1
|
Liang C, Wu F. Reconstitution of Calcium Channel Protein Orai3 into Liposomes for Functional Studies. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1296-1303. [PMID: 37770396 DOI: 10.1134/s0006297923090092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 09/30/2023]
Abstract
Store-operated calcium entry (SOCE) is the main mechanism for the Ca2+ influx in non-excitable cells. The two major components of SOCE are stromal interaction molecule 1 (STIM1) in the endoplasmic reticulum and Ca2+ release-activated Ca2+ channel (CRAC) Orai on the plasma membrane. SOCE requires interaction between STIM1 and Orai. Mammals have three Orai homologs: Orai1, Orai2, and Orai3. Although Orai1 has been widely studied and proven to essential for numerous cellular processes, Orai3 has also attracted a significant attention recently. The gating and activation mechanisms of Orai3 have yet to be fully elucidated. Here, we expressed, purified, and reconstituted Orai3 protein into liposomes and investigated its orientation and oligomeric state in the resulting proteoliposomes. STIM1 interacted with the Orai3-containing proteoliposomes and mediated calcium release from the them, suggesting that the Orai3 channel was functional and that recombinant STIM1 could directly open the Orai3 channel in vitro. The developed in vitro calcium release system could be used to study the structure, function, and pharmacology of Orai3 channel.
Collapse
Affiliation(s)
- Chuangxuan Liang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| | - Fuyun Wu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Benson JC, Trebak M. Too much of a good thing: The case of SOCE in cellular apoptosis. Cell Calcium 2023; 111:102716. [PMID: 36931194 PMCID: PMC10481469 DOI: 10.1016/j.ceca.2023.102716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Intracellular calcium (Ca2+) is an essential second messenger in eukaryotic cells regulating numerous cellular functions such as contraction, secretion, immunity, growth, and metabolism. Ca2+ signaling is also a key signal transducer in the intrinsic apoptosis pathway. The store-operated Ca2+ entry pathway (SOCE) is ubiquitously expressed in eukaryotic cells, and is the primary Ca2+ influx pathway in non-excitable cells. SOCE is mediated by the endoplasmic reticulum Ca2+ sensing STIM proteins, and the plasma membrane Ca2+-selective Orai channels. A growing number of studies have implicated SOCE in regulating cell death primarily via the intrinsic apoptotic pathway in a variety of tissues and in response to physiological stressors such as traumatic brain injury, ischemia reperfusion injury, sepsis, and alcohol toxicity. Notably, the literature points to excessive cytosolic Ca2+ influx through SOCE in vulnerable cells as a key factor tipping the balance towards cellular apoptosis. While the literature primarily addresses the functions of STIM1 and Orai1, STIM2, Orai2 and Orai3 are also emerging as potential regulators of cell death. Here, we review the functions of STIM and Orai proteins in regulating cell death and the implications of this regulation to human pathologies.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Department of Cellular and Molecular Physiology, Graduate Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
3
|
Ivanova ON, Krasnov GS, Snezhkina AV, Kudryavtseva AV, Fedorov VS, Zakirova NF, Golikov MV, Kochetkov SN, Bartosch B, Valuev-Elliston VT, Ivanov AV. Transcriptome Analysis of Redox Systems and Polyamine Metabolic Pathway in Hepatoma and Non-Tumor Hepatocyte-like Cells. Biomolecules 2023; 13:714. [PMID: 37189460 PMCID: PMC10136275 DOI: 10.3390/biom13040714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Reactive oxygen species (ROS) play a major role in the regulation of various processes in the cell. The increase in their production is a factor contributing to the development of numerous pathologies, including inflammation, fibrosis, and cancer. Accordingly, the study of ROS production and neutralization, as well as redox-dependent processes and the post-translational modifications of proteins, is warranted. Here, we present a transcriptomic analysis of the gene expression of various redox systems and related metabolic processes, such as polyamine and proline metabolism and the urea cycle in Huh7.5 hepatoma cells and the HepaRG liver progenitor cell line, that are widely used in hepatitis research. In addition, changes in response to the activation of polyamine catabolism that contribute to oxidative stress were studied. In particular, differences in the gene expression of various ROS-producing and ROS-neutralizing proteins, the enzymes of polyamine metabolisms and proline and urea cycles, as well as calcium ion transporters between cell lines, are shown. The data obtained are important for understanding the redox biology of viral hepatitis and elucidating the influence of the laboratory models used.
Collapse
Affiliation(s)
- Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vyacheslav S. Fedorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Michail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- Lyon Cancer Research Center, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, 69008 Lyon, France
| | | | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
4
|
Wu Q, Fang Y, Huang X, Zheng F, Ma S, Zhang X, Han T, Gao H, Shen B. Role of Orai3-Mediated Store-Operated Calcium Entry in Radiation-Induced Brain Microvascular Endothelial Cell Injury. Int J Mol Sci 2023; 24:ijms24076818. [PMID: 37047790 PMCID: PMC10095176 DOI: 10.3390/ijms24076818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
Radiation-induced brain injury is a serious complication with complex pathogenesis that may accompany radiotherapy of head and neck tumors. Although studies have shown that calcium (Ca2+) signaling may be involved in the occurrence and development of radiation-induced brain injury, the underlying molecular mechanisms are not well understood. In this study, we used real-time quantitative polymerase chain reaction and Western blotting assays to verify our previous finding using next-generation sequencing that the mRNA and protein expression levels of Orai3 in rat brain microvascular endothelial cells (rBMECs) increased after X-ray irradiation. We next explored the role of Orai3 and Orai3-mediated store-operated Ca2+ entry (SOCE) in radiation-induced brain injury. Primary cultured rBMECs derived from wild-type and Orai3 knockout (Orai3(-/-)) Sprague-Dawley rats were used for in vitro experiments. Orai3-mediated SOCE was significantly increased in rBMECs after X-ray irradiation. However, X-ray irradiation-induced SOCE increase was markedly reduced in Orai3 knockout rBMECs, and the percentage of BTP2 (a nonselective inhibitor of Orai channels)-inhibited SOCE was significantly decreased in Orai3 knockout rBMECs. Functional studies indicated that X-ray irradiation decreased rBMEC proliferation, migration, and tube formation (a model for assessing angiogenesis) but increased rBMEC apoptosis, all of which were ameliorated by BTP2. In addition, occurrences of all four functional deficits were suppressed in X-ray irradiation-exposed rBMECs derived from Orai3(-/-) rats. Cerebrovascular damage caused by whole-brain X-ray irradiation was much less in Orai3(-/-) rats than in wild-type rats. These findings provide evidence that Orai3-mediated SOCE plays an important role in radiation-induced rBMEC damage and brain injury and suggest that Orai3 may warrant development as a potential therapeutic target for reducing or preventing radiation-induced brain injury.
Collapse
Affiliation(s)
- Qibing Wu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yang Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiaoyu Huang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Fan Zheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Shaobo Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xinchen Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Tingting Han
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Huiwen Gao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
5
|
Rychkov GY, Zhou FH, Adams MK, Brierley SM, Ma L, Barritt GJ. Orai1- and Orai2-, but not Orai3-mediated I CRAC is regulated by intracellular pH. J Physiol 2021; 600:623-643. [PMID: 34877682 DOI: 10.1113/jp282502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Three Orai (Orai1, Orai2, and Orai3) and two stromal interaction molecule (STIM1 and STIM2) mammalian protein homologues constitute major components of the store-operated Ca2+ entry mechanism. When co-expressed with STIM1, Orai1, Orai2 and Orai3 form highly selective Ca2+ channels with properties of Ca2+ release-activated Ca2+ (CRAC) channels. Despite the high level of homology between Orai proteins, CRAC channels formed by different Orai isoforms have distinctive properties, particularly with regards to Ca2+ -dependent inactivation, inhibition/potentiation by 2-aminoethyl diphenylborinate and sensitivity to reactive oxygen species. This study characterises and compares the regulation of Orai1, Orai2- and Orai3-mediated CRAC current (ICRAC ) by intracellular pH (pHi ). Using whole-cell patch clamping of HEK293T cells heterologously expressing Orai and STIM1, we show that ICRAC formed by each Orai homologue has a unique sensitivity to changes in pHi . Orai1-mediated ICRAC exhibits a strong dependence on pHi of both current amplitude and the kinetics of Ca2+ -dependent inactivation. In contrast, Orai2 amplitude, but not kinetics, depends on pHi , whereas Orai3 shows no dependence on pHi at all. Investigation of different Orai1-Orai3 chimeras suggests that pHi dependence of Orai1 resides in both the N-terminus and intracellular loop 2, and may also involve pH-dependent interactions with STIM1. KEY POINTS: It has been shown previously that Orai1/stromal interaction molecule 1 (STIM1)-mediated Ca2+ release-activated Ca2+ current (ICRAC ) is inhibited by intracellular acidification and potentiated by intracellular alkalinisation. The present study reveals that CRAC channels formed by each of the Orai homologues Orai1, Orai2 and Orai3 has a unique sensitivity to changes in intracellular pH (pHi ). The amplitude of Orai2 current is affected by the changes in pHi similarly to the amplitude of Orai1. However, unlike Orai1, fast Ca2+ -dependent inactivation of Orai2 is unaffected by acidic pHi . In contrast to both Orai1 and Orai2, Orai3 is not sensitive to pHi changes. Domain swapping between Orai1 and Orai3 identified the N-terminus and intracellular loop 2 as the molecular structures responsible for Orai1 regulation by pHi . Reduction of ICRAC dependence on pHi seen in a STIM1-independent Orai1 mutant suggested that some parts of STIM1 are also involved in ICRAC modulation by pHi .
Collapse
Affiliation(s)
- Grigori Y Rychkov
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Fiona H Zhou
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Melissa K Adams
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stuart M Brierley
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
| | - Linlin Ma
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Greg J Barritt
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| |
Collapse
|
6
|
Maltan L, Najjar H, Tiffner A, Derler I. Deciphering Molecular Mechanisms and Intervening in Physiological and Pathophysiological Processes of Ca 2+ Signaling Mechanisms Using Optogenetic Tools. Cells 2021; 10:3340. [PMID: 34943850 PMCID: PMC8699489 DOI: 10.3390/cells10123340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium ion channels are involved in numerous biological functions such as lymphocyte activation, muscle contraction, neurotransmission, excitation, hormone secretion, gene expression, cell migration, memory, and aging. Therefore, their dysfunction can lead to a wide range of cellular abnormalities and, subsequently, to diseases. To date various conventional techniques have provided valuable insights into the roles of Ca2+ signaling. However, their limited spatiotemporal resolution and lack of reversibility pose significant obstacles in the detailed understanding of the structure-function relationship of ion channels. These drawbacks could be partially overcome by the use of optogenetics, which allows for the remote and well-defined manipulation of Ca2+-signaling. Here, we review the various optogenetic tools that have been used to achieve precise control over different Ca2+-permeable ion channels and receptors and associated downstream signaling cascades. We highlight the achievements of optogenetics as well as the still-open questions regarding the resolution of ion channel working mechanisms. In addition, we summarize the successes of optogenetics in manipulating many Ca2+-dependent biological processes both in vitro and in vivo. In summary, optogenetics has significantly advanced our understanding of Ca2+ signaling proteins and the used tools provide an essential basis for potential future therapeutic application.
Collapse
Affiliation(s)
| | | | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (L.M.); (H.N.); (A.T.)
| |
Collapse
|
7
|
Orai3 Regulates Pancreatic Cancer Metastasis by Encoding a Functional Store Operated Calcium Entry Channel. Cancers (Basel) 2021; 13:cancers13235937. [PMID: 34885048 PMCID: PMC8656723 DOI: 10.3390/cancers13235937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 01/02/2023] Open
Abstract
Store operated Ca2+ entry (SOCE) mediated by Orai1/2/3 channels is a highly regulated and ubiquitous Ca2+ influx pathway. Although the role of Orai1 channels is well studied, the significance of Orai2/3 channels is still emerging in nature. In this study, we performed extensive bioinformatic analysis of publicly available datasets and observed that Orai3 expression is inversely associated with the mean survival time of PC patients. Orai3 expression analysis in a battery of PC cell lines corroborated its differential expression profile. We then carried out thorough Ca2+ imaging experiments in six PC cell lines and found that Orai3 forms a functional SOCE channel in PC cells. Our in vitro functional assays show that Orai3 regulates PC cell cycle progression, apoptosis and migration. Most importantly, our in vivo xenograft studies demonstrate a critical role of Orai3 in PC tumor growth and secondary metastasis. Mechanistically, Orai3 controls G1 phase progression, matrix metalloproteinase expression and epithelial-mesenchymal transition in PC cells. Taken together, this study for the first-time reports that Orai3 drives aggressive phenotypes of PC cells, i.e., migration in vitro and metastasis in vivo. Considering that Orai3 overexpression leads to poor prognosis in PC patients, it appears to be a highly attractive therapeutic target.
Collapse
|
8
|
Tiffner A, Derler I. Isoform-Specific Properties of Orai Homologues in Activation, Downstream Signaling, Physiology and Pathophysiology. Int J Mol Sci 2021; 22:8020. [PMID: 34360783 PMCID: PMC8347056 DOI: 10.3390/ijms22158020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ ion channels are critical in a variety of physiological events, including cell growth, differentiation, gene transcription and apoptosis. One such essential entry pathway for calcium into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel. It consists of the Ca2+ sensing protein, stromal interaction molecule 1 (STIM1) located in the endoplasmic reticulum (ER) and a Ca2+ ion channel Orai in the plasma membrane. The Orai channel family includes three homologues Orai1, Orai2 and Orai3. While Orai1 is the "classical" Ca2+ ion channel within the CRAC channel complex and plays a universal role in the human body, there is increasing evidence that Orai2 and Orai3 are important in specific physiological and pathophysiological processes. This makes them an attractive target in drug discovery, but requires a detailed understanding of the three Orai channels and, in particular, their differences. Orai channel activation is initiated via Ca2+ store depletion, which is sensed by STIM1 proteins, and induces their conformational change and oligomerization. Upon STIM1 coupling, Orai channels activate to allow Ca2+ permeation into the cell. While this activation mechanism is comparable among the isoforms, they differ by a number of functional and structural properties due to non-conserved regions in their sequences. In this review, we summarize the knowledge as well as open questions in our current understanding of the three isoforms in terms of their structure/function relationship, downstream signaling and physiology as well as pathophysiology.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
9
|
Shapovalov G, Gordienko D, Prevarskaya N. Store operated calcium channels in cancer progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:123-168. [PMID: 34392928 DOI: 10.1016/bs.ircmb.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent decades cancer emerged as one of the leading causes of death in the developed countries, with some types of cancer contributing to the top 10 causes of death on the list of the World Health Organization. Carcinogenesis, a malignant transformation causing formation of tumors in normal tissues, is associated with changes in the cell cycle caused by suppression of signaling pathways leading to cell death and facilitation of those enhancing proliferation. Further progression of cancer, during which benign tumors acquire more aggressive phenotypes, is characterized by metastatic dissemination through the body driven by augmented motility and invasiveness of cancer cells. All these processes are associated with alterations in calcium homeostasis in cancer cells, which promote their proliferation, motility and invasion, and dissuade cell death or cell cycle arrest. Remodeling of store-operated calcium entry (SOCE), one of the major pathways regulating intracellular Ca2+ concentration ([Ca2+]i), manifests a key event in many of these processes. This review systematizes current knowledge on the mechanisms recruiting SOCE-related proteins in carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- George Shapovalov
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France.
| | - Dmitri Gordienko
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| |
Collapse
|
10
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
11
|
Tanwar J, Arora S, Motiani RK. Orai3: Oncochannel with therapeutic potential. Cell Calcium 2020; 90:102247. [PMID: 32659517 DOI: 10.1016/j.ceca.2020.102247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/10/2023]
Abstract
Ion channels in particular Calcium (Ca2+) channels play a critical role in physiology by regulating plethora of cellular processes ranging from cell proliferation, differentiation, transcriptional regulation and programmed cell death. One such physiologically important and highly Ca2+ selective channel family is Orai channels consisting of three homologs Orai1, Orai2 and Orai3. Orai channels are responsible for Ca2+ influx across the plasma membrane in response to decrease in Endoplasmic Reticulum (ER) Ca2+ stores. STIM1/STIM2 proteins sense the reduction in ER Ca2+ levels and activate Orai channels for restoring ER Ca2+ as well as for driving cellular functions. This signaling cascade is known as Store Operated Ca2+ Entry (SOCE). Although Orai1 is the ubiquitous SOCE channel protein, Orai2 and Orai3 mediate SOCE in certain specific tissues. Further, mammalian specific homolog Orai3 forms heteromultimeric channel with Orai1 for constituting Arachidonic acid regulated Ca2+ (ARC) channels or arachidonic acid metabolite Leukotriene C4 (LTC4) regulated Ca2+ (LRC) channels. Literature suggests that Orai3 regulates Breast, Prostate, Lung and Gastrointestinal cancers by either forming Store Operated Ca2+ (SOC) or ARC/LRC channels in the cancerous cells but not in healthy tissue. In this review, we would discuss the role of Orai3 in these cancers and would highlight the potential of therapeutic targeting of Orai3 for better management and treatment of cancer. Finally, we will deliberate on key outstanding questions in the field that demand critical attention and further studies.
Collapse
Affiliation(s)
- Jyoti Tanwar
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India; CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samriddhi Arora
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India.
| |
Collapse
|
12
|
Mehrotra P, Sturek M, Neyra JA, Basile DP. Calcium channel Orai1 promotes lymphocyte IL-17 expression and progressive kidney injury. J Clin Invest 2020; 129:4951-4961. [PMID: 31415242 DOI: 10.1172/jci126108] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
We hypothesized that the store-operated calcium entry (SOCE) channel, Orai1, participates in the activation of Th17 cells and influences renal injury. In rats, following renal ischemia/reperfusion (I/R), there was a rapid and sustained influx of Orai1+ CD4 T cells and IL-17 expression was restricted to Orai1+ cells. When kidney CD4+ cells of post-acute kidney injury (post-AKI) rats were stimulated with angiotensin II and elevated Na+ (10-7 M/170 mM) in vitro, there was an enhanced response in intracellular Ca2+ and IL-17 expression, which was blocked by SOCE inhibitors 2APB, YM58483/BTP2, or AnCoA4. In vivo, YM58483/BTP2 (1 mg/kg) attenuated IL-17+ cell activation, inflammation, and severity of AKI following either I/R or intramuscular glycerol injection. Rats treated with high-salt diet (5-9 weeks after I/R) manifested progressive disease indicated by enhanced inflammation, fibrosis, and impaired renal function. These responses were significantly attenuated by YM58483/BTP2. In peripheral blood of critically ill patients, Orai1+ cells were significantly elevated by approximately 10-fold and Th17 cells were elevated by approximately 4-fold in AKI versus non-AKI patients. Further, in vitro stimulation of CD4+ cells from AKI patients increased IL-17, which was blocked by SOCE inhibitors. These data suggest that Orai1 SOCE is a potential therapeutic target in AKI and CKD progression.
Collapse
Affiliation(s)
- Purvi Mehrotra
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana, USA
| | - Michael Sturek
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana, USA
| | - Javier A Neyra
- Department of Medicine, Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - David P Basile
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana, USA.,Department of Medicine Division of Nephrology, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Yoast RE, Emrich SM, Zhang X, Xin P, Johnson MT, Fike AJ, Walter V, Hempel N, Yule DI, Sneyd J, Gill DL, Trebak M. The native ORAI channel trio underlies the diversity of Ca 2+ signaling events. Nat Commun 2020; 11:2444. [PMID: 32415068 PMCID: PMC7229178 DOI: 10.1038/s41467-020-16232-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
The essential role of ORAI1 channels in receptor-evoked Ca2+ signaling is well understood, yet little is known about the physiological activation of the ORAI channel trio natively expressed in all cells. The roles of ORAI2 and ORAI3 have remained obscure. We show that ORAI2 and ORAI3 channels play a critical role in mediating the regenerative Ca2+ oscillations induced by physiological receptor activation, yet ORAI1 is dispensable in generation of oscillations. We reveal that ORAI2 and ORAI3 channels multimerize with ORAI1 to expand the range of sensitivity of receptor-activated Ca2+ signals, reflecting their enhanced basal STIM1-binding and heightened Ca2+-dependent inactivation. This broadened bandwidth of Ca2+ influx is translated by cells into differential activation of NFAT1 and NFAT4 isoforms. Our results uncover a long-sought role for ORAI2 and ORAI3, revealing an intricate control mechanism whereby heteromerization of ORAI channels mediates graded Ca2+ signals that extend the agonist-sensitivity to fine-tune transcriptional control.
Collapse
Affiliation(s)
- Ryan E Yoast
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Scott M Emrich
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Ping Xin
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Adam J Fike
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Vonn Walter
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Penn State Cancer Institute and The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Nadine Hempel
- Penn State Cancer Institute and The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Avenue, Box 711, Rochester, NY, 14642, USA
| | - James Sneyd
- Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland, 1010, New Zealand
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Penn State Cancer Institute and The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
14
|
Rotavirus Calcium Dysregulation Manifests as Dynamic Calcium Signaling in the Cytoplasm and Endoplasmic Reticulum. Sci Rep 2019; 9:10822. [PMID: 31346185 PMCID: PMC6658527 DOI: 10.1038/s41598-019-46856-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023] Open
Abstract
Like many viruses, rotavirus (RV) dysregulates calcium homeostasis by elevating cytosolic calcium ([Ca2+]cyt) and decreasing endoplasmic reticulum (ER) stores. While an overall, monophasic increase in [Ca2+]cyt during RV infection has been shown, the nature of the RV-induced aberrant calcium signals and how they manifest over time at the single-cell level have not been characterized. Thus, we generated cell lines and human intestinal enteroids (HIEs) stably expressing cytosolic and/or ER-targeted genetically-encoded calcium indicators to characterize calcium signaling throughout RV infection by time-lapse imaging. We found that RV induces highly dynamic [Ca2+]cyt signaling that manifest as hundreds of discrete [Ca2+]cyt spikes, which increase during peak infection. Knockdown of nonstructural protein 4 (NSP4) attenuates the [Ca2+]cyt spikes, consistent with its role in dysregulating calcium homeostasis. RV-induced [Ca2+]cyt spikes were primarily from ER calcium release and were attenuated by inhibiting the store-operated calcium entry (SOCE) channel Orai1. RV-infected HIEs also exhibited prominent [Ca2+]cyt spikes that were attenuated by inhibiting SOCE, underlining the relevance of these [Ca2+]cyt spikes to gastrointestinal physiology and role of SOCE in RV pathophysiology. Thus, our discovery that RV increases [Ca2+]cyt by dynamic calcium signaling, establishes a new, paradigm-shifting understanding of the spatial and temporal complexity of virus-induced calcium signaling.
Collapse
|
15
|
Yang J, Li S, Wang Q, Yang D. Transmembrane protein 66 attenuates neointimal hyperplasia after carotid artery injury by SOCE inactivation. Mol Med Rep 2019; 20:1436-1442. [PMID: 31173198 DOI: 10.3892/mmr.2019.10328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/10/2019] [Indexed: 11/06/2022] Open
Abstract
Neointimal hyperplasia could be one of the most important complications after balloon angioplasty. Since calcium signaling has several physiologic effects on the regulation of the proliferation and migration of vascular smooth muscle cells (VSMCs), it was hypothesized that transmembrane protein 66 (TMEM66), a store operated calcium entry (SOCE)‑associated regulatory factor, possesses vascular protection against balloon injury. The rat balloon‑induced carotid artery injury model was performed. Histological analysis was used to check neointimal hyperplasia. TMEM66 expression was measured by PCR and immunoblotting. The results revealed that TMEM66 was expressed in the medial and neointimal layers of the injured artery, and the expression of TMEM66 was markedly decreased. TMEM66 overexpression attenuated neointimal hyperplasia via VSMC proliferation/migration inhibition, and restored expression of VSMC phenotypic markers. Moreover, TMEM66 overexpression reduced the increased expression of Stim1 and Orai1 and PDGF‑BB treatment‑enhanced [Ca2+]i. In conclusion, TMEM66 protects against balloon injury‑induced neointimal hyperplasia, and may be a pharmacological target for the treatment of restenosis.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Shuang Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Qiang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
16
|
Johnson M, Trebak M. ORAI channels in cellular remodeling of cardiorespiratory disease. Cell Calcium 2019; 79:1-10. [PMID: 30772685 DOI: 10.1016/j.ceca.2019.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/08/2023]
Abstract
Cardiorespiratory disease, which includes systemic arterial hypertension, restenosis, atherosclerosis, pulmonary arterial hypertension, asthma, and chronic obstructive pulmonary disease (COPD) are highly prevalent and devastating diseases with limited therapeutic modalities. A common pathophysiological theme to these diseases is cellular remodeling, which is contributed by changes in expression and activation of ion channels critical for either excitability or growth. Calcium (Ca2+) signaling and specifically ORAI Ca2+ channels have emerged as significant regulators of smooth muscle, endothelial, epithelial, platelet, and immune cell remodeling. This review details the dysregulation of ORAI in cardiorespiratory diseases, and how this dysregulation of ORAI contributes to cellular remodeling.
Collapse
Affiliation(s)
- Martin Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
17
|
Vashisht A, Tanwar J, Motiani RK. Regulation of proto-oncogene Orai3 by miR18a/b and miR34a. Cell Calcium 2018; 75:101-111. [PMID: 30216788 DOI: 10.1016/j.ceca.2018.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
Store Operated Ca2+ Entry (SOCE) mediated by Orai channels is a ubiquitous Ca2+ influx pathway that regulates several cellular functions. We have earlier reported that Orai3, the mammalian specific Orai1 homolog, plays a critical role in breast cancer progression. More recently, Orai3 was demonstrated to regulate prostate and lung tumorigenesis. Although the tumorigenic potential of Orai3 is associated with increase in its expression, the molecular machinery regulating its expression remains largely unexplored. Here, by performing extensive bioinformatics analysis and functional studies, we identify and characterize micro-RNAs (miRNAs) that regulate Orai3 expression and function. We demonstrate that miR18a and miR18b positively regulate Orai3 whereas miR34a represses Orai3 expression and function. All these miRs exert their effect on Orai3 by virtue of their direct action on Orai3 3'UTR. These miRs provide novel opportunities for targeting Orai3 for better management of cancer. This study further opens up the possibility of targeting specific Orai homologs by different miRs in tissue and disease specific context.
Collapse
Affiliation(s)
- Ayushi Vashisht
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Jyoti Tanwar
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Rajender K Motiani
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.
| |
Collapse
|
18
|
Trebak M, Putney JW. ORAI Calcium Channels. Physiology (Bethesda) 2018; 32:332-342. [PMID: 28615316 DOI: 10.1152/physiol.00011.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022] Open
Abstract
In this review article, we discuss the different gene products and translational variants of ORAI proteins and their contribution to the makeup of different native calcium-conducting channels with distinct compositions and modes of activation. We also review the different modes of regulation of these distinct calcium channels and their impact on downstream cellular signaling controlling important physiological functions.
Collapse
Affiliation(s)
- Mohamed Trebak
- The Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - James W Putney
- The National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
19
|
CRAC channels as targets for drug discovery and development. Cell Calcium 2018; 74:147-159. [PMID: 30075400 DOI: 10.1016/j.ceca.2018.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Calcium release-activated calcium (CRAC) channels have been the target of drug discovery for many years. The identification of STIM and Orai proteins as key components of CRAC channels greatly facilitated this process because their co-expression in cell lines produced electrophysiological currents (ICRAC) much larger than those in native cells, making it easier to confirm and characterize the effects of modulatory compounds. A driving force in the quest for CRAC channel drugs has been the immunocompromised phenotype displayed by humans and mice with null or loss-of-function mutations in STIM1 or Orai1, suggesting that CRAC channel inhibitors could be useful therapeutics for autoimmune or inflammatory conditions. Emerging data also suggests that other therapeutic conditions may benefit from CRAC channel inhibition. However, only recently have CRAC channel inhibitors reached clinical trials. This review discusses the challenges associated with drug discovery and development on CRAC channels and the approaches employed to date, as well as the results, starting from initial high-throughput screens for CRAC channel modulators and progressing through target selection and justification, descriptions of pharmacological, safety and toxicological profiles of compounds, and finally the entry of CRAC channel inhibitors into clinical trials.
Collapse
|
20
|
Nguyen NT, Han W, Cao W, Wang Y, Wen S, Huang Y, Li M, Du L, Zhou Y. Store‐Operated Calcium Entry Mediated by ORAI and STIM. Compr Physiol 2018; 8:981-1002. [DOI: 10.1002/cphy.c170031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Arachidonic acid-induced Ca 2+ entry and migration in a neuroendocrine cancer cell line. Cancer Cell Int 2018; 18:30. [PMID: 29507531 PMCID: PMC5834873 DOI: 10.1186/s12935-018-0529-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background Store-operated Ca2+ entry (SOCE) has been implicated in the migration of some cancer cell lines. The canonical SOCE is defined as the Ca2+ entry that occurs in response to near-maximal depletion of Ca2+ within the endoplasmic reticulum. Alternatively, arachidonic acid (AA) has been shown to induce Ca2+ entry in a store-independent manner through Orai1/Orai3 hetero-multimeric channels. However, the role of this AA-induced Ca2+ entry pathway in cancer cell migration has not been adequately assessed. Methods The present study investigated the involvement of AA-induced Ca2+ entry in migration in BON cells, a model gastro-enteropancreatic neuroendocrine tumor (GEPNET) cell line using pharmacological and gene knockdown methods in combination with live cell fluorescence imaging and standard migration assays. Results We showed that both the store-dependent and AA-induced Ca2+ entry modes could be selectively activated and that exogenous administration of AA resulted in Ca2+ entry that was pharmacologically distinct from SOCE. Also, whereas homomeric Orai1-containing channels appeared to largely underlie SOCE, the AA-induced Ca2+ entry channel required the expression of Orai3 as well as Orai1. Moreover, we showed that AA treatment enhanced the migration of BON cells and that this migration could be abrogated by selective inhibition of the AA-induced Ca2+ entry. Conclusions Taken together, these data revealed that an alternative Orai3-dependent Ca2+ entry pathway is an important signal for GEPNET cell migration. Electronic supplementary material The online version of this article (10.1186/s12935-018-0529-8) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Abstract
Calcium (Ca2+) signaling plays a critical role in regulating plethora of cellular functions including cell survival, proliferation and migration. The perturbations in cellular Ca2+ homeostasis can lead to cell death either by activating autophagic pathways or through induction of apoptosis. Endoplasmic reticulum (ER) is the major storehouse of Ca2+ within cells and a number of physiological agonists mediate ER Ca2+ release by activating IP3 receptors (IP3R). This decrease in ER Ca2+ levels is sensed by STIM, which physically interacts and activates plasma membrane Ca2+ selective Orai channels. Emerging literature implicates a key role for STIM1, STIM2, Orai1 and Orai3 in regulating both cell survival and death pathways. In this review, we will retrospect the work highlighting the role of STIM and Orai homologs in regulating cell death signaling. We will further discuss the rationales that could explain the dual role of STIM and Orai proteins in regulating cell fate decisions.
Collapse
|
23
|
Vaeth M, Yang J, Yamashita M, Zee I, Eckstein M, Knosp C, Kaufmann U, Karoly Jani P, Lacruz RS, Flockerzi V, Kacskovics I, Prakriya M, Feske S. ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nat Commun 2017; 8:14714. [PMID: 28294127 PMCID: PMC5355949 DOI: 10.1038/ncomms14714] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels is critical for lymphocyte function and immune responses. CRAC channels are hexamers of ORAI proteins that form the channel pore, but the contributions of individual ORAI homologues to CRAC channel function are not well understood. Here we show that deletion of Orai1 reduces, whereas deletion of Orai2 increases, SOCE in mouse T cells. These distinct effects are due to the ability of ORAI2 to form heteromeric channels with ORAI1 and to attenuate CRAC channel function. The combined deletion of Orai1 and Orai2 abolishes SOCE and strongly impairs T cell function. In vivo, Orai1/Orai2 double-deficient mice have impaired T cell-dependent antiviral immune responses, and are protected from T cell-mediated autoimmunity and alloimmunity in models of colitis and graft-versus-host disease. Our study demonstrates that ORAI1 and ORAI2 form heteromeric CRAC channels, in which ORAI2 fine-tunes the magnitude of SOCE to modulate immune responses.
Collapse
Affiliation(s)
- Martin Vaeth
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Jun Yang
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Isabelle Zee
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Miriam Eckstein
- NYU College of Dentistry, New York University, New York, New York 10010, USA
| | - Camille Knosp
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | - Ulrike Kaufmann
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| | | | - Rodrigo S. Lacruz
- NYU College of Dentistry, New York University, New York, New York 10010, USA
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, School of Medicine, Saarland University, Homburg 66421, Germany
| | | | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Stefan Feske
- Experimental Pathology Program, Department of Pathology, New York University School of Medicine, 550 First Avenue, Smilow 316, New York, New York 10016, USA
| |
Collapse
|
24
|
Bittremieux M, Gerasimenko JV, Schuermans M, Luyten T, Stapleton E, Alzayady KJ, De Smedt H, Yule DI, Mikoshiba K, Vangheluwe P, Gerasimenko OV, Parys JB, Bultynck G. DPB162-AE, an inhibitor of store-operated Ca 2+ entry, can deplete the endoplasmic reticulum Ca 2+ store. Cell Calcium 2017; 62:60-70. [PMID: 28196740 DOI: 10.1016/j.ceca.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 02/05/2023]
Abstract
Store-operated Ca2+ entry (SOCE), an important Ca2+ signaling pathway in non-excitable cells, regulates a variety of cellular functions. To study its physiological role, pharmacological tools, like 2-aminoethyl diphenylborinate (2-APB), are used to impact SOCE. 2-APB is one of the best characterized SOCE inhibitors. However, 2-APB also activates SOCE at lower concentrations, while it inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and other ion channels, like TRP channels. Because of this, 2-APB analogues that inhibit SOCE more potently and more selectively compared to 2-APB have been developed. The recently developed DPB162-AE is such a structural diphenylborinate isomer of 2-APB that selectively inhibits SOCE currents by blocking the functional coupling between STIM1 and Orai1. However, we observed an adverse effect of DPB162-AE on the ER Ca2+-store content at concentrations required for complete SOCE inhibition. DPB162-AE increased the cytosolic Ca2+ levels by reducing the ER Ca2+ store in cell lines as well as in primary cells. DPB162-AE did not affect SERCA activity, but provoked a Ca2+ leak from the ER, even after application of the SERCA inhibitor thapsigargin. IP3Rs partly contributed to the DPB162-AE-induced Ca2+ leak, since pharmacologically and genetically inhibiting IP3R function reduced, but not completely blocked, the effects of DPB162-AE on the ER store content. Our results indicate that, in some conditions, the SOCE inhibitor DPB162-AE can reduce the ER Ca2+-store content by inducing a Ca2+-leak pathway at concentrations needed for adequate SOCE inhibition.
Collapse
Affiliation(s)
- Mart Bittremieux
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - Julia V Gerasimenko
- Cardiff University, MCR Secretory Control Research Group, Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Marleen Schuermans
- KU Leuven, Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium
| | - Tomas Luyten
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - Eloise Stapleton
- Cardiff University, MCR Secretory Control Research Group, Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Kamil J Alzayady
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Humbert De Smedt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - David I Yule
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Katsuhiko Mikoshiba
- The Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Peter Vangheluwe
- KU Leuven, Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium
| | - Oleg V Gerasimenko
- Cardiff University, MCR Secretory Control Research Group, Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium.
| |
Collapse
|
25
|
Tanwar J, Trebak M, Motiani RK. Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:425-452. [PMID: 28900927 DOI: 10.1007/978-3-319-57732-6_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Store-operated Ca2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca2+ levels and transmits the message to plasma membrane Ca2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca2+ influx into the cells. This increase in cytosolic Ca2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.
Collapse
Affiliation(s)
- Jyoti Tanwar
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Rajender K Motiani
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India.
| |
Collapse
|
26
|
Jardin I, Rosado JA. STIM and calcium channel complexes in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1418-26. [DOI: 10.1016/j.bbamcr.2015.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/25/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022]
|
27
|
Ma L, Wang H, Wang C, Su J, Xie Q, Xu L, Yu Y, Liu S, Li S, Xu Y, Li Z. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells. Aging Dis 2016; 7:254-66. [PMID: 27330840 PMCID: PMC4898922 DOI: 10.14336/ad.2016.0118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/17/2016] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca(2+) concentration, including cytosolic and mitochondrial Ca(2+) in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca(2+) overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance.
Collapse
Affiliation(s)
- Liwei Ma
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Hongjun Wang
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China; 2Department of Histology and Embryology, Jilin Medical University, Jilin 132013, China
| | - Chunyan Wang
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Jing Su
- 3Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China
| | - Qi Xie
- 3Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China
| | - Lu Xu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Yang Yu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Shibing Liu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Songyan Li
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Ye Xu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Zhixin Li
- 2Department of Histology and Embryology, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
28
|
Wen J, Huang YC, Xiu HH, Shan ZM, Xu KQ. Altered expression of stromal interaction molecule (STIM)-calcium release-activated calcium channel protein (ORAI) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in cancer: will they become a new battlefield for oncotherapy? CHINESE JOURNAL OF CANCER 2016; 35:32. [PMID: 27013185 PMCID: PMC4807559 DOI: 10.1186/s40880-016-0094-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/03/2016] [Indexed: 12/20/2022]
Abstract
The stromal interaction molecule (STIM)-calcium release-activated calcium channel protein (ORAI) and inositol 1,4,5-trisphosphate receptors (IP3Rs) play pivotal roles in the modulation of Ca2+-regulated pathways from gene transcription to cell apoptosis by driving calcium-dependent signaling processes. Increasing evidence has implicated the dysregulation of STIM–ORAI and IP3Rs in tumorigenesis and tumor progression. By controlling the activities, structure, and/or expression levels of these Ca2+-transporting proteins, malignant cancer cells can hijack them to drive essential biological functions for tumor development. However, the molecular mechanisms underlying the participation of STIM–ORAI and IP3Rs in the biological behavior of cancer remain elusive. In this review, we summarize recent advances regarding STIM–ORAI and IP3Rs and discuss how they promote cell proliferation, apoptosis evasion, and cell migration through temporal and spatial rearrangements in certain types of malignant cells. An understanding of the essential roles of STIM–ORAI and IP3Rs may provide new pharmacologic targets that achieve a better therapeutic effect by inhibiting their actions in key intracellular signaling pathways.
Collapse
Affiliation(s)
- Jing Wen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Ying-Cheng Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Huan-Huan Xiu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Zhi-Ming Shan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Kang-Qing Xu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China.
| |
Collapse
|
29
|
Demaurex N, Nunes P. The role of STIM and ORAI proteins in phagocytic immune cells. Am J Physiol Cell Physiol 2016; 310:C496-508. [PMID: 26764049 PMCID: PMC4824159 DOI: 10.1152/ajpcell.00360.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytic cells, such as neutrophils, macrophages, and dendritic cells, migrate to sites of infection or damage and are integral to innate immunity through two main mechanisms. The first is to directly neutralize foreign agents and damaged or infected cells by secreting toxic substances or ingesting them through phagocytosis. The second is to alert the adaptive immune system through the secretion of cytokines and the presentation of the ingested materials as antigens, inducing T cell maturation into helper, cytotoxic, or regulatory phenotypes. While calcium signaling has been implicated in numerous phagocyte functions, including differentiation, maturation, migration, secretion, and phagocytosis, the molecular components that mediate these Ca(2+) signals have been elusive. The discovery of the STIM and ORAI proteins has allowed researchers to begin clarifying the mechanisms and physiological impact of store-operated Ca(2+) entry, the major pathway for generating calcium signals in innate immune cells. Here, we review evidence from cell lines and mouse models linking STIM and ORAI proteins to the control of specific innate immune functions of neutrophils, macrophages, and dendritic cells.
Collapse
Affiliation(s)
- Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Vashisht A, Trebak M, Motiani RK. STIM and Orai proteins as novel targets for cancer therapy. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol 2015; 309:C457-69. [PMID: 26017146 DOI: 10.1152/ajpcell.00064.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calcium (Ca(2+)) regulates a plethora of cellular functions including hallmarks of cancer development such as cell cycle progression and cellular migration. Receptor-regulated calcium rise in nonexcitable cells occurs through store-dependent as well as store-independent Ca(2+) entry pathways. Stromal interaction molecules (STIM) and Orai proteins have been identified as critical constituents of both these Ca(2+) influx pathways. STIMs and Orais have emerged as targets for cancer therapeutics as their altered expression and function have been shown to contribute to tumorigenesis. Recent data demonstrate that they play a vital role in development and metastasis of a variety of tumor types including breast, prostate, cervical, colorectal, brain, and skin tumors. In this review, we will retrospect the data supporting a key role for STIM1, STIM2, Orai1, and Orai3 proteins in tumorigenesis and discuss the potential of targeting these proteins for cancer therapy.
Collapse
Affiliation(s)
- Ayushi Vashisht
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; and
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University School of Medicine, Hershey, Pennsylvania
| | - Rajender K Motiani
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; and
| |
Collapse
|
31
|
p53 and Ca(2+) signaling from the endoplasmic reticulum: partners in anti-cancer therapies. Oncoscience 2015; 2:233-8. [PMID: 25897426 PMCID: PMC4394128 DOI: 10.18632/oncoscience.139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022] Open
Abstract
Ca(2+) transfer from the endoplasmic reticulum (ER) to the mitochondria critically controls cell survival and cell death decisions. Different oncogenes and deregulation of tumor suppressors exploit this mechanism to favor the survival of altered, malignant cells. Two recent studies of the Pinton team revealed a novel, non-transcriptional function of cytosolic p53 in cell death. During cell stress, p53 is recruited to the ER and the ER-mitochondrial contact sites. This results in augmented ER Ca(2+) levels by enhancing sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) activity, ultimately promoting mitochondrial Ca(2+) overload. The boosting of "toxic" Ca(2+) signaling by p53 appears to be a critical component of the cell death-inducing properties of chemotherapeutic agents and anti-cancer treatments, like photodynamic stress. Strikingly, the resistance of p53-deficient cancer cells to these treatments could be overcome by facilitating Ca(2+) transfer between the ER and the mitochondria via overexpression of SERCA or of the mitochondrial Ca(2+) uniporter (MCU). Importantly, these concepts have also been supported by in vivo Ca(2+) measurements in tumor masses in mice. Collectively, these studies link for the first time the major tumor suppressor, p53, to Ca(2+) signaling in dictating cell-death outcomes and by the success of anti-cancer treatments.
Collapse
|
32
|
Collins HE, Chatham JC. Non-voltage-gated Ca²⁺ entry pathways in the heart: the untold STOrai? Cardiovasc Res 2015; 105:233-4. [PMID: 25280892 DOI: 10.1093/cvr/cvu217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Helen E Collins
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
33
|
Zhang W, Zhang X, González-Cobos JC, Stolwijk JA, Matrougui K, Trebak M. Leukotriene-C4 synthase, a critical enzyme in the activation of store-independent Orai1/Orai3 channels, is required for neointimal hyperplasia. J Biol Chem 2014; 290:5015-5027. [PMID: 25540197 DOI: 10.1074/jbc.m114.625822] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Leukotriene-C4 synthase (LTC4S) generates LTC4 from arachidonic acid metabolism. LTC4 is a proinflammatory factor that acts on plasma membrane cysteinyl leukotriene receptors. Recently, however, we showed that LTC4 was also a cytosolic second messenger that activated store-independent LTC4-regulated Ca(2+) (LRC) channels encoded by Orai1/Orai3 heteromultimers in vascular smooth muscle cells (VSMCs). We showed that Orai3 and LRC currents were up-regulated in medial and neointimal VSMCs after vascular injury and that Orai3 knockdown inhibited LRC currents and neointimal hyperplasia. However, the role of LTC4S in neointima formation remains unknown. Here we show that LTC4S knockdown inhibited LRC currents in VSMCs. We performed in vivo experiments where rat left carotid arteries were injured using balloon angioplasty to cause neointimal hyperplasia. Neointima formation was associated with up-regulation of LTC4S protein expression in VSMCs. Inhibition of LTC4S expression in injured carotids by lentiviral particles encoding shRNA inhibited neointima formation and inward and outward vessel remodeling. LRC current activation did not cause nuclear factor for activated T cells (NFAT) nuclear translocation in VSMCs. Surprisingly, knockdown of either LTC4S or Orai3 yielded more robust and sustained Akt1 and Akt2 phosphorylation on Ser-473/Ser-474 upon serum stimulation. LTC4S and Orai3 knockdown inhibited VSMC migration in vitro with no effect on proliferation. Akt activity was suppressed in neointimal and medial VSMCs from injured vessels at 2 weeks postinjury but was restored when the up-regulation of either LTC4S or Orai3 was prevented by shRNA. We conclude that LTC4S and Orai3 altered Akt signaling to promote VSMC migration and neointima formation.
Collapse
Affiliation(s)
- Wei Zhang
- From the The State University of New York College of Nanoscale Science and Engineering, Albany, New York 12203,; Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, and
| | - Xuexin Zhang
- From the The State University of New York College of Nanoscale Science and Engineering, Albany, New York 12203
| | - José C González-Cobos
- From the The State University of New York College of Nanoscale Science and Engineering, Albany, New York 12203,; Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, and
| | - Judith A Stolwijk
- From the The State University of New York College of Nanoscale Science and Engineering, Albany, New York 12203
| | - Khalid Matrougui
- Department of Physiological Sciences, East Virginia Medical School, Norfolk, Virginia 23507
| | - Mohamed Trebak
- From the The State University of New York College of Nanoscale Science and Engineering, Albany, New York 12203,; Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, and.
| |
Collapse
|
34
|
Lange I, Koomoa DLT. MycN promotes TRPM7 expression and cell migration in neuroblastoma through a process that involves polyamines. FEBS Open Bio 2014; 4:966-75. [PMID: 25426416 PMCID: PMC4241534 DOI: 10.1016/j.fob.2014.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022] Open
Abstract
MycN expression correlates with TRPM7 expression in neuroblastoma (NB) tumors. Expression of the transmembrane protein TRPM7 correlates with lower overall survival in NB tumors. MycN promotes TRPM7 mRNA and protein expression and increases TRPM7 channel activity. TRPM7 regulates NB cell migration. Polyamines regulate TRPM7 expression.
Neuroblastoma is an extra-cranial solid cancer in children. MYCN gene amplification is a prognostic indicator of poor outcome in neuroblastoma. Recent studies have shown that the multiple steps involved in cell migration are dependent on the availability of intracellular calcium (Ca2+). Although significant advances have been made in understanding the role of Ca2+ during migration, little has been achieved towards understanding its impact on the progression of diseases such as cancer. Interestingly, previous studies showed that cancer cell migration is regulated by TRPM7, a calcium-permeable ion channel. The objective of the current study was to elucidate the mechanism by which MycN promotes NB cell migration and the mechanism regulating TRPM7 expression. The results showed that MycN increased TRPM7 expression, induced TRPM7 channel activity, increased intracellular Ca2+ signaling, and promoted cell migration in NB cells. The results also showed that inhibition or down-regulation of ornithine decarboxylase (ODC) inhibited TRPM7 expression, a process that was reversed by spermidine. Overall, this study provides evidence that MycN promotes TRPM7 expression and cell migration through a mechanism that involves ODC synthesis of polyamines.
Collapse
Affiliation(s)
- Ingo Lange
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, HI 96720, USA
| | - Dana-Lynn T Koomoa
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, HI 96720, USA
| |
Collapse
|
35
|
Takahashi K, Yokota M, Ohta T. Molecular mechanism of 2-APB-induced Ca2+ influx in external acidification in PC12. Exp Cell Res 2014; 323:337-45. [DOI: 10.1016/j.yexcr.2014.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 02/02/2023]
|
36
|
Al-Taweel N, Varghese E, Florea AM, Büsselberg D. Cisplatin (CDDP) triggers cell death of MCF-7 cells following disruption of intracellular calcium ([Ca 2+] i) homeostasis. J Toxicol Sci 2014; 39:765-74. [DOI: 10.2131/jts.39.765] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Ana-Maria Florea
- Institute of Neuropathology, Heinrich-Heine University Düsseldorf
| | | |
Collapse
|