1
|
Ramsey K, Britt M, Maramba J, Ushijima B, Moller E, Anishkin A, Häse C, Sukharev S. The dynamic hypoosmotic response of Vibrio cholerae relies on the mechanosensitive channel MscS. iScience 2024; 27:110001. [PMID: 38868203 PMCID: PMC11167432 DOI: 10.1016/j.isci.2024.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Vibrio cholerae adapts to osmotic down-shifts by releasing metabolites through two mechanosensitive (MS) channels, low-threshold MscS and high-threshold MscL. To investigate each channel's contribution to the osmotic response, we generated ΔmscS, ΔmscL, and double ΔmscL ΔmscS mutants in V. cholerae O395. We characterized their tension-dependent activation in patch-clamp, and the millisecond-scale osmolyte release kinetics using a stopped-flow light scattering technique. We additionally generated numerical models describing osmolyte and water fluxes. We illustrate the sequence of events and define the parameters that characterize discrete phases of the osmotic response. Survival is correlated to the extent of cell swelling, the rate of osmolyte release, and the completeness of post-shock membrane resealing. Not only do the two channels interact functionally, but there is also an up-regulation of MscS in the ΔmscL strain, suggesting transcriptional crosstalk. The data reveal the role of MscS in the termination of the osmotic permeability response in V. cholerae.
Collapse
Affiliation(s)
- Kristen Ramsey
- Department of Biology, University of Maryland, College Park, MD, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Madolyn Britt
- Department of Biology, University of Maryland, College Park, MD, USA
- Biophysics Graduate Program, University of Maryland, College Park, MD, USA
| | - Joseph Maramba
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Blake Ushijima
- Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Elissa Moller
- Department of Biology, University of Maryland, College Park, MD, USA
- Biophysics Graduate Program, University of Maryland, College Park, MD, USA
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Claudia Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD, USA
- Biophysics Graduate Program, University of Maryland, College Park, MD, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Lane BJ, Ma Y, Yan N, Wang B, Ackermann K, Karamanos TK, Bode BE, Pliotas C. Monitoring the conformational ensemble and lipid environment of a mechanosensitive channel under cyclodextrin-induced membrane tension. Structure 2024; 32:739-750.e4. [PMID: 38521071 DOI: 10.1016/j.str.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/29/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Membrane forces shift the equilibria of mechanosensitive channels enabling them to convert mechanical cues into electrical signals. Molecular tools to stabilize and methods to capture their highly dynamic states are lacking. Cyclodextrins can mimic tension through the sequestering of lipids from membranes. Here we probe the conformational ensemble of MscS by EPR spectroscopy, the lipid environment with NMR, and function with electrophysiology under cyclodextrin-induced tension. We show the extent of MscS activation depends on the cyclodextrin-to-lipid ratio, and that lipids are depleted slower when MscS is present. This has implications in MscS' activation kinetics when distinct membrane scaffolds such as nanodiscs or liposomes are used. We find MscS transits from closed to sub-conducting state(s) before it desensitizes, due to the lack of lipid availability in its vicinity required for closure. Our approach allows for monitoring tension-sensitive states in membrane proteins and screening molecules capable of inducing molecular tension in bilayers.
Collapse
Affiliation(s)
- Benjamin J Lane
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yue Ma
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Nana Yan
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Bolin Wang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK
| | - Theodoros K Karamanos
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
3
|
Weng N, Singh A, Ohlsson JA, Dolfing J, Westerholm M. Catabolism and interactions of syntrophic propionate- and acetate oxidizing microorganisms under mesophilic, high-ammonia conditions. Front Microbiol 2024; 15:1389257. [PMID: 38933034 PMCID: PMC11201294 DOI: 10.3389/fmicb.2024.1389257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Microbial inhibition by high ammonia concentrations is a recurring problem that significantly restricts methane formation from intermediate acids, i.e., propionate and acetate, during anaerobic digestion of protein-rich waste material. Studying the syntrophic communities that perform acid conversion is challenging, due to their relatively low abundance within the microbial communities typically found in biogas processes and disruption of their cooperative behavior in pure cultures. To overcome these limitations, this study examined growth parameters and microbial community dynamics of highly enriched mesophilic and ammonia-tolerant syntrophic propionate and acetate-oxidizing communities and analyzed their metabolic activity and cooperative behavior using metagenomic and metatranscriptomic approaches. Cultivation in batch set-up demonstrated biphasic utilization of propionate, wherein acetate accumulated and underwent oxidation before complete degradation of propionate. Three key species for syntrophic acid degradation were inferred from genomic sequence information and gene expression: a syntrophic propionate-oxidizing bacterium (SPOB) "Candidatus Syntrophopropionicum ammoniitolerans", a syntrophic acetate-oxidizing bacterium (SAOB) Syntrophaceticus schinkii and a novel hydrogenotrophic methanogen, for which we propose the provisional name "Candidatus Methanoculleus ammoniitolerans". The results revealed consistent transcriptional profiles of the SAOB and the methanogen both during propionate and acetate oxidation, regardless of the presence of an active propionate oxidizer. Gene expression indicated versatile capabilities of the two syntrophic bacteria, utilizing both molecular hydrogen and formate as an outlet for reducing equivalents formed during acid oxidation, while conserving energy through build-up of sodium/proton motive force. The methanogen used hydrogen and formate as electron sources. Furthermore, results of the present study provided a framework for future research into ammonia tolerance, mobility, aggregate formation and interspecies cooperation.
Collapse
Affiliation(s)
- Nils Weng
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Abhijeet Singh
- Palaeobiology, Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas A. Ohlsson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
6
|
Kaneko S, Hirotaka S, Tsujii M, Maruyama H, Uozumi N, Arai F. Instantaneous extracellular solution exchange for concurrent evaluation of membrane permeability of single cells. LAB ON A CHIP 2024; 24:281-291. [PMID: 38086698 DOI: 10.1039/d3lc00633f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The osmotic stress imposed on microorganisms by hypotonic conditions is perceived to regulate water and solute flux via cell membranes, which are crucial for survival. Some cells that fail to perceive osmotic stress die because this results in the rupture of the cell membrane. The flux through the membrane is characterized by the membrane permeability, which is measured using a stopped-flow apparatus in response to a millisecond-order osmolarity change. However, the obtained data are an ensemble average of each cell response. Additionally, the measurement of permeability, considering cellular viability, contributes to a more accurate evaluation of osmoadaptation. Here, we present a novel on-chip instantaneous extracellular solution exchange method using an air-liquid interface. The presented method provides a concurrent evaluation at the single-cell level in response to a millisecond-order osmotic shock, considering cellular viability by solution exchange. This method utilizes a liquid bridge with a locally formed droplet on the surface of a micropillar fabricated inside a microchannel. We evaluated a solution exchange time of 3.6 ms and applied this method to Synechocystis PCC 6803 under two different osmolarity conditions. The live/dead ratio of 1 M to 0.5 M osmotic down shock condition was 78.8/21.2% while that of 1 M to 0.25 M osmotic down shock condition was 40.0/60.0%. We evaluated the water permeability of two groups: cells that were still live before and after osmotic shock (hereafter named cell type 1), and cells that were live before but were dead 10 minutes after osmotic shock (hereafter named cell type 2). The results indicated that the water permeability of cell type 2 was higher than that of cell type 1. The results obtained using the presented methods confirmed that the effect of osmotic stress can be accurately evaluated using single-cell analysis.
Collapse
Affiliation(s)
- Shingo Kaneko
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Sugiura Hirotaka
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Hisataka Maruyama
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Fumihito Arai
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
7
|
MacGillivray KA, Ng SL, Wiesenfeld S, Guest RL, Jubery T, Silhavy TJ, Ratcliff WC, Hammer BK. Trade-offs constrain adaptive pathways to the type VI secretion system survival. iScience 2023; 26:108332. [PMID: 38025790 PMCID: PMC10679819 DOI: 10.1016/j.isci.2023.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
The Type VI Secretion System (T6SS) is a nano-harpoon used by many bacteria to inject toxins into neighboring cells. While much is understood about mechanisms of T6SS-mediated toxicity, less is known about the ways that competitors can defend themselves against this attack, especially in the absence of their own T6SS. Here we subjected eight replicate populations of Escherichia coli to T6SS attack by Vibrio cholerae. Over ∼500 generations of competition, isolates of the E. coli populations evolved to survive T6SS attack an average of 27-fold better, through two convergently evolved pathways: apaH was mutated in six of the eight replicate populations, while the other two populations each had mutations in both yejM and yjeP. However, the mutations we identified are pleiotropic, reducing cellular growth rates, and increasing susceptibility to antibiotics and elevated pH. These trade-offs help us understand how the T6SS shapes the evolution of bacterial interactions.
Collapse
Affiliation(s)
- Kathryn A. MacGillivray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sophia Wiesenfeld
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Randi L. Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Tahrima Jubery
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
8
|
Zhang Z, Ye F, Xiong T, Chen J, Cao J, Chen Y, Liu S. Origin, evolution and diversification of plant mechanosensitive channel of small conductance-like (MSL) proteins. BMC PLANT BIOLOGY 2023; 23:462. [PMID: 37794319 PMCID: PMC10552396 DOI: 10.1186/s12870-023-04479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Mechanosensitive (MS) ion channels provide efficient molecular mechanism for transducing mechanical forces into intracellular ion fluxes in all kingdoms of life. The mechanosensitive channel of small conductance (MscS) was one of the best-studied MS channels and its homologs (MSL, MscS-like) were widely distributed in cell-walled organisms. However, the origin, evolution and expansion of MSL proteins in plants are still not clear. Here, we identified more than 2100 MSL proteins from 176 plants and conducted a broad-scale phylogenetic analysis. The phylogenetic tree showed that plant MSL proteins were divided into three groups (I, II and III) prior to the emergence of chlorophytae algae, consistent with their specific subcellular localization. MSL proteins were distributed unevenly into each of plant species, and four parallel expansion was identified in angiosperms. In Brassicaceae, most MSL duplicates were derived by whole-genome duplication (WGD)/segmental duplications. Finally, a hypothetical evolutionary model of MSL proteins in plants was proposed based on phylogeny. Our studies illustrate the evolutionary history of the MSL proteins and provide a guide for future functional diversity analyses of these proteins in plants.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Jiahui Chen
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Jiajia Cao
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Yurui Chen
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Sushuang Liu
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
9
|
Pedrosa-Silva F, Venancio TM. Comparative Genomics Reveals Novel Species and Insights into the Biotechnological Potential, Virulence, and Resistance of Alcaligenes. Genes (Basel) 2023; 14:1783. [PMID: 37761923 PMCID: PMC10530903 DOI: 10.3390/genes14091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Alcaligenes is a cosmopolitan bacterial genus that exhibits diverse properties which are beneficial to plants. However, the genomic versatility of Alcaligenes has also been associated with the ability to cause opportunistic infections in humans, raising concerns about the safety of these microorganisms in biotechnological applications. Here, we report an in-depth comparative analysis of Alcaligenes species using all publicly available genomes to investigate genes associated with species, biotechnological potential, virulence, and resistance to multiple antibiotics. Phylogenomic analysis revealed that Alcaligenes consists of at least seven species, including three novel species. Pan-GWAS analysis uncovered 389 species-associated genes, including cold shock proteins (e.g., cspA) and aquaporins (e.g., aqpZ) found exclusively in the water-isolated species, Alcaligenes aquatilis. Functional annotation of plant-growth-promoting traits revealed enrichment of genes for auxin biosynthesis, siderophores, and organic acids. Genes involved in xenobiotic degradation and toxic metal tolerance were also identified. Virulome and resistome profiles provide insights into selective pressures exerted in clinical settings. Taken together, the results presented here provide the grounds for more detailed clinical and ecological studies of the genus Alcaligenes.
Collapse
Affiliation(s)
| | - Thiago M. Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Brazil;
| |
Collapse
|
10
|
Ramirez VI, Wray R, Blount P, King MD. The Effects of Airflow on the Mechanosensitive Channels of Escherichia coli MG1655 and the Impact of Survival Mechanisms Triggered. Microorganisms 2023; 11:2236. [PMID: 37764080 PMCID: PMC10534522 DOI: 10.3390/microorganisms11092236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding how bacteria respond to ventilated environments is a crucial concept, especially when considering accurate airflow modeling and detection limits. To properly design facilities for aseptic conditions, we must minimize the parameters for pathogenic bacteria to thrive. Identifying how pathogenic bacteria continue to survive, particularly due to their multi-drug resistance characteristics, is necessary for designing sterile environments and minimizing pathogen exposure. A conserved characteristic among bacterial organisms is their ability to maintain intracellular homeostasis for survival and growth in hostile environments. Mechanosensitive (MS) channels are one of the characteristics that guide this phenomenon. Interestingly, during extreme stress, bacteria will forgo favorable homeostasis to execute fast-acting survival strategies. Physiological sensors, such as MS channels, that trigger this survival mechanism are not clearly understood, leaving a gap in how bacteria translate physical stress to an intracellular response. In this paper, we study the role of mechanosensitive ion channels that are potentially triggered by aerosolization. We hypothesize that change in antimicrobial uptake is affected by aerosolization stress. Bacteria regulate their defense mechanisms against antimicrobials, which leads to varying susceptibility. Based on this information we hypothesize that aerosolization stress affects the antimicrobial resistance defense mechanisms of Escherichia coli (E. coli). We analyzed the culturability of knockout E. coli strains with different numbers of mechanosensitive channels and compared antibiotic susceptibility under stressed and unstressed airflow conditions. As a result of this study, we can identify how the defensive mechanisms of resistant bacteria are triggered for their survival in built environments. By changing ventilation airflow velocity and observing the change in antibiotic responses, we show how pathogenic bacteria respond to ventilated environments via mechanosensitive ion channels.
Collapse
Affiliation(s)
- Violette I. Ramirez
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77845, USA
| | - Robin Wray
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria D. King
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
11
|
He J, Xie X, Xiao Z, Qian W, Zhang L, Hou X. Piezo1 in Digestive System Function and Dysfunction. Int J Mol Sci 2023; 24:12953. [PMID: 37629134 PMCID: PMC10454946 DOI: 10.3390/ijms241612953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1's cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| |
Collapse
|
12
|
Moller E, Britt M, Schams A, Cetuk H, Anishkin A, Sukharev S. Mechanosensitive channel MscS is critical for termination of the bacterial hypoosmotic permeability response. J Gen Physiol 2023; 155:e202213168. [PMID: 37022337 PMCID: PMC10082366 DOI: 10.1085/jgp.202213168] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Free-living microorganisms are subjected to drastic changes in osmolarity. To avoid lysis under sudden osmotic down-shock, bacteria quickly expel small metabolites through the tension-activated channels MscL, MscS, and MscK. We examined five chromosomal knockout strains, ∆mscL, ∆mscS, a double knockout ∆mscS ∆mscK, and a triple knockout ∆mscL ∆mscS ∆mscK, in comparison to the wild-type parental strain. Stopped-flow experiments confirmed that both MscS and MscL mediate fast osmolyte release and curb cell swelling, but osmotic viability assays indicated that they are not equivalent. MscS alone was capable of rescuing the cell population, but in some strains, MscL did not rescue and additionally became toxic in the absence of both MscS and MscK. Furthermore, MscS was upregulated in the ∆mscL strain, suggesting either a crosstalk between the two genes/proteins or the influence of cell mechanics on mscS expression. The data shows that for the proper termination of the permeability response, the high-threshold (MscL) and the low-threshold (MscS/MscK) channels must act sequentially. In the absence of low-threshold channels, at the end of the release phase, MscL should stabilize membrane tension at around 10 mN/m. Patch-clamp protocols emulating the tension changes during the release phase indicated that the non-inactivating MscL, residing at its own tension threshold, flickers and produces a protracted leakage. The MscS/MscK population, when present, stays open at this stage to reduce tension below the MscL threshold and silence the large channel. When MscS reaches its own threshold, it inactivates and thus ensures proper termination of the hypoosmotic permeability response. This functional interplay between the high- and low-threshold channels is further supported by the compromised osmotic survival of bacteria expressing non-inactivating MscS mutants.
Collapse
Affiliation(s)
- Elissa Moller
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
- Biophysics Graduate Program, University of Maryland, College Park, College Park, MD, USA
| | - Madolyn Britt
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
- Biophysics Graduate Program, University of Maryland, College Park, College Park, MD, USA
| | - Anthony Schams
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | - Hannah Cetuk
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, College Park, MD, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, College Park, MD, USA
| |
Collapse
|
13
|
Bailoni E, Partipilo M, Coenradij J, Grundel DAJ, Slotboom DJ, Poolman B. Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective. ACS Synth Biol 2023; 12:922-946. [PMID: 37027340 PMCID: PMC10127287 DOI: 10.1021/acssynbio.3c00062] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/08/2023]
Abstract
Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemical conditions (physicochemical homeostasis). A compartment, such as a unilamellar vesicle, functionalized with membrane-embedded transport proteins and metabolic enzymes encapsulated in the lumen meets these requirements. Here, we identify four modules designed for a minimal metabolism in a synthetic cell with a lipid bilayer boundary: energy provision and conversion, physicochemical homeostasis, metabolite transport, and membrane expansion. We review design strategies that can be used to fulfill these functions with a focus on the lipid and membrane protein composition of a cell. We compare our bottom-up design with the equivalent essential modules of JCVI-syn3a, a top-down genome-minimized living cell with a size comparable to that of large unilamellar vesicles. Finally, we discuss the bottlenecks related to the insertion of a complex mixture of membrane proteins into lipid bilayers and provide a semiquantitative estimate of the relative surface area and lipid-to-protein mass ratios (i.e., the minimal number of membrane proteins) that are required for the construction of a synthetic cell.
Collapse
Affiliation(s)
- Eleonora Bailoni
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Michele Partipilo
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Jelmer Coenradij
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Douwe A. J. Grundel
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Dirk J. Slotboom
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
14
|
Bhowmick S, Shenouda ML, Tschowri N. Osmotic stress responses and the biology of the second messenger c-di-AMP in Streptomyces. MICROLIFE 2023; 4:uqad020. [PMID: 37223731 PMCID: PMC10117811 DOI: 10.1093/femsml/uqad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
Streptomyces are prolific antibiotic producers that thrive in soil, where they encounter diverse environmental cues, including osmotic challenges caused by rainfall and drought. Despite their enormous value in the biotechnology sector, which often relies on ideal growth conditions, how Streptomyces react and adapt to osmotic stress is heavily understudied. This is likely due to their complex developmental biology and an exceptionally broad number of signal transduction systems. With this review, we provide an overview of Streptomyces' responses to osmotic stress signals and draw attention to open questions in this research area. We discuss putative osmolyte transport systems that are likely involved in ion balance control and osmoadaptation and the role of alternative sigma factors and two-component systems (TCS) in osmoregulation. Finally, we highlight the current view on the role of the second messenger c-di-AMP in cell differentiation and the osmotic stress responses with specific emphasis on the two models, S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Sukanya Bhowmick
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Mary L Shenouda
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Natalia Tschowri
- Corresponding author. Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany. E-mail:
| |
Collapse
|
15
|
Moller E, Britt M, Schams A, Cetuk H, Anishkin A, Sukharev S. Mechanosensitive channel MscS is critical for termination of the bacterial hypoosmotic permeability response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530336. [PMID: 36909569 PMCID: PMC10002685 DOI: 10.1101/2023.02.27.530336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Free-living microorganisms are subjected to drastic changes in osmolarity. To avoid lysis under sudden osmotic down-shock, bacteria quickly expel small metabolites through the tension-activated channels MscL, MscS, and MscK. We examined five chromosomal knockout strains, Δ mscL , Δ mscS , a double knockout Δ mscS Δ mscK , and a triple knockout Δ mscL Δ mscS Δ mscK in comparison to the wild-type parental strain. Stopped-flow experiments confirmed that both MscS and MscL mediate fast osmolyte release and curb cell swelling, but osmotic viability assays indicated that they are not equivalent. MscS alone was capable of rescuing the cell population, but in some strains MscL did not rescue and additionally became toxic in the absence of both MscS and MscK. Furthermore, MscS was upregulated in the Δ mscL strain, suggesting either a cross-talk between the two genes/proteins or the influence of cell mechanics on mscS expression. The data shows that for the proper termination of the permeability response, the high-threshold (MscL) and the low-threshold (MscS/MscK) channels must act sequentially. In the absence of low-threshold channels, at the end of the release phase, MscL should stabilize membrane tension at around 10 mN/m. Patch-clamp protocols emulating the tension changes during the release phase indicated that the non-inactivating MscL, residing at its own tension threshold, flickers and produces a protracted leakage. The MscS/MscK population, when present, stays open at this stage to reduce tension below the MscL threshold and silence the large channel. When MscS reaches its own threshold, it inactivates and thus ensures proper termination of the hypoosmotic permeability response. This functional interplay between the high- and low-threshold channels is further supported by the compromised osmotic survival of bacteria expressing non-inactivating MscS mutants. Summary for the table of contents The kinetics of hypotonic osmolyte release from E. coli is analyzed in conjunction with bacterial survival. It is shown that MscL, the high-threshold 'emergency release valve', rescues bacteria from down-shocks only in the presence of MscS, MscK or other low-threshold channels that are necessary to pacify MscL at the end of the release phase.
Collapse
|
16
|
Liu Y, Xu C, Zhao G, Wang Y, Zhu Y, Yin Y, Wang J, Li Y. Effect of spaceflight on the phenotype and proteome of Escherichia coli. Open Life Sci 2023; 18:20220576. [PMID: 36874626 PMCID: PMC9975951 DOI: 10.1515/biol-2022-0576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 03/05/2023] Open
Abstract
Microbial safety has become a research hotspot with the development of manned space technology. Escherichia coli is a conditional pathogen that can cause infectious diseases. Therefore, it is necessary to study the influence of the space environment on E. coli. Phenotypic experiments including growth curves, morphology, and environmental resistance experiment were used to study the phenotypic changes of E. coli after exposure to the space environment for 12 days carried by the "SJ-10" satellite. Tandem mass tag was used to assess the proteome change of E. coli. We found that the survival rate of E. coli in the spaceflight group was decreased when cultivated in acidic and high-salt environments. Proteomic analysis identified 72 downregulated proteins involved in chemotaxis, intracellular pH elevation, glycolate catabolic process, and glutamate metabolic process in the spaceflight group. Meanwhile, only one protein mtr that was involved in the uptake of tryptophan in E. coli was upregulated in the spaceflight group. Our research showed that proteomics results can explain phenotypic results, which demonstrated the successful application of proteomics in mechanism research. Our data provide a comprehensive resource for understanding the effect of the space environment on E. coli.
Collapse
Affiliation(s)
- Yu Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Guangxian Zhao
- Xingcheng Special Duty Sanatorium, Xingcheng 125105, China
| | - Yanji Wang
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yuanbing Zhu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yishu Yin
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China
| |
Collapse
|
17
|
Sukharev S, Anishkin A. Mechanosensitive Channels: History, Diversity, and Mechanisms. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s1990747822090021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Flegler VJ, Rasmussen T, Böttcher B. How Functional Lipids Affect the Structure and Gating of Mechanosensitive MscS-like Channels. Int J Mol Sci 2022; 23:ijms232315071. [PMID: 36499396 PMCID: PMC9739000 DOI: 10.3390/ijms232315071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
The ability to cope with and adapt to changes in the environment is essential for all organisms. Osmotic pressure is a universal threat when environmental changes result in an imbalance of osmolytes inside and outside the cell which causes a deviation from the normal turgor. Cells have developed a potent system to deal with this stress in the form of mechanosensitive ion channels. Channel opening releases solutes from the cell and relieves the stress immediately. In bacteria, these channels directly sense the increased membrane tension caused by the enhanced turgor levels upon hypoosmotic shock. The mechanosensitive channel of small conductance, MscS, from Escherichia coli is one of the most extensively studied examples of mechanically stimulated channels. Different conformational states of this channel were obtained in various detergents and membrane mimetics, highlighting an intimate connection between the channel and its lipidic environment. Associated lipids occupy distinct locations and determine the conformational states of MscS. Not all these features are preserved in the larger MscS-like homologues. Recent structures of homologues from bacteria and plants identify common features and differences. This review discusses the current structural and functional models for MscS opening, as well as the influence of certain membrane characteristics on gating.
Collapse
|
19
|
Dionysopoulou M, Yan N, Wang B, Pliotas C, Diallinas G. Genetic and cellular characterization of MscS-like putative channels in the filamentous fungus Aspergillus nidulans. Channels (Austin) 2022; 16:148-158. [PMID: 35941834 PMCID: PMC9367656 DOI: 10.1080/19336950.2022.2098661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mechanosensitive ion channels are integral membrane proteins ubiquitously present in bacteria, archaea, and eukarya. They act as molecular sensors of mechanical stress to serve vital functions such as touch, hearing, osmotic pressure, proprioception and balance, while their malfunction is often associated with pathologies. Amongst them, the structurally distinct MscL and MscS channels from bacteria are the most extensively studied. MscS-like channels have been found in plants and Schizosaccharomyces pombe, where they regulate intracellular Ca2+ and cell volume under hypo-osmotic conditions. Here we characterize two MscS-like putative channels, named MscA and MscB, from the model filamentous fungus Aspergillus nidulans. Orthologues of MscA and MscB are present in most fungi, including relative plant and animal pathogens. MscA/MscB and other fungal MscS-like proteins share the three transmembrane helices and the extended C-terminal cytosolic domain that form the structural fingerprint of MscS-like channels with at least three additional transmembrane segments than Escherichia coli MscS. We show that MscA and MscB localize in Endoplasmic Reticulum and the Plasma Membrane, respectively, whereas their overexpression leads to increased CaCl2 toxicity or/and reduction of asexual spore formation. Our findings contribute to understanding the role of MscS-like channels in filamentous fungi and relative pathogens.
Collapse
Affiliation(s)
- Mariangela Dionysopoulou
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom.,Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Nana Yan
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Bolin Wang
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece
| |
Collapse
|
20
|
Wang J, Blount P. Feeling the Tension: The Bacterial Mechanosensitive Channel MscL as a Model System and Drug Target. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Czech L, Gertzen C, Smits SHJ, Bremer E. Guilty by association: importers, exporters and
MscS
‐type mechanosensitive channels encoded in biosynthetic gene clusters for the stress‐protectant ectoine. Environ Microbiol 2022; 24:5306-5331. [DOI: 10.1111/1462-2920.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Czech
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
- Department of Chemistry and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Christoph Gertzen
- Center for Structural Studies (CSS) Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Pharmaceutical and Medicinal Chemistry Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Sander H. J. Smits
- Center for Structural Studies (CSS) Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Biochemistry Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| |
Collapse
|
22
|
Lane BJ, Wang B, Ma Y, Calabrese AN, El Mkami H, Pliotas C. HDX-guided EPR spectroscopy to interrogate membrane protein dynamics. STAR Protoc 2022; 3:101562. [PMID: 35874470 PMCID: PMC9304679 DOI: 10.1016/j.xpro.2022.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Solvent accessibilities of and distances between protein residues measured by pulsed-EPR approaches provide high-resolution information on dynamic protein motions. We describe protocols for the purification and site-directed spin labeling of integral membrane proteins. In our protocol, peptide-level HDX-MS is used as a precursor to guide single-residue resolution ESEEM accessibility measurements and spin labeling strategies for EPR applications. Exploiting the pentameric MscL channel as a model, we discuss the use of cwEPR, DEER/PELDOR, and ESEEM spectroscopies to interrogate membrane protein dynamics. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022). Protocols for an integrated EPR-based approach to study membrane protein dynamics Instructions for the sample preparation of spin-labeled membrane proteins Used HDX-MS as a precursor to guide spin labeling strategies for EPR methods Probed solvent accessibility at the single-residue level by ESEEM
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
23
|
Structural insights into the Venus flytrap mechanosensitive ion channel Flycatcher1. Nat Commun 2022; 13:850. [PMID: 35165281 PMCID: PMC8844309 DOI: 10.1038/s41467-022-28511-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022] Open
Abstract
Flycatcher1 (FLYC1), a MscS homolog, has recently been identified as a candidate mechanosensitive (MS) ion channel involved in Venus flytrap prey recognition. FLYC1 is a larger protein and its sequence diverges from previously studied MscS homologs, suggesting it has unique structural features that contribute to its function. Here, we characterize FLYC1 by cryo-electron microscopy, molecular dynamics simulations, and electrophysiology. Akin to bacterial MscS and plant MSL1 channels, we find that FLYC1 central core includes side portals in the cytoplasmic cage that regulate ion preference and conduction, by identifying critical residues that modulate channel conductance. Topologically unique cytoplasmic flanking regions can adopt ‘up’ or ‘down’ conformations, making the channel asymmetric. Disruption of an up conformation-specific interaction severely delays channel deactivation by 40-fold likely due to stabilization of the channel open state. Our results illustrate novel structural features and likely conformational transitions that regulate mechano-gating of FLYC1. Flycatcher1 (FLYC1) is a candidate mechanosensitive channel involved in Venus flytrap touch-induced prey capture. Here, the authors report structural and functional details of FLYC1, with insights into gating conformational transitions.
Collapse
|
24
|
Catalano C, Ben-Hail D, Qiu W, Blount P, des Georges A, Guo Y. Cryo-EM Structure of Mechanosensitive Channel YnaI Using SMA2000: Challenges and Opportunities. MEMBRANES 2021; 11:849. [PMID: 34832078 PMCID: PMC8621939 DOI: 10.3390/membranes11110849] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/23/2023]
Abstract
Mechanosensitive channels respond to mechanical forces exerted on the cell membrane and play vital roles in regulating the chemical equilibrium within cells and their environment. High-resolution structural information is required to understand the gating mechanisms of mechanosensitive channels. Protein-lipid interactions are essential for the structural and functional integrity of mechanosensitive channels, but detergents cannot maintain the crucial native lipid environment for purified mechanosensitive channels. Recently, detergent-free systems have emerged as alternatives for membrane protein structural biology. This report shows that while membrane-active polymer, SMA2000, could retain some native cell membrane lipids on the transmembrane domain of the mechanosensitive-like YnaI channel, the complete structure of the transmembrane domain of YnaI was not resolved. This reveals a significant limitation of SMA2000 or similar membrane-active copolymers. This limitation may come from the heterogeneity of the polymers and nonspecific interactions between the polymers and the relatively large hydrophobic pockets within the transmembrane domain of YnaI. However, this limitation offers development opportunities for detergent-free technology for challenging membrane proteins.
Collapse
Affiliation(s)
- Claudio Catalano
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; (C.C.); (W.Q.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0113, USA
| | - Danya Ben-Hail
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10017, USA;
| | - Weihua Qiu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; (C.C.); (W.Q.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0113, USA
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA;
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10017, USA;
- Department of Chemistry & Biochemistry, City College of New York, New York, NY 10017, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540, USA; (C.C.); (W.Q.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0113, USA
| |
Collapse
|
25
|
Wong F, Wilson S, Helbig R, Hegde S, Aftenieva O, Zheng H, Liu C, Pilizota T, Garner EC, Amir A, Renner LD. Understanding Beta-Lactam-Induced Lysis at the Single-Cell Level. Front Microbiol 2021; 12:712007. [PMID: 34421870 PMCID: PMC8372035 DOI: 10.3389/fmicb.2021.712007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022] Open
Abstract
Mechanical rupture, or lysis, of the cytoplasmic membrane is a common cell death pathway in bacteria occurring in response to β-lactam antibiotics. A better understanding of the cellular design principles governing the susceptibility and response of individual cells to lysis could indicate methods of potentiating β-lactam antibiotics and clarify relevant aspects of cellular physiology. Here, we take a single-cell approach to bacterial cell lysis to examine three cellular features—turgor pressure, mechanosensitive channels, and cell shape changes—that are expected to modulate lysis. We develop a mechanical model of bacterial cell lysis and experimentally analyze the dynamics of lysis in hundreds of single Escherichia coli cells. We find that turgor pressure is the only factor, of these three cellular features, which robustly modulates lysis. We show that mechanosensitive channels do not modulate lysis due to insufficiently fast solute outflow, and that cell shape changes result in more severe cellular lesions but do not influence the dynamics of lysis. These results inform a single-cell view of bacterial cell lysis and underscore approaches of combatting antibiotic tolerance to β-lactams aimed at targeting cellular turgor.
Collapse
Affiliation(s)
- Felix Wong
- Department of Biological Engineering, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, United States.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States.,Center for Systems Biology, Harvard University, Cambridge, MA, United States
| | - Ralf Helbig
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Smitha Hegde
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Olha Aftenieva
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Hai Zheng
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States.,Center for Systems Biology, Harvard University, Cambridge, MA, United States
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| |
Collapse
|
26
|
Flegler VJ, Rasmussen A, Borbil K, Boten L, Chen HA, Deinlein H, Halang J, Hellmanzik K, Löffler J, Schmidt V, Makbul C, Kraft C, Hedrich R, Rasmussen T, Böttcher B. Mechanosensitive channel gating by delipidation. Proc Natl Acad Sci U S A 2021; 118:e2107095118. [PMID: 34376558 PMCID: PMC8379960 DOI: 10.1073/pnas.2107095118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mechanosensitive channel of small conductance (MscS) protects bacteria against hypoosmotic shock. It can sense the tension in the surrounding membrane and releases solutes if the pressure in the cell is getting too high. The membrane contacts MscS at sensor paddles, but lipids also leave the membrane and move along grooves between the paddles to reside as far as 15 Å away from the membrane in hydrophobic pockets. One sensing model suggests that a higher tension pulls lipids from the grooves back to the membrane, which triggers gating. However, it is still unclear to what degree this model accounts for sensing and what contribution the direct interaction of the membrane with the channel has. Here, we show that MscS opens when it is sufficiently delipidated by incubation with the detergent dodecyl-β-maltoside or the branched detergent lauryl maltose neopentyl glycol. After addition of detergent-solubilized lipids, it closes again. These results support the model that lipid extrusion causes gating: Lipids are slowly removed from the grooves and pockets by the incubation with detergent, which triggers opening. Addition of lipids in micelles allows lipids to migrate back into the pockets, which closes the channel even in the absence of a membrane. Based on the distribution of the aliphatic chains in the open and closed conformation, we propose that during gating, lipids leave the complex on the cytosolic leaflet at the height of highest lateral tension, while on the periplasmic side, lipids flow into gaps, which open between transmembrane helices.
Collapse
Affiliation(s)
| | - Akiko Rasmussen
- Lehrstuhl für Botanik I, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Karina Borbil
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany
| | - Lea Boten
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany
| | - Hsuan-Ai Chen
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany
| | - Hanna Deinlein
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany
| | - Julia Halang
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany
| | - Kristin Hellmanzik
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany
| | - Jessica Löffler
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany
| | - Vanessa Schmidt
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany
| | - Cihan Makbul
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany
| | - Christian Kraft
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany
| | - Rainer Hedrich
- Lehrstuhl für Botanik I, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Tim Rasmussen
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany;
| | - Bettina Böttcher
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, 97080 Würzburg, Germany;
| |
Collapse
|
27
|
Dave N, Cetiner U, Arroyo D, Fonbuena J, Tiwari M, Barrera P, Lander N, Anishkin A, Sukharev S, Jimenez V. A novel mechanosensitive channel controls osmoregulation, differentiation, and infectivity in Trypanosoma cruzi. eLife 2021; 10:67449. [PMID: 34212856 PMCID: PMC8282336 DOI: 10.7554/elife.67449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
The causative agent of Chagas disease undergoes drastic morphological and biochemical modifications as it passes between hosts and transitions from extracellular to intracellular stages. The osmotic and mechanical aspects of these cellular transformations are not understood. Here we identify and characterize a novel mechanosensitive channel in Trypanosoma cruzi (TcMscS) belonging to the superfamily of small-conductance mechanosensitive channels (MscS). TcMscS is activated by membrane tension and forms a large pore permeable to anions, cations, and small osmolytes. The channel changes its location from the contractile vacuole complex in epimastigotes to the plasma membrane as the parasites develop into intracellular amastigotes. TcMscS knockout parasites show significant fitness defects, including increased cell volume, calcium dysregulation, impaired differentiation, and a dramatic decrease in infectivity. Our work provides mechanistic insights into components supporting pathogen adaptation inside the host, thus opening the exploration of mechanosensation as a prerequisite for protozoan infectivity.
Collapse
Affiliation(s)
- Noopur Dave
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Ugur Cetiner
- Department of Biology, University of Maryland, College Park, United States
| | - Daniel Arroyo
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Joshua Fonbuena
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Megna Tiwari
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| | - Patricia Barrera
- Departmento de Biología, Facultad de Ciencias Exactas y Naturales, Instituto de Histologia y Embriologia IHEM-CONICET, Facultad de Medicina, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Noelia Lander
- Department of Biological Sciences, University of Cincinnati, Cincinnati, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, United States
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, United States
| | - Veronica Jimenez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, United States
| |
Collapse
|
28
|
Mechanosensitive channel YnaI has lipid-bound extended sensor paddles. Commun Biol 2021; 4:602. [PMID: 34017046 PMCID: PMC8137935 DOI: 10.1038/s42003-021-02122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
The general mechanism of bacterial mechanosensitive channels (MS) has been characterized by extensive studies on a small conductance channel MscS from Escherichia coli (E. coli). However, recent structural studies on the same channel have revealed controversial roles of various channel-bound lipids in channel gating. To better understand bacterial MscS-like channels, it is necessary to characterize homologs other than MscS. Here, we describe the structure of YnaI, one of the closest MscS homologs in E. coli, in its non-conducting state at 3.3 Å resolution determined by cryo electron microscopy. Our structure revealed the intact membrane sensor paddle domain in YnaI, which was stabilized by functionally important residues H43, Q46, Y50 and K93. In the pockets between sensor paddles, there were clear lipid densities that interact strongly with residues Q100 and R120. These lipids were a mixture of natural lipids but may be enriched in cardiolipin and phosphatidylserine. In addition, residues along the ion-conducting pathway and responsible for the heptameric assembly were discussed. Together with biochemical experiments and mutagenesis studies, our results provide strong support for the idea that the pocket lipids are functionally important for mechanosensitive channels.
Collapse
|
29
|
Nordstedt NP, Jones ML. Genomic Analysis of Serratia plymuthica MBSA-MJ1: A Plant Growth Promoting Rhizobacteria That Improves Water Stress Tolerance in Greenhouse Ornamentals. Front Microbiol 2021; 12:653556. [PMID: 34046022 PMCID: PMC8144289 DOI: 10.3389/fmicb.2021.653556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
30
|
Hassoun Y, Bartoli J, Wahl A, Viala JP, Bouveret E. Dual Regulation of Phosphatidylserine Decarboxylase Expression by Envelope Stress Responses. Front Mol Biosci 2021; 8:665977. [PMID: 34026837 PMCID: PMC8138132 DOI: 10.3389/fmolb.2021.665977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria adapt to versatile environments by modulating gene expression through a set of stress response regulators, alternative Sigma factors, or two-component systems. Among the central processes that must be finely tuned is membrane homeostasis, including synthesis of phospholipids (PL). However, few genetic regulations of this process have been reported. We have previously shown that the gene coding the first step of PL synthesis is regulated by σE and ppGpp, and that the BasRS (PmrAB) two component system controls the expression of the DgkA PL recycling enzyme. The gene coding for phosphatidylserine decarboxylase, the last step in phosphatidylethanolamine synthesis is another gene in the PL synthesis pathway susceptible of stress response regulation. Indeed, psd appears in transcriptome studies of the σE envelope stress Sigma factor and of the CpxAR two component system. Interestingly, this gene is presumably in operon with mscM coding for a miniconductance mechanosensitive channel. In this study, we dissected the promoter region of the psd-mscM operon and studied its regulation by σE and CpxR. By artificial activation of σE and CpxRA stress response pathways, using GFP transcriptional fusion and western-blot analysis of Psd and MscM enzyme production, we showed that the operon is under the control of two distinct promoters. One is activated by σE, the second is activated by CpxRA and also responsible for basal expression of the operon. The fact that the phosphatidylethanolamine synthesis pathway is controlled by envelope stress responses at both its first and last steps might be important for adaptation of the membrane to envelope perturbations.
Collapse
Affiliation(s)
- Yasmine Hassoun
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Julia Bartoli
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Astrid Wahl
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Julie Pamela Viala
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Emmanuelle Bouveret
- SAMe Unit, UMR 2001, Microbiology Department, Pasteur Institute, Paris, France
| |
Collapse
|
31
|
Nakayama Y. Corynebacterium glutamicum Mechanosensing: From Osmoregulation to L-Glutamate Secretion for the Avian Microbiota-Gut-Brain Axis. Microorganisms 2021; 9:201. [PMID: 33478007 PMCID: PMC7835871 DOI: 10.3390/microorganisms9010201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
After the discovery of Corynebacterium glutamicum from avian feces-contaminated soil, its enigmatic L-glutamate secretion by corynebacterial MscCG-type mechanosensitive channels has been utilized for industrial monosodium glutamate production. Bacterial mechanosensitive channels are activated directly by increased membrane tension upon hypoosmotic downshock; thus; the physiological significance of the corynebacterial L-glutamate secretion has been considered as adjusting turgor pressure by releasing cytoplasmic solutes. In this review, we present information that corynebacterial mechanosensitive channels have been evolutionally specialized as carriers to secrete L-glutamate into the surrounding environment in their habitats rather than osmotic safety valves. The lipid modulation activation of MscCG channels in L-glutamate production can be explained by the "Force-From-Lipids" and "Force-From-Tethers" mechanosensing paradigms and differs significantly from mechanical activation upon hypoosmotic shock. The review also provides information on the search for evidence that C. glutamicum was originally a gut bacterium in the avian host with the aim of understanding the physiological roles of corynebacterial mechanosensing. C. glutamicum is able to secrete L-glutamate by mechanosensitive channels in the gut microbiota and help the host brain function via the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yoshitaka Nakayama
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; ; Tel.: +61-2-9295-8744
- St Vincent’s Clinical School, Faculty of Medicine, The University of New South Wales, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
32
|
Johnson SC, Veres J, Malcolm HR. Exploring the diversity of mechanosensitive channels in bacterial genomes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:25-36. [PMID: 33244613 DOI: 10.1007/s00249-020-01478-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 11/08/2020] [Indexed: 10/22/2022]
Abstract
Mechanosensitive ion channels are responsible for touch sensation and proprioception in higher level organisms such as humans and recovery after osmotic stress in bacteria. Bacterial mechanosensitive channels are homologous to either the mechanosensitive channel of large conductance (MscL) or the mechanosensitive channel of small conductance (MscS). In the E. coli genome there are seven unique mechanosensitive channels, a single MscL homologue, and six MscS homologues. The six MscS homologues are members of the diverse MscS superfamily of ion channels, and these channels show variation on both the N and C termini when compared to E. coli MscS. In bacterial strains with phenotypic analysis of the endogenous mechanosensors, the quantity of MscS superfamily members in the genome range from 2 to 6 and all of the strains contain a copy of MscL. Here, we show an in-depth analysis of over 150 diverse bacterial genomes, encompassing nine phyla, to determine the number of genomes that contain an MscL homologue and the average number of MscS superfamily members per genome. We determined that the average genome contains 4 ± 3 MscS homologues and 67% of bacterial genomes encode for a MscL homologue.
Collapse
Affiliation(s)
- Sarah C Johnson
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - Jordyn Veres
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - Hannah R Malcolm
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA.
| |
Collapse
|
33
|
Mishra PKK, Gattani A, Mahawar M. Isolation and Identification of Protein L-Isoaspartate-O-Methyltransferase (PIMT) Interacting Proteins in Salmonella Typhimurium. Curr Microbiol 2020; 77:695-701. [PMID: 31263924 DOI: 10.1007/s00284-019-01724-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein L-isoaspartate-O-methyltransferase (PIMT) plays an important role in restoration of covalently damaged Asn/Asp residues. It repairs the racemized forms of these amino acids in protein by forming a labile isoAsp methyl ester which readily converts back to the succinimide intermediate. Spontaneous hydrolysis of the intermediate further restores a minor portion to the normal Asp residues. While significant numbers of PIMT targets have been identified in eukaryotes, very few are documented from prokaryotes. Temperature (42 °C) induced elevation in PIMT expression level has been recently shown in a poultry isolate of Salmonella Typhimurium (ST). The enzyme was also found to be crucial for survival, virulence and colonization of ST in poultry. In the present study, co-immunoprecipitation (Co-IP) approach was used (for isolation) followed by LC-MS analysis to identify the PIMT interacting proteins of ST. Four different proteins were identified among which cytochrome C biogenesis protein A (CcmA) was further expressed in recombinant form and analysed for interaction with recombinant PIMT (rPIMT) by microtiter plate assay. Additionally, the findings were supported by alterations in secondary structure of the proteins upon co-incubation.
Collapse
Affiliation(s)
| | - Anil Gattani
- Biochemistry Division, Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243122, India
| | - Manish Mahawar
- Biochemistry Division, Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, 243122, India.
| |
Collapse
|
34
|
Flegler VJ, Rasmussen A, Rao S, Wu N, Zenobi R, Sansom MSP, Hedrich R, Rasmussen T, Böttcher B. The MscS-like channel YnaI has a gating mechanism based on flexible pore helices. Proc Natl Acad Sci U S A 2020; 117:28754-28762. [PMID: 33148804 PMCID: PMC7682570 DOI: 10.1073/pnas.2005641117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanosensitive channel of small conductance (MscS) is the prototype of an evolutionarily diversified large family that fine-tunes osmoregulation but is likely to fulfill additional functions. Escherichia coli has six osmoprotective paralogs with different numbers of transmembrane helices. These helices are important for gating and sensing in MscS but the role of the additional helices in the paralogs is not understood. The medium-sized channel YnaI was extracted and delivered in native nanodiscs in closed-like and open-like conformations using the copolymer diisobutylene/maleic acid (DIBMA) for structural studies. Here we show by electron cryomicroscopy that YnaI has an extended sensor paddle that during gating relocates relative to the pore concomitant with bending of a GGxGG motif in the pore helices. YnaI is the only one of the six paralogs that has this GGxGG motif allowing the sensor paddle to move outward. Access to the pore is through a vestibule on the cytosolic side that is fenestrated by side portals. In YnaI, these portals are obstructed by aromatic side chains but are still fully hydrated and thus support conductance. For comparison with large-sized channels, we determined the structure of YbiO, which showed larger portals and a wider pore with no GGxGG motif. Further in silico comparison of MscS, YnaI, and YbiO highlighted differences in the hydrophobicity and wettability of their pores and vestibule interiors. Thus, MscS-like channels of different sizes have a common core architecture but show different gating mechanisms and fine-tuned conductive properties.
Collapse
Affiliation(s)
- Vanessa Judith Flegler
- Biocenter, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
- Rudolf-Virchow-Center, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
| | - Akiko Rasmussen
- Biocenter, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
- Rudolf-Virchow-Center, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
- Lehrstuhl für Botanik I, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
| | - Rainer Hedrich
- Lehrstuhl für Botanik I, Julius-Maximilians-Universität Würzburg, 97082 Würzburg, Germany
| | - Tim Rasmussen
- Biocenter, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany;
- Rudolf-Virchow-Center, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
| | - Bettina Böttcher
- Biocenter, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany;
- Rudolf-Virchow-Center, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
35
|
Kaur A, Taneja M, Tyagi S, Sharma A, Singh K, Upadhyay SK. Genome-wide characterization and expression analysis suggested diverse functions of the mechanosensitive channel of small conductance-like (MSL) genes in cereal crops. Sci Rep 2020; 10:16583. [PMID: 33024170 PMCID: PMC7538590 DOI: 10.1038/s41598-020-73627-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022] Open
Abstract
Mechanosensitive ion channels are pore-forming transmembrane proteins that allow ions to move down their electrochemical gradient in response to mechanical stimuli. They participate in many plant developmental processes including the maintenance of plastid shape, pollen tube growth, etc. Herein, a total of 11, 10, 6, 30, 9, and 8 MSL genes were identified in Aegilops tauschii, Hordeum vulgare, Sorghum bicolor, Triticum aestivum, Triticum urartu, and Zea mays, respectively. These genes were located on various chromosomes of their respective cereal, while MSLs of T. urartu were found on scaffolds. The phylogenetic analysis, subcellular localization, and sequence homology suggested clustering of MSLs into two classes. These genes consisted of cis-regulatory elements related to growth and development, responsive to light, hormone, and stress. Differential expression of various MSL genes in tissue developmental stages and stress conditions revealed their precise role in development and stress responses. Altered expression during CaCl2 stress suggested their role in Ca2+ homeostasis and signaling. The co-expression analysis suggested their interactions with other genes involved in growth, defense responses etc. A comparative expression profiling of paralogous genes revealed either retention of function or pseudo-functionalization. The present study unfolded various characteristics of MSLs in cereals, which will facilitate their in-depth functional characterization in future studies.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Mehak Taneja
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Alok Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
36
|
Schlegel AM, Haswell ES. Charged pore-lining residues are required for normal channel kinetics in the eukaryotic mechanosensitive ion channel MSL1. Channels (Austin) 2020; 14:310-325. [PMID: 32988273 PMCID: PMC7757850 DOI: 10.1080/19336950.2020.1818509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mechanosensitive (MS) ion channels are widespread mechanisms for cellular mechanosensation that can be directly activated by increasing membrane tension. The well-studied MscS family of MS ion channels is found in bacteria, archaea, and plants. MscS-Like (MSL)1 is localized to the inner mitochondrial membrane of Arabidopsis thaliana, where it is required for normal mitochondrial responses to oxidative stress. Like Escherichia coli MscS, MSL1 has a pore-lining helix that is kinked. However, in MSL1 this kink is comprised of two charged pore-lining residues, R326 and D327. Using single-channel patch-clamp electrophysiology in E. coli, we show that altering the size and charge of R326 and D327 leads to dramatic changes in channel kinetics. Modest changes in gating pressure were also observed while no effects on channel rectification or conductance were detected. MSL1 channel variants had differing physiological function in E. coli hypoosmotic shock assays, without clear correlation between function and particular channel characteristics. Taken together, these results demonstrate that altering pore-lining residue charge and size disrupts normal channel state stability and gating transitions, and led us to propose the “sweet spot” model. In this model, the transition to the closed state is facilitated by attraction between R326 and D327 and repulsion between R326 residues of neighboring monomers. In the open state, expansion of the channel reduces inter-monomeric repulsion, rendering open state stability influenced mainly by attractive forces. This work provides insight into how unique charge-charge interactions can be combined with an otherwise conserved structural feature to help modulate MS channel function.
Collapse
Affiliation(s)
- Angela M Schlegel
- Department of Biology, Washington University , St. Louis, Missouri, USA.,NSF Center for Engineering Mechanobiology, Washington University , St. Louis, Missouri, USA
| | - Elizabeth S Haswell
- Department of Biology, Washington University , St. Louis, Missouri, USA.,NSF Center for Engineering Mechanobiology, Washington University , St. Louis, Missouri, USA
| |
Collapse
|
37
|
Cox CD, Bavi N, Martinac B. Biophysical Principles of Ion-Channel-Mediated Mechanosensory Transduction. Cell Rep 2020; 29:1-12. [PMID: 31577940 DOI: 10.1016/j.celrep.2019.08.075] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/09/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
Recent rapid progress in the field of mechanobiology has been driven by novel emerging tools and methodologies and growing interest from different scientific disciplines. Specific progress has been made toward understanding how cell mechanics is linked to intracellular signaling and the regulation of gene expression in response to a variety of mechanical stimuli. There is a direct link between the mechanoreceptors at the cell surface and intracellular biochemical signaling, which in turn controls downstream effector molecules. Among the mechanoreceptors in the cell membrane, mechanosensitive (MS) ion channels are essential for the ultra-rapid (millisecond) transduction of mechanical stimuli into biologically relevant signals. The three decades of research on mechanosensitive channels resulted in the formulation of two basic principles of mechanosensitive channel gating: force-from-lipids and force-from-filament. In this review, we revisit the biophysical principles that underlie the innate force-sensing ability of mechanosensitive channels as contributors to the force-dependent evolution of life forms.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Navid Bavi
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
38
|
Deng Z, Maksaev G, Schlegel AM, Zhang J, Rau M, Fitzpatrick JAJ, Haswell ES, Yuan P. Structural mechanism for gating of a eukaryotic mechanosensitive channel of small conductance. Nat Commun 2020; 11:3690. [PMID: 32704140 PMCID: PMC7378837 DOI: 10.1038/s41467-020-17538-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023] Open
Abstract
Mechanosensitive ion channels transduce physical force into electrochemical signaling that underlies an array of fundamental physiological processes, including hearing, touch, proprioception, osmoregulation, and morphogenesis. The mechanosensitive channels of small conductance (MscS) constitute a remarkably diverse superfamily of channels critical for management of osmotic pressure. Here, we present cryo-electron microscopy structures of a MscS homolog from Arabidopsis thaliana, MSL1, presumably in both the closed and open states. The heptameric MSL1 channel contains an unusual bowl-shaped transmembrane region, which is reminiscent of the evolutionarily and architecturally unrelated mechanosensitive Piezo channels. Upon channel opening, the curved transmembrane domain of MSL1 flattens and expands. Our structures, in combination with functional analyses, delineate a structural mechanism by which mechanosensitive channels open under increased membrane tension. Further, the shared structural feature between unrelated channels suggests the possibility of a unified mechanical gating mechanism stemming from membrane deformation induced by a non-planar transmembrane domain. Mechanosensitive channels transduce physical force into electrochemical signaling in processes such as hearing, touch, proprioception, osmoregulation, and morphogenesis. Here, authors use cryo-electron microscopy to provide structural insights into the mechanical gating mechanism.
Collapse
Affiliation(s)
- Zengqin Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Grigory Maksaev
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Angela M Schlegel
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, 63130, USA.,NSF Center for Engineering Mechanobiology, Washington University in Saint Louis, Saint Louis, MO, 63130, USA
| | - Jingying Zhang
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Michael Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, 63130, USA
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, 63130, USA.,NSF Center for Engineering Mechanobiology, Washington University in Saint Louis, Saint Louis, MO, 63130, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA. .,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
39
|
Cetuk H, Maramba J, Britt M, Scott AJ, Ernst RK, Mihailescu M, Cotten ML, Sukharev S. Differential Interactions of Piscidins with Phospholipids and Lipopolysaccharides at Membrane Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5065-5077. [PMID: 32306736 DOI: 10.1021/acs.langmuir.0c00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Piscidins 1 and 3 (P1 and P3) are potent antimicrobial peptides isolated from striped bass. Their mechanism of action involves formation of amphipathic α-helices on contact with phospholipids and destabilization of the microbial cytoplasmic membrane. The peptides are active against both Gram-positive and Gram-negative bacteria, suggesting easy passage across the outer membrane. Here, we performed a comparative study of these two piscidins at the air-water interface on lipopolysaccharide (LPS) monolayers modeling the outer bacterial surface of Gram-negative organisms and on phospholipid monolayers, which mimic the inner membrane. The results show that P1 and P3 are highly surface active (log KAW ∼ 6.8) and have similar affinities to phospholipid monolayers (log Klip ≈ 7.7). P1, which is more potent against Gram negatives, exhibits a much stronger partitioning into LPS monolayers (log KLPS = 8.3). Pressure-area isotherms indicate that under increasing lateral pressures, inserted P1 repartitions from phospholipid monolayers back to the subphase or to a more shallow position with in-plane areas of ∼170 Å2 per peptide, corresponding to fully folded amphipathic α-helices. In contrast, peptide expulsion from LPS occurs with areas of ∼35 Å2, suggesting that the peptides may not form the similarly oriented, rigid secondary structures when they avidly intercalate between LPS molecules. Patch-clamp experiments on Escherichia coli spheroplasts show that when P1 and P3 reach the outer surface of the bacterial cytoplasmic membrane, they produce fluctuating conductive structures at voltages above 80 mV. The data suggests that the strong activity of these piscidins against Gram-negative bacteria begins with the preferential accumulation of peptides in the outer LPS layer followed by penetration into the periplasm, where they form stable amphipathic α-helices upon contact with phospholipids and attack the energized inner membrane.
Collapse
Affiliation(s)
- Hannah Cetuk
- Biology Department, University of Maryland-College Park, 4094 Campus Drive, College Park, Maryland 20742, United States
| | - Joseph Maramba
- Biology Department, University of Maryland-College Park, 4094 Campus Drive, College Park, Maryland 20742, United States
| | - Madolyn Britt
- Biology Department, University of Maryland-College Park, 4094 Campus Drive, College Park, Maryland 20742, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland 21201, United States
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland-Baltimore, Baltimore, Maryland 21201, United States
| | - Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Myriam L Cotten
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Sergei Sukharev
- Biology Department, University of Maryland-College Park, 4094 Campus Drive, College Park, Maryland 20742, United States
| |
Collapse
|
40
|
Schlegel AM, Haswell ES. Analyzing plant mechanosensitive ion channels expressed in giant E. coli spheroplasts by single-channel patch-clamp electrophysiology. Methods Cell Biol 2020; 160:61-82. [PMID: 32896333 DOI: 10.1016/bs.mcb.2020.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plants possess numerous ion channels that respond to a range of stimuli, including small molecules, transmembrane voltage, and mechanical force. Many in the latter category, known as mechanosensitive (MS) ion channels, open directly in response to increases in lateral membrane tension. One of the most effective techniques for characterizing ion channel properties is patch-clamp electrophysiology, in which the current through a section of membrane containing ion channels is measured. For MS channels, this technique enables the measurement of key channel properties such as tension sensitivity, conductance, and ion selectivity. These characteristics, along with the phenotypes of genetic mutants, can help reveal the physiological roles of a particular MS channel. In this protocol, we provide detailed instructions on how to study MS ion channels using single-channel patch-clamp electrophysiology in giant E. coli spheroplasts. We first present an optimized method for preparing giant spheroplasts, then describe how to measure MS channel activity using patch-clamp electrophysiology and analyze the resulting data. We also provide recommended equipment lists, setup schematics, and useful conventions.
Collapse
Affiliation(s)
- Angela M Schlegel
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Elizabeth S Haswell
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
41
|
Li Y, Hu Y, Wang J, Liu X, Zhang W, Sun L. Structural Insights into a Plant Mechanosensitive Ion Channel MSL1. Cell Rep 2020; 30:4518-4527.e3. [DOI: 10.1016/j.celrep.2020.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 02/08/2023] Open
|
42
|
D'Alessandro B, Pérez Escanda V, Balestrazzi L, Grattarola F, Iriarte A, Pickard D, Yim L, Chabalgoity JA, Betancor L. Comparative genomics of Salmonella enterica serovar Enteritidis ST-11 isolated in Uruguay reveals lineages associated with particular epidemiological traits. Sci Rep 2020; 10:3638. [PMID: 32109937 PMCID: PMC7046640 DOI: 10.1038/s41598-020-60502-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is a major cause of foodborne disease in Uruguay since 1995. We used a genomic approach to study a set of isolates from different sources and years. Whole genome phylogeny showed that most of the strains are distributed in two major lineages (E1 and E2), both belonging to MLST sequence type 11 the major ST among serovar Enteritidis. Strikingly, E2 isolates are over-represented in periods of outbreak abundance in Uruguay, while E1 span all epidemic periods. Both lineages circulate in neighbor countries at the same timescale as in Uruguay, and are present in minor numbers in distant countries. We identified allelic variants associated with each lineage. Three genes, ycdX, pduD and hsdM, have distinctive variants in E1 that may result in defective products. Another four genes (ybiO, yiaN, aas, aceA) present variants specific for the E2 lineage. Overall this work shows that S. enterica serovar Enteritidis strains circulating in Uruguay have the same phylogenetic profile than strains circulating in the region, as well as in more distant countries. Based on these results we hypothesize that the E2 lineage, which is more prevalent during epidemics, exhibits a combination of allelic variants that could be associated with its epidemic ability.
Collapse
Affiliation(s)
- Bruno D'Alessandro
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Victoria Pérez Escanda
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Lucía Balestrazzi
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Florencia Grattarola
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Andrés Iriarte
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Lucía Yim
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - José Alejandro Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay
| | - Laura Betancor
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay. .,Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, CP, 11600, Montevideo, Uruguay.
| |
Collapse
|
43
|
Paraschiv A, Hegde S, Ganti R, Pilizota T, Šarić A. Dynamic Clustering Regulates Activity of Mechanosensitive Membrane Channels. PHYSICAL REVIEW LETTERS 2020; 124:048102. [PMID: 32058787 DOI: 10.1103/physrevlett.124.048102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 06/10/2023]
Abstract
Experiments have suggested that bacterial mechanosensitive channels separate into 2D clusters, the role of which is unclear. By developing a coarse-grained computer model we find that clustering promotes the channel closure, which is highly dependent on the channel concentration and membrane stress. This behaviour yields a tightly regulated gating system, whereby at high tensions channels gate individually, and at lower tensions the channels spontaneously aggregate and inactivate. We implement this positive feedback into the model for cell volume regulation, and find that the channel clustering protects the cell against excessive loss of cytoplasmic content.
Collapse
Affiliation(s)
- Alexandru Paraschiv
- Department of Physics and Astronomy, Institute for the Physics of Living Systems University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Smitha Hegde
- Centre for Synthetic and Systems Biology University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Raman Ganti
- Institute for Medical Engineering and Science Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
44
|
Life with Bacterial Mechanosensitive Channels, from Discovery to Physiology to Pharmacological Target. Microbiol Mol Biol Rev 2020; 84:84/1/e00055-19. [PMID: 31941768 DOI: 10.1128/mmbr.00055-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
General principles in biology have often been elucidated from the study of bacteria. This is true for the bacterial mechanosensitive channel of large conductance, MscL, the channel highlighted in this review. This channel functions as a last-ditch emergency release valve discharging cytoplasmic solutes upon decreases in osmotic environment. Opening the largest gated pore, MscL passes molecules up to 30 Å in diameter; exaggerated conformational changes yield advantages for study, including in vivo assays. MscL contains structural/functional themes that recur in higher organisms and help elucidate how other, structurally more complex, channels function. These features of MscL include (i) the ability to directly sense, and respond to, biophysical changes in the membrane, (ii) an α helix ("slide helix") or series of charges ("knot in a rope") at the cytoplasmic membrane boundary to guide transmembrane movements, and (iii) important subunit interfaces that, when disrupted, appear to cause the channel to gate inappropriately. MscL may also have medical applications: the modality of the MscL channel can be changed, suggesting its use as a triggered nanovalve in nanodevices, including those for drug targeting. In addition, recent studies have shown that the antibiotic streptomycin opens MscL and uses it as one of the primary paths to the cytoplasm. Moreover, the recent identification and study of novel specific agonist compounds demonstrate that the channel is a valid drug target. Such compounds may serve as novel-acting antibiotics and adjuvants, a way of permeabilizing the bacterial cell membrane and, thus, increasing the potency of commonly used antibiotics.
Collapse
|
45
|
Characterizing the mechanosensitive response of Paraburkholderia graminis membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183176. [PMID: 31923411 DOI: 10.1016/j.bbamem.2020.183176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 11/23/2022]
Abstract
Bacterial mechanosensitive channels gate in response to membrane tension, driven by shifts in environmental osmolarity. The mechanosensitive channels of small conductance (MscS) and large conductance (MscL) from Escherichia coli (Ec) gate in response to mechanical force applied to the membrane. Ec-MscS is the foundational member of the MscS superfamily of ion channels, a diverse family with at least fifteen subfamilies identified by homology to the pore lining helix of Ec-MscS, as well as significant diversity on the N- and C-termini. The MscL family of channels are homologous to Ec-MscL. In a rhizosphere associated bacterium, Paraburkholderia graminis C4D1M, mechanosensitive channels are essential for cell survival during changing osmotic environments such as a rainstorm. Utilizing bioinformatics, we predicted six MscS superfamily members and a single MscL homologue. The MscS superfamily members fall into at least three subfamilies: bacterial cyclic nucleotide gated, multi-TM, and extended N-terminus. Osmotic downshock experiments show that wildtype P. graminis cells contain a survival mechanism that prevents cell lysis in response to hypoosmotic shock. To determine if this rescue is due to mechanosensitive channels, we developed a method to create giant spheroplasts of P. graminis to explore the single channel response to applied mechanical tension. Patch clamp electrophysiology on these spheroplasts shows two unique conductances: MscL-like and MscS-like. These conductances are due to likely three unique proteins. This indicates that channels that gate in response to mechanical tension are present in the membrane. Here, we report the first single channel evidence of mechanosensitive ion channels from P. graminis membranes.
Collapse
|
46
|
Martinac B, Nikolaev YA, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac AD, Rohde P, Bavi O, Cox CD. Cell membrane mechanics and mechanosensory transduction. CURRENT TOPICS IN MEMBRANES 2020; 86:83-141. [DOI: 10.1016/bs.ctm.2020.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Comert F, Greenwood A, Maramba J, Acevedo R, Lucas L, Kulasinghe T, Cairns LS, Wen Y, Fu R, Hammer J, Blazyk J, Sukharev S, Cotten ML, Mihailescu M. The host-defense peptide piscidin P1 reorganizes lipid domains in membranes and decreases activation energies in mechanosensitive ion channels. J Biol Chem 2019; 294:18557-18570. [PMID: 31619519 PMCID: PMC6901303 DOI: 10.1074/jbc.ra119.010232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Indexed: 11/06/2022] Open
Abstract
The host-defense peptide (HDP) piscidin 1 (P1), isolated from the mast cells of striped bass, has potent activities against bacteria, viruses, fungi, and cancer cells and can also modulate the activity of membrane receptors. Given its broad pharmacological potential, here we used several approaches to better understand its interactions with multicomponent bilayers representing models of bacterial (phosphatidylethanolamine (PE)/phosphatidylglycerol) and mammalian (phosphatidylcholine/cholesterol (PC/Chol)) membranes. Using solid-state NMR, we solved the structure of P1 bound to PC/Chol and compared it with that of P3, a less potent homolog. The comparison disclosed that although both peptides are interfacially bound and α-helical, they differ in bilayer orientations and depths of insertion, and these differences depend on bilayer composition. Although Chol is thought to make mammalian membranes less susceptible to HDP-mediated destabilization, we found that Chol does not affect the permeabilization effects of P1. X-ray diffraction experiments revealed that both piscidins produce a demixing effect in PC/Chol membranes by increasing the fraction of the Chol-depleted phase. Furthermore, P1 increased the temperature required for the lamellar-to-hexagonal phase transition in PE bilayers, suggesting that it imposes positive membrane curvature. Patch-clamp measurements on the inner Escherichia coli membrane showed that P1 and P3, at concentrations sufficient for antimicrobial activity, substantially decrease the activating tension for bacterial mechanosensitive channels. This indicated that piscidins can cause lipid redistribution and restructuring in the microenvironment near proteins. We conclude that the mechanism of piscidin's antimicrobial activity extends beyond simple membrane destabilization, helping to rationalize its broader spectrum of pharmacological effects.
Collapse
Affiliation(s)
- Fatih Comert
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Alexander Greenwood
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23185
| | - Joseph Maramba
- Biology Department, University of Maryland, College Park, Maryland 20742
| | - Roderico Acevedo
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Laura Lucas
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Thulasi Kulasinghe
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Leah S Cairns
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Yi Wen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310
| | - Janet Hammer
- Department of Biomedical Sciences, Ohio University, Athens, Ohio 45701
| | - Jack Blazyk
- Department of Biomedical Sciences, Ohio University, Athens, Ohio 45701
| | - Sergei Sukharev
- Biology Department, University of Maryland, College Park, Maryland 20742
| | - Myriam L Cotten
- Department of Applied Science, William and Mary, Williamsburg, Virginia 23185.
| | - Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850.
| |
Collapse
|
48
|
Czech L, Wilcken S, Czech O, Linne U, Brauner J, Smits SHJ, Galinski EA, Bremer E. Exploiting Substrate Promiscuity of Ectoine Hydroxylase for Regio- and Stereoselective Modification of Homoectoine. Front Microbiol 2019; 10:2745. [PMID: 31827466 PMCID: PMC6890836 DOI: 10.3389/fmicb.2019.02745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Extant enzymes are not only highly efficient biocatalysts for a single, or a group of chemically closely related substrates but often have retained, as a mark of their evolutionary history, a certain degree of substrate ambiguity. We have exploited the substrate ambiguity of the ectoine hydroxylase (EctD), a member of the non-heme Fe(II)-containing and 2-oxoglutarate-dependent dioxygenase superfamily, for such a task. Naturally, the EctD enzyme performs a precise regio- and stereoselective hydroxylation of the ubiquitous stress protectant and chemical chaperone ectoine (possessing a six-membered pyrimidine ring structure) to yield trans-5-hydroxyectoine. Using a synthetic ectoine derivative, homoectoine, which possesses an expanded seven-membered diazepine ring structure, we were able to selectively generate, both in vitro and in vivo, trans-5-hydroxyhomoectoine. For this transformation, we specifically used the EctD enzyme from Pseudomonas stutzeri in a whole cell biocatalyst approach, as this enzyme exhibits high catalytic efficiency not only for its natural substrate ectoine but also for homoectoine. Molecular docking approaches with the crystal structure of the Sphingopyxis alaskensis EctD protein predicted the formation of trans-5-hydroxyhomoectoine, a stereochemical configuration that we experimentally verified by nuclear-magnetic resonance spectroscopy. An Escherichia coli cell factory expressing the P. stutzeri ectD gene from a synthetic promoter imported homoectoine via the ProU and ProP compatible solute transporters, hydroxylated it, and secreted the formed trans-5-hydroxyhomoectoine, independent from all currently known mechanosensitive channels, into the growth medium from which it could be purified by high-pressure liquid chromatography.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Sarah Wilcken
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Oliver Czech
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Linne
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Jarryd Brauner
- Institute of Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Erwin A Galinski
- Institute of Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
49
|
Jindal S, Yang L, Day PJ, Kell DB. Involvement of multiple influx and efflux transporters in the accumulation of cationic fluorescent dyes by Escherichia coli. BMC Microbiol 2019; 19:195. [PMID: 31438868 PMCID: PMC6704527 DOI: 10.1186/s12866-019-1561-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background It is widely believed that most xenobiotics cross biomembranes by diffusing through the phospholipid bilayer, and that the use of protein transporters is an occasional adjunct. According to an alternative view, phospholipid bilayer transport is negligible, and several different transporters may be involved in the uptake of an individual molecular type. We recognise here that the availability of gene knockout collections allows one to assess the contributions of all potential transporters, and flow cytometry based on fluorescence provides a convenient high-throughput assay for xenobiotic uptake in individual cells. Results We used high-throughput flow cytometry to assess the ability of individual gene knockout strains of E coli to take up two membrane-permeable, cationic fluorescent dyes, namely the carbocyanine diS-C3(5) and the DNA dye SYBR Green. Individual strains showed a large range of distributions of uptake. The range of modal steady-state uptakes for the carbocyanine between the different strains was 36-fold. Knockouts of the ATP synthase α- and β-subunits greatly inhibited uptake, implying that most uptake was ATP-driven rather than being driven by a membrane potential. Dozens of transporters changed the steady-state uptake of the dye by more than 50% with respect to that of the wild type, in either direction (increased or decreased); knockouts of known influx and efflux transporters behaved as expected, giving credence to the general strategy. Many of the knockouts with the most reduced uptake were transporter genes of unknown function (‘y-genes’). Similarly, several overexpression variants in the ‘ASKA’ collection had the anticipated, opposite effects. Similar results were obtained with SYBR Green (the range being approximately 69-fold). Although it too contains a benzothiazole motif there was negligible correlation between its uptake and that of the carbocyanine when compared across the various strains (although the membrane potential is presumably the same in each case). Conclusions Overall, we conclude that the uptake of these dyes may be catalysed by a great many transporters of putatively broad and presently unknown specificity, and that the very large range between the ‘lowest’ and the ‘highest’ levels of uptake, even in knockouts of just single genes, implies strongly that phospholipid bilayer transport is indeed negligible. This work also casts serious doubt upon the use of such dyes as quantitative stains for representing either bioenergetic parameters or the amount of cellular DNA in unfixed cells (in vivo). By contrast, it opens up their potential use as transporter assay substrates in high-throughput screening. Electronic supplementary material The online version of this article (10.1186/s12866-019-1561-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Srijan Jindal
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Lei Yang
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Philip J Day
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Douglas B Kell
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark. .,Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
50
|
Structure of the Mechanosensitive Channel MscS Embedded in the Membrane Bilayer. J Mol Biol 2019; 431:3081-3090. [DOI: 10.1016/j.jmb.2019.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
|