1
|
Schlegel P, Yin Y, Bates AS, Dorkenwald S, Eichler K, Brooks P, Han DS, Gkantia M, Dos Santos M, Munnelly EJ, Badalamente G, Serratosa Capdevila L, Sane VA, Fragniere AMC, Kiassat L, Pleijzier MW, Stürner T, Tamimi IFM, Dunne CR, Salgarella I, Javier A, Fang S, Perlman E, Kazimiers T, Jagannathan SR, Matsliah A, Sterling AR, Yu SC, McKellar CE, Costa M, Seung HS, Murthy M, Hartenstein V, Bock DD, Jefferis GSXE. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature 2024; 634:139-152. [PMID: 39358521 PMCID: PMC11446831 DOI: 10.1038/s41586-024-07686-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/06/2024] [Indexed: 10/04/2024]
Abstract
The fruit fly Drosophila melanogaster has emerged as a key model organism in neuroscience, in large part due to the concentration of collaboratively generated molecular, genetic and digital resources available for it. Here we complement the approximately 140,000 neuron FlyWire whole-brain connectome1 with a systematic and hierarchical annotation of neuronal classes, cell types and developmental units (hemilineages). Of 8,453 annotated cell types, 3,643 were previously proposed in the partial hemibrain connectome2, and 4,581 are new types, mostly from brain regions outside the hemibrain subvolume. Although nearly all hemibrain neurons could be matched morphologically in FlyWire, about one-third of cell types proposed for the hemibrain could not be reliably reidentified. We therefore propose a new definition of cell type as groups of cells that are each quantitatively more similar to cells in a different brain than to any other cell in the same brain, and we validate this definition through joint analysis of FlyWire and hemibrain connectomes. Further analysis defined simple heuristics for the reliability of connections between brains, revealed broad stereotypy and occasional variability in neuron count and connectivity, and provided evidence for functional homeostasis in the mushroom body through adjustments of the absolute amount of excitatory input while maintaining the excitation/inhibition ratio. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open-source toolchain for brain-scale comparative connectomics.
Collapse
Affiliation(s)
- Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Sven Dorkenwald
- Computer Science Department, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul Brooks
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel S Han
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| | - Marina Gkantia
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marcia Dos Santos
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Eva J Munnelly
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Griffin Badalamente
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Varun A Sane
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandra M C Fragniere
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ladann Kiassat
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Markus W Pleijzier
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tomke Stürner
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Imaan F M Tamimi
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Christopher R Dunne
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Irene Salgarella
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandre Javier
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Siqi Fang
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | - Sridhar R Jagannathan
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - H Sebastian Seung
- Computer Science Department, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AKY, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu SC, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GSXE, Funke J. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 2024; 187:2574-2594.e23. [PMID: 38729112 PMCID: PMC11106717 DOI: 10.1016/j.cell.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
Collapse
Affiliation(s)
- Nils Eckstein
- HHMI Janelia Research Campus, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michelle Du
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
3
|
Montanari M, Manière G, Berthelot-Grosjean M, Dusabyinema Y, Gillet B, Grosjean Y, Kurz CL, Royet J. Larval microbiota primes the Drosophila adult gustatory response. Nat Commun 2024; 15:1341. [PMID: 38351056 PMCID: PMC10864365 DOI: 10.1038/s41467-024-45532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
The survival of animals depends, among other things, on their ability to identify threats in their surrounding environment. Senses such as olfaction, vision and taste play an essential role in sampling their living environment, including microorganisms, some of which are potentially pathogenic. This study focuses on the mechanisms of detection of bacteria by the Drosophila gustatory system. We demonstrate that the peptidoglycan (PGN) that forms the cell wall of bacteria triggers an immediate feeding aversive response when detected by the gustatory system of adult flies. Although we identify ppk23+ and Gr66a+ gustatory neurons as necessary to transduce fly response to PGN, we demonstrate that they play very different roles in the process. Time-controlled functional inactivation and in vivo calcium imaging demonstrate that while ppk23+ neurons are required in the adult flies to directly transduce PGN signal, Gr66a+ neurons must be functional in larvae to allow future adults to become PGN sensitive. Furthermore, the ability of adult flies to respond to bacterial PGN is lost when they hatch from larvae reared under axenic conditions. Recolonization of germ-free larvae, but not adults, with a single bacterial species, Lactobacillus brevis, is sufficient to restore the ability of adults to respond to PGN. Our data demonstrate that the genetic and environmental characteristics of the larvae are essential to make the future adults competent to respond to certain sensory stimuli such as PGN.
Collapse
Affiliation(s)
| | - Gérard Manière
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - Martine Berthelot-Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - Yves Dusabyinema
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, F-69007, Lyon, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, F-69007, Lyon, France
| | - Yaël Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - C Léopold Kurz
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| | - Julien Royet
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| |
Collapse
|
4
|
Ju L, Glastad KM, Sheng L, Gospocic J, Kingwell CJ, Davidson SM, Kocher SD, Bonasio R, Berger SL. Hormonal gatekeeping via the blood-brain barrier governs caste-specific behavior in ants. Cell 2023; 186:4289-4309.e23. [PMID: 37683635 PMCID: PMC10807403 DOI: 10.1016/j.cell.2023.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.
Collapse
Affiliation(s)
- Linyang Ju
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Lihong Sheng
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janko Gospocic
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Truman JW, Price J, Miyares RL, Lee T. Metamorphosis of memory circuits in Drosophila reveals a strategy for evolving a larval brain. eLife 2023; 12:80594. [PMID: 36695420 PMCID: PMC9984194 DOI: 10.7554/elife.80594] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Mushroom bodies (MB) of adult Drosophila have a core of thousands of Kenyon neurons; axons of the early-born g class form a medial lobe and those from later-born α'β' and αβ classes form both medial and vertical lobes. The larva, however, hatches with only γ neurons and forms a vertical lobe 'facsimile' using larval-specific axon branches from its γ neurons. MB input (MBINs) and output (MBONs) neurons divide the Kenyon neuron lobes into discrete computational compartments. The larva has 10 such compartments while the adult has 16. We determined the fates of 28 of the 32 MBONs and MBINs that define the 10 larval compartments. Seven compartments are subsequently incorporated into the adult MB; four of their MBINs die, while 12 MBINs/MBONs remodel to function in adult compartments. The remaining three compartments are larval specific. At metamorphosis their MBIN/MBONs trans-differentiate, leaving the MB for other adult brain circuits. The adult vertical lobes are made de novo using MBONs/MBINs recruited from pools of adult-specific neurons. The combination of cell death, compartment shifting, trans-differentiation, and recruitment of new neurons result in no larval MBIN-MBON connections being maintained through metamorphosis. At this simple level, then, we find no anatomical substrate for a memory trace persisting from larva to adult. The adult phenotype of the trans-differentiating neurons represents their evolutionarily ancestral phenotype while their larval phenotype is a derived adaptation for the larval stage. These cells arise primarily within lineages that also produce permanent MBINs and MBONs, suggesting that larval specifying factors may allow information related to birth-order or sibling identity to be interpreted in a modified manner in the larva to allow these neurons to acquire larval phenotypic modifications. The loss of such factors at metamorphosis then allows these neurons to revert to their ancestral functions in the adult.
Collapse
Affiliation(s)
- James W Truman
- Janelia Research CampusAshburnUnited States
- Department of Biology, Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
| | | | | | - Tzumin Lee
- Janelia Research CampusAshburnUnited States
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| |
Collapse
|
7
|
Muema JM, Bargul JL, Mutunga JM, Obonyo MA, Asudi GO, Njeru SN. Neurotoxic Zanthoxylum chalybeum root constituents invoke mosquito larval growth retardation through ecdysteroidogenic CYP450s transcriptional perturbations. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104912. [PMID: 34446188 DOI: 10.1016/j.pestbp.2021.104912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Intracellular effects exerted by phytochemicals eliciting insect growth-retarding responses during vector control intervention remain largely underexplored. We studied the effects of Zanthoxylum chalybeum Engl. (Rutaceae) (ZCE) root derivatives against malaria (Anopheles gambiae) and arbovirus vector (Aedes aegypti) larvae to decipher possible molecular targets. We report dose-dependent biphasic effects on larval response, with transient exposure to ZCE and its bioactive fraction (ZCFr.5) inhibiting acetylcholinesterase (AChE) activity, inducing larval lethality and growth retardation at sublethal doses. Half-maximal lethal concentrations (LC50) for ZCE against An. gambiae and Ae. aegypti larvae after 24-h exposure were 9.00 ppm and 12.26 ppm, respectively. The active fraction ZCFr.5 exerted LC50 of 1.58 ppm and 3.21 ppm for An. gambiae and Ae. aegypti larvae, respectively. Inhibition of AChE was potentially linked to larval toxicity afforded by 2-tridecanone, palmitic acid (hexadecanoic acid), linoleic acid ((Z,Z)-9,12-octadecadienoic acid), sesamin, β-caryophyllene among other compounds identified in the bioactive fraction. In addition, the phenotypic larval retardation induced by ZCE root constituents was exerted through transcriptional modulation of ecdysteroidogenic CYP450 genes. Collectively, these findings provide an explorative avenue for developing potential mosquito control agents from Z. chalybeum root constituents.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture & Technology (JKUAT), Nairobi, Kenya; Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology & Ecology (icipe), Nairobi, Kenya; Department of Entomology, U.S Army Medical Research Directorate-Africa, Kenya (USAMRD-A/K), Kisumu, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture & Technology (JKUAT), Nairobi, Kenya; Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology & Ecology (icipe), Nairobi, Kenya
| | - James M Mutunga
- Department of Entomology, U.S Army Medical Research Directorate-Africa, Kenya (USAMRD-A/K), Kisumu, Kenya
| | - Meshack A Obonyo
- Department of Biochemistry & Molecular Biology, Egerton University, Egerton, Kenya
| | - George O Asudi
- Department of Biochemistry, Microbiology & Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Sospeter N Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
| |
Collapse
|
8
|
Okamoto N, Yamanaka N. Transporter-mediated ecdysteroid trafficking across cell membranes: A novel target for insect growth regulators. JOURNAL OF PESTICIDE SCIENCE 2021; 46:23-28. [PMID: 33746543 PMCID: PMC7953032 DOI: 10.1584/jpestics.d20-071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Ecdysteroids are a class of steroid hormones in arthropods that control molting and metamorphosis through interaction with intracellular nuclear receptors. In contrast to the extensive literature describing their biosynthetic pathways and signaling components, little has been known about how these hormones are traveling into and out of the cells through lipid bilayers of the cell membranes. Recently, a series of studies conducted in the fruit fly Drosophila melanogaster revealed that membrane transporters have critical functions in trafficking ecdysteroids across cell membranes, challenging the classical simple diffusion model of steroid hormone transport. Here we summarize recent advances in our understanding of membrane transporters involved in ecdysteroid signaling in Drosophila, with particular focus on Ecdysone Importer (EcI) that is involved in ecdysteroid uptake in peripheral tissues. We then discuss the potential advantage of EcI blockers as a novel pest management tool as compared to classical insect growth regulators.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305–8577, Japan
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Dowle EJ, Powell THQ, Doellman MM, Meyers PJ, Calvert MB, Walden KKO, Robertson HM, Berlocher SH, Feder JL, Hahn DA, Ragland GJ. Genome-wide variation and transcriptional changes in diverse developmental processes underlie the rapid evolution of seasonal adaptation. Proc Natl Acad Sci U S A 2020; 117:23960-23969. [PMID: 32900926 PMCID: PMC7519392 DOI: 10.1073/pnas.2002357117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many organisms enter a dormant state in their life cycle to deal with predictable changes in environments over the course of a year. The timing of dormancy is therefore a key seasonal adaptation, and it evolves rapidly with changing environments. We tested the hypothesis that differences in the timing of seasonal activity are driven by differences in the rate of development during diapause in Rhagoletis pomonella, a fly specialized to feed on fruits of seasonally limited host plants. Transcriptomes from the central nervous system across a time series during diapause show consistent and progressive changes in transcripts participating in diverse developmental processes, despite a lack of gross morphological change. Moreover, population genomic analyses suggested that many genes of small effect enriched in developmental functional categories underlie variation in dormancy timing and overlap with gene sets associated with development rate in Drosophila melanogaster Our transcriptional data also suggested that a recent evolutionary shift from a seasonally late to a seasonally early host plant drove more rapid development during diapause in the early fly population. Moreover, genetic variants that diverged during the evolutionary shift were also enriched in putative cis regulatory regions of genes differentially expressed during diapause development. Overall, our data suggest polygenic variation in the rate of developmental progression during diapause contributes to the evolution of seasonality in R. pomonella We further discuss patterns that suggest hourglass-like developmental divergence early and late in diapause development and an important role for hub genes in the evolution of transcriptional divergence.
Collapse
Affiliation(s)
- Edwina J Dowle
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217;
- Department of Anatomy, University of Otago, 9016 Dunedin, New Zealand
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University-State University of New York, Binghamton, NY 13902
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637
| | - Peter J Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - McCall B Calvert
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Stewart H Berlocher
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Environmental Change Initiative, University of Notre Dame, Notre Dame, IN 46556
| | - Daniel A Hahn
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217;
- Department of Entomology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
10
|
Díaz-de-la-Peña L, Maestro-Paramio L, Díaz-Benjumea FJ, Herrero P. Temporal groups of lineage-related neurons have different neuropeptidergic fates and related functions in the Drosophila melanogaster CNS. Cell Tissue Res 2020; 381:381-396. [PMID: 32556724 DOI: 10.1007/s00441-020-03231-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/12/2020] [Indexed: 01/20/2023]
Abstract
The central nervous system (CNS) of Drosophila is comprised of the brain and the ventral nerve cord (VNC), which are the homologous structures of the vertebrate brain and the spinal cord, respectively. Neurons of the CNS arise from neural stem cells called neuroblasts (NBs). Each neuroblast gives rise to a specific repertory of cell types whose fate is unknown in most lineages. A combination of spatial and temporal genetic cues defines the fate of each neuron. We studied the origin and specification of a group of peptidergic neurons present in several abdominal segments of the larval VNC that are characterized by the expression of the neuropeptide GPB5, the GPB5-expressing neurons (GPB5-ENs). Our data reveal that the progenitor NB that generates the GPB5-ENs also generates the abdominal leucokinergic neurons (ABLKs) in two different temporal windows. We also show that these two set of neurons share the same axonal projections in larvae and in adults and, as previously suggested, may both function in hydrosaline regulation. Our genetic analysis of potential specification determinants reveals that Klumpfuss (klu) and huckebein (hkb) are involved in the specification of the GPB5 cell fate. Additionally, we show that GPB5-ENs have a role in starvation resistance and longevity; however, their role in desiccation and ionic stress resistance is not as clear. We hypothesize that the neurons arising from the same neuroblast lineage are both architecturally similar and functionally related.
Collapse
Affiliation(s)
- Laura Díaz-de-la-Peña
- Centro de Biología Molecular Severo Ochoa (CBMSO), C/Nicolas Cabrera 1, 28049, Madrid, Spain
| | - Leila Maestro-Paramio
- Centro de Biología Molecular Severo Ochoa (CBMSO), C/Nicolas Cabrera 1, 28049, Madrid, Spain
| | | | - Pilar Herrero
- Centro de Biología Molecular Severo Ochoa (CBMSO), C/Nicolas Cabrera 1, 28049, Madrid, Spain.
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Okamoto N, Yamanaka N. Steroid Hormone Entry into the Brain Requires a Membrane Transporter in Drosophila. Curr Biol 2020; 30:359-366.e3. [PMID: 31928869 DOI: 10.1016/j.cub.2019.11.085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 02/08/2023]
Abstract
Steroid hormones control various aspects of brain development and behavior in metazoans, but how they enter the central nervous system (CNS) through the blood-brain barrier (BBB) remains poorly understood. It is generally believed that steroid hormones freely diffuse through the plasma membrane of the BBB cells to reach the brain [1], because of the predominant "simple diffusion" model of steroid hormone transport across cell membranes. Recently, however, we challenged the simple diffusion model by showing that a Drosophila organic anion-transporting polypeptide (OATP), which we named Ecdysone Importer (EcI), is required for cellular uptake of the primary insect steroid hormone ecdysone [2]. As ecdysone is first secreted into the hemolymph before reaching the CNS [3], our finding raised the question of how ecdysone enters the CNS through the BBB to exert its diverse role in Drosophila brain development. Here, we demonstrate in the Drosophila BBB that EcI is indispensable for ecdysone entry into the CNS to facilitate brain development. EcI is highly expressed in surface glial cells that form the BBB, and EcI knockdown in the BBB suppresses ecdysone signaling within the CNS and blocks ecdysone-mediated neuronal events during development. In an ex vivo culture system, the CNS requires EcI in the BBB to incorporate ecdysone from the culture medium. Our results suggest a transporter-mediated mechanism of steroid hormone entry into the CNS, which may provide important implications in controlling brain development and behavior by regulating steroid hormone permeability across the BBB.
Collapse
Affiliation(s)
- Naoki Okamoto
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA.
| |
Collapse
|
12
|
Lee G, Kim J, Kim Y, Yoo S, Park JH. Identifying and monitoring neurons that undergo metamorphosis-regulated cell death (metamorphoptosis) by a neuron-specific caspase sensor (Casor) in Drosophila melanogaster. Apoptosis 2019; 23:41-53. [PMID: 29224041 DOI: 10.1007/s10495-017-1435-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Activation of caspases is an essential step toward initiating apoptotic cell death. During metamorphosis of Drosophila melanogaster, many larval neurons are programmed for elimination to establish an adult central nervous system (CNS) as well as peripheral nervous system (PNS). However, their neuronal functions have remained mostly unknown due to the lack of proper tools to identify them. To obtain detailed information about the neurochemical phenotypes of the doomed larval neurons and their timing of death, we generated a new GFP-based caspase sensor (Casor) that is designed to change its subcellular position from the cell membrane to the nucleus following proteolytic cleavage by active caspases. Ectopic expression of Casor in vCrz and bursicon, two different peptidergic neuronal groups that had been well-characterized for their metamorphic programmed cell death, showed clear nuclear translocation of Casor in a caspase-dependent manner before their death. We found similar events in some cholinergic neurons from both CNS and PNS. Moreover, Casor also reported significant caspase activities in the ventral and dorsal common excitatory larval motoneurons shortly after puparium formation. These motoneurons were previously unknown for their apoptotic fate. Unlike the events seen in the neurons, expression of Casor in non-neuronal cell types, such as glial cells and S2 cells, resulted in the formation of cytoplasmic aggregates, preventing its use as a caspase sensor in these cell types. Nonetheless, our results support Casor as a valuable molecular tool not only for identifying novel groups of neurons that become caspase-active during metamorphosis but also for monitoring developmental timing and cytological changes within the dying neurons.
Collapse
Affiliation(s)
- Gyunghee Lee
- Laboratory of Neurogenetics, Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jaeman Kim
- Department of Biological Science, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| | - Yujin Kim
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Siuk Yoo
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jae H Park
- Laboratory of Neurogenetics, Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
13
|
Ohhara Y, Kobayashi S, Yamakawa-Kobayashi K, Yamanaka N. Adult-specific insulin-producing neurons in Drosophila melanogaster. J Comp Neurol 2018; 526:1351-1367. [PMID: 29424424 DOI: 10.1002/cne.24410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022]
Abstract
Holometabolous insects undergo metamorphosis to reorganize their behavioral and morphological features into adult-specific ones. In the central nervous system (CNS), some larval neurons undergo programmed cell death, whereas others go through remodeling of axonal and dendritic arbors to support functions of re-established adult organs. Although there are multiple neuropeptides that have stage-specific roles in holometabolous insects, the reorganization pattern of the entire neuropeptidergic system through metamorphosis still remains largely unclear. In this study, we conducted a mapping and lineage tracing of peptidergic neurons in the larval and adult CNS by using Drosophila genetic tools. We found that Diuretic hormone 44-producing median neurosecretory cells start expressing Insulin-like peptide 2 in the pharate adult stage. This neuronal cluster projects to the corpora cardiaca and dorsal vessel in both larval and adult stages, and also innervates an adult-specific structure in the digestive tract, the crop. We propose that the adult-specific insulin-producing cells may regulate functions of the digestive system in a stage-specific manner. Our study provides a neuroanatomical basis for understanding remodeling of the neuropeptidergic system during insect development and evolution.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Satoru Kobayashi
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California
| |
Collapse
|
14
|
Cloning and functional characterizations of an apoptogenic Hid gene in the Scuttle Fly, Megaselia scalaris (Diptera; Phoridae). Gene 2016; 604:9-21. [PMID: 27940109 DOI: 10.1016/j.gene.2016.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
Abstract
Although the mechanisms of apoptotic cell death have been well studied in the fruit fly, Drosophila melanogaster, it is unclear whether such mechanisms are conserved in other distantly related species. Using degenerate primers and PCR, we cloned a proapoptotic gene homologous to Head involution defective (Hid) from the Scuttle fly, Megaselia scalaris (MsHid). MsHid cDNA encodes a 197-amino acid-long polypeptide, which so far is the smallest HID protein. PCR analyses revealed that the MsHid gene consists of four exons and three introns. Ectopic expression of MsHid in various peptidergic neurons and non-neuronal tissues in Drosophila effectively induced apoptosis of these cells. However, deletion of either conserved domain, N-terminal IBM or C-terminal MTS, abolished the apoptogenic activity of MsHID, indicating that these two domains are indispensable. Expression of MsHid was found in all life stages, but more prominently in embryos and pupae. MsHid is actively expressed in the central nervous system (CNS), indicating its important role in CNS development. Together MsHID is likely to be an important cell death inducer during embryonic and post-embryonic development in this species. In addition, we found 2-fold induction of MsHid expression in UV-irradiated embryos, indicating a possible role for MsHid in UV-induced apoptosis.
Collapse
|
15
|
Alvarez-Rivero J, Moris-Sanz M, Estacio-Gómez A, Montoliu-Nerin M, Díaz-Benjumea FJ, Herrero P. Variability in the number of abdominal leucokinergic neurons in adult Drosophila melanogaster. J Comp Neurol 2016; 525:639-660. [PMID: 27506156 DOI: 10.1002/cne.24093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
Developmental plasticity allows individuals with the same genotype to show different phenotypes in response to environmental changes. An example of this is how neuronal diversity is protected at the expense of neuronal number under sustained undernourishment during the development of the Drosophila optic lobe. In the development of the Drosophila central nervous system, neuroblasts go through two phases of neurogenesis separated by a period of mitotic quiescence. Although during embryonic development much evidence indicates that both cell number and the cell fates generated by each neuroblast are very precisely controlled in a cell autonomous manner, after quiescence extrinsic factors control the reactivation of neuroblast proliferation in a fashion that has not yet been elucidated. Moreover, there is very little information about whether environmental changes affect lineage progression during postembryonic neurogenesis. Using as a model system the pattern of abdominal leucokinergic neurons (ABLKs), we have analyzed how changes in a set of environmental factors affect the number of ABLKs generated during postembryonic neurogenesis. We describe the variability in ABLK number between individuals and between hemiganglia of the same individual and, by genetic analysis, we identify the bithorax-complex genes and the ecdysone hormone as critical factors in these differences. We also explore the possible adaptive roles involved in this process. J. Comp. Neurol. 525:639-660, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Marta Moris-Sanz
- Severo Ochoa Center for Molecular Biology (CBMSO), 28049, Madrid, Spain
| | | | | | | | - Pilar Herrero
- Severo Ochoa Center for Molecular Biology (CBMSO), 28049, Madrid, Spain.,Department of Biology, Faculty of Sciences, Autonoma University of Madrid, 28049, Madrid, Spain
| |
Collapse
|
16
|
Santos CG, Fernandez-Nicolas A, Belles X. Smads and insect hemimetabolan metamorphosis. Dev Biol 2016; 417:104-13. [PMID: 27452629 DOI: 10.1016/j.ydbio.2016.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-β signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-β signaling pathway, Smox is the canonical R-Smad of the TGF-β/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-β signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-β/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing.
Collapse
Affiliation(s)
- Carolina G Santos
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Ana Fernandez-Nicolas
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|
17
|
Heterochromatin remodeling by CDK12 contributes to learning in Drosophila. Proc Natl Acad Sci U S A 2015; 112:13988-93. [PMID: 26508632 DOI: 10.1073/pnas.1502943112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dynamic regulation of chromatin structure is required to modulate the transcription of genes in eukaryotes. However, the factors that contribute to the plasticity of heterochromatin structure are elusive. Here, we report that cyclin-dependent kinase 12 (CDK12), a transcription elongation-associated RNA polymerase II (RNAPII) kinase, antagonizes heterochromatin enrichment in Drosophila chromosomes. Notably, loss of CDK12 induces the ectopic accumulation of heterochromatin protein 1 (HP1) on euchromatic arms, with a prominent enrichment on the X chromosome. Furthermore, ChIP and sequencing analysis reveals that the heterochromatin enrichment on the X chromosome mainly occurs within long genes involved in neuronal functions. Consequently, heterochromatin enrichment reduces the transcription of neuronal genes in the adult brain and results in a defect in Drosophila courtship learning. Taken together, these results define a previously unidentified role of CDK12 in controlling the epigenetic transition between euchromatin and heterochromatin and suggest a chromatin regulatory mechanism in neuronal behaviors.
Collapse
|
18
|
Medioni C, Ephrussi A, Besse F. Live imaging of axonal transport in Drosophila pupal brain explants. Nat Protoc 2015; 10:574-84. [PMID: 25763834 DOI: 10.1038/nprot.2015.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axonal transport is essential for the initial growth, maintenance and synaptic plasticity of axons, and altered axonal transport has been observed in different models of neurodegenerative pathologies. Dissecting the mechanisms underlying axonal transport in developing or degenerating brains requires dynamic imaging of axonal cargo movement in living samples. Whereas methods exist to image axonal transport in Drosophila larval neurons, they are not suitable to follow this process during metamorphosis, when brains undergo extensive remodeling. Here we present a simple method that enables confocal imaging of both fast and slow axonal transport in Drosophila pupal brain explants. We describe how to prepare chambers adapted for live imaging, how to maintain brain explants under physiological conditions and how to monitor and quantitatively analyze the movement of fluorescently labeled cargoes. This protocol requires minimal equipment and is ideally suited for experiments that combine genetics, optogenetics and pharmacological approaches. The brains can be prepared for image acquisition in 1.5 h, and the protocol can be performed easily in any fly laboratory.
Collapse
Affiliation(s)
- Caroline Medioni
- Institute of Biology Valrose, Centre National de la Recherche Scientifique (CNRS)-Unité Mixte de Recherche (UMR) 7277, Institut National de la Santé et de la Recherche Médicale (INSERM)-UMR1091, University of Nice-Sophia Antipolis, Nice, France
| | | | - Florence Besse
- Institute of Biology Valrose, Centre National de la Recherche Scientifique (CNRS)-Unité Mixte de Recherche (UMR) 7277, Institut National de la Santé et de la Recherche Médicale (INSERM)-UMR1091, University of Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
19
|
Boulanger A, Dura JM. Nuclear receptors and Drosophila neuronal remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:187-95. [PMID: 24882358 DOI: 10.1016/j.bbagrm.2014.05.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/25/2014] [Accepted: 05/26/2014] [Indexed: 11/30/2022]
Abstract
During the development of both vertebrates and invertebrates, neurons undergo a crucial remodeling process that is necessary for their new function. Neuronal remodeling is composed of two stages: first, axons and dendrites are pruned without the loss of the cell body; later, this process is most commonly followed by a regrowth step. Holometabolous insects like the fruitfly Drosophila exhibit striking differences between their larval and adult stages. These neuronal remodeling processes occur during metamorphosis, the period of transformation from a larva to an adult. All axon and dendrite pruning events ultimately depend on the EcR nuclear receptor. Its ligand, the steroid molting hormone ecdysone, binds to heteromeric receptors comprising the nuclear receptor ECR and USP, and this complex regulates target genes involved in neuronal remodeling. Here we review the nuclear receptor-mediated genetic control of the main neuronal remodeling events described so far in Drosophila. These events consist of neurite degeneration in the mushroom bodies (MBs: the brain memory center) and in the dendritic arborizing sensory neurons, of neurite retraction or small scale elimination in the thoracic ventral neurosecretory cells, in the olfactory circuits and in the neuromuscular junction. MB axon regrowth after pruning and the role of MB neuron remodeling in memory formation are also reviewed. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Ana Boulanger
- Institute of Human Genetics, UPR 1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France.
| | - Jean-Maurice Dura
- Institute of Human Genetics, UPR 1142, CNRS, 141, rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
20
|
Medioni C, Ramialison M, Ephrussi A, Besse F. Imp promotes axonal remodeling by regulating profilin mRNA during brain development. Curr Biol 2014; 24:793-800. [PMID: 24656828 DOI: 10.1016/j.cub.2014.02.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/07/2014] [Accepted: 02/13/2014] [Indexed: 11/17/2022]
Abstract
Neuronal remodeling is essential for the refinement of neuronal circuits in response to developmental cues [1-4]. Although this process involves pruning or retraction of axonal projections followed by axonal regrowth and branching, how these steps are controlled is poorly understood. Drosophila mushroom body (MB) γ neurons provide a paradigm for the study of neuronal remodeling, as their larval axonal branches are pruned during metamorphosis and re-extend to form adult-specific branches [5]. Here, we identify the RNA binding protein Imp as a key regulator of axonal remodeling. Imp is the sole fly member of a conserved family of proteins that bind target mRNAs to promote their subcellular targeting [6-12]. We show that whereas Imp is dispensable for the initial growth of MB γ neuron axons, it is required for the regrowth and ramification of axonal branches that have undergone pruning. Furthermore, Imp is actively transported to axons undergoing developmental remodeling. Finally, we demonstrate that profilin mRNA is a direct and functional target of Imp that localizes to axons and controls axonal regrowth. Our study reveals that mRNA localization machineries are actively recruited to axons upon remodeling and suggests a role of mRNA transport in developmentally programmed rewiring of neuronal circuits during brain maturation.
Collapse
Affiliation(s)
- Caroline Medioni
- Institute of Biology Valrose, CNRS-UMR7277/INSERM-UMR1091, University of Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Mirana Ramialison
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anne Ephrussi
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Florence Besse
- Institute of Biology Valrose, CNRS-UMR7277/INSERM-UMR1091, University of Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France; European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|