel Lane, Glasgow G11 6EW, Scotland, U.K
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Robert K Silverwood
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, The Advanced Research Centre, 11 Chapel Lane, Glasgow G11 6EW, Scotland, U.K
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, The Advanced Research Centre, 11 Chapel Lane, Glasgow G11 6EW, Scotland, U.K
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Dominic Meek
- Department of Trauma and Orthopaedics, Queen Elizabeth University Hospital, Glasgow G51 4TF, Scotland, U.K
| | - Carl Goodyear
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, Scotland, U.K
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, The Advanced Research Centre, 11 Chapel Lane, Glasgow G11 6EW, Scotland, U.K
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| |
Collapse
|
4
|
Haghpanah Z, Mondal D, Momenbeitollahi N, Mohsenkhani S, Zarshenas K, Jin Y, Watson M, Willett T, Gorbet M. In vitro evaluation of bone cell response to novel 3D-printable nanocomposite biomaterials for bone reconstruction. J Biomed Mater Res A 2024; 112:1725-1739. [PMID: 38619300 DOI: 10.1002/jbm.a.37719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/24/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Critically-sized segmental bone defects represent significant challenges requiring grafts for reconstruction. 3D-printed synthetic bone grafts are viable alternatives to structural allografts if engineered to provide appropriate mechanical performance and osteoblast/osteoclast cell responses. Novel 3D-printable nanocomposites containing acrylated epoxidized soybean oil (AESO) or methacrylated AESO (mAESO), polyethylene glycol diacrylate, and nanohydroxyapatite (nHA) were produced using masked stereolithography. The effects of volume fraction of nHA and methacrylation of AESO on interactions of differentiated MC3T3-E1 osteoblast (dMC3T3-OB) and differentiated RAW264.7 osteoclast cells with 3D-printed nanocomposites were evaluated in vitro and compared with a control biomaterial, hydroxyapatite (HA). Higher nHA content and methacrylation significantly improved the mechanical properties. All nanocomposites supported dMC3T3-OB cells' adhesion and proliferation. Higher amounts of nHA enhanced cell adhesion and proliferation. mAESO in the nanocomposites resulted in greater adhesion, proliferation, and activity at day 7 compared with AESO nanocomposites. Excellent osteoclast-like cells survival, defined actin rings, and large multinucleated cells were only observed on the high nHA fraction (30%) mAESO nanocomposite and the HA control. Thus, mAESO-based nanocomposites containing higher amounts of nHA have better interactions with osteoblast-like and osteoclast-like cells, comparable with HA controls, making them a potential future alternative graft material for bone defect repair.
Collapse
Affiliation(s)
- Zahra Haghpanah
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Dibakar Mondal
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Nikan Momenbeitollahi
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sadaf Mohsenkhani
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Kiyoumars Zarshenas
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Yutong Jin
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Michael Watson
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Thomas Willett
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maud Gorbet
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Dufrancais O, Verdys P, Plozza M, Métais A, Juzans M, Sanchez T, Bergert M, Halper J, Panebianco CJ, Mascarau R, Gence R, Arnaud G, Neji MB, Maridonneau-Parini I, Cabec VL, Boerckel JD, Pavlos NJ, Diz-Muñoz A, Lagarrigue F, Blin-Wakkach C, Carréno S, Poincloux R, Burkhardt JK, Raynaud-Messina B, Vérollet C. Moesin controls cell-cell fusion and osteoclast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593799. [PMID: 38798563 PMCID: PMC11118517 DOI: 10.1101/2024.05.13.593799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cell-cell fusion is an evolutionarily conserved process that is essential for many functions, including fertilisation and the formation of placenta, muscle and osteoclasts, multinucleated cells that are unique in their ability to resorb bone. The mechanisms of osteoclast multinucleation involve dynamic interactions between the actin cytoskeleton and the plasma membrane that are still poorly characterized. Here, we found that moesin, a cytoskeletal linker protein member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role in both osteoclast fusion and function. In mouse and human osteoclast precursors, moesin inhibition favors their ability to fuse into multinucleated osteoclasts. Accordingly, we demonstrated that moesin depletion decreases membrane-to-cortex attachment and enhances the formation of tunneling nanotubes (TNTs), F-actin-based intercellular bridges that we reveal here to trigger cell-cell fusion. Moesin also controls HIV-1- and inflammation-induced cell fusion. In addition, moesin regulates the formation of the sealing zone, the adhesive structure determining osteoclast bone resorption area, and thus controls bone degradation, via a β3-integrin/RhoA/SLK pathway. Supporting our results, moesin - deficient mice present a reduced density of trabecular bones and increased osteoclast abundance and activity. These findings provide a better understanding of the regulation of cell-cell fusion and osteoclast biology, opening new opportunities to specifically target osteoclast activity in bone disease therapy.
Collapse
|
6
|
Brockhaus K, Hemsen I, Jauch-Speer SL, Niland S, Vogl T, Eble JA. Integrin α2 is an early marker for osteoclast differentiation that contributes to key steps in osteoclastogenesis. Front Cell Dev Biol 2024; 12:1448725. [PMID: 39220682 PMCID: PMC11363192 DOI: 10.3389/fcell.2024.1448725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Osteoclasts determine bone tissue turnover. Their increased activity causes osteoporosis, their dysfunction osteopetrosis. Methods and Results Murine monocytic ER-Hoxb8 cells differentiate into OCs upon treatment with M-CSF and RANKL and upregulate the collagen-binding integrin α2β1 distinctly earlier than other OC markers, such as the OC-associated receptor, OSCAR. Integrin α2β1 promotes OC differentiation at multiple levels by stimulating differentiation-relevant genes, by regulating cell matrix adhesion and the formation of adhesion-promoting protrusions, and by the upregulation of proteins involved in precursor cell fusion. The two key factors in osteoclastogenesis, RANK and NFATc1, were essentially unaffected after knocking out the ITGA2 gene encoding integrin α2 subunit. However, compared to integrin α2β1 expressing ER-Hoxb8 cells, ITGA2-deficient cells adhered differently with more branched filopodia and significantly longer tunneling nanotubes. Despite the higher number of fusion-relevant TNTs, they form fewer syncytia. They also resorb less hydroxyapatite, because integrin α2β1 regulates expression of lacuna proteins necessary for bone matrix resorption. The impaired syncytia formation of ITGA2-deficient OC precursor cells also correlated with reduced gene activation of fusion-supporting DC-STAMP and with an almost abolished transcription of tetraspanin CD9. CD9 only partially colocalized with integrin α2β1 in TNTs and filopodia of integrin α2β1-expressing OC precursors. Discussion Our findings define integrin α2β1 as an early marker of OC differentiation.
Collapse
Affiliation(s)
- Katrin Brockhaus
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Isabel Hemsen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
7
|
de Oliveira G, de Andrade Rodrigues L, Souza da Silva AA, Gouvea LC, Silva RCL, Sasso-Cerri E, Cerri PS. Reduction of osteoclast formation and survival following suppression of cytokines by diacerein in periodontitis. Biomed Pharmacother 2024; 177:117086. [PMID: 39013222 DOI: 10.1016/j.biopha.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Periodontitis causes an increase in several bioactive agents such as interleukins (IL), tumor necrosis factor (TNF)-α and receptor activator of NF-kB ligand (RANKL), which induce the osteoclast formation and activity. Since diacerein exerts anti-TNF-α and anti-IL-1 effects, alleviating bone destruction in osteoarthritis, we investigated whether this drug inhibits the formation and survival of osteoclast in the periodontitis. Rats were distributed into 3 groups: 1) group with periodontitis treated with 100 mg/kg diacerein (PDG), 2) group with periodontitis treated with saline (PSG) and group control (CG) without any treatment. After 7, 15 and 30 days, the maxillae were collected for light and transmission electron microscopy analyses. Gingiva samples were collected to evaluate the mRNA levels for Tnf, Il1b, Tnfsf11 and Tnfrsf11b by RT-qPCR. In PDG, the expression of Tnf and Il1b genes reduced significantly compared to PSG, except for Tnf expression at 7 days. The number of osteoclasts reduced significantly in the PDG in comparison with PSG at 7 and 15 days. In all periods, the IL-6 immunoexpression, RANKL/OPG immunoexpression and mRNA levels of Tnfsf11/Tnfrsf11b ratio were significantly lower in PDG than in PSG. PDG exhibited significantly higher frequency of TUNEL-positive osteoclasts than in PSG and CG at all time points. Osteoclasts with caspase-3-immunolabelled cytoplasm and nuclei with masses of condensed chromatin were observed in PDG, confirming osteoclast apoptosis. Diacerein inhibits osteoclastogenesis by decreasing Tnf and Il1b mRNA levels, resulting in decreased RANKL/OPG ratio, and induces apoptosis in osteoclasts of alveolar process of rat molars with periodontitis.
Collapse
Affiliation(s)
- Gabriella de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Lucas de Andrade Rodrigues
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | | | - Lays Cristina Gouvea
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Renata Cristina Lima Silva
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, SP, Brazil.
| |
Collapse
|
8
|
Jesus RNRD, Tsatsanis C, Moura CCG, Zanetta-Barbosa D, Stavropoulos A. Modulation of osteoclastogenesis by macrogeometrically designed hydrophilic dual acid-etched titanium surfaces. Braz Oral Res 2024; 38:e064. [PMID: 39016370 PMCID: PMC11376645 DOI: 10.1590/1807-3107bor-2024.vol38.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/21/2023] [Indexed: 07/18/2024] Open
Abstract
The aim of this study was to evaluate the influence of implant macrodesign and surface hydrophilicity on osteoclast (OC) differentiation, activation, and survival in vitro. Titanium disks were produced with a sandblasted, dual acid-etched surface, with or without additional chemical modification for increasing hydrophilicity (SAE-HD and SAE, respectively) and different macrodesign comprising trapezoidal (HLX) or triangular threads (TMX). This study evaluated 7 groups in total, 4 of which were experimental: HLX/SAE-HD, HLX-SAE, TMX/SAE-HD, and TMX/SAE; and 3 control groups comprising OC differentiated on polystyrene plates (CCPC): a positive CCPC (+), a negative CCPC (-), and a lipopolysaccharide-stimulated assay positive control group, CCPC-LPS. Murine macrophage RAW264.7 cells were seeded on the disks, differentiated to OC (RAW-OC) by receptor activator of nuclear factor-κB ligand (RANKL) treatment and cultured for 5 days. Osteoclast differentiation and cell viability were respectively assessed by specific enzymatic Tartrate-Resistant Acid Phosphatase (TRAP) activity and MTT assays. Expression levels of various OC-related genes were measured at the mRNA level by quantitative polymerase chain reaction (qPCR). HLX/SAE-HD, TMX/SAE-HD, and HLX/SAE significantly suppressed OC differentiation when compared to CCPC (+). Cell viability was significantly increased in TMX/SAE and reduced in HLX/SAE-HD. In addition, the expression of Interleukin (IL)-6 and Tumour Necrosis Factor (TNF)-α was upregulated in TMX/SAE-HD compared to CCPC (+). Hydrophilic surfaces negatively modulate macrophage/osteoclast viability. Specifically, SAE-HD with double triangular threads increases the cellular pro-inflammatory status, while surface hydrophilicity and macrodesign do not seem to have a distinct impact on osteoclast differentiation, activation, or survival.
Collapse
Affiliation(s)
| | - Christos Tsatsanis
- University of Crete - UOC, School of Medicine, Department of Clinical Chemistry, Heraklion, Crete, Greece
| | | | - Darceny Zanetta-Barbosa
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Oral and Maxillofacial Surgery, Uberlândia, MG, Brazil
| | - Andreas Stavropoulos
- Malmö University - MAU, Faculty of Odontology, Department of Periodontology, Malmö, Sweden
| |
Collapse
|
9
|
Gandhi N, Omer S, Harrison RE. In Vitro Cell Culture Model for Osteoclast Activation during Estrogen Withdrawal. Int J Mol Sci 2024; 25:6134. [PMID: 38892322 PMCID: PMC11173070 DOI: 10.3390/ijms25116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Estrogen (17β-estradiol) deficiency post-menopause alters bone homeostasis whereby bone resorption by osteoclasts exceeds bone formation by osteoblasts, leading to osteoporosis in females. We established an in vitro model to examine the consequences of estrogen withdrawal (E2-WD) on osteoclasts derived from the mouse macrophage RAW 264.7 cell line and utilized it to investigate the mechanism behind the enhanced osteoclast activity post-menopause. We found that a greater population of osteoclasts that underwent E2-WD contained a podosome belt necessary for osteoclasts to adhere and resorb bone and possessed elevated resorptive activity compared to osteoclasts exposed to estrogen (E2) continuously. Our results show that compared to osteoclasts that received E2 continuously, those that underwent E2-WD had a faster rate of microtubule (MT) growth, reduced RhoA activation, and shorter podosome lifespan. Thus, altered podosome and MT dynamics induced by the withdrawal of estrogen supports podosome belt assembly/stability in osteoclasts, which may explain their enhanced bone resorption activity.
Collapse
Affiliation(s)
- Nisha Gandhi
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Safia Omer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| |
Collapse
|
10
|
Wang C, Zeng R, Li Y, He R. Cirsilineol inhibits RANKL-induced osteoclast activity and ovariectomy-induced bone loss via NF-κb/ERK/p38 signaling pathways. Chin Med 2024; 19:69. [PMID: 38745234 PMCID: PMC11095037 DOI: 10.1186/s13020-024-00938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Postmenopausal osteoporosis is a chronic metabolic bone disease caused by excessive osteoclast formation and function. Targeting osteoclast differentiation and activity can modulate bone resorption and alleviate osteoporosis. Cirsilineol, an active constituent of Vestita Wall, has shown numerous biological activities and has been used to treat many metabolic diseases. However, whether cirsilineol inhibits osteoclast activity and prevents postmenopausal osteoporosis still remain unknown. MATERIALS AND METHODS Primary bone marrow macrophages (BMMs) and RAW264.7 cells were used. Osteoclast activity was measured by TRAP staining, F-actin staining, and bone resorption assay after BMMs were treated with cirsilineol at concentrations of 0, 1, 2.5 and 5 µM. RT-PCR and western blotting were performed to evaluate the expression of osteoclast-related genes. In addition, female C57BL/6 mice underwent OVX surgery and were treated with cirsilineol (20 mg/kg) to demonstrate the effect of cirsilineol on osteoporosis. RESULTS Cirsilineol significantly inhibited receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast differentiation in a concentration- and time-dependent manner, respectively. Additionally, cirsilineol inhibited F-actin ring formation, thus reducing the activation of bone resorption ability. Cirsilineol suppressed the expression of osteoclast-related genes and proteins via blocking nuclear factor (NF)-κb, ERK, and p38 signaling cascades. More importantly, cirsilineol treatment in mice with osteoporosis alleviated osteoclasts hyperactivation and bone mass loss caused by estrogen depletion. CONCLUSION In this study, the protective effect of cirsilineol on osteoporosis has been investigated for the first time. In conclusion, our findings prove the inhibitory effect of cirsilineol on osteoclast activity via NF-κb/ERK/p38 signaling pathways and strongapplication of cirsilineol can be proposed as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Cong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Rong Zeng
- Pain Management, YiChun People's Hospital, Yichun, Jiangxi, People's Republic of China
| | - Yong Li
- Department of Orthopedics, Qingtian People's Hospital, Lishui, Zhejiang, People's Republic of China
| | - Rongxin He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
11
|
Urano K, Tanaka Y, Tominari T, Takatoya M, Arai D, Miyata S, Matsumoto C, Miyaura C, Numabe Y, Itoh Y, Hirata M, Inada M. The stiffness and collagen control differentiation of osteoclasts with an altered expression of c-Src in podosome. Biochem Biophys Res Commun 2024; 704:149636. [PMID: 38402724 DOI: 10.1016/j.bbrc.2024.149636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
Osteoclasts are hematopoietic cells attached to the bones containing type I collagen-deposited hydroxyapatite during bone resorption. Two major elements determine the stiffness of bones: regular calcified bone (bone that is resorbable by osteoclasts) and un-calcified osteoid bone (bone that is un-resorbable by osteoclasts). The osteolytic cytokine RANKL promotes osteoclast differentiation; however, the roles of the physical interactions of osteoclasts with calcified and un-calcified bone at the sealing zones and the subsequent cellular signaling remain unclear. In this study, we investigated podosomes, actin-rich adhesion structures (actin-ring) in the sealing zone that participates in sensing hard stiffness with collagen in the physical environment during osteoclast differentiation. RANKL-induced osteoclast differentiation induction was promoted when Raw264.7 cells were cultured on collagen-coated plastic dishes but not on non-coated plastic dishes, which was associated with the increased expression of podosome-related genes and Src. In contrast, when cells were cultured on collagen gel, expression of podosome-related genes and Src were not upregulated. The induction of podosome-related genes and Src requires hard stiffness with RGD-containing substratum and integrin-mediated F-actin polymerization. These results indicate that osteoclasts sense both the RGD sequence and stiffness of calcified collagen through their podosome components regulating osteoclast differentiation via the c-Src pathway.
Collapse
Affiliation(s)
- Kei Urano
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Yuki Tanaka
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Masaru Takatoya
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Daichi Arai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Shinji Miyata
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Yukihiro Numabe
- Department of Periodontology, School of Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda, Tokyo 102-0071, Japan
| | - Yoshifumi Itoh
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Masaki Inada
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan; Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
12
|
Zhang W, Yang F, Yan Q, Li J, Zhang X, Jiang Y, Dai J. Hypoxia inducible factor-1α related mechanism and TCM intervention in process of early fracture healing. CHINESE HERBAL MEDICINES 2024; 16:56-69. [PMID: 38375046 PMCID: PMC10874770 DOI: 10.1016/j.chmed.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 02/21/2024] Open
Abstract
As a common clinical disease, fracture is often accompanied by pain, swelling, bleeding as well as other symptoms and has a high disability rate, even threatening life, seriously endangering patients' physical and psychological health and quality of life. Medical practitioners take many strategies for the treatment of fracture healing, including Traditional Chinese Medicine (TCM). In the early stage of fracture healing, the local fracture is often in a state of hypoxia, accompanied by the expression of hypoxia inducible factor-1α (HIF-1α), which is beneficial to wound healing. Through literature mining, we thought that hypoxia, HIF-1α and downstream factors affected the mechanism of fracture healing, as well as dominated this process. Therefore, we reviewed the local characteristics and related signaling pathways involved in the fracture healing process and summarized the intervention of TCM on these mechanisms, in order to inspirit the new strategy for fracture healing, as well as elaborate on the possible principles of TCM in treating fractures based on the HIF molecular mechanism.
Collapse
Affiliation(s)
- Wenxian Zhang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Fusen Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qikai Yan
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Jiahui Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaogang Zhang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yiwei Jiang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Reuven N, Barnea-Zohar M, Elson A. Osteoclast Methods in Protein Phosphatase Research. Methods Mol Biol 2024; 2743:57-79. [PMID: 38147208 DOI: 10.1007/978-1-0716-3569-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Osteoclasts are specialized cells that degrade bone and are essential for bone formation and maintaining bone homeostasis. Excess or deficient activity of these cells can significantly alter bone mass, structure, and physical strength, leading to significant morbidity, as in osteoporosis or osteopetrosis, among many other diseases. Protein phosphorylation in osteoclasts plays critical roles in the signaling pathways that govern the production of osteoclasts and regulate their bone-resorbing activity. In this chapter, we describe the isolation of mouse splenocytes and their differentiation into mature osteoclasts on resorptive (e.g., bone) and non-resorptive (e.g., plastic or glass) surfaces, examining matrix resorption by osteoclasts, immunofluorescence staining of these cells, and knocking out genes by CRISPR in the mouse osteoclastogenic cell line RAW264.7.
Collapse
Affiliation(s)
- Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Biernacka Z, Gregorczyk-Zboroch K, Lasocka I, Ostrowska A, Struzik J, Gieryńska M, Toka FN, Szulc-Dąbrowska L. Ectromelia Virus Affects the Formation and Spatial Organization of Adhesive Structures in Murine Dendritic Cells In Vitro. Int J Mol Sci 2023; 25:558. [PMID: 38203729 PMCID: PMC10779027 DOI: 10.3390/ijms25010558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present them to T lymphocytes after migration to secondary lymphoid organs. Migration of immature DCs is possible due to the presence of specialized adhesion structures, such as podosomes or focal adhesions (FAs). Since assembly and disassembly of adhesive structures are highly associated with DCs' immunoregulatory and migratory functions, we evaluated how ECTV infection targets podosomes and FAs' organization and formation in natural-host bone marrow-derived DCs (BMDC). We found that ECTV induces a rapid dissolution of podosomes at the early stages of infection, accompanied by the development of larger and wider FAs than in uninfected control cells. At later stages of infection, FAs were predominantly observed in long cellular extensions, formed extensively by infected cells. Dissolution of podosomes in ECTV-infected BMDCs was not associated with maturation and increased 2D cell migration in a wound healing assay; however, accelerated transwell migration of ECTV-infected cells towards supernatants derived from LPS-conditioned BMDCs was observed. We suggest that ECTV-induced changes in the spatial organization of adhesive structures in DCs may alter the adhesiveness/migration of DCs during some conditions, e.g., inflammation.
Collapse
Affiliation(s)
- Zuzanna Biernacka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Karolina Gregorczyk-Zboroch
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Iwona Lasocka
- Department of Biology of Animal Environment, Institute of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Justyna Struzik
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Małgorzata Gieryńska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| | - Felix N. Toka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (Z.B.); (K.G.-Z.); (J.S.); (M.G.); (F.N.T.)
| |
Collapse
|
15
|
Sugahara S, Ishino Y, Sawada K, Iwata T, Shimanaka Y, Aoki J, Arai H, Kono N. Disease-related PSS1 mutant impedes the formation and function of osteoclasts. J Lipid Res 2023; 64:100443. [PMID: 37714410 PMCID: PMC10641532 DOI: 10.1016/j.jlr.2023.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
Phosphatidylserine (PS) is an acidic phospholipid that is involved in various cellular events. Heterologous dominant mutations have been identified in the gene encoding PS synthase 1 (PSS1) in patients with a congenital disease called Lenz-Majewski syndrome (LMS). Patients with LMS show various symptoms, including craniofacial/distal-limb bone dysplasia and progressive hyperostosis. The LMS-causing gain-of-function mutants of PSS1 (PSS1LMS) have been shown to synthesize PS without control, but why the uncontrolled synthesis would lead to LMS is unknown. Here we investigated the effect of PSS1LMS on osteoclasts (OCs) to elucidate the causative mechanism of LMS. PSS1LMS did not affect the expression of OC-related genes but inhibited the formation, multinucleation, and activity of OCs. Especially, OCs expressing PSS1LMS showed abnormal patterns and dynamics of actin podosome clusters, which have roles in OC migration and fusion. PSS1LMS did not affect the level of PS but changed the acyl chain compositions of PS and phosphatidylethanolamine, and decreased the level of phosphatidylinositol. The introduction of a catalytically inactive mutation into PSSLMS canceled the changes in phospholipids and the phenotypes observed in OCs expressing PSS1LMS. A gain-of-function mutant of PSS2 (PSS2 R97K) also impaired OC formation and caused changes in phospholipid composition similar to the changes caused by PSS1LMS. Our results suggest that uncontrolled PS synthesis by PSS1LMS causes changes in the quantity or fatty acid composition of certain phospholipid classes, impairing OC formation and function, which might be a cause of osteosclerosis in patients with LMS.
Collapse
Affiliation(s)
- Sari Sugahara
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Ishino
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Koki Sawada
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsumugi Iwata
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Shimanaka
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
Omata Y, Tachibana H, Aizaki Y, Mimura T, Sato K. Essentiality of Nfatc1 short isoform in osteoclast differentiation and its self-regulation. Sci Rep 2023; 13:18797. [PMID: 37914750 PMCID: PMC10620225 DOI: 10.1038/s41598-023-45909-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
During osteoclast differentiation, the expression of the transcription factor nuclear factor of activated T cell 1 (Nfatc1) increases in an autoproliferative manner. Nfatc1 isoforms are of three sizes, and only the short isoform increases during osteoclast differentiation. Genetic ablation of the whole Nfatc1 gene demonstrated that it is essential for osteoclastogenesis; however, the specific role of the Nfatc1 short form (Nfatc1/αA) remains unknown. In this study, we engineered Nfatc1 short form-specific knockout mice and found that these mice died in utero by day 13.5. We developed a novel osteoclast culture system in which hematopoietic stem cells were cultured, proliferated, and then differentiated into osteoclasts in vitro. Using this system, we show that the Nfatc1/αA isoform is essential for osteoclastogenesis and is responsible for the expression of various osteoclast markers, the Nfatc1 short form itself, and Nfatc1 regulators.
Collapse
Affiliation(s)
- Yasuhiro Omata
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyuki Tachibana
- Department of Rheumatology, Akiru Municipal Medical Center, 78-1 Hikita, Akiruno, Tokyo, 197-0834, Japan
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Yoshimi Aizaki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, 38 Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Kojiro Sato
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
17
|
Anuj A, Reuven N, Roberts SGE, Elson A. BASP1 down-regulates RANKL-induced osteoclastogenesis. Exp Cell Res 2023; 431:113758. [PMID: 37619639 DOI: 10.1016/j.yexcr.2023.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The cytokine RANKL (Receptor Activator of NFκB Ligand) is the key driver of differentiation of monocytes/macrophages to form multi-nucleated, bone-resorbing osteoclasts, a process that is accompanied by significant changes in gene expression. We show that exposure to RANKL rapidly down-regulates expression of Brain Acid Soluble Protein 1 (BASP1) in cultured primary mouse bone marrow macrophages (BMMs), and that this reduced expression is causally linked to the osteoclastogenic process in vitro. Knocking down BASP1 expression in BMMs or eliminating its expression in these cells or in RAW 264.7 cells enhanced RANKL-induced osteoclastogenesis, promoted cell-cell fusion, and generated cultures containing larger osteoclasts with increased mineral degrading abilities relative to controls. Expression of exogenous BASP1 in BMMs undergoing osteoclastogenic differentiation produced the opposite effects. Upon exposure to RANKL, primary mouse BMMs in which BASP1 had been knocked down exhibited increased expression of the key osteoclastogenic transcription factor Nfatc1and of its downstream target genes Dc-stamp, Ctsk, Itgb3, and Mmp9 relative to controls. The knock-down cells also exhibited increased sensitivity to the pro-osteoclastogenic effects of RANKL. We conclude that BASP1 is a negative regulator of RANKL-induced osteoclastogenesis, which down-regulates the pro-osteoclastogenic gene expression pattern induced by this cytokine. Decreased expression of BASP1 upon exposure of BMMs to RANKL removes a negative regulator of osteoclastogenesis and promotes this process.
Collapse
Affiliation(s)
- Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stefan G E Roberts
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
18
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
19
|
Fu J, Li S, Ma H, Yang J, Pagnotti GM, Brown LM, Weiss SJ, Mapara MY, Lentzsch S. The checkpoint inhibitor PD-1H/VISTA controls osteoclast-mediated multiple myeloma bone disease. Nat Commun 2023; 14:4271. [PMID: 37460553 PMCID: PMC10352288 DOI: 10.1038/s41467-023-39769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Multiple myeloma bone disease is characterized by the development of osteolytic bone lesions. Recent work identified matrix metalloproteinase 13 as a myeloma-derived fusogen that induces osteoclast activation independent of its proteolytic activity. We now identify programmed death-1 homolog, PD-1H, as the bona fide MMP-13 receptor on osteoclasts. Silencing PD-1H or using Pd-1h-/- bone marrow cells abrogates the MMP-13-enhanced osteoclast fusion and bone-resorptive activity. Further, PD-1H interacts with the actin cytoskeleton and plays a necessary role in supporting c-Src activation and sealing zone formation. The critical role of PD-1H in myeloma lytic bone lesions was confirmed using a Pd-1h-/- myeloma bone disease mouse model wherein myeloma cells injected into Pd-1h-/-Rag2-/- results in attenuated bone destruction. Our findings identify a role of PD-1H in bone biology independent of its known immunoregulatory functions and suggest that targeting the MMP-13/PD-1H axis may represent a potential approach for the treatment of myeloma associated osteolysis.
Collapse
Grants
- S10 OD020056 NIH HHS
- P30 CA013696 NCI NIH HHS
- R01 AR075168 NIAMS NIH HHS
- R01 CA252756 NCI NIH HHS
- R01 CA175313 NCI NIH HHS
- S10 RR027050 NCRR NIH HHS
- UL1 TR002529 NCATS NIH HHS
- TL1 TR002531 NCATS NIH HHS
- NIH/NCI R01CA175313 (S. Lentzsch) NIH/NCI R01CA252756 (S. Lentzsch, J. Fu, M. Mapara) Emerson Collective Grant (S.Lentzsch) CRI/ Wade F. B. Thompson CLIP Grant (CRI4395) (S. Lentzsch) Leukemia & Lymphoma Society Translational Research Program (TRP) Grant (S. Lentzsch). Flow cytometry sorting was performed in the CCTI Flow Cytometry Core, supported in part by the Office of the Director of the National Institutes of Health under awards S10RR027050 and S10OD020056. This study used the resources of the Herbert Irving Comprehensive Cancer Center Confocal and Specialized Microscopy Shared Resource funded in part through Center Grant P30CA013696.
- NIH/NCI R01CA252756 (S. Lentzsch, J. Fu, M. Mapara) DoD Award W81XWH-21-1-0607 (J. Fu) International Myeloma Society (IMS) and Paula and Rodger Riney Foundation Translational Research Award (J. Fu)
- International Myeloma Society (IMS) and Paula and Rodger Riney Foundation Translational Research Award (S. Li)
- Indiana Clinical and Translational Sciences Institute TL1 Grant TR002531 (A. Shekhar, PI), UL1 TR002529 (A. Shekhar, PI), Cancer Prevention and Research Institute of Texas Grant RR190108 (Guise, PI), and Dive into the Pink (Guise, PI).
- The Synapt G2 mass spectrometry system was funded under NY State Contract # C023061, New York State Department of Heath NYSTEM (New York State Stem Cell Science) with LMB. The Q Exactive HF mass spectrometer was funded under a contract to LMB (NYSTEM # C029159 (New York State Stem Cell Science Board)) with matching funds from Columbia University and the Columbia Stem Cell Initiative.
Collapse
Affiliation(s)
- Jing Fu
- Columbia University Irving Medical Center, Department of Medicine, New York, NY, USA
| | - Shirong Li
- Columbia University Irving Medical Center, Department of Medicine, New York, NY, USA
| | - Huihui Ma
- Columbia University Irving Medical Center, Department of Medicine, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Jun Yang
- Columbia University Irving Medical Center, Department of Medicine, New York, NY, USA
| | - Gabriel M Pagnotti
- Indiana University, Indianapolis, IN, USA
- University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY, USA
| | - Stephen J Weiss
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Markus Y Mapara
- Columbia University Irving Medical Center, Department of Medicine, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Suzanne Lentzsch
- Columbia University Irving Medical Center, Department of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Sviercz FA, Jarmoluk P, Cevallos CG, López CAM, Freiberger RN, Guano A, Adamczyk A, Ostrowski M, Delpino MV, Quarleri J. Massively HIV-1-infected macrophages exhibit a severely hampered ability to differentiate into osteoclasts. Front Immunol 2023; 14:1206099. [PMID: 37404829 PMCID: PMC10315468 DOI: 10.3389/fimmu.2023.1206099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Osteoclasts play a crucial role in bone resorption, and impairment of their differentiation can have significant implications for bone density, especially in individuals with HIV who may be at risk of altered bone health. The present study aimed to investigate the effects of HIV infection on osteoclast differentiation using primary human monocyte-derived macrophages as precursors. The study focused on assessing the impact of HIV infection on cellular adhesion, cathepsin K expression, resorptive activity, cytokine production, expression of co-receptors, and transcriptional regulation of key factors involved in osteoclastogenesis. Methods Primary human monocyte-derived macrophages were utilized as precursors for osteoclast differentiation. These precursors were infected with HIV, and the effects of different inoculum sizes and kinetics of viral replication were analyzed. Subsequently, osteoclastogenesis was evaluated by measuring cellular adhesion, cathepsin K expression, and resorptive activity. Furthermore, cytokine production was assessed by monitoring the production of IL-1β, RANK-L, and osteoclasts. The expression levels of co-receptors CCR5, CD9, and CD81 were measured before and after infection with HIV. The transcriptional levels of key factors for osteoclastogenesis (RANK, NFATc1, and DC-STAMP) were examined following HIV infection. Results Rapid, massive, and productive HIV infection severely impaired osteoclast differentiation, leading to compromised cellular adhesion, cathepsin K expression, and resorptive activity. HIV infection resulted in an earlier production of IL-1β concurrent with RANK-L, thereby suppressing osteoclast production. Infection with a high inoculum of HIV increased the expression of the co-receptor CCR5, as well as the tetraspanins CD9 and CD81, which correlated with deficient osteoclastogenesis. Massive HIV infection of osteoclast precursors affected the transcriptional levels of key factors involved in osteoclastogenesis, including RANK, NFATc1, and DC-STAMP. Conclusions The effects of HIV infection on osteoclast precursors were found to be dependent on the size of the inoculum and the kinetics of viral replication. These findings underscore the importance of understanding the underlying mechanisms to develop novel strategies for the prevention and treatment of bone disorders in individuals with HIV.
Collapse
|
21
|
Ismail OM, El-Omar OM, Said UN. Exploring the Role of Urocortin in Osteoporosis. Cureus 2023; 15:e38978. [PMID: 37313093 PMCID: PMC10259878 DOI: 10.7759/cureus.38978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 06/15/2023] Open
Abstract
Osteoporosis is a debilitating disease that affects over 200 million people worldwide. Overactive osteoclast activity leads to micro-architectural defects and low bone mass. This culminates in fragility fractures, such as femoral neck fractures. Treatments currently available either are not completely effective or have considerable side effects; thus, there is a need for more effective treatments. The urocortin (Ucn) family, composed of urocortin 1 (Ucn1), urocortin 2 (Ucn2), urocortin 3 (Ucn3), corticotropin-releasing factor (CRF) and corticotropin-releasing factor-binding protein (CRF-BP), exerts a wide range of effects throughout the body. Ucn1 has been shown to inhibit murine osteoclast activity. This review article will aim to bridge the gap between existing knowledge of Ucn and whether it can affect human osteoclasts.
Collapse
Affiliation(s)
- Omar M Ismail
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| | - Omar M El-Omar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| | - Umar N Said
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, GBR
| |
Collapse
|
22
|
Shi S, Gu H, Xu J, Sun W, Liu C, Zhu T, Wang J, Gao F, Zhang J, Ou Q, Jin C, Xu J, Chen H, Li J, Xu G, Tian H, Lu L. Glia maturation factor beta deficiency protects against diabetic osteoporosis by suppressing osteoclast hyperactivity. Exp Mol Med 2023:10.1038/s12276-023-00980-8. [PMID: 37121966 DOI: 10.1038/s12276-023-00980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 05/02/2023] Open
Abstract
Excessive osteoclast activation, which depends on dramatic changes in actin dynamics, causes osteoporosis (OP). The molecular mechanism of osteoclast activation in OP related to type 1 diabetes (T1D) remains unclear. Glia maturation factor beta (GMFB) is considered a growth and differentiation factor for both glia and neurons. Here, we demonstrated that Gmfb deficiency effectively ameliorated the phenotype of T1D-OP in rats by inhibiting osteoclast hyperactivity. In vitro assays showed that GMFB participated in osteoclast activation rather than proliferation. Gmfb deficiency did not affect osteoclast sealing zone (SZ) formation but effectively decreased the SZ area by decreasing actin depolymerization. When GMFB was overexpressed in Gmfb-deficient osteoclasts, the size of the SZ area was enlarged in a dose-dependent manner. Moreover, decreased actin depolymerization led to a decrease in nuclear G-actin, which activated MKL1/SRF-dependent gene transcription. We found that pro-osteoclastogenic factors (Mmp9 and Mmp14) were downregulated, while anti-osteoclastogenic factors (Cftr and Fhl2) were upregulated in Gmfb KO osteoclasts. A GMFB inhibitor, DS-30, targeting the binding site of GMFB and Arp2/3, was obtained. Biocore analysis revealed a high affinity between DS-30 and GMFB in a dose-dependent manner. As expected, DS-30 strongly suppressed osteoclast hyperactivity in vivo and in vitro. In conclusion, our work identified a new therapeutic strategy for T1D-OP treatment. The discovery of GMFB inhibitors will contribute to translational research on T1D-OP.
Collapse
Affiliation(s)
- Si Shi
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, PR China
| | - Jinyuan Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Wan Sun
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Caiyin Liu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Tong Zhu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Juan Wang
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Furong Gao
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Jieping Zhang
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Qingjian Ou
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Caixia Jin
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Jingying Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Hao Chen
- Department of Ophthalmology of Ten People Hospital Affiliated with Tongji University, School of Medicine, Shanghai, 200072, PR China
| | - Jiao Li
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Guotong Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, PR China.
| | - Haibin Tian
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| | - Lixia Lu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
23
|
Burciaga SD, Saavedra F, Fischer L, Johnstone K, Jensen ED. Protein kinase D3 conditional knockout impairs osteoclast formation and increases trabecular bone volume in male mice. Bone 2023; 172:116759. [PMID: 37044359 DOI: 10.1016/j.bone.2023.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Studies using kinase inhibitors have shown that the protein kinase D (PRKD) family of serine/threonine kinases are required for formation and function of osteoclasts in culture. However, the involvement of individual protein kinase D genes and their in vivo significance to skeletal dynamics remains unclear. In the current study we present data indicating that protein kinase D3 is the primary form of PRKD expressed in osteoclasts. We hypothesized that loss of PRKD3 would impair osteoclast formation, thereby decreasing bone resorption and increasing bone mass. Conditional knockout (cKO) of Prkd3 using a murine Cre/Lox system driven by cFms-Cre revealed that its loss in osteoclast-lineage cells reduced osteoclast differentiation and resorptive function in culture. Examination of the Prkd3 cKO mice showed that bone parameters were unaffected in the femur at 4 weeks of age, but consistent with our hypothesis, Prkd3 conditional knockout resulted in 18 % increased trabecular bone mass in male mice at 12 weeks and a similar increase at 6 months. These effects were not observed in female mice. As a further test of our hypothesis, we asked if Prkd3 cKO could protect against bone loss in a ligature-induced periodontal disease model but did not see any reduction in bone destruction in this system. Together, our data indicate that PRKD3 promotes osteoclastogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Samuel D Burciaga
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Flavia Saavedra
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Lori Fischer
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Karen Johnstone
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Eric D Jensen
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Geiger B, Boujemaa-Paterski R, Winograd-Katz SE, Balan Venghateri J, Chung WL, Medalia O. The Actin Network Interfacing Diverse Integrin-Mediated Adhesions. Biomolecules 2023; 13:biom13020294. [PMID: 36830665 PMCID: PMC9953007 DOI: 10.3390/biom13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The interface between the cellular actin network and diverse forms of integrin-mediated cell adhesions displays a unique capacity to serve as accurate chemical and mechanical sensors of the cell's microenvironment. Focal adhesion-like structures of diverse cell types, podosomes in osteoclasts, and invadopodia of invading cancer cells display distinct morphologies and apparent functions. Yet, all three share a similar composition and mode of coupling between a protrusive structure (the lamellipodium, the core actin bundle of the podosome, and the invadopodia protrusion, respectively), and a nearby adhesion site. Cytoskeletal or external forces, applied to the adhesion sites, trigger a cascade of unfolding and activation of key adhesome components (e.g., talin, vinculin, integrin), which in turn, trigger the assembly of adhesion sites and generation of adhesion-mediated signals that affect cell behavior and fate. The structural and molecular mechanisms underlying the dynamic crosstalk between the actin cytoskeleton and the adhesome network are discussed.
Collapse
Affiliation(s)
- Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Correspondence: (B.G.); (O.M.)
| | - Rajaa Boujemaa-Paterski
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sabina E. Winograd-Katz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jubina Balan Venghateri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: (B.G.); (O.M.)
| |
Collapse
|
25
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Xue JY, Ikegawa S, Guo L. SLC4A2, another gene involved in acid-base balancing machinery of osteoclasts, causes osteopetrosis. Bone 2023; 167:116603. [PMID: 36343920 DOI: 10.1016/j.bone.2022.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
SLC4A2 belongs to the Na+-independent solute carrier family 4 (SLC4) of anion exchangers, which regulate electroneutral exchange of Cl- for HCO3- and mediate intra- and extra-cellular pH, chloride concentration and cell volume. Slc4a2 also participates in gastric acid secretion, spermatogenesis and osteoclastogenesis. During osteoclast differentiation, Slc4a2 is exclusively expressed at the contra-lacunar membrane and is up-regulated with osteoclast maturation. Bi-allelic Slc4a2 loss-of-function mutations have been known to cause osteopetrosis in mice and cattle, but not in human. Recently, we have identified bi-allelic pathogenic variants in SLC4A2 in a patient affected by osteopetrosis with severe renal insufficiency, suggesting SLC4A2 deficiency causes a new type of autosomal recessive osteopetrosis (osteopetrosis, Ikegawa type). In this article, we review the advances in exploring the multiple functions of SLC4A2 with emphasis on its roles in osteoclast. Our review would contribute to understanding of the phenotypic spectrum and the pathomechanism of SLC4A2-associated osteopetrosis.
Collapse
Affiliation(s)
- Jing-Yi Xue
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710082, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Long Guo
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an 710082, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
27
|
Li Z, Li D, Su H, Xue H, Tan G, Xu Z. Autophagy: An important target for natural products in the treatment of bone metabolic diseases. Front Pharmacol 2022; 13:999017. [DOI: 10.3389/fphar.2022.999017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Bone homeostasis depends on a precise dynamic balance between bone resorption and bone formation, involving a series of complex and highly regulated steps. Any imbalance in this process can cause disturbances in bone metabolism and lead to the development of many associated bone diseases. Autophagy, one of the fundamental pathways for the degradation and recycling of proteins and organelles, is a fundamental process that regulates cellular and organismal homeostasis. Importantly, basic levels of autophagy are present in all types of bone-associated cells. Due to the cyclic nature of autophagy and the ongoing bone metabolism processes, autophagy is considered a new participant in bone maintenance. Novel therapeutic targets have emerged as a result of new mechanisms, and bone metabolism can be controlled by interfering with autophagy by focusing on certain regulatory molecules in autophagy. In parallel, several studies have reported that various natural products exhibit a good potential to mediate autophagy for the treatment of metabolic bone diseases. Therefore, we briefly described the process of autophagy, emphasizing its function in different cell types involved in bone development and metabolism (including bone marrow mesenchymal stem cells, osteoblasts, osteocytes, chondrocytes, and osteoclasts), and also summarized research advances in natural product-mediated autophagy for the treatment of metabolic bone disease caused by dysfunction of these cells (including osteoporosis, rheumatoid joints, osteoarthritis, fracture nonunion/delayed union). The objective of the study was to identify the function that autophagy serves in metabolic bone disease and the effects, potential, and challenges of natural products for the treatment of these diseases by targeting autophagy.
Collapse
|
28
|
Gong Y, Bu Y, Li Y, Hao D, He B, Kong L, Huang W, Gao X, Zhang B, Qu Z, Wang D, Yan L. Hydrogel-based delivery system applied in the local anti-osteoporotic bone defects. Front Bioeng Biotechnol 2022; 10:1058300. [PMID: 36440439 PMCID: PMC9691673 DOI: 10.3389/fbioe.2022.1058300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is an age-related systemic skeletal disease leading to bone mass loss and microarchitectural deterioration. It affects a large number of patients, thereby economically burdening healthcare systems worldwide. The low bioavailability and complications, associated with systemic drug consumption, limit the efficacy of anti-osteoporosis drugs currently available. Thus, a combination of therapies, including local treatment and systemic intervention, may be more beneficial over a singular pharmacological treatment. Hydrogels are attractive materials as fillers for bone injuries with irregular shapes and as carriers for local therapeutic treatments. They exhibit low cytotoxicity, excellent biocompatibility, and biodegradability, and some with excellent mechanical and swelling properties, and a controlled degradation rate. This review reports the advantages of hydrogels for adjuvants loading, including nature-based, synthetic, and composite hydrogels. In addition, we discuss functional adjuvants loaded with hydrogels, primarily focusing on drugs and cells that inhibit osteoclast and promote osteoblast. Selecting appropriate hydrogels and adjuvants is the key to successful treatment. We hope this review serves as a reference for subsequent research and clinical application of hydrogel-based delivery systems in osteoporosis therapy.
Collapse
Affiliation(s)
- Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yazhong Bu
- Department of Biophysics, Institute of Medical Engineering, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yongliang Li
- Department of Rehabilitation, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wangli Huang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zechao Qu
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Dong Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
29
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Yong J, Gröger S, von Bremen J, Meyle J, Ruf S. PD-L1, a Potential Immunomodulator Linking Immunology and Orthodontically Induced Inflammatory Root Resorption (OIIRR): Friend or Foe? Int J Mol Sci 2022; 23:ijms231911405. [PMID: 36232704 PMCID: PMC9570182 DOI: 10.3390/ijms231911405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is considered an undesired and inevitable complication induced by orthodontic forces. This inflammatory mechanism is regulated by immune cells that precede orthodontic tooth movement (OTM) and can influence the severity of OIIRR. The process of OIIRR is based on an immune response. On some occasions, the immune system attacks the dentition by inflammatory processes during orthodontic treatment. Studies on the involvement of the PD-1/PD-L1 immune checkpoint have demonstrated its role in evading immune responses, aiming to identify possible novel therapeutic approaches for periodontitis. In the field of orthodontics, the important question arises of whether PD-L1 has a role in the development of OIIRR to amplify the amount of resorption. We hypothesize that blocking of the PD-L1 immune checkpoint could be a suitable procedure to reduce the process of OIIRR during orthodontic tooth movement. This review attempts to shed light on the regulation of immune mechanisms and inflammatory responses that could influence the pathogenesis of OIIRR and to acquire knowledge about the role of PD-L1 in the immunomodulation involved in OIIRR. Possible clinical outcomes will be discussed in relation to PD-L1 expression and immunologic changes throughout the resorption process.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
31
|
Gao J, Wu P, Chi Y, Xu H, Zhao Y, Song N, Mao Y. LY450139 Inhibited Ti-Particle-Induced Bone Dissolution via Suppressing Notch and NF-κB Signaling Pathways. Calcif Tissue Int 2022; 111:211-223. [PMID: 35588014 PMCID: PMC9300553 DOI: 10.1007/s00223-022-00980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
Abstract
Aseptic loosening of the prosthesis caused by wear-particle-induced osteolysis is a long-term complication and one of the most common reasons for the failure of joint implants. The primary cause of aseptic loosening of the prosthesis is overactive bone resorption caused by wear-particle-activated osteoclasts in both direct and indirect ways. Therefore, drugs that can inhibit differentiation and bone resorption of osteoclasts need investigation as a potential therapeutic strategy to prevent and treat peri-prosthetic osteolysis and thereby prolong the service life of the prosthesis. This study has verified the potential inhibitory effect of LY450139 on inflammatory osteolysis induced by titanium particles in a mice skull model. In addition, we found that LY450139 inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis, bone resorption, and podosomal actin belt formation in a dose-dependent manner without evidence of cytotoxicity in vitro. In addition, LY450139 significantly decreased the expression of osteoclast-specific markers, including TRAP, CTSK, V-ATPase d2, CTR, DC-STAMP, NFATc1, and the downstream target gene Hes1 in Notch signaling pathway. Further investigation of the molecular mechanism demonstrated that LY450139 inhibited the formation of osteoclasts via inhibition of the NF-κB and Notch signaling pathways. In summary, LY450139 inhibited the formation of RANKL-mediated osteoclasts via NF-κB and Notch signaling and inhibited Ti particle-induced inflammatory osteolysis in vivo. LY450139 is a potential targeted drug for the treatment of peri-prosthetic osteolysis and other osteolytic disease associated with overactive osteoclasts.
Collapse
Affiliation(s)
- Jijian Gao
- Department of Orthopaedic Surgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shaoxing, 312000, Zhejiang, China
| | - Peng Wu
- Department of Orthopaedic Surgery, Huating First People's Hospital, Pingliang, 744000, Gansu, China
| | - Yingjun Chi
- Department of Orthopaedic Surgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shaoxing, 312000, Zhejiang, China
| | - Hongyu Xu
- Department of Orthopaedic Surgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shaoxing, 312000, Zhejiang, China
| | - Yong Zhao
- Department of Orthopaedic Surgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shaoxing, 312000, Zhejiang, China
| | - Nanyan Song
- Department of Orthopaedic Surgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shaoxing, 312000, Zhejiang, China.
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Herron JC, Hu S, Watanabe T, Nogueira AT, Liu B, Kern ME, Aaron J, Taylor A, Pablo M, Chew TL, Elston TC, Hahn KM. Actin nano-architecture of phagocytic podosomes. Nat Commun 2022; 13:4363. [PMID: 35896550 PMCID: PMC9329332 DOI: 10.1038/s41467-022-32038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
Podosomes are actin-enriched adhesion structures important for multiple cellular processes, including migration, bone remodeling, and phagocytosis. Here, we characterize the structure and organization of phagocytic podosomes using interferometric photoactivated localization microscopy, a super-resolution microscopy technique capable of 15-20 nm resolution, together with structured illumination microscopy and localization-based super-resolution microscopy. Phagocytic podosomes are observed during frustrated phagocytosis, a model in which cells attempt to engulf micropatterned IgG antibodies. For circular patterns, this results in regular arrays of podosomes with well-defined geometry. Using persistent homology, we develop a pipeline for semi-automatic identification and measurement of podosome features. These studies reveal an hourglass shape of the podosome actin core, a protruding knob at the bottom of the core, and two actin networks extending from the core. Additionally, the distributions of paxillin, talin, myosin II, α-actinin, cortactin, and microtubules relative to actin are characterized.
Collapse
Affiliation(s)
- J Cody Herron
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shiqiong Hu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takashi Watanabe
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Ana T Nogueira
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bei Liu
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan E Kern
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Aaron Taylor
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Michael Pablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Timothy C Elston
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Klaus M Hahn
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
33
|
Cheng Y, Liu H, Li J, Ma Y, Song C, Wang Y, Li P, Chen Y, Zhang Z. Monascin abrogates RANKL-mediated osteoclastogenesis in RAW264.7 cells via regulating MAPKs signaling pathways. Front Pharmacol 2022; 13:950122. [PMID: 35910375 PMCID: PMC9337785 DOI: 10.3389/fphar.2022.950122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoclasts (OCs) are multinucleated cells that play a major role in osteolytic diseases such as osteoporosis. Monascin (Ms) is one of the active substances in the traditional Chinese medicine red yeast rice. Studies have found that red yeast rice can maintain bone health. In this study, the anti-osteoclastogenesis effects of Ms on RANKL-induced RAW264.7 cells were assessed, and the underlying mechanism was investigated. Ms exhibited inhibitory effects on OC differentiation and formation in a dose-dependent manner and suppressed the bone-resorbing activity of mature OCs. Ms blocked OCs-typical genes (c-Fos, NFATc1, CSTK, MMP-9, TRAP, ITG-β3, OSCAR and DC-STAMP). Furthermore, Ms treatment considerably inhibited the activation of MAPKs, JNK and p38. Taken together, Ms suppresses RANKL-induced osteoclastogenesis of RAW264.7 cells by restraining MAPKs signaling pathways and is a potential therapeutic option as a novel OC inhibitor to mitigate bone erosion.
Collapse
Affiliation(s)
- Yin Cheng
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haixia Liu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences; Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Yujie Ma
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changheng Song
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhan Wang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pei Li
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjing Chen
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanjing Chen, ; Zhiguo Zhang,
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanjing Chen, ; Zhiguo Zhang,
| |
Collapse
|
34
|
Hyaluronidase 1 deficiency decreases bone mineral density in mice. Sci Rep 2022; 12:10142. [PMID: 35710820 PMCID: PMC9203814 DOI: 10.1038/s41598-022-14473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Mucopolysaccharidosis IX is a lysosomal storage disorder caused by a deficiency in HYAL1, an enzyme that degrades hyaluronic acid at acidic pH. This disease causes juvenile arthritis in humans and osteoarthritis in the Hyal1 knockout mouse model. Our past research revealed that HYAL1 is strikingly upregulated (~ 25x) upon differentiation of bone marrow monocytes into osteoclasts. To investigate whether HYAL1 is involved in the differentiation and/or resorption activity of osteoclasts, and in bone remodeling in general, we analyzed several bone parameters in Hyal1 -/- mice and studied the differentiation and activity of their osteoclasts and osteoblasts when differentiated in vitro. These experiments revealed that, upon aging, HYAL1 deficient mice exhibit reduced femur length and a ~ 15% decrease in bone mineral density compared to wild-type mice. We found elevated osteoclast numbers in the femurs of these mice as well as an increase of the bone resorbing activity of Hyal1 -/- osteoclasts. Moreover, we detected decreased mineralization by Hyal1 -/- osteoblasts. Taken together with the observed accumulation of hyaluronic acid in Hyal1 -/- bones, these results support the premise that the catabolism of hyaluronic acid by osteoclasts and osteoblasts is an intrinsic part of bone remodeling.
Collapse
|
35
|
Ahmadzadeh K, Vanoppen M, Rose CD, Matthys P, Wouters CH. Multinucleated Giant Cells: Current Insights in Phenotype, Biological Activities, and Mechanism of Formation. Front Cell Dev Biol 2022; 10:873226. [PMID: 35478968 PMCID: PMC9035892 DOI: 10.3389/fcell.2022.873226] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Monocytes and macrophages are innate immune cells with diverse functions ranging from phagocytosis of microorganisms to forming a bridge with the adaptive immune system. A lesser-known attribute of macrophages is their ability to fuse with each other to form multinucleated giant cells. Based on their morphology and functional characteristics, there are in general three types of multinucleated giant cells including osteoclasts, foreign body giant cells and Langhans giant cells. Osteoclasts are bone resorbing cells and under physiological conditions they participate in bone remodeling. However, under pathological conditions such as rheumatoid arthritis and osteoporosis, osteoclasts are responsible for bone destruction and bone loss. Foreign body giant cells and Langhans giant cells appear only under pathological conditions. While foreign body giant cells are found in immune reactions against foreign material, including implants, Langhans giant cells are associated with granulomas in infectious and non-infectious diseases. The functionality and fusion mechanism of osteoclasts are being elucidated, however, our knowledge on the functions of foreign body giant cells and Langhans giant cells is limited. In this review, we describe and compare the phenotypic aspects, biological and functional activities of the three types of multinucleated giant cells. Furthermore, we provide an overview of the multinucleation process and highlight key molecules in the different phases of macrophage fusion.
Collapse
Affiliation(s)
- Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- *Correspondence: Kourosh Ahmadzadeh, ; Carine Helena Wouters,
| | - Margot Vanoppen
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
| | - Carlos D. Rose
- Division of Pediatric Rheumatology Nemours Children’s Hospital, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patrick Matthys
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
| | - Carine Helena Wouters
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium
- Division Pediatric Rheumatology, UZ Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
- *Correspondence: Kourosh Ahmadzadeh, ; Carine Helena Wouters,
| |
Collapse
|
36
|
Wu L, Liang J, Li J, Xu Y, Chen J, Su Y, Xian Y, Wei J, Xu J, Zhao J, Liu Q, Yang Y. Onc201 reduces osteoclastogenesis and prevents ovariectomy-induced bone loss via inhibiting RANKL-induced NFATc1 activation and the integrin signaling pathway. Eur J Pharmacol 2022; 923:174908. [PMID: 35405113 DOI: 10.1016/j.ejphar.2022.174908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Osteoporosis is an osteolytic disease with a disrupted balance between the resorption and formation of bone as well as bone microstructure degeneration, leading to bone loss and increased fracture risk, which greatly affects patients' quality of life. Currently, inhibition of osteoclast bone resorption remains the mainstream treatment for osteoporosis. Onc201, a new compound, induces the gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and has an efficient anticancer effect in clinical trials. However, its effects on osteolytic disease and the mechanism of action are unclear. We examined the effect of Onc201 on nuclear factor κB ligand-receptor activator (RANKL)-induced osteoclasts via Cell Counting Kit-8, bone resorption assay, luciferase reporter assay, immunofluorescence staining, calcium ion intensity assay and employed an ovariectomy model to investigate the effect of Onc201 on osteoporosis in the mice. Results showed that Onc201 inhibited the function and formation of osteoclasts induced by RANKL in a manner that was dependent on time and concentration, and did not cause cytotoxicity. Mechanistically, Onc201 inhibited osteoclast-relevant genes and NFATc1 expression, the main transcriptional regulatory factor of the formation of osteoclasts induced by RANKL; meanwhile, downregulating the expressions of the osteoclast cytoskeleton key signal molecules integrin αvβ3, focal adhesion kinase (FAK), c-Src, and spleen-associated tyrosine kinase (SYK). In addition, Onc201 had a protective effect on the mouse model of bone loss caused by ovariectomy-induced estrogen deficiency, which is consistent with the in vitro results. Our findings suggest that the new small-molecular compound Onc201 has the potential to prevent osteoclast-related osteolytic diseases.
Collapse
Affiliation(s)
- Liwei Wu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiamin Liang
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jing Li
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yang Xu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Junchun Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yansi Xian
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiyong Wei
- Department of Orthopedics, The First People's Hospital of Nanning, Nanning, Guangxi, 530016, People's Republic of China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China; Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| | - Yuan Yang
- Department of Orthopedics, Kaiyuan Langdong Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, 530028, People's Republic of China; Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
37
|
Weber K, Hey S, Cervero P, Linder S. The circle of life: Phases of podosome formation, turnover and reemergence. Eur J Cell Biol 2022; 101:151218. [PMID: 35334303 DOI: 10.1016/j.ejcb.2022.151218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/06/2023] Open
Abstract
Podosomes are highly dynamic actin-rich structures in a variety of cell types, especially monocytic cells. They fulfill multiple functions such as adhesion, mechanosensing, or extracellular matrix degradation, thus allowing cells to detect and respond to a changing environment. These abilities are based on an intricate architecture that enables podosomes to sense mechanical properties of their substratum and to transduce them intracellularly in order to generate an appropriate cellular response. These processes are enabled through the tightly orchestrated interplay of more than 300 different components that are dynamically recruited during podosome formation and turnover. In this review, we discuss the different phases of the podosome life cycle and the current knowledge on regulatory factors that impact on the genesis, activity, dissolution and reemergence of podosomes. We also highlight mechanoregulatory processes that become important during these different stages, on the level of individual podosomes, and also at podosome sub- and superstructures.
Collapse
Affiliation(s)
- Kathrin Weber
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Sven Hey
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
38
|
Puerarin specifically disrupts osteoclast activation via blocking integrin-β3 Pyk2/Src/Cbl signaling pathway. J Orthop Translat 2022; 33:55-69. [PMID: 35228997 PMCID: PMC8858883 DOI: 10.1016/j.jot.2022.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Objective Given the limitations of current anti-resorption agents for postmenopausal osteoporosis, there is a need for alternatives without impairing coupling crosstalk between bone resorption and bone formation ie. osteoclastogenesis. Puerarin, a unique C-glycoside isoflavonoid, was found to be able to prevent bone loss by inhibiting bone resorption, but the underlying mechanism was controversial. In this study, we investigated the effects of puerarin on osteoclastic differentiation, activation and bone resorption and its underlying molecular mechanism in vitro, and then evaluated the effects of puerarin on bone metabolism using an ovariectomized (OVX) rat model. Methods In vitro, the effect of puerarin on osteoclastic cytotoxicity, differentiation, apoptosis, activation and function were studied in raw 264.7 cells and mouse BMMs. Mechanistically, osteoclast-related makers were determined by RT-PCR, western blot, immunofluorescence, and kinase activity assay. In vivo, Micro-CT, histology, serum bone biomarker, and mechanical testing were used to evaluate the effects of puerarin on preventing osteoporosis. Results Puerarin significantly inhibited osteoclast activation and bone resorption, without affecting osteoclastogenesis or apoptosis. In terms of mechanism, the expressions of protein of integrin-β3 and phosphorylations of Src, Pyk2 and Cbl were lower in puerarin group than those in the control group. Oral administration of puerarin prevented OVX-induced trabecular bone loss and significantly improved bone strength in rats. Moreover, puerarin significantly decreased trap positive osteoclast numbers and serum TRAP-5b, CTx1, without affecting bone formation rate. Conclusions Collectively, puerarin prevented the bone loss in OVX rat through suppression of osteoclast activation and bone resorption, by inhibiting integrin-β3-Pyk2/Cbl/Src signaling pathway, without affecting osteoclasts formation or apoptosis. Translational potential of this article These results demonstrate the unique mechanism of puerarin on bone metabolism and provide a novel agent for prevention of postmenopausal osteoporosis.
Collapse
|
39
|
Pal K, Tu Y, Wang X. Single-Molecule Force Imaging Reveals That Podosome Formation Requires No Extracellular Integrin-Ligand Tensions or Interactions. ACS NANO 2022; 16:2481-2493. [PMID: 35073043 PMCID: PMC9129048 DOI: 10.1021/acsnano.1c09105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Podosomes are integrin-mediated cell adhesion units involved in many cellular and physiological processes. Integrins likely transmit tensions critical for podosome functions, but such force remains poorly characterized. DNA-based tension sensors are powerful in visualizing integrin tensions but subject to degradation by podosomes which ubiquitously recruit DNase. Here, using a DNase-resistant tension sensor based on a DNA/PNA (peptide nucleic acid) duplex, we imaged podosomal integrin tensions (PIT) in the adhesion rings of podosomes on solid substrates with single molecular tension sensitivity. PIT was shown to be generated by both actomyosin contractility and actin polymerization in podosomes. Importantly, by monitoring PIT and podosome structure in parallel, we showed that extracellular integrin-ligand tensions, despite being critical for the formation of focal adhesions, are dispensable for podosome formation, as PIT reduction or elimination has an insignificant impact on structure formation and FAK (focal adhesion kinase) phosphorylation in podosomes. We further verified that even integrin-ligand interaction is dispensable for podosome formation, as macrophages form podosomes normally on passivated surfaces that block integrin-ligand interaction but support macrophage adhesion through electrostatic adsorption or Fc receptor-immunoglobin G interaction. In contrast, focal adhesions are unable to form on these passivated surfaces.
Collapse
Affiliation(s)
- Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Molecular, Cellular, and Developmental Biology interdepartmental program, Ames, IA 50011, USA
- To whom correspondence may be addressed. Xuefeng Wang, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
40
|
Xue JY, Grigelioniene G, Wang Z, Nishimura G, Iida A, Matsumoto N, Tham E, Miyake N, Ikegawa S, Guo L. SLC4A2 Deficiency Causes a New Type of Osteopetrosis. J Bone Miner Res 2022; 37:226-235. [PMID: 34668226 DOI: 10.1002/jbmr.4462] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 02/05/2023]
Abstract
Osteopetrosis is a group of rare inherited skeletal disorders characterized by a marked increase in bone density due to deficient bone resorption. Pathogenic variants in several genes involved in osteoclast differentiation and/or function have been reported to cause osteopetrosis. Solute carrier family 4 member 2 (SLC4A2, encoding anion exchanger 2) plays an important role in osteoclast differentiation and function by exchange of Cl- with HCO3- . Biallelic Slc4a2 loss-of-function mutations in mice and cattle lead to osteopetrosis with osteoclast deficiency; however, pathogenic SLC4A2 variants in humans have not been reported. In this study, we describe a patient with autosomal recessive osteopetrosis due to biallelic pathogenic variants in SLC4A2. We identified novel compound heterozygous variants in SLC4A2 (NM_003040.4: c.556G>A [p.A186T] and c.1658T>C [p.V553A]) by exome sequencing. The measurement of intracellular Cl- showed that the variants decrease the anion exchange activity of SLC4A2. The impact of the variants on osteoclast differentiation was assessed by a gene knockout-rescue system using a mouse macrophage cell line, RAW 264.7. The Slc4a2-knockout cells show impaired osteoclastogenesis, which was rescued by the wild-type SLC4A2, but not by the mutant SLC4A2s. Immunofluorescence and pit assay revealed that the mutant SLC4A2s leads to abnormal podosome belt formation with impaired bone absorption. This is the first report on an individual affected by SLC4A2-associated osteopetrosis (osteopetrosis, Ikegawa type). With functional studies, we prove that the variants lead to SLC4A2 dysfunction, which altogether supports the importance of SLC4A2 in human osteoclast differentiation. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jing-Yi Xue
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Medical Genetics, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gen Nishimura
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Aritoshi Iida
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan.,Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| |
Collapse
|
41
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
42
|
tRNA Derivatives in Multiple Myeloma: Investigation of the Potential Value of a tRNA-Derived Molecular Signature. Biomedicines 2021; 9:biomedicines9121811. [PMID: 34944627 PMCID: PMC8698603 DOI: 10.3390/biomedicines9121811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/11/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy arising from the clonal proliferation of malignant plasma cells. tRNA-derived RNA fragments (tRFs) constitute a class of small non-coding RNAs, deriving from specific enzymatic cleavage of tRNAs. To the best of our knowledge, this is one of few studies to uncover the potential clinical significance of tRFs in MM. Total RNA was extracted from CD138+ plasma cells of MM and smoldering MM patients, and in vitro polyadenylated. First-strand cDNA synthesis was performed, priming from an oligo-dT-adaptor sequence. Next, real-time quantitative PCR (qPCR) assays were developed for the quantification of six tRFs. Biostatistical analysis was performed to assess the results and in silico analysis was conducted to predict the function of one of the tRFs. Our results showed that elevated levels of five out of six tRFs are indicators of favorable prognosis in MM, predicting prolonged overall survival (OS), while two of them constitute potential molecular biomarkers of favorable prognosis in terms of disease progression. Moreover, three tRFs could be used as surrogate prognostic biomarkers along with the R-ISS staging system to predict OS. In conclusion, tRFs show molecular biomarker utility in MM, while their mechanisms of function merit further investigation.
Collapse
|
43
|
Zhang YT, Hu C, Zhang SX, Zhou HH, Xu J, Ma JD, Dai L, Gu Q. Euphoesulatin A prevents osteoclast differentiation and bone loss via inhibiting RANKL-induced ROS production and NF-κB and MAPK signal pathways. Bioorg Chem 2021; 119:105511. [PMID: 34847428 DOI: 10.1016/j.bioorg.2021.105511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022]
Abstract
Euphoesulatin A (Eup A), a new jatrophane diterpenoid isolated from the Euphorbia esula L. (Euphorbiaceae), was reported to inhibit RANKL-induced osteoclastogenesis. However, the underlying mechanism and the effect in osteoporosis mouse model are still unclear. This study is the first to demonstrate that Eup A inhibits osteoclastogenesis in vitro and in vivo. Mechanistic analysis suggested that Eup A (3, 6, 12 μM) dose-dependently inhibited osteoclastogenesis by down-regulating the activation of NFATc1 and NF-κB and MAPKs signal pathways. Moreover, Eup A (10 mg/kg) significantly prevented bone loss in ovariectomized mice. This work provides in vitro and in vivo evidence that Eup A could be a potential candidate for the development of anti-osteoporosis agents.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chen Hu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Song-Xuan Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui-Hao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian-da Ma
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lie Dai
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
44
|
Klapproth S, Richter K, Türk C, Bock T, Bromberger T, Dominik J, Huck K, Pfaller K, Hess MW, Reichel CA, Krüger M, Nakchbandi IA, Moser M. Low kindlin-3 levels in osteoclasts of kindlin-3 hypomorphic mice result in osteopetrosis due to leaky sealing zones. J Cell Sci 2021; 134:272627. [PMID: 34704600 DOI: 10.1242/jcs.259040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoclasts form special integrin-mediated adhesion structures called sealing zones that enable them to adhere to and resorb bone. Sealing zones consist of densely packed podosomes tightly interconnected by actin fibers. Their formation requires the presence of the hematopoietic integrin regulator kindlin-3 (also known as Fermt3). In this study, we investigated osteoclasts and their adhesion structures in kindlin-3 hypomorphic mice expressing only 5-10% of the kindlin-3 level of wild-type mice. Low kindlin-3 expression reduces integrin activity, results in impaired osteoclast adhesion and signaling, and delays cell spreading. Despite these defects, in vitro-generated kindlin-3-hypomorphic osteoclast-like cells arrange their podosomes into adhesion patches and belts, but their podosome and actin organization is abnormal. Remarkably, kindlin-3-hypomorphic osteoclasts form sealing zones when cultured on calcified matrix in vitro and on bone surface in vivo. However, functional assays, immunohistochemical staining and electron micrographs of bone sections showed that they fail to seal the resorption lacunae properly, which is required for secreted proteinases to digest bone matrix. This results in mild osteopetrosis. Our study reveals a new, hitherto understudied function of kindlin-3 as an essential organizer of integrin-mediated adhesion structures, such as sealing zones.
Collapse
Affiliation(s)
- Sarah Klapproth
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, D-81675 Munich, Germany
| | - Karsten Richter
- Central Unit Electron Microscopy, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Clara Türk
- CECAD Research Center, Institute for Genetics, University of Cologne, D-50931 Cologne, Germany
| | - Theresa Bock
- CECAD Research Center, Institute for Genetics, University of Cologne, D-50931 Cologne, Germany
| | - Thomas Bromberger
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, D-81675 Munich, Germany
| | - Julian Dominik
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Kathrin Huck
- Institute of Immunology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Kristian Pfaller
- Institute of Histology and Embryology, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Michael W Hess
- Institute of Histology and Embryology, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute for Genetics, University of Cologne, D-50931 Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, D-50931 Cologne, Germany
| | - Inaam A Nakchbandi
- Institute of Immunology, University of Heidelberg, D-69120 Heidelberg, Germany.,Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, D-81675 Munich, Germany.,Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
45
|
Controlled release of dopamine coatings on titanium bidirectionally regulate osteoclastic and osteogenic response behaviors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112376. [PMID: 34579895 DOI: 10.1016/j.msec.2021.112376] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Bone diseases, for example, osteoporosis, cause excessive differentiation of osteoclasts and decreased bone formation, resulting in imbalance of bone remodeling and poor osseointegration, which can be considered a relative contraindication for titanium implants. Dopamine (DA) might provide a solution to this problem by inhibiting osteoclasts and promoting osteoblasts at different concentrations. However, current commercial implants cannot load bone-active molecules, such as DA. Therefore, this study aimed to develop a surface modification method for implants to achieve a controlled release of DA and enhance the resistance of titanium implants to bone resorption and bone regeneration. DA-loaded alginate-arginine-glycine-aspartic acid (RGD) (AlgR) coatings on a vaterite-modified titanium surface were successfully assembled, which continuously and steadily released DA. In vitro studies have shown that materials showing good biocompatibility can not only inhibit receptor activator of nuclear factor-kappa B (NFκB) ligand (RANKL)-induced osteoclastogenesis but also enhance the adhesion and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The optimal DA-loaded concentration of this bidirectional regulation is 100 μM. Interestingly, DA more effectively attenuated osteoclastogenesis when released in a sustained manner from titanium coatings than it did via traditional, free administration, and the alginate-RGD coating and DA clearly exhibited great synergy. This study provides a design of titanium implant surface modification to improve bone remodeling around implants.
Collapse
|
46
|
Dufrançais O, Mascarau R, Poincloux R, Maridonneau-Parini I, Raynaud-Messina B, Vérollet C. Cellular and molecular actors of myeloid cell fusion: podosomes and tunneling nanotubes call the tune. Cell Mol Life Sci 2021; 78:6087-6104. [PMID: 34296319 PMCID: PMC8429379 DOI: 10.1007/s00018-021-03875-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022]
Abstract
Different types of multinucleated giant cells (MGCs) of myeloid origin have been described; osteoclasts are the most extensively studied because of their importance in bone homeostasis. MGCs are formed by cell-to-cell fusion, and most types have been observed in pathological conditions, especially in infectious and non-infectious chronic inflammatory contexts. The precise role of the different MGCs and the mechanisms that govern their formation remain poorly understood, likely due to their heterogeneity. First, we will introduce the main populations of MGCs derived from the monocyte/macrophage lineage. We will then discuss the known molecular actors mediating the early stages of fusion, focusing on cell-surface receptors involved in the cell-to-cell adhesion steps that ultimately lead to multinucleation. Given that cell-to-cell fusion is a complex and well-coordinated process, we will also describe what is currently known about the evolution of F-actin-based structures involved in macrophage fusion, i.e., podosomes, zipper-like structures, and tunneling nanotubes (TNT). Finally, the localization and potential role of the key fusion mediators related to the formation of these F-actin structures will be discussed. This review intends to present the current status of knowledge of the molecular and cellular mechanisms supporting multinucleation of myeloid cells, highlighting the gaps still existing, and contributing to the proposition of potential disease-specific MGC markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Ophélie Dufrançais
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France
| | - Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France.
- International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| |
Collapse
|
47
|
Elson A, Stein M, Rabie G, Barnea-Zohar M, Winograd-Katz S, Reuven N, Shalev M, Sekeres J, Kanaan M, Tuckermann J, Geiger B. Sorting Nexin 10 as a Key Regulator of Membrane Trafficking in Bone-Resorbing Osteoclasts: Lessons Learned From Osteopetrosis. Front Cell Dev Biol 2021; 9:671210. [PMID: 34095139 PMCID: PMC8173195 DOI: 10.3389/fcell.2021.671210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/23/2021] [Indexed: 12/30/2022] Open
Abstract
Bone homeostasis is a complex, multi-step process, which is based primarily on a tightly orchestrated interplay between bone formation and bone resorption that is executed by osteoblasts and osteoclasts (OCLs), respectively. The essential physiological balance between these cells is maintained and controlled at multiple levels, ranging from regulated gene expression to endocrine signals, yet the underlying cellular and molecular mechanisms are still poorly understood. One approach for deciphering the mechanisms that regulate bone homeostasis is the characterization of relevant pathological states in which this balance is disturbed. In this article we describe one such “error of nature,” namely the development of acute recessive osteopetrosis (ARO) in humans that is caused by mutations in sorting nexin 10 (SNX10) that affect OCL functioning. We hypothesize here that, by virtue of its specific roles in vesicular trafficking, SNX10 serves as a key selective regulator of the composition of diverse membrane compartments in OCLs, thereby affecting critical processes in the sequence of events that link the plasma membrane with formation of the ruffled border and with extracellular acidification. As a result, SNX10 determines multiple features of these cells either directly or, as in regulation of cell-cell fusion, indirectly. This hypothesis is further supported by the similarities between the cellular defects observed in OCLs form various models of ARO, induced by mutations in SNX10 and in other genes, which suggest that mutations in the known ARO-associated genes act by disrupting the same plasma membrane-to-ruffled border axis, albeit to different degrees. In this article, we describe the population genetics and spread of the original arginine-to-glutamine mutation at position 51 (R51Q) in SNX10 in the Palestinian community. We further review recent studies, conducted in animal and cellular model systems, that highlight the essential roles of SNX10 in critical membrane functions in OCLs, and discuss possible future research directions that are needed for challenging or substantiating our hypothesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Grace Rabie
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Juraj Sekeres
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Moien Kanaan
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, Palestine
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Benjamin Geiger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
48
|
Simon P, Pompe W, Bobeth M, Worch H, Kniep R, Formanek P, Hild A, Wenisch S, Sturm E. Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale. ACS Biomater Sci Eng 2021; 7:2255-2267. [PMID: 33938726 PMCID: PMC8290401 DOI: 10.1021/acsbiomaterials.0c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The degradation mechanism of human trabecular bone harvested from the central part of the femoral head of a patient with a fragility fracture of the femoral neck under conditions of senile osteoporosis was investigated by high-resolution electron microscopy. As evidenced by light microscopy, there is a disturbance of bone metabolism leading to severe and irreparable damages to the bone structure. These defects are evoked by osteoclasts and thus podosome activity. Podosomes create typical pit marks and holes of about 300-400 nm in diameter on the bone surface. Detailed analysis of the stress field caused by the podosomes in the extracellular bone matrix was performed. The calculations yielded maximum stress in the range of few megapascals resulting in formation of microcracks around the podosomes. Disintegration of hydroxyapatite and free lying collagen fibrils were observed at the edges of the plywood structure of the bone lamella. At the ultimate state, the disintegration of the mineralized collagen fibrils to a gelatinous matrix comes along with a delamination of the apatite nanoplatelets resulting in a brittle, porous bone structure. The nanoplatelets aggregate to big hydroxyapatite plates with a size of up to 10 x 20 μm2. The enhanced plate growth can be explained by the interaction of two mechanisms in the ruffled border zone: the accumulation of delaminated hydroxyapatite nanoplatelets near clusters of podosomes and the accelerated nucleation and random growth of HAP nanoplatelets due to a nonsufficient concentration of process-directing carboxylated osteocalcin cOC.
Collapse
Affiliation(s)
- Paul Simon
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Wolfgang Pompe
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Manfred Bobeth
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Hartmut Worch
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Rüdiger Kniep
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Petr Formanek
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Anne Hild
- Clinical Anatomy, Clinic of Small Animals, Justus-Liebig-University, 35385 Giessen, Germany
| | - Sabine Wenisch
- Clinical Anatomy, Clinic of Small Animals, Justus-Liebig-University, 35385 Giessen, Germany
| | - Elena Sturm
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.,University of Konstanz, Physical Chemistry, POB 714, D-78457 Konstanz, Germany
| |
Collapse
|
49
|
Targeting S1PRs as a Therapeutic Strategy for Inflammatory Bone Loss Diseases-Beyond Regulating S1P Signaling. Int J Mol Sci 2021; 22:ijms22094411. [PMID: 33922596 PMCID: PMC8122917 DOI: 10.3390/ijms22094411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023] Open
Abstract
As G protein coupled receptors, sphingosine-1-phosphate receptors (S1PRs) have recently gained attention for their role in modulating inflammatory bone loss diseases. Notably, in murine studies inhibiting S1PR2 by its specific inhibitor, JTE013, alleviated osteoporosis induced by RANKL and attenuated periodontal alveolar bone loss induced by oral bacterial inflammation. Treatment with a multiple S1PRs modulator, FTY720, also suppressed ovariectomy-induced osteoporosis, collagen or adjuvant-induced arthritis, and apical periodontitis in mice. However, most previous studies and reviews have focused mainly on how S1PRs manipulate S1P signaling pathways, subsequently affecting various diseases. In this review, we summarize the underlying mechanisms associated with JTE013 and FTY720 in modulating inflammatory cytokine release, cell chemotaxis, and osteoclastogenesis, subsequently influencing inflammatory bone loss diseases. Studies from our group and from other labs indicate that S1PRs not only control S1P signaling, they also regulate signaling pathways induced by other stimuli, including bacteria, lipopolysaccharide (LPS), bile acid, receptor activator of nuclear factor κB ligand (RANKL), IL-6, and vitamin D. JTE013 and FTY720 alleviate inflammatory bone loss by decreasing the production of inflammatory cytokines and chemokines, reducing chemotaxis of inflammatory cells from blood circulation to bone and soft tissues, and suppressing RANKL-induced osteoclast formation.
Collapse
|
50
|
Delaisse JM, Søe K, Andersen TL, Rojek AM, Marcussen N. The Mechanism Switching the Osteoclast From Short to Long Duration Bone Resorption. Front Cell Dev Biol 2021; 9:644503. [PMID: 33859985 PMCID: PMC8042231 DOI: 10.3389/fcell.2021.644503] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
The current models of osteoclastic bone resorption focus on immobile osteoclasts sitting on the bone surface and drilling a pit into the bone matrix. It recently appeared that many osteoclasts also enlarge their pit by moving across the bone surface while resorbing. Drilling a pit thus represents only the start of a resorption event of much larger amplitude. This prolonged resorption activity significantly contributes to pathological bone destruction, but the mechanism whereby the osteoclast engages in this process does not have an answer within the standard bone resorption models. Herein, we review observations that lead to envision how prolonged resorption is possible through simultaneous resorption and migration. According to the standard pit model, the “sealing zone” which surrounds the ruffled border (i.e., the actual resorption apparatus), “anchors” the ruffled border against the bone surface to be resorbed. Herein, we highlight that continuation of resorption demands that the sealing zone “glides” inside the cavity. Thereby, the sealing zone emerges as the structure responsible for orienting and displacing the ruffled border, e.g., directing resorption against the cavity wall. Importantly, sealing zone displacement stringently requires thorough collagen removal from the cavity wall - which renders strong cathepsin K collagenolysis indispensable for engagement of osteoclasts in cavity-enlargement. Furthermore, the sealing zone is associated with generation of new ruffled border at the leading edge, thereby allowing the ruffled border to move ahead. The sealing zone and ruffled border displacements are coordinated with the migration of the cell body, shown to be under control of lamellipodia at the leading edge and of the release of resorption products at the rear. We propose that bone resorption demands more attention to osteoclastic models integrating resorption and migration activities into just one cell phenotype.
Collapse
Affiliation(s)
- Jean-Marie Delaisse
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Thomas Levin Andersen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | | | - Niels Marcussen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|