1
|
Jain N, Li JL, Tong L, Jasmine F, Kibriya MG, Demanelis K, Oliva M, Chen LS, Pierce BL. DNA methylation correlates of chronological age in diverse human tissue types. Epigenetics Chromatin 2024; 17:25. [PMID: 39118140 PMCID: PMC11308253 DOI: 10.1186/s13072-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/15/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND While the association of chronological age with DNA methylation (DNAm) in whole blood has been extensively studied, the tissue-specificity of age-related DNAm changes remains an active area of research. Studies investigating the association of age with DNAm in tissues such as brain, skin, immune cells, fat, and liver have identified tissue-specific and non-specific effects, thus, motivating additional studies of diverse human tissue and cell types. RESULTS Here, we performed an epigenome-wide association study, leveraging DNAm data (Illumina EPIC array) from 961 tissue samples representing 9 tissue types (breast, lung, colon, ovary, prostate, skeletal muscle, testis, whole blood, and kidney) from the Genotype-Tissue Expression (GTEx) project. We identified age-associated CpG sites (false discovery rate < 0.05) in 8 tissues (all except skeletal muscle, n = 47). This included 162,002 unique hypermethylated and 90,626 hypomethylated CpG sites across all tissue types, with 130,137 (80%) hypermethylated CpGs and 74,703 (82%) hypomethylated CpG sites observed in a single tissue type. While the majority of age-associated CpG sites appeared tissue-specific, the patterns of enrichment among genomic features, such as chromatin states and CpG islands, were similar across most tissues, suggesting common mechanisms underlying cellular aging. Consistent with previous findings, we observed that hypermethylated CpG sites are enriched in regions with repressed polycomb signatures and CpG islands, while hypomethylated CpG sites preferentially occurred in non-CpG islands and enhancers. To gain insights into the functional effects of age-related DNAm changes, we assessed the correlation between DNAm and local gene expression changes to identify age-related expression quantitative trait methylation (age-eQTMs). We identified several age-eQTMs present in multiple tissue-types, including in the CDKN2A, HENMT1, and VCWE regions. CONCLUSION Overall, our findings will aid future efforts to develop biomarkers of aging and understand mechanisms of aging in diverse human tissue types.
Collapse
Affiliation(s)
- Niyati Jain
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Farzana Jasmine
- Institute for Population and Precision Health (IPPH), Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Kathryn Demanelis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
- Genomics Research Center, AbbVie, North Chicago, IL, 60064, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
- Comprehensive Cancer Center, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Krarup J, Araya L, Álvarez F, Bórquez DA, Urrutia PJ. A Brain Anti-Senescence Transcriptional Program Triggered by Hypothalamic-Derived Exosomal microRNAs. Int J Mol Sci 2024; 25:5467. [PMID: 38791505 PMCID: PMC11122052 DOI: 10.3390/ijms25105467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
In contrast to the hypothesis that aging results from cell-autonomous deterioration processes, the programmed longevity theory proposes that aging arises from a partial inactivation of a "longevity program" aimed at maintaining youthfulness in organisms. Supporting this hypothesis, age-related changes in organisms can be reversed by factors circulating in young blood. Concordantly, the endocrine secretion of exosomal microRNAs (miRNAs) by hypothalamic neural stem cells (htNSCs) regulates the aging rate by enhancing physiological fitness in young animals. However, the specific molecular mechanisms through which hypothalamic-derived miRNAs exert their anti-aging effects remain unexplored. Using experimentally validated miRNA-target gene interactions and single-cell transcriptomic data of brain cells during aging and heterochronic parabiosis, we identify the main pathways controlled by these miRNAs and the cell-type-specific gene networks that are altered due to age-related loss of htNSCs and the subsequent decline in specific miRNA levels in the cerebrospinal fluid (CSF). Our bioinformatics analysis suggests that these miRNAs modulate pathways associated with senescence and cellular stress response, targeting crucial genes such as Cdkn2a, Rps27, and Txnip. The oligodendrocyte lineage appears to be the most responsive to age-dependent loss of exosomal miRNA, leading to significant derepression of several miRNA target genes. Furthermore, heterochronic parabiosis can reverse age-related upregulation of specific miRNA-targeted genes, predominantly in brain endothelial cells, including senescence promoting genes such as Cdkn1a and Btg2. Our findings support the presence of an anti-senescence mechanism triggered by the endocrine secretion of htNSC-derived exosomal miRNAs, which is associated with a youthful transcriptional signature.
Collapse
Affiliation(s)
- Josefa Krarup
- Laboratory of Cell Signaling & Bioinformatics, Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, Ejército Libertador 141, Santiago 8370007, Chile; (J.K.); (F.Á.)
| | - Lucas Araya
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile;
| | - Felipe Álvarez
- Laboratory of Cell Signaling & Bioinformatics, Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, Ejército Libertador 141, Santiago 8370007, Chile; (J.K.); (F.Á.)
| | - Daniel A. Bórquez
- Laboratory of Cell Signaling & Bioinformatics, Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, Ejército Libertador 141, Santiago 8370007, Chile; (J.K.); (F.Á.)
| | - Pamela J. Urrutia
- Laboratory of Resilient Aging, Institute for Nutrition & Food Technology (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830490, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago 7800003, Chile
| |
Collapse
|
3
|
Albuquerque-Souza E, Shelling B, Jiang M, Xia XJ, Rattanaprukskul K, Sahingur SE. Fusobacterium nucleatum triggers senescence phenotype in gingival epithelial cells. Mol Oral Microbiol 2024; 39:29-39. [PMID: 37718958 PMCID: PMC10939983 DOI: 10.1111/omi.12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/04/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023]
Abstract
The prevalence of periodontitis increases with physiological aging. However, whether bacteria associated with periodontal diseases foster aging and the mechanisms by which they may do so are unknown. Herein, we hypothesize that Fusobacterium nucleatum, a microorganism associated with periodontitis and several other age-related disorders, triggers senescence, a chief hallmark of aging responsible to reduce tissue repair capacity. Our study analyzed the senescence response of gingival epithelial cells and their reparative capacity upon long-term exposure to F. nucleatum. Specifically, we assessed (a) cell cycle arrest by analyzing the cyclin-dependent kinase inhibitors p16INK4a and p14ARF and their downstream cascade (pRb, p53, and p21) at both gene and protein levels, (b) lysosomal mediated dysfunction by using assays targeting the expression and activity of the senescence-associated β-galactosidase (SA-β-Gal) enzyme, and (c) nuclear envelope breakdown by assessing the expression of Lamin-B1. The consequences of the senescence phenotype mediated by F. nucleatum were further assessed using wound healing assays. Our results revealed that prolonged exposure to F. nucleatum promotes an aging-like phenotype as evidenced by the increased expression of pro-senescence markers (p16INK4a , p21, and pRb) and SA-β-Gal activity and reduced expression of the counter-balancing cascade (p14ARF and p53) and Lamin-B1. Furthermore, we also noted impaired wound healing capacity of gingival epithelial cells upon prolong bacterial exposure, which was consistent with the senescence-induced phenotype. Together, our findings provide a proof-of-concept evidence that F. nucleatum triggers a pro-senescence response in gingival epithelial cells. This might affect periodontal tissue homeostasis by reducing its repair capacity and, consequently, increasing susceptibility to periodontitis during aging.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lipid Mediator Unit, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Benjamin Shelling
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xia-Juan Xia
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kantapon Rattanaprukskul
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sinem Esra Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Nel AE, Pavlisko EN, Roggli VL. The Interplay Between the Immune System, Tumor Suppressor Genes, and Immune Senescence in Mesothelioma Development and Response to Immunotherapy. J Thorac Oncol 2024; 19:551-564. [PMID: 38000500 DOI: 10.1016/j.jtho.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Despite efforts to ban asbestos mining and manufacturing, mesothelioma deaths in the United States have remained stable at approximately 2500 cases annually. This trend is not unique to the United States but is also a global phenomenon, associated with increased aging of populations worldwide. Although geoeconomic factors such as lack of regulations and continued asbestos manufacturing in resource-poor countries play a role, it is essential to consider biological factors such as immune senescence and increased genetic instability associated with aging. Recognizing that mesothelioma shares genetic instability and immune system effects with other age-related cancers is crucial because the impact of aging on mesothelioma is frequently assessed in the context of disease latency after asbestos exposure. Nevertheless, the long latency period, often cited as a reason for mesothelioma's elderly predominance, should not overshadow the shared mechanisms. This communication focuses on the role of immune surveillance in mesothelioma, particularly exploring the impact of immune escape resulting from altered TSG function during aging, contributing to the phylogenetic development of gene mutations and mesothelioma oncogenesis. The interplay between the immune system, TSGs, and aging not only shapes the immune landscape in mesothelioma but also contributes to the development of heterogeneous tumor microenvironments, significantly influencing responses to immunotherapy approaches and survival rates. By understanding the complex interplay between aging, TSG decline, and immune senescence, health care professionals can pave the way for more effective and personalized immunotherapies, ultimately offering hope for better outcomes in the fight against mesothelioma.
Collapse
Affiliation(s)
- Andre E Nel
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California; Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | | | - Victor L Roggli
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
5
|
Muwanigwa MN, Modamio-Chamarro J, Antony PMA, Gomez-Giro G, Krüger R, Bolognin S, Schwamborn JC. Alpha-synuclein pathology is associated with astrocyte senescence in a midbrain organoid model of familial Parkinson's disease. Mol Cell Neurosci 2024; 128:103919. [PMID: 38307302 DOI: 10.1016/j.mcn.2024.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024] Open
Abstract
Parkinson's disease (PD) is a complex, progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain. Despite extensive research efforts, the molecular and cellular changes that precede neurodegeneration in PD are poorly understood. To address this, here we describe the use of patient specific human midbrain organoids harboring the SNCA triplication to investigate mechanisms underlying dopaminergic degeneration. Our midbrain organoid model recapitulates key pathological hallmarks of PD, including the aggregation of α-synuclein and the progressive loss of dopaminergic neurons. We found that these pathological hallmarks are associated with an increase in senescence associated cellular phenotypes in astrocytes including nuclear lamina defects, the presence of senescence associated heterochromatin foci, and the upregulation of cell cycle arrest genes. These results suggest a role of pathological α-synuclein in inducing astrosenescence which may, in turn, increase the vulnerability of dopaminergic neurons to degeneration.
Collapse
Affiliation(s)
- Mudiwa N Muwanigwa
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jennifer Modamio-Chamarro
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Paul M A Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Gemma Gomez-Giro
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Silvia Bolognin
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
6
|
Manna S, Mc Elwain CJ, Maher GM, Giralt Martín M, Musumeci A, McCarthy FP, McCarthy C. Heterogenous Differences in Cellular Senescent Phenotypes in Pre-Eclampsia and IUGR following Quantitative Assessment of Multiple Biomarkers of Senescence. Int J Mol Sci 2023; 24:ijms24043101. [PMID: 36834513 PMCID: PMC9963163 DOI: 10.3390/ijms24043101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Premature ageing of the placenta in pregnancy outcomes is associated with the persistent presence of oxidative stress and placental insufficiency reducing its functional capacity. In this study, we investigated cellular senescence phenotypes of pre-eclampsia and IUGR pregnancies by simultaneously measuring several biomarkers of senescence. Maternal plasma and placental samples were collected at term gestation from nulliparous women undergoing pre-labour elective caesarean section with pre-eclampsia without intrauterine growth restriction (PE; n = 5), pre-eclampsia associated with intrauterine growth restriction (n = 8), intrauterine growth restriction (IUGR < 10th centile; n = 6), and age-matched controls (n = 20). Placental absolute telomere length and senescence gene analysis was performed by RTqPCR. The expression of cyclin-dependent kinase inhibitors (p21 and p16) was determined by Western blot. Senescence-associated secretory phenotypes (SASPs) were evaluated in maternal plasma by multiplex ELISA assay. Placental expression of senescence-associated genes showed significant increases in CHEK1, PCNA, PTEN, CDKN2A, and CCNB-1 (p < 0.05) in pre-eclampsia, while TBX-2, PCNA, ATM, and CCNB-1 expression were evident (p < 0.05) and were significantly decreased in IUGR compared with controls. Placental p16 protein expression was significantly decreased in pre-eclampsia only compared with controls (p = 0.028). IL-6 was significantly increased in pre-eclampsia (0.54 pg/mL ± 0.271 vs. 0.3 pg/mL ± 0.102; p = 0.017) while IFN-γ was significantly increased in IUGR (4.6 pg/mL ± 2.2 vs. 2.17 pg/mL ± 0.8; p = 0.002) compared with controls. These results provide evidence of premature senescence in IUGR pregnancies, and while cell cycle checkpoint regulators are activated in pre-eclampsia, the cellular phenotype is one of cell repair and subsequent proliferation rather than progression to senescence. The heterogeneity of these cellular phenotypes highlights the complexity of characterising cellular senescence and may equally be indicative of the differing pathophysiological insults unique to each obstetric complication.
Collapse
Affiliation(s)
- Samprikta Manna
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland
- INFANT Research Centre, University College Cork, T12 K8AF Cork, Ireland
| | - Colm J. Mc Elwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Gillian M. Maher
- INFANT Research Centre, University College Cork, T12 K8AF Cork, Ireland
- School of Public Health, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Marta Giralt Martín
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Andrea Musumeci
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland
- INFANT Research Centre, University College Cork, T12 K8AF Cork, Ireland
- Correspondence:
| | - Cathal McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| |
Collapse
|
7
|
Abstract
Cellular senescence has become a subject of great interest within the ageing research field over the last 60 years, from the first observation in vitro by Leonard Hayflick and Paul Moorhead in 1961, to novel findings of phenotypic sub-types and senescence-like phenotype in post-mitotic cells. It has essential roles in wound healing, tumour suppression and the very first stages of human development, while causing widespread damage and dysfunction with age leading to a raft of age-related diseases. This chapter discusses these roles and their interlinking pathways, and how the observed accumulation of senescent cells with age has initiated a whole new field of ageing research, covering pathologies in the heart, liver, kidneys, muscles, brain and bone. This chapter will also examine how senescent cell accumulation presents in these different tissues, along with their roles in disease development. Finally, there is much focus on developing treatments for senescent cell accumulation in advanced age as a method of alleviating age-related disease. We will discuss here the various senolytic and senostatic treatment approaches and their successes and limitations, and the innovative new strategies being developed to address the differing effects of cellular senescence in ageing and disease.
Collapse
Affiliation(s)
- Rebecca Reed
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Satomi Miwa
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Albuquerque-Souza E, Crump K, Rattanaprukskul K, Li Y, Shelling B, Xia-Juan X, Jiang M, Sahingur S. TLR9 Mediates Periodontal Aging by Fostering Senescence and Inflammaging. J Dent Res 2022; 101:1628-1636. [PMID: 35918888 PMCID: PMC9703528 DOI: 10.1177/00220345221110108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
TLR9 is a critical nucleic acid sensing receptor in mediating periodontitis and periodontitis-associated comorbidities. Emerging evidence implicates TLR9 as a key sensor during aging, although its participation in periodontal aging is unexplored. Here, we investigated whether TLR9-mediated host responses can promote key hallmarks of aging, inflammaging, and senescence, in the course of periodontitis using a multipronged approach comprising clinical and preclinical studies. In a case-control model, we found increased TLR9 gene expression in gingival tissues of older (≥55 y) subjects with periodontitis compared to older healthy subjects as well as those who are younger (<55 y old) with and without the disease. Mechanistically, this finding was supported by an in vivo model in which wild-type (WT) and TLR9-/- mice were followed for 8 to 10 wk (young) and 18 to 22 mo (aged). In this longitudinal model, aged WT mice developed severe alveolar bone resorption when compared to their younger counterpart, whereas aged TLR9-/- animals presented insignificant bone loss when compared to the younger groups. In parallel, a boosted inflammaging milieu exhibiting higher expression of inflammatory/osteoclast mediators (Il-6, Rankl, Cxcl8) and danger signals (S100A8, S100A9) was noted in gingival tissues of aged WT mice compared to the those of aged TLR9-/- mice. Consistently, WT aged mice displayed an increase in prosenescence balance as measured by p16INK4a/p19ARF ratio compared to the younger groups and aged TLR9-/- animals. Ex vivo experiments with bone marrow-derived macrophages primed by TLR9 ligand (ODN 1668) further corroborated in vivo and clinical data and showed enhanced inflammatory-senescence circuit followed by increased osteoclast differentiation. Together, these findings reveal first systematic evidence implicating TLR9 as one of the drivers of periodontitis during aging and functioning by boosting a deleterious inflammaging/senescence environment. This finding calls for further investigations to determine whether targeting TLR9 will improve periodontal health in an aging population.
Collapse
Affiliation(s)
- E. Albuquerque-Souza
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K.E. Crump
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - K. Rattanaprukskul
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y. Li
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B. Shelling
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - X. Xia-Juan
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M. Jiang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S.E. Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Hakozaki T, Jarrold B, Zhao W, Laughlin T, Whittenbarger D, Jewell‐Motz EA, Boissy RE. Morphological and transcriptional evaluation of multiple facial cutaneous hyperpigmented spots. SKIN HEALTH AND DISEASE 2022; 2:e96. [PMID: 35677918 PMCID: PMC9168023 DOI: 10.1002/ski2.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/06/2022]
Abstract
Background Morphological characteristics of major facial hyperpigmented spots have been well documented. However, detailed alterations of respective transcriptional profile for each spot and in-depth comparisons across multiple spot types have not been reported. Objectives To comprehensively assess and compare multiple facial hyperpigmented spot types at the morphological and molecular levels by utilising transcriptional expression profiling with correlation to quantified histological features. Methods Multiple types of facial spot biopsies were collected from Chinese women and compared to additional biopsies taken from adjacent healthy skin. The types of spots included Solar Lentigos with both elongated dermal-epidermal junction (DEJ) (SL[E]) and flat DEJ (SL[F]), Seborrhoeic Keratosis (SK), Melasma, Freckles, Post-inflammatory hyperpigmentation of resolving acne (PIH[A]) and other stimuli (PIH[O]). Combined histomorphometry, immunohistology, and transcriptome analysis for suprabasal-epidermis, basal-epidermis, and dermal compartments dissected by Laser Capture Microdissection (LCM) were conducted and compared across different spot types. Results Each spot type was confirmed to have the unique histological pathology already documented elsewhere. Most of the spot types except Melasma and PIH (A) revealed similar melanocyte density to adjacent skin. All spots exhibited increased melanin synthesis, melanosome transportation, as well as enhanced melanocyte dendricity, however, each spot revealed a distinct transcriptome regulation pattern in pigmentation pathways. Upregulation of pigmentation genes was also observed in the dermis of SL(F), SL(E), SK and PIH(O), associated with significant modulation of DEJ related genes in basal-epidermis and/or dermal compartments, suggesting potential melanocyte infiltration into the dermis due to impaired DEJ quality. Beyond upregulated pigmentation, for most spots, gene expression in the suprabasal-epidermis regulating keratinisation was significantly upregulated in conjunction with thickened stratum corneum. Furthermore, downregulation of tight junction related genes represented by claudin-1 was observed in majority of spot types, suggesting compromised barrier function could be a similarity across spots. Additionally, Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) was upregulated in all types of spots, indicating involvement of cell senescence as a common theme. Conclusion This comprehensive and comparative study based on the histological and transcriptional analysis of three skin compartments provided unique insights into specific causations as well as differences and similarities across multiple hyperpigmented spot types.
Collapse
Affiliation(s)
- T. Hakozaki
- The Procter & Gamble CompanyMason Business CenterMasonOhioUSA
| | - B. Jarrold
- The Procter & Gamble CompanyMason Business CenterMasonOhioUSA
| | - W. Zhao
- The Procter & Gamble CompanyMason Business CenterMasonOhioUSA
| | - T. Laughlin
- The Procter & Gamble CompanyMason Business CenterMasonOhioUSA
| | | | | | - R. E. Boissy
- Department of DermatologyCollege of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
10
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
11
|
Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 2021; 22:75-95. [PMID: 33328614 PMCID: PMC8344376 DOI: 10.1038/s41580-020-00314-w] [Citation(s) in RCA: 936] [Impact Index Per Article: 312.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Cellular senescence, first described in vitro in 1961, has become a focus for biotech companies that target it to ameliorate a variety of human conditions. Eminently characterized by a permanent proliferation arrest, cellular senescence occurs in response to endogenous and exogenous stresses, including telomere dysfunction, oncogene activation and persistent DNA damage. Cellular senescence can also be a controlled programme occurring in diverse biological processes, including embryonic development. Senescent cell extrinsic activities, broadly related to the activation of a senescence-associated secretory phenotype, amplify the impact of cell-intrinsic proliferative arrest and contribute to impaired tissue regeneration, chronic age-associated diseases and organismal ageing. This Review discusses the mechanisms and modulators of cellular senescence establishment and induction of a senescence-associated secretory phenotype, and provides an overview of cellular senescence as an emerging opportunity to intervene through senolytic and senomorphic therapies in ageing and ageing-associated diseases.
Collapse
Affiliation(s)
- Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Darren Baker
- Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
12
|
Vasudevan A, Schukken KM, Sausville EL, Girish V, Adebambo OA, Sheltzer JM. Aneuploidy as a promoter and suppressor of malignant growth. Nat Rev Cancer 2021; 21:89-103. [PMID: 33432169 DOI: 10.1038/s41568-020-00321-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Aneuploidy has been recognized as a hallmark of tumorigenesis for more than 100 years, but the connection between chromosomal errors and malignant growth has remained obscure. New evidence emerging from both basic and clinical research has illuminated a complicated relationship: despite its frequency in human tumours, aneuploidy is not a universal driver of cancer development and instead can exert substantial tumour-suppressive effects. The specific consequences of aneuploidy are highly context dependent and are influenced by a cell's genetic and environmental milieu. In this Review, we discuss the diverse facets of cancer biology that are shaped by aneuploidy, including metastasis, drug resistance and immune recognition, and we highlight aneuploidy's distinct roles as both a tumour promoter and an anticancer vulnerability.
Collapse
|
13
|
Oxidative Stress and Gene Expression Modifications Mediated by Extracellular Vesicles: An In Vivo Study of the Radiation-Induced Bystander Effect. Antioxidants (Basel) 2021; 10:antiox10020156. [PMID: 33494540 PMCID: PMC7911176 DOI: 10.3390/antiox10020156] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/27/2022] Open
Abstract
Radiation-induced bystander effect is a biological response in nonirradiated cells receiving signals from cells exposed to ionising radiation. The aim of this in vivo study was to analyse whether extracellular vesicles (EVs) originating from irradiated mice could induce modifications in the redox status and expression of radiation-response genes in bystander mice. C57BL/6 mice were whole-body irradiated with 0.1-Gy and 2-Gy X-rays, and EVs originating from mice irradiated with the same doses were injected into naïve, bystander mice. Lipid peroxidation in the spleen and plasma reactive oxygen metabolite (ROM) levels increased 24 h after irradiation with 2 Gy. The expression of antioxidant enzyme genes and inducible nitric oxide synthase 2 (iNOS2) decreased, while cell cycle arrest-, senescence- and apoptosis-related genes were upregulated after irradiation with 2 Gy. In bystander mice, no significant alterations were observed in lipid peroxidation or in the expression of genes connected to cell cycle arrest, senescence and apoptosis. However, there was a systemic increase in the circulating ROM level after an intravenous EV injection, and EVs originating from 2-Gy-irradiated mice caused a reduced expression of antioxidant enzyme genes and iNOS2 in bystander mice. In conclusion, we showed that ionising radiation-induced alterations in the cellular antioxidant system can be transmitted in vivo in a bystander manner through EVs originating from directly irradiated animals.
Collapse
|
14
|
Saul D, Kosinsky RL. Epigenetics of Aging and Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22010401. [PMID: 33401659 PMCID: PMC7794926 DOI: 10.3390/ijms22010401] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aging represents the multifactorial decline in physiological function of every living organism. Over the past decades, several hallmarks of aging have been defined, including epigenetic deregulation. Indeed, multiple epigenetic events were found altered across different species during aging. Epigenetic changes directly contributing to aging and aging-related diseases include the accumulation of histone variants, changes in chromatin accessibility, loss of histones and heterochromatin, aberrant histone modifications, and deregulated expression/activity of miRNAs. As a consequence, cellular processes are affected, which results in the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, and neurodegenerative disorders. In this review, we focus on epigenetic mechanisms underlying aging-related processes in various species and describe how these deregulations contribute to human diseases.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA;
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-293-2386
| |
Collapse
|
15
|
Tanimizu N, Ichinohe N, Suzuki H, Mitaka T. Prolonged oxidative stress and delayed tissue repair exacerbate acetaminophen-induced liver injury in aged mice. Aging (Albany NY) 2020; 12:18907-18927. [PMID: 33001859 PMCID: PMC7732315 DOI: 10.18632/aging.103973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/08/2020] [Indexed: 01/24/2023]
Abstract
The liver gradually loses its regenerative capabilities with aging. However, it remains unknown whether aging affects drug-induced liver injury. Here, we used acetaminophen induced acute liver injury model to compare tissue injury and regeneration of aged mice (>80 weeks old) with young ones (8-10 weeks old). The mortality of aged mice after acetaminophen injury was higher than that of young mice. Transient increase of serum GOT and decrease of reduced glutathione (GSH) were not returned to original levels in aged mice even at 48 hours. In addition, Foxm1b and its targets Ccnd1 and Cdk1 were upregulated in young but not in aged mice after 48 hours. Moreover, an apoptosis-related gene, Cidea, was upregulated specifically in aged livers, which was consistent with increased number of TUNEL+ hepatocytes. Unexpectedly, damaged hepatocytes were retained in aged liver tissue, which may be caused by impaired recruitment of macrophages to the damaged area, without increases in Ccl2 after acetaminophen injury. Collectively, prolonged oxidative stress due to delayed recovery of GSH and the retention of damaged hepatocytes may suppress tissue repair and hepatocyte proliferation, resulting in exacerbation of acetaminophen injury in aged mice. Thus, aging is a risk factor conferring susceptibility against drug-induced liver injury.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku 060-8556, Japan
| | - Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku 060-8556, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Chuo-ku 060-8556, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku 060-8556, Japan
| |
Collapse
|
16
|
Machiela E, Jeloka R, Caron NS, Mehta S, Schmidt ME, Baddeley HJE, Tom CM, Polturi N, Xie Y, Mattis VB, Hayden MR, Southwell AL. The Interaction of Aging and Cellular Stress Contributes to Pathogenesis in Mouse and Human Huntington Disease Neurons. Front Aging Neurosci 2020; 12:524369. [PMID: 33192449 PMCID: PMC7531251 DOI: 10.3389/fnagi.2020.524369] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
Huntington disease (HD) is a fatal, inherited neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. While mutant HTT is present ubiquitously throughout life, HD onset typically occurs in mid-life. Oxidative damage accumulates in the aging brain and is a feature of HD. We sought to interrogate the roles and interaction of age and oxidative stress in HD using primary Hu97/18 mouse neurons, neurons differentiated from HD patient induced pluripotent stem cells (iPSCs), and the brains of HD mice. We find that primary neurons must be matured in culture for canonical stress responses to occur. Furthermore, when aging is accelerated in mature HD neurons, mutant HTT accumulates and sensitivity to oxidative stress is selectively enhanced. Furthermore, we observe HD-specific phenotypes in neurons and mouse brains that have undergone accelerated aging, including a selective increase in DNA damage. These findings suggest a role for aging in HD pathogenesis and an interaction between the biological age of HD neurons and sensitivity to exogenous stress.
Collapse
Affiliation(s)
- Emily Machiela
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Ritika Jeloka
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Nicholas S. Caron
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shagun Mehta
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mandi E. Schmidt
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Helen J. E. Baddeley
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Colton M. Tom
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nalini Polturi
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Yuanyun Xie
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Virginia B. Mattis
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Amber L. Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Simchi L, Panov J, Morsy O, Feuermann Y, Kaphzan H. Novel Insights into the Role of UBE3A in Regulating Apoptosis and Proliferation. J Clin Med 2020; 9:jcm9051573. [PMID: 32455880 PMCID: PMC7290732 DOI: 10.3390/jcm9051573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
The UBE3A gene codes for a protein with two known functions, a ubiquitin E3-ligase which catalyzes ubiquitin binding to substrate proteins and a steroid hormone receptor coactivator. UBE3A is most famous for its critical role in neuronal functioning. Lack of UBE3A protein expression leads to Angelman syndrome (AS), while its overexpression is associated with autism. In spite of extensive research, our understanding of UBE3A roles is still limited. We investigated the cellular and molecular effects of Ube3a deletion in mouse embryonic fibroblasts (MEFs) and Angelman syndrome (AS) mouse model hippocampi. Cell cultures of MEFs exhibited enhanced proliferation together with reduced apoptosis when Ube3a was deleted. These findings were supported by transcriptome and proteome analyses. Furthermore, transcriptome analyses revealed alterations in mitochondria-related genes. Moreover, an analysis of adult AS model mice hippocampi also found alterations in the expression of apoptosis- and proliferation-associated genes. Our findings emphasize the role UBE3A plays in regulating proliferation and apoptosis and sheds light into the possible effects UBE3A has on mitochondrial involvement in governing this balance.
Collapse
|
18
|
Banerjee J, Dhas Y, Mishra N. Middle-Aged Indians with Type 2 Diabetes Are at Higher Risk of Biological Ageing with Special Reference to Serum CDKN2A. J Diabetes Res 2020; 2020:7569259. [PMID: 32280716 PMCID: PMC7128035 DOI: 10.1155/2020/7569259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Sedentary lifestyle and high visceral adiposity have elevated the risk of type 2 diabetes (T2DM) among Indians at younger age. In this study, we aimed to investigate the association of oxidative stress and chronic inflammatory mediators with ageing with special reference to the biological ageing marker cyclin-dependent kinase inhibitor 2A (CDKN2A) among middle-aged (31-50 years) Indian healthy and T2DM subjects. Malondialdehyde (MDA), oxidized LDL (oxLDL), interleukin-6 (IL-6), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and CDKN2A were measured in T2DM patients (n = 80) and controls (n = 80) aged 31-50 years, further grouped into G1: 31-40 years and G2: 41-50 years. IL-6, TNF-α, MCP-1, and CDKN2A showed a significant association with ageing among both T2DM patients and controls. But the strength of the association of MCP-1 and CKDN2A with ageing was significantly stronger in T2DM patients than the controls. All the oxidative stress and proinflammatory mediators showed nonsignificant associations with CDKN2A in the controls. However, IL-6, TNF-α, and MCP-1 showed a strong association with CDKN2A in T2DM patients. An increased risk of high levels of CDKN2A was found in G1 T2DM patients (OR: 3.484 (95% CI: 1.246-9.747) p = 0.017) and G2 T2DM patients (OR: 5.000 (95% CI: 1.914-13.061), p = 0.001) with reference to the respective control groups. Our study reveals that the middle-aged Indians with T2DM are at higher risk of biological ageing. The development of T2DM is more common among middle-aged Indians. T2DM may exacerbate the ageing process and may subsequently predispose Indians to various age-related complications at a much early age.
Collapse
Affiliation(s)
- Joyita Banerjee
- Symbiosis School of Biological Sciences (Formerly Symbiosis School of Biomedical Sciences), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Yogita Dhas
- Symbiosis School of Biological Sciences (Formerly Symbiosis School of Biomedical Sciences), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Neetu Mishra
- Symbiosis School of Biological Sciences (Formerly Symbiosis School of Biomedical Sciences), Symbiosis International (Deemed University), Lavale, Pune, India
| |
Collapse
|
19
|
Breitbach ME, Greenspan S, Resnick NM, Perera S, Gurkar AU, Absher D, Levine AS. Exonic Variants in Aging-Related Genes Are Predictive of Phenotypic Aging Status. Front Genet 2019; 10:1277. [PMID: 31921313 PMCID: PMC6931058 DOI: 10.3389/fgene.2019.01277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/19/2019] [Indexed: 01/31/2023] Open
Abstract
Background: Recent studies investigating longevity have revealed very few convincing genetic associations with increased lifespan. This is, in part, due to the complexity of biological aging, as well as the limited power of genome-wide association studies, which assay common single nucleotide polymorphisms (SNPs) and require several thousand subjects to achieve statistical significance. To overcome such barriers, we performed comprehensive DNA sequencing of a panel of 20 genes previously associated with phenotypic aging in a cohort of 200 individuals, half of whom were clinically defined by an "early aging" phenotype, and half of whom were clinically defined by a "late aging" phenotype based on age (65-75 years) and the ability to walk up a flight of stairs or walk for 15 min without resting. A validation cohort of 511 late agers was used to verify our results. Results: We found early agers were not enriched for more total variants in these 20 aging-related genes than late agers. Using machine learning methods, we identified the most predictive model of aging status, both in our discovery and validation cohorts, to be a random forest model incorporating damaging exon variants [Combined Annotation-Dependent Depletion (CADD) > 15]. The most heavily weighted variants in the model were within poly(ADP-ribose) polymerase 1 (PARP1) and excision repair cross complementation group 5 (ERCC5), both of which are involved in a canonical aging pathway, DNA damage repair. Conclusion: Overall, this study implemented a framework to apply machine learning to identify sequencing variants associated with complex phenotypes such as aging. While the small sample size making up our cohort inhibits our ability to make definitive conclusions about the ability of these genes to accurately predict aging, this study offers a unique method for exploring polygenic associations with complex phenotypes.
Collapse
Affiliation(s)
- Megan E. Breitbach
- HudsonAlpha Institute for Biotechnology, Hunstville, AL, United States
- Department of Biotechnology Science and Engineering, University of Alabama in Huntsville, Hunstville, AL, United States
| | - Susan Greenspan
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Neil M. Resnick
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Institute on Aging of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Subashan Perera
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Aditi U. Gurkar
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Institute on Aging of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Hunstville, AL, United States
| | - Arthur S. Levine
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Deelen J, Evans DS, Arking DE, Tesi N, Nygaard M, Liu X, Wojczynski MK, Biggs ML, van der Spek A, Atzmon G, Ware EB, Sarnowski C, Smith AV, Seppälä I, Cordell HJ, Dose J, Amin N, Arnold AM, Ayers KL, Barzilai N, Becker EJ, Beekman M, Blanché H, Christensen K, Christiansen L, Collerton JC, Cubaynes S, Cummings SR, Davies K, Debrabant B, Deleuze JF, Duncan R, Faul JD, Franceschi C, Galan P, Gudnason V, Harris TB, Huisman M, Hurme MA, Jagger C, Jansen I, Jylhä M, Kähönen M, Karasik D, Kardia SLR, Kingston A, Kirkwood TBL, Launer LJ, Lehtimäki T, Lieb W, Lyytikäinen LP, Martin-Ruiz C, Min J, Nebel A, Newman AB, Nie C, Nohr EA, Orwoll ES, Perls TT, Province MA, Psaty BM, Raitakari OT, Reinders MJT, Robine JM, Rotter JI, Sebastiani P, Smith J, Sørensen TIA, Taylor KD, Uitterlinden AG, van der Flier W, van der Lee SJ, van Duijn CM, van Heemst D, Vaupel JW, Weir D, Ye K, Zeng Y, Zheng W, Holstege H, Kiel DP, Lunetta KL, Slagboom PE, Murabito JM. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun 2019; 10:3669. [PMID: 31413261 PMCID: PMC6694136 DOI: 10.1038/s41467-019-11558-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.
Collapse
Affiliation(s)
- Joris Deelen
- Max Planck Institute for Biology of Ageing, 50866, Cologne, Germany.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA.
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Niccolò Tesi
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Marianne Nygaard
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
| | - Xiaomin Liu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Mary L Biggs
- Department of Biostatistics, University of Washington, Seattle, WA, 98115, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | | | - Gil Atzmon
- Department of Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Erin B Ware
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Albert V Smith
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Icelandic Heart Association, 201, Kópavogur, Iceland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Janina Dose
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Alice M Arnold
- Department of Biostatistics, University of Washington, Seattle, WA, 98115, USA
| | | | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | - Kaare Christensen
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
- Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000, Odense C, Denmark
| | - Lene Christiansen
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Joanna C Collerton
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Sarah Cubaynes
- MMDN, Univ. Montpellier, EPHE, Unité Inserm 1198, PSL Research University, 34095, Montpellier, France
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA
| | - Karen Davies
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Birgit Debrabant
- Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
| | - Jean-François Deleuze
- Fondation Jean Dausset-CEPH, 75010, Paris, France
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, 91000, Evry, France
| | - Rachel Duncan
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Jessica D Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Claudio Franceschi
- Department of Applied Mathematics and Centre of Bioinformatics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
- IRCCS Institute of Neurological Sciences of Bologna (ISNB), 40124, Bologna, Italy
| | - Pilar Galan
- EREN, UMR U1153 Inserm/U1125 Inra/Cnam/Paris 13, Université Paris 13, CRESS, 93017, Bobigny, France
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201, Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, 1007 MB, Amsterdam, The Netherlands
| | - Mikko A Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Carol Jagger
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Iris Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Marja Jylhä
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC), Tampere University, 33104, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33521, Tampere, Finland
| | - David Karasik
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 13010, Israel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA
| | - Sharon L R Kardia
- School of Public Health, Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Kingston
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Thomas B L Kirkwood
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, Kiel University, 24105, Kiel, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Carmen Martin-Ruiz
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Junxia Min
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 311058, China
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Chao Nie
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Ellen A Nohr
- Research Unit of Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
| | - Eric S Orwoll
- Bone and Mineral Unit, Oregon Health Sciences University, Portland, OR, 97239, USA
| | - Thomas T Perls
- Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
- Department of Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, 20521, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20014, Turku, Finland
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Jean-Marie Robine
- MMDN, Univ. Montpellier, EPHE, Unité Inserm 1198, PSL Research University, 34095, Montpellier, France
- CERMES3, UMR CNRS 8211-Unité Inserm 988-EHESS-Université Paris Descartes, 94801, Paris, France
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Division of Genetic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Jennifer Smith
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
- School of Public Health, Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, and Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
- MRC Integrative Epidemiology Unit, Bristol University, BS8 2BN, Bristol, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Wiesje van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - James W Vaupel
- Max Planck Institute for Demographic Research, 18057, Rostock, Germany
| | - David Weir
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development and Raissun Institute for Advanced Studies, Peking University, 100871, Beijing, China
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC, 27710, USA
| | - Wanlin Zheng
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Joanne M Murabito
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, 01702, USA.
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
21
|
Abstract
Studies in psychoneuroimmunology (PNI) would provide better insights into the "whole mind-body system." Systems biology models of the complex adaptive systems (CASs), such as a conceptual framework of "Yin-Yang dynamics," may be helpful for identifying systems-based biomarkers and targets for more effective prevention and treatment. The disturbances in the Yin-Yang dynamical balance may result in stress, inflammation, and various disorders including insomnia, Alzheimer's disease, obesity, diabetes, cardiovascular diseases, skin disorders, and cancer. At the molecular and cellular levels, the imbalances in the cytokine pathways, mitochondria networks, redox systems, and various signaling pathways may contribute to systemic inflammation. In the nervous system, Yin and Yang may represent the dynamical associations between the progressive and regressive processes in aging and neurodegenerative diseases. In response to the damages to the heart, the Yin-Yang dynamical balance between proinflammatory and anti-inflammatory cytokine networks is crucial. The studies of cancer have revealed the importance of the Yin-Yang dynamics in the tumoricidal and tumorigenic activities of the immune system. Stress-induced neuroimmune imbalances are also essential in chronic skin disorders including atopic dermatitis and psoriasis. With the integrative framework, the restoration of the Yin-Yang dynamics can become the objective of dynamical systems medicine.
Collapse
Affiliation(s)
- Qing Yan
- PharmTao, Santa Clara, CA, USA. .,University of Maryland University College, Adelphi, MD, USA.
| |
Collapse
|
22
|
Yoon MH, Kang SM, Lee SJ, Woo TG, Oh AY, Park S, Ha NC, Park BJ. p53 induces senescence through Lamin A/C stabilization-mediated nuclear deformation. Cell Death Dis 2019; 10:107. [PMID: 30728349 PMCID: PMC6365587 DOI: 10.1038/s41419-019-1378-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/10/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
p53-mediated cellular senescence has been intensively investigated, because it is important for tumor suppressive function. In addition, p16/INK4A is well known to be critical for cellular senescence. However, detailed molecular mechanism or relevance between p53 and p16-mediated senescence has not been demonstrated yet. Here we show that p53 induces p16 through Lamin A/C stabilization via direct interaction. Stabilized Lamin A/C promotes degradation of BMI-1 and MEL-18 (Polycomb repressor complex 1, PRC1), which sequesters p16 promotor. Increased p53 can reduce BMI-1/MEL-18 and induce p16 expression via Lamin A/C. Elimination of Lamin A/C can abolish p53-induced p16 expression and BMI-1/MEL-18 reduction. As Lamin A/C expression is increased during cell differentiation, this mechanism seems to be very useful for selective induction of senescence in non-stem cells. Our results suggest that Lamin A/C-p53 network is important for p16/INK4A-mediated cellular senescence.
Collapse
Affiliation(s)
- Min-Ho Yoon
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Su-Jin Lee
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Tae-Gyun Woo
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ah-Young Oh
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Nam-Chul Ha
- Department of Food Science, College of Agricultural Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
23
|
Mesenchymal Stem Cells from Cervix and Age: New Insights into CIN Regression Rate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1545784. [PMID: 30622662 PMCID: PMC6304868 DOI: 10.1155/2018/1545784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Cervical intraepithelial neoplasia (CIN) is a precancerous lesion of the uterine cervix that can regress or progress to cervical cancer; interestingly, it has been noted that young women generally seem to have higher rates of spontaneous regression and remission, suggesting a correlation between the patient's age and regression/progression rates of CIN. Even if the underlying mechanisms are still unclear, inflammation seems to play a pivotal role in CIN fate and inflammatory processes are often driven by mesenchymal stem cells (MSCs). This study was aimed at evaluating if age affects the behavior of MSCs from the cervix (C-MSCs) that in turn may modulate inflammation and, finally, regression rate. Fourteen samples of the human cervix were recovered from two groups of patients, "young" (mean age 28 ± 2) and "old" (mean age 45 ± 3), during treatment using the loop electrosurgical excision procedure (LEEP) technique. Progenitor cells were isolated, deeply characterized, and divided into young (yC-MSCs) and old cervixes (oC-MSCs); the senescence, expression/secretion of selected cytokines related to inflammation, and the effects of indirect cocultures with HeLa cells were analyzed. Our results show that isolated cells satisfy the fixed criteria for stemness and display age-related properties; yC-MSCs express a higher level of cytokines related to acute inflammation than oC-MSCs. Finally, in the crosstalk with HeLa cells, MSCs derived from the cervixes of young patients play a stronger antitumoral role than oC-MSCs. In conclusion, the immunobiology of MSCs derived from the cervix is affected by the age of donors and this can correlate with the regression rate of CIN by influencing their paracrine effect. In addition, MSCs from a young cervix drives an antitumoral effect by sustaining an acute inflammatory environment.
Collapse
|
24
|
Bi S, Wang H, Kuang W. Stem cell rejuvenation and the role of autophagy in age retardation by caloric restriction: An update. Mech Ageing Dev 2018; 175:46-54. [PMID: 30031008 DOI: 10.1016/j.mad.2018.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022]
Abstract
Stem cells being pluripotent in nature can differentiate into a wide array of specific cells and asymmetrically divide to produce new ones but may undergo aging by themselves. Aging has both quantitative and qualitative effects on stem cells, and could eventually restrain them from replenishing into progenitor cells. Reactive oxygen species (ROS) accumulated in the aging cells could not only block the cell cycle but also affect autophagy by damaging the mitochondria. Autophagy could eliminate redundant production of ROS in aging stem cells and helps to maintain the proliferation capacity by restraining the expression of p16INK4a. Current studies showed that improving autophagy could restore the regenerative ability of aging stem cells. Therefore, it is important for an organism to maintain the appropriate autophagy. Caloric restriction (CR) was shown to retard the stem cell aging by a certain basic level of autophagy, suggesting that CR was an effective way to extend longevity in mammals. However, little is known about the underlying mechanisms. In this review, we tried to explore the molecular mechanisms on how CR induces appropriate autophagy to restore aging stem cell regenerative ability.
Collapse
Affiliation(s)
- Shanrong Bi
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanyu Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihong Kuang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
25
|
Aguayo-Mazzucato C, Lee TB, Matzko M, DiIenno A, Rezanejad H, Ramadoss P, Scanlan T, Zavacki AM, Larsen PR, Hollenberg A, Colton C, Sharma A, Bonner-Weir S. T 3 Induces Both Markers of Maturation and Aging in Pancreatic β-Cells. Diabetes 2018; 67:1322-1331. [PMID: 29625991 PMCID: PMC6014556 DOI: 10.2337/db18-0030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/25/2022]
Abstract
Previously, we showed that thyroid hormone (TH) triiodothyronine (T3) enhanced β-cell functional maturation through induction of Mafa High levels of T3 have been linked to decreased life span in mammals and low levels to lengthened life span, suggesting a relationship between TH and aging. Here, we show that T3 increased p16Ink4a (a β-cell senescence marker and effector) mRNA in rodent and human β-cells. The kinetics of Mafa and p16Ink4a induction suggested both genes as targets of TH via TH receptors (THRs) binding to specific response elements. Using specific agonists CO23 and GC1, we showed that p16Ink4a expression was controlled by THRA and Mafa by THRB. Using chromatin immunoprecipitation and a transient transfection yielding biotinylated THRB1 or THRA isoforms to achieve specificity, we determined that THRA isoform bound to p16Ink4a , whereas THRB1 bound to Mafa but not to p16Ink4a On a cellular level, T3 treatment accelerated cell senescence as shown by increased number of β-cells with acidic β-galactosidase activity. Our data show that T3 can simultaneously induce both maturation (Mafa) and aging (p16Ink4a ) effectors and that these dichotomous effects are mediated through different THR isoforms. These findings may be important for further improving stem cell differentiation protocols to produce functional β-cells for replacement therapies in diabetes.
Collapse
Affiliation(s)
| | - Terence B Lee
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | | - Amanda DiIenno
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Preeti Ramadoss
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Thomas Scanlan
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR
| | - Ann Marie Zavacki
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - P Reed Larsen
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Anthony Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Clark Colton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Arun Sharma
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | |
Collapse
|
26
|
Abstract
As the popular adage goes, all diseases run into old age and almost all physiological changes are associated with alterations in gene expression, irrespective of whether they are causal or consequential. Therefore, the quest for mechanisms that delay ageing and decrease age-associated diseases has propelled researchers to unravel regulatory factors that lead to changes in chromatin structure and function, which ultimately results in deregulated gene expression. It is therefore essential to bring together literature, which until recently has investigated gene expression and chromatin independently. With advances in biomedical research and the emergence of epigenetic regulators as potential therapeutic targets, enhancing our understanding of mechanisms that 'derail' transcription and identification of causal genes/pathways during ageing will have a significant impact. In this context, this chapter aims to not only summarize the key features of age-associated changes in epigenetics and transcription, but also identifies gaps in the field and proposes aspects that need to be investigated in the future.
Collapse
|
27
|
Zhao J, Fuhrmann‐Stroissnigg H, Gurkar AU, Flores RR, Dorronsoro A, Stolz DB, St. Croix CM, Niedernhofer LJ, Robbins PD. Quantitative Analysis of Cellular Senescence in Culture and In Vivo. ACTA ACUST UNITED AC 2017; 79:9.51.1-9.51.25. [DOI: 10.1002/cpcy.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jing Zhao
- Department of Metabolism and Aging, The Scripps Research Institute Jupiter Florida
| | | | - Aditi U. Gurkar
- Department of Metabolism and Aging, The Scripps Research Institute Jupiter Florida
| | - Rafael R. Flores
- Department of Metabolism and Aging, The Scripps Research Institute Jupiter Florida
| | - Akaitz Dorronsoro
- Department of Metabolism and Aging, The Scripps Research Institute Jupiter Florida
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine Pittsburgh Pennsylvania
| | - Claudette M. St. Croix
- Department of Cell Biology, University of Pittsburgh School of Medicine Pittsburgh Pennsylvania
| | | | - Paul D. Robbins
- Department of Metabolism and Aging, The Scripps Research Institute Jupiter Florida
| |
Collapse
|
28
|
Increase in tumor suppressor Arf compensates gene dysregulation in in vitro aged adipocytes. Biogerontology 2016; 18:55-68. [DOI: 10.1007/s10522-016-9661-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
|
29
|
Abstract
Chromosomal instability (CIN) is a process leading to errors in chromosome segregation and results in aneuploidy, a state in which cells have an abnormal number of chromosomes. CIN is a hallmark of cancer, and furthermore linked to ageing and age-related diseases such as Alzheimer's. Various mouse models have been developed to explore the role of CIN in ageing and cancer. While these models reveal only a modest contribution of CIN to the initiation of cancer, they also clearly show that CIN is a powerful accelerator of cancer in a predisposed background. Other than cancer, CIN also appears to provoke premature ageing in some of the CIN models. In this review, we discuss the phenotypes of the various available mouse models, what we have learnt so far, and importantly, also which questions still need to be addressed.
Collapse
|
30
|
Pospelova TV, Bykova TV, Zubova SG, Katolikova NV, Yartzeva NM, Pospelov VA. Rapamycin induces pluripotent genes associated with avoidance of replicative senescence. Cell Cycle 2013; 12:3841-51. [PMID: 24296616 DOI: 10.4161/cc.27396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Primary rodent cells undergo replicative senescence, independent from telomere shortening. We have recently shown that treatment with rapamycin during passages 3-7 suppressed replicative senescence in rat embryonic fibroblasts (REFs), which otherwise occurred by 10-14 passages. Here, we further investigated rapamycin-primed cells for an extended number of passages. Rapamycin-primed cells continued to proliferate without accumulation of senescent markers. Importantly, these cells retained the ability to undergo serum starvation- and etoposide-induced cell cycle arrest. The p53/p21 pathway was functional. This indicates that rapamycin did not cause either transformation or loss of cell cycle checkpoints. We found that rapamycin activated transcription of pluripotent genes, oct-4, sox-2, nanog, as well as further upregulated telomerase (tert) gene. The rapamycin-derived cells have mostly non-rearranged, near-normal karyotype. Still, when cultivated for a higher number of passages, these cells acquired a chromosomal marker within the chromosome 3. We conclude that suppression mTORC1 activity may prevent replicative senescence without transformation of rodent cells.
Collapse
Affiliation(s)
- Tatiana V Pospelova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; St.Petersburg State University; St. Petersburg, Russia
| | - Tatiana V Bykova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; St.Petersburg State University; St. Petersburg, Russia
| | - Svetlana G Zubova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; St.Petersburg State University; St. Petersburg, Russia
| | | | - Natalia M Yartzeva
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia
| | - Valery A Pospelov
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; St.Petersburg State University; St. Petersburg, Russia
| |
Collapse
|
31
|
Baker DJ, Weaver RL, van Deursen JM. p21 both attenuates and drives senescence and aging in BubR1 progeroid mice. Cell Rep 2013; 3:1164-74. [PMID: 23602569 DOI: 10.1016/j.celrep.2013.03.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 02/11/2013] [Accepted: 03/20/2013] [Indexed: 02/04/2023] Open
Abstract
BubR1 insufficiency occurs with natural aging and induces progeroid phenotypes in both mice and children with mosaic variegated aneuploidy syndrome. In response to BubR1 insufficiency, skeletal muscle, fat, and lens tissue engage p19(Arf) to attenuate senescence and age-related deterioration. Here, we address how p19(Arf) exerts this caretaker role using BubR1 progeroid mice lacking p53 or its transcriptional target p21. We show that p53 delays functional decline of skeletal muscle and fat in a p21-dependent fashion by inhibiting p16(Ink4a)-mediated senescence of progenitor cells. Strikingly, p53 also attenuates the formation of cataractous lenses, but here its antiaging effect is p21 independent, as we found p21 to promote senescence of lens epithelial cells and cataract formation. Together, these results demonstrate that p53 counteracts tissue destruction in response to BubR1 insufficiency through diverse mechanisms and uncover a causal link between senescence of the progenitor cell compartment and age-related dysfunction.
Collapse
Affiliation(s)
- Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
32
|
Wijshake T, Malureanu LA, Baker DJ, Jeganathan KB, van de Sluis B, van Deursen JM. Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation. PLoS Genet 2012; 8:e1003138. [PMID: 23300461 PMCID: PMC3531486 DOI: 10.1371/journal.pgen.1003138] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/18/2012] [Indexed: 01/10/2023] Open
Abstract
Mosaic Variegated Aneuploidy (MVA) syndrome is a rare autosomal recessive disorder characterized by inaccurate chromosome segregation and high rates of near-diploid aneuploidy. Children with MVA syndrome die at an early age, are cancer prone, and have progeroid features like facial dysmorphisms, short stature, and cataracts. The majority of MVA cases are linked to mutations in BUBR1, a mitotic checkpoint gene required for proper chromosome segregation. Affected patients either have bi-allelic BUBR1 mutations, with one allele harboring a missense mutation and the other a nonsense mutation, or mono-allelic BUBR1 mutations combined with allelic variants that yield low amounts of wild-type BubR1 protein. Parents of MVA patients that carry single allele mutations have mild mitotic defects, but whether they are at risk for any of the pathologies associated with MVA syndrome is unknown. To address this, we engineered a mouse model for the nonsense mutation 2211insGTTA (referred to as GTTA) found in MVA patients with bi-allelic BUBR1 mutations. Here we report that both the median and maximum lifespans of the resulting BubR1+/GTTA mice are significantly reduced. Furthermore, BubR1+/GTTA mice develop several aging-related phenotypes at an accelerated rate, including cataract formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. BubR1+/GTTA mice develop mild aneuploidies and show enhanced growth of carcinogen-induced tumors. Collectively, these data demonstrate that the BUBR1 GTTA mutation compromises longevity and healthspan, raising the interesting possibility that mono-allelic changes in BUBR1 might contribute to differences in aging rates in the general population. Aging is the main risk factor for the majority of chronic diseases and the leading cause of death and disability in humans. Humans age at different rates, but the molecular genetic basis underlying this phenomenon remains largely unknown. Efforts to understand how we age have focused on genetic changes that extend lifespan or underlie progeroid disorders. One potential progeroid disorder, MVA syndrome, has been associated with mutations in the mitotic regulator BUBR1. Although MVA syndrome is rare due to its recessive nature, individuals carrying heterozygous BUBR1 mutations associated with MVA would be much more prevalent. However, whether such carriers are asymptomatic or at risk of developing aspects of MVA syndrome later in life is unknown. To investigate this, we engineered mice to carry an analogous mutation to the human MVA BUBR1 nonsense mutation 2211insGTTA. We find that these mice have a reduced lifespan and develop several age-related phenotypes at an accelerated rate. These findings suggest that bi-allelic integrity of BUBR1 is a key determinant of healthspan and longevity, and provide a conceptual framework for elucidating differences in aging rates among humans.
Collapse
Affiliation(s)
- Tobias Wijshake
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Liviu A. Malureanu
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Darren J. Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bart van de Sluis
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hamada M, Malureanu LA, Wijshake T, Zhou W, van Deursen JM. Reprogramming to pluripotency can conceal somatic cell chromosomal instability. PLoS Genet 2012; 8:e1002913. [PMID: 22952451 PMCID: PMC3431347 DOI: 10.1371/journal.pgen.1002913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/05/2012] [Indexed: 01/12/2023] Open
Abstract
The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs) in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN) preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs) in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology. iPSC technology has the potential to revolutionize stem-cell based regenerative medicine and would also allow for the production of patient-specific cells for disease modeling and drug discovery. One of the primary safety concerns of iPSCs is genetic instability, which is associated with cancer and various other diseases and includes abnormalities in both chromosomal structure and number. Whereas certain structural chromosome changes have been shown to preclude somatic cell reprogramming, the effect of whole-chromosome reshuffling on this process is completely unknown. Here we show that BubR1 and RanBP2 hypomorphic MEF lines, which are highly prone to erroneous chromosome segregation due to mitotic checkpoint and DNA decatenation failure, respectively, reprogram to pluripotency with normal efficiency. However, while RanBP2 hypomorphic MEFs yielded karyotypically normal iPSC clones with generally low chromosomal instability rates, BubR1 hypomorphic MEFs almost exclusively yielded aneuploid iPSC clones with high instability rates. These data provide important new insights into the genomic integrity requirements during somatic cell reprogramming, and they establish that the safe application of iPSC technology requires screening of both iPSCs and the iPSC-founder cells for chromosome number instability.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Liviu A. Malureanu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tobias Wijshake
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Wei Zhou
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jan M. van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.
Collapse
|
35
|
Sabin RJ, Anderson RM. Cellular Senescence - its role in cancer and the response to ionizing radiation. Genome Integr 2011; 2:7. [PMID: 21834983 PMCID: PMC3169443 DOI: 10.1186/2041-9414-2-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/11/2011] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence is a normal biological process that is initiated in response to a range of intrinsic and extrinsic factors that functions to remove irreparable damage and therefore potentially harmful cells, from the proliferative pool. Senescence can therefore be thought of in beneficial terms as a tumour suppressor. In contrast to this, there is a growing body of evidence suggesting that senescence is also associated with the disruption of the tissue microenvironment and development of a pro-oncogenic environment, principally via the secretion of senescence-associated pro-inflammatory factors. The fraction of cells in a senescent state is known to increase with cellular age and from exposure to various stressors including ionising radiation therefore, the implications of the detrimental effects of the senescent phenotype are important to understand within the context of the increasing human exposure to ionising radiation. This review will discuss what is currently understood about senescence, highlighting possible associations between senescence and cancer and, how exposure to ionising radiation may modify this.
Collapse
Affiliation(s)
- Rebecca J Sabin
- Centre for Cell and Chromosome Biology and Centre for Infection, Immunity and Disease Mechanisms, Division of Biosciences, Brunel University, West London, UB8 3PH, UK.
| | | |
Collapse
|
36
|
Song J, Sandoval R, Pilkinton MA, Tian X, Raychaudhuri P, Colamonici OR. ARF-induced downregulation of Mip130/LIN-9 protein levels mediates a positive feedback that leads to increased expression of p16Ink4a and p19Arf. Oncogene 2010; 29:1976-1986. [PMID: 20101237 PMCID: PMC4116813 DOI: 10.1038/onc.2009.485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/25/2009] [Accepted: 12/04/2009] [Indexed: 12/22/2022]
Abstract
The ARF-MDM2-p53 pathway constitutes one of the most important mechanisms of surveillance against oncogenic transformation, and its inactivation occurs in a large proportion of cancers. Here, we show that ARF regulates Mip130/LIN-9 by inducing its translocation to the nucleolus and decreasing the expression of the Mip130/LIN-9 protein through a post-transcriptional mechanism. The knockdown of Mip130/LIN-9 in p53(-/-) and Arf(-/-) mouse embryonic fibroblasts (MEFs) mimics some effects of ARF, such as the downregulation of B-Myb, impaired induction of G2/M genes, and a decrease in cell proliferation. Importantly, although the knockdown of Mip130/LIN-9 reduced the proliferation of p53 or Arf-null MEFs, only p53(-/-) MEFs showed a senescence-like state and an increase in the expression of Arf and p16. Interestingly, the increase in p16 and ARF is indirect because the Mip130/LIN-9 knockdown decreased the transcription of negative regulators of the Ink4a/Arf locus, such as BUBR1 and CDC6. Chromatin immunoprecipitation assays also reveal that Mip130/LIN-9 occupies the promoters of the BubR1 and cdc6 genes, suggesting that Mip130/LIN-9 is necessary for the expression of these genes. Altogether, these results indicate that there is a feedback mechanism between ARF and Mip130/LIN-9 in which either the increase of ARF or the decrease in Mip130/LIN-9 causes a further increase in the expression of Arf and p16.
Collapse
Affiliation(s)
- Julie Song
- Dept. of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Raudel Sandoval
- Dept. of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | - Mark A. Pilkinton
- Dept. of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | - Pradip Raychaudhuri
- Dept. of Biochemistry/Mol. Genetics, University of Illinois, Chicago, IL 60612, USA
| | | |
Collapse
|
37
|
Barker PE, Murthy M. Biomarker Validation for Aging: Lessons from mtDNA Heteroplasmy Analyses in Early Cancer Detection. Biomark Insights 2009; 4:165-79. [PMID: 20029650 PMCID: PMC2796862 DOI: 10.4137/bmi.s2253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The anticipated biological and clinical utility of biomarkers has attracted significant interest recently. Aging and early cancer detection represent areas active in the search for predictive and prognostic biomarkers. While applications differ, overlapping biological features, analytical technologies and specific biomarker analytes bear comparison. Mitochondrial DNA (mtDNA) as a biomarker in both biological models has been evaluated. However, it remains unclear whether mtDNA changes in aging and cancer represent biological relationships that are causal, incidental, or a combination of both. This article focuses on evaluation of mtDNA-based biomarkers, emerging strategies for quantitating mtDNA admixtures, and how current understanding of mtDNA in aging and cancer evolves with introduction of new technologies. Whether for cancer or aging, lessons from mtDNA based biomarker evaluations are several. Biological systems are inherently dynamic and heterogeneous. Detection limits for mtDNA sequencing technologies differ among methods for low-level DNA sequence admixtures in healthy and diseased states. Performance metrics of analytical mtDNA technology should be validated prior to application in heterogeneous biologically-based systems. Critical in evaluating biomarker performance is the ability to distinguish measurement system variance from inherent biological variance, because it is within the latter that background healthy variability as well as high-value, disease-specific information reside.
Collapse
Affiliation(s)
- Peter E. Barker
- Bioassay Methods Group, Biochemical Sciences Division, Bldg 227/B248, NIST, 100 Bureau Drive, Gaithersburg, Maryland
| | - Mahadev Murthy
- Division of Aging Biology (DAB), National Institute on Aging, 7201 Wisconsin Ave., GW 2C231, Bethesda, MD 20892.
;
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The elderly population is continuing to expand at record pace in the vast majority of countries worldwide. Many urologic conditions that necessitate reconstructive surgery occur in geriatric patients. To date, there has been a paucity of research on the effects of aging with regard to reconstructive procedures in elderly patients. This review examines factors that influence the feasibility and outcomes of reconstructive urologic surgery in older adults. RECENT FINDINGS Age alone has generally not been identified as a significant predictive factor for outcomes in geriatric patients undergoing surgery. Comorbid diseases associated with reduction of physiologic reserve capacity and impairments in the level of independence for activities of daily living appear to have more predictive value. Recent research has focused on defining frailty as a condition that frequently occurs in older adults and may influence clinical outcomes. A variety of cellular and tissue changes associated with aging have also been studied. Inflammatory mediators may play an important role in this process. SUMMARY Many urologic conditions that require reconstructive surgery occur in elderly patients. Careful planning may help to improve outcomes. However, there appear to be inherent changes associated with the physiology of normal aging that can significantly influence this process.
Collapse
|