1
|
Marzhoseyni Z, Mousavi MJ, Ghotloo S. Helicobacter pylori antigens as immunomodulators of immune system. Helicobacter 2024; 29:e13058. [PMID: 38380545 DOI: 10.1111/hel.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the most prevalent human pathogens and the leading cause of chronic infection in almost half of the population in the world (~59%). The bacterium is a major leading cause of chronic gastritis, gastric and duodenal ulcers, and two type of malignancies, gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Despite the immune responses mounted by the host, the bacteria are not cleared from the body resulting in a chronic infection accompanied by a chronic inflammation. Herein, a review of the literature discussing H. pylori antigens modulating the immune responses is presented. The mechanisms that are involved in the modulation of innate immune response, include modulation of recognition by pattern recognition receptors (PRRs) such as modulation of recognition by toll like receptors (TLR)4 and TLR5, modulation of phagocytic function, and modulation of phagocytic killing mediated by reactive oxygen species (ROS) and nitric oxide (NO). On the other hands, H. pylori modulates acquired immune response by the induction of tolerogenic dendritic cells (DCs), modulation of apoptosis, induction of regulatory T cells, modulation of T helper (Th)1 response, and modulation of Th17 response.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Ghotloo
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Go DM, Lee SH, Lee SH, Woo SH, Kim K, Kim K, Park KS, Park JH, Ha SJ, Kim WH, Choi JH, Kim DY. Programmed Death Ligand 1-Expressing Classical Dendritic Cells MitigateHelicobacter-Induced Gastritis. Cell Mol Gastroenterol Hepatol 2021; 12:715-739. [PMID: 33894424 PMCID: PMC8267570 DOI: 10.1016/j.jcmgh.2021.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori has been reported to modulate local immune responses to colonize persistently in gastric mucosa. Although the induced expression of programmed cell death ligand 1 (PD-L1) has been suggested as an immune modulatory mechanism for persistent infection of H pylori, the main immune cells expressing PD-L1 and their functions in Helicobacter-induced gastritis still remain to be elucidated. METHODS The blockades of PD-L1 with antibody or PD-L1-deficient bone marrow transplantation were performed in Helicobacter-infected mice. The main immune cells expressing PD-L1 in Helicobacter-infected stomach were determined by flow cytometry and immunofluorescence staining. Helicobacter felis or H pylori-infected dendritic cell (DC)-deficient mouse models including Flt3-/-, Zbtb46-diphtheria toxin receptor, and BDCA2-diphtheria toxin receptor mice were analyzed for pathologic changes and colonization levels. Finally, the location of PD-L1-expressing DCs and the correlation with H pylori infection were analyzed in human gastric tissues using multiplexed immunohistochemistry. RESULTS Genetic or antibody-mediated blockade of PD-L1 aggravated Helicobacter-induced gastritis with mucosal metaplasia. Gastric classical DCs expressed considerably higher levels of PD-L1 than other immune cells and co-localized with T cells in gastritis lesions from Helicobacter-infected mice and human beings. H felis- or H pylori-infected Flt3-/- or classical DC-depleted mice showed aggravated gastritis with severe T-cell and neutrophil accumulation with low bacterial loads compared with that in control mice. Finally, PD-L1-expressing DCs were co-localized with T cells and showed a positive correlation with H pylori infection in human subjects. CONCLUSIONS The PD-1/PD-L1 pathway may be responsible for the immune modulatory function of gastric DCs that protects the gastric mucosa from Helicobacter-induced inflammation, but allows persistent Helicobacter colonization.
Collapse
Affiliation(s)
- Du-Min Go
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Lee
- Department of Life Sciences, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Su-Hyung Lee
- Division of Cancer Biology, Research Institute of National Cancer Center, Gyeonggi-do, Republic of Korea
| | - Sang-Ho Woo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kibyeong Kim
- Department of Life Sciences, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyeongdae Kim
- Department of Life Sciences, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyu Seong Park
- Department of Life Sciences, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jae-Hoon Choi
- Department of Life Sciences, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Altunöz D, Sayi Yazgan A. Helicobacter-stimulated IL-10-producing B cells suppress differentiation of lipopolysaccharide/Helicobacter felis-activated stimulatory dendritic cells. ACTA ACUST UNITED AC 2021; 45:214-224. [PMID: 33907502 PMCID: PMC8068769 DOI: 10.3906/biy-2012-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/24/2021] [Indexed: 01/09/2023]
Abstract
Regulatory B cells (Bregs) produce antiinflammatory cytokines and inhibits proinflammatory response. Recently, immunosuppressive roles of Bregs in the effector functions of dendritic cells (DCs) were demonstrated. However, cross talk between Bregs and DCs in Helicobacter infection remains unknown. Here, we showed that direct stimulation of bone marrow-derived DCs (BM-DCs) with Helicobacter felis (H. felis) antigen upregulates their CD86 surface expression and causes the production of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and interleukin-10 (IL-10). Furthermore, prestimulation of DCs with supernatants derived from both Helicobacter-stimulated IL-10– B (Hfstim-IL-10– B) or IL-10+ B (Hfstim-IL-10+) cells suppresses the secretion of TNF-α and IL-6, but does not affect the expression of CD86 and secretion of IL-12 by lipopolysaccharide (LPS) or H. felis-activated BM-DCs. Remarkably, soluble factors secreted by Hfstim-IL-10– B cells, but not by Hfstim-IL-10+ B cells, suppress the secretion of IL-10 by BM-DCs upon subsequent LPS stimulation. In contrast, prestimulation with BM-DCs with supernatants of Hfstim-IL-10+ B cells before H. felis antigen stimulation induces significantly their IL-10 production. Collectively, our data indicated that prestimulation with soluble factors secreted by Hfstim-IL-10+ B cells, DCs exhibit a tolerogenic phenotype in response to LPS or Helicobacter antigen by secreting high levels of IL-10, but decreased levels of IL-6 and TNF-α.
Collapse
Affiliation(s)
- Doğuş Altunöz
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Technical University, İstanbul Turkey
| | - Ayça Sayi Yazgan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Technical University, İstanbul Turkey
| |
Collapse
|
4
|
Neuper T, Frauenlob T, Sarajlic M, Posselt G, Wessler S, Horejs-Hoeck J. TLR2, TLR4 and TLR10 Shape the Cytokine and Chemokine Release of H. pylori-Infected Human DCs. Int J Mol Sci 2020; 21:ijms21113897. [PMID: 32486097 PMCID: PMC7311968 DOI: 10.3390/ijms21113897] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a stomach pathogen that persistently colonizes the gastric mucosa, often leading to chronic inflammation and gastric pathologies. Although infection with H. pylori is the primary risk factor for gastric cancer, the underlying mechanisms of pathogen persistence and consequential chronic inflammation are still not well understood. Conventional dendritic cells (cDCs), which are among the first immune cells to encounter H. pylori in the gastric lining, and the cytokines and chemokines they secrete, contribute to both acute and chronic inflammation. Therefore, this study aimed to unravel the contributions of specific signaling pathways within human CD1c+ cDCs (cDC2s) to the composition of secreted cytokines and chemokines in H. pylori infection. Here, we show that the type IV secretion system (T4SS) plays only a minor role in H. pylori-induced activation of cDC2s. In contrast, Toll-like receptor 4 (TLR4) signaling drives the secretion of inflammatory mediators, including IL-12 and IL-18, while signaling via TLR10 attenuates the release of IL-1β and other inflammatory cytokines upon H. pylori infection. The TLR2 pathway significantly blocks the release of CXCL1 and CXCL8, while it promotes the secretion of TNFα and GM-CSF. Taken together, these results highlight how specific TLR-signaling pathways in human cDC2s shape the H. pylori-induced cytokine and chemokine milieu, which plays a pivotal role in the onset of an effective immune response.
Collapse
Affiliation(s)
- Theresa Neuper
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
| | - Tobias Frauenlob
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
| | - Muamera Sarajlic
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
| | - Gernot Posselt
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
| | - Silja Wessler
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
5
|
Verma M, Bassaganya-Riera J, Leber A, Tubau-Juni N, Hoops S, Abedi V, Chen X, Hontecillas R. High-resolution computational modeling of immune responses in the gut. Gigascience 2020; 8:5513894. [PMID: 31185494 PMCID: PMC6559340 DOI: 10.1093/gigascience/giz062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/19/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori causes gastric cancer in 1–2% of cases but is also beneficial for protection against allergies and gastroesophageal diseases. An estimated 85% of H. pylori–colonized individuals experience no detrimental effects. To study the mechanisms promoting host tolerance to the bacterium in the gastrointestinal mucosa and systemic regulatory effects, we investigated the dynamics of immunoregulatory mechanisms triggered by H. pylori using a high-performance computing–driven ENteric Immunity SImulator multiscale model. Immune responses were simulated by integrating an agent-based model, ordinary, and partial differential equations. Results The outputs were analyzed using 2 sequential stages: the first used a partial rank correlation coefficient regression–based and the second a metamodel-based global sensitivity analysis. The influential parameters screened from the first stage were selected to be varied for the second stage. The outputs from both stages were combined as a training dataset to build a spatiotemporal metamodel. The Sobol indices measured time-varying impact of input parameters during initiation, peak, and chronic phases of infection. The study identified epithelial cell proliferation and epithelial cell death as key parameters that control infection outcomes. In silico validation showed that colonization with H. pylori decreased with a decrease in epithelial cell proliferation, which was linked to regulatory macrophages and tolerogenic dendritic cells. Conclusions The hybrid model of H. pylori infection identified epithelial cell proliferation as a key factor for successful colonization of the gastric niche and highlighted the role of tolerogenic dendritic cells and regulatory macrophages in modulating the host responses and shaping infection outcomes.
Collapse
Affiliation(s)
- Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, 1 Riverside Circle, Roanoke, VA 24016, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Stefan Hoops
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| | - Xi Chen
- Grado Department of Industrial and Systems Engineering, Virginia Tech, 250 Perry St, Blacksburg, VA 24061, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Zhang X, Arnold IC, Müller A. Mechanisms of persistence, innate immune activation and immunomodulation by the gastric pathogen Helicobacter pylori. Curr Opin Microbiol 2020; 54:1-10. [PMID: 32007716 DOI: 10.1016/j.mib.2020.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
The gastric bacterium Helicobacter pylori efficiently evades innate immune detection and persistently colonizes its human host. Understanding the genetic determinants that H. pylori uses to establish and maintain persistence, along with their cellular targets, is key to our understanding of the pathogenesis of this extraordinarily successful bacterial colonizer of the human stomach. This review highlights recent advances in elucidating innate immune recognition of H. pylori, its interactions with myeloid cells and the consequences that this very local infection has for immune responses at extragastric sites in models of allergy, autoimmunity and parasitic infection. The human-specific, gram-negative gastric colonizer and carcinogen H. pylori represents the prototype of a persistent bacterial pathogen. It is transmitted during early childhood, typically from mother to infant, and is believed to persist in its human host from the cradle to the grave. The tremendous success of H. pylori in infecting and colonizing half of the world's population, and in continuously accompanying humans since they migrated out of Africa over 60000 years ago, can largely be attributed to its ability to manipulate the host immune system to its own advantage, and to thereby ensure its own persistence and chronicity. In his final years as an active PI, Stanley Falkow increasingly recognized the need to understand bacterial persistence strategies as a prerequisite of understanding the pathogenesis of chronic bacterial infections, and, inspired in large part by Denise Monack's work on Salmonella persistence, many of our discussions at the time revolved around this topic. Multiple labs have since made important contributions to our understanding of innate immune detection of H. pylori, the types and polarization of adaptive immune responses that ensue, the ability of H. pylori to skew such immune responses to its advantage, and its ability to manipulate the host immune system with far-reaching, even systemic consequences. This review attempts to cover some of these topics, with a particular focus on the most recent contributions by researchers in the field.
Collapse
Affiliation(s)
- Xiaozhou Zhang
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Isabelle C Arnold
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Helicobacter pylori VacA Targets Myeloid Cells in the Gastric Lamina Propria To Promote Peripherally Induced Regulatory T-Cell Differentiation and Persistent Infection. mBio 2019; 10:mBio.00261-19. [PMID: 30890606 PMCID: PMC6426600 DOI: 10.1128/mbio.00261-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori has coexisted with humans for at least 60.000 years and has evolved persistence strategies that allow it to evade host immunity and colonize its host for life. The VacA protein is expressed by all H. pylori strains and is required for high-level persistent infection in experimental mouse models. Here, we show that VacA targets myeloid cells in the gastric mucosa to create a tolerogenic environment that facilitates regulatory T-cell differentiation, while suppressing effector T-cell priming and functionality. Tregs that are induced in the periphery during H. pylori infection can be found not only in the stomach but also in the lungs of infected mice, where they are likely to affect immune responses to allergens. The gastric bacterium Helicobacter pylori causes a persistent infection that is directly responsible for gastric ulcers and gastric cancer in some patients and protective against allergic and other immunological disorders in others. The two outcomes of the Helicobacter-host interaction can be modeled in mice that are infected as immunocompetent adults and as neonates, respectively. Here, we have investigated the contribution of the Helicobacter immunomodulator VacA to H. pylori-specific local and systemic immune responses in both models. We found that neonatally infected mice are colonized at higher levels than mice infected as adults and fail to generate effector T-cell responses to the bacteria; rather, T-cell responses in neonatally infected mice are skewed toward Foxp3-positive (Foxp3+) regulatory T cells that are neuropilin negative and express RORγt. We found these peripherally induced regulatory T cells (pTregs) to be enriched, in a VacA-dependent manner, not only in the gastric mucosa but also in the lungs of infected mice. Pulmonary pTreg accumulation was observed in mice that have been infected neonatally with wild-type H. pylori but not in mice that have been infected as adults or mice infected with a VacA null mutant. Finally, we traced VacA to gastric lamina propria myeloid cells and show that it suppressed interleukin-23 (IL-23) expression by dendritic cells and induced IL-10 and TGF-β expression in macrophages. Taken together, the results are consistent with the idea that H. pylori creates a tolerogenic environment through its immunomodulator VacA, which skews T-cell responses toward Tregs, favors H. pylori persistence, and affects immunity at distant sites.
Collapse
|
8
|
Bagheri N, Razavi A, Pourgheysari B, Azadegan-Dehkordi F, Rahimian G, Pirayesh A, Shafigh M, Rafieian-Kopaei M, Fereidani R, Tahmasbi K, Shirzad H. Up-regulated Th17 cell function is associated with increased peptic ulcer disease in Helicobacter pylori-infection. INFECTION GENETICS AND EVOLUTION 2018; 60:117-125. [PMID: 29481961 DOI: 10.1016/j.meegid.2018.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/01/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND During Helicobacter pylori (H. pylori) infection CD4+ T cells in the gastric lamina propria are hyporesponsive and polarized by Th1/Th17 cell responses controlled by Treg cells. The objective of this study was to determine the number of Th17 cells in gastric mucosa of patients with gastritis and peptic ulcer and determined the relationship between main virulence factor of H. pylori and Th17 cells. METHODS AND MATERIALS A total of 89 H. pylori-infected gastritis patients, 63 H. pylori-infected peptic ulcer patients and 48 H. pylori-negative non-ulcer dysplasia patients were enrolled in this study. The number of Th17 was determined by immunohistochemistry. IL-8 and IL-17A expressions were determined by real-time polymerase chain reaction (qPCR). Also, the grade of chronic and active inflammation was investigated for involvement according to the density of neutrophils and mononuclear in gastric mucosal crypts, from one to all crypts. RESULTS The number of Th17 cells and the expression of IL-8 and IL-17A in infected patients were significantly higher than uninfected subjects. The number of Th17 cells and the expression of IL-8 and IL-17A in infected patients with peptic ulcer were significantly higher than patients with gastritis. Additionally, the numbers of Th17 cells as well as the expression of IL-8 and IL-17A were positively correlated with the degree of H. pylori density in infected patients with peptic ulcer, while this correlation was negative in infected patients with gastritis. The numbers of Th17 cells as well as the expression of IL-8 and IL-17A were positively correlated with the degree of chronic inflammation. CONCLUSION The predominant Th17 cell responses may play a role in the pathogenesis of peptic ulcers disease in infected patients.
Collapse
Affiliation(s)
- Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Batoul Pourgheysari
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ashkan Pirayesh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammedhadi Shafigh
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rana Fereidani
- Department of Pathology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kamran Tahmasbi
- Department of Pathology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Bagheri N, Shirzad H, Elahi S, Azadegan-Dehkordi F, Rahimian G, Shafigh M, Rashidii R, Sarafnejad A, Rafieian-Kopaei M, Faridani R, Tahmasbi K, Kheiri S, Razavi A. Downregulated regulatory T cell function is associated with increased peptic ulcer in Helicobacter pylori-infection. Microb Pathog 2017; 110:165-175. [PMID: 28666843 DOI: 10.1016/j.micpath.2017.06.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) chronically colonizes gastric/duodenal mucosa and induces gastroduodenal disease such as gastritis and peptic ulcer and induces vigorous innate and specific immune responses; however, the infection is not removed, a state of chronic active gastritis persists for life if untreated. The objective of this study was to determine the number of regulatory T cells (Tregs) in gastric mucosa of patients with gastritis and peptic ulcer and determined the relationship between main virulence factor of H. pylori and Tregs. METHODS AND MATERIALS A total of 89 patients with gastritis, 63 patients with peptic ulcer and 40 healthy, H. pylori-negative subjects were enrolled in this study. Expression of CD4 and Foxp3 was determined by immunohistochemistry. Antrum biopsy was obtained for detection of H. pylori, bacterial virulence factors and histopathological assessments. TGF-β1, IL-10 and FOXP3 expressions were determined by real-time polymerase chain reaction (qPCR). RESULTS The numbers of CD4+ and Foxp3+ T cells as well as the expression of IL-10, TGF-β1, FOXP3, INF-γ and IL-17A in infected patients were significantly higher than the ones in uninfected patients. Also, the number of CD4+ T cells was independent on the vacuolating cytotoxin A (vacA) and outer inflammatory protein A (oipA), but it was positively correlated with cytotoxin-associated gene A (cagA). Instead, the number of Foxp3+ T cells was dependent on the vacA and oipA, but it was independent on cagA. The number of Foxp3+ T cells and the expression of IL-10, TGF-β1 and FOXP3 in infected patients with gastritis were significantly higher than the ones in infected patients with peptic ulcer. Moreover, the number of CD4+ T cells and the expression of IL-17A and INF-γ was the lowest in the gastritis patients, however, increased progressively in the peptic ulcer patients. Additionally, the numbers of CD4+ and Foxp3+ T cells as well as the expression of IL-10, TGF-β1, FOXP3 and INF-γ were positively correlated with the degree of H. pylori density and chronic inflammation. CONCLUSION Tregs are positively associated with vacA alleles and oipA status of H. pylori and histological grade but negatively associated with peptic ulcer disease.
Collapse
Affiliation(s)
- Nader Bagheri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Shokrollah Elahi
- Department of Dentistry, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammedhadi Shafigh
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Rashidii
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abdulfatah Sarafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rana Faridani
- Department of Pathology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kamran Tahmasbi
- Department of Pathology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soleiman Kheiri
- Department of Epidemiology and Biostatistics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Viladomiu M, Bassaganya-Riera J, Tubau-Juni N, Kronsteiner B, Leber A, Philipson CW, Zoccoli-Rodriguez V, Hontecillas R. Cooperation of Gastric Mononuclear Phagocytes with Helicobacter pylori during Colonization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3195-3204. [PMID: 28264969 PMCID: PMC5380565 DOI: 10.4049/jimmunol.1601902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori, the dominant member of the human gastric microbiota, elicits immunoregulatory responses implicated in protective versus pathological outcomes. To evaluate the role of macrophages during infection, we employed a system with a shifted proinflammatory macrophage phenotype by deleting PPARγ in myeloid cells and found a 5- to 10-fold decrease in gastric bacterial loads. Higher levels of colonization in wild-type mice were associated with increased presence of mononuclear phagocytes and in particular with the accumulation of CD11b+F4/80hiCD64+CX3CR1+ macrophages in the gastric lamina propria. Depletion of phagocytic cells by clodronate liposomes in wild-type mice resulted in a reduction of gastric H. pylori colonization compared with nontreated mice. PPARγ-deficient and macrophage-depleted mice presented decreased IL-10-mediated myeloid and T cell regulatory responses soon after infection. IL-10 neutralization during H. pylori infection led to increased IL-17-mediated responses and increased neutrophil accumulation at the gastric mucosa. In conclusion, we report the induction of IL-10-driven regulatory responses mediated by CD11b+F4/80hiCD64+CX3CR1+ mononuclear phagocytes that contribute to maintaining high levels of H. pylori loads in the stomach by modulating effector T cell responses at the gastric mucosa.
Collapse
Affiliation(s)
- Monica Viladomiu
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Barbara Kronsteiner
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Casandra W Philipson
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Victoria Zoccoli-Rodriguez
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
11
|
Semper RP, Gerhard M. The Lost Friend: H. pylori. BIRKHÄUSER ADVANCES IN INFECTIOUS DISEASES 2017:69-97. [DOI: 10.1007/978-3-319-69968-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Bassols J, Serino M, Carreras-Badosa G, Burcelin R, Blasco-Baque V, Lopez-Bermejo A, Fernandez-Real JM. Gestational diabetes is associated with changes in placental microbiota and microbiome. Pediatr Res 2016; 80:777-784. [PMID: 27490741 DOI: 10.1038/pr.2016.155] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/03/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND The human microbiota is a modulator of the immune system. Variations in the placental microbiota could be related with pregnancy disorders. We profiled the placental microbiota and microbiome in women with gestational diabetes (GDM) and studied its relation to maternal metabolism and placental expression of anti-inflammatory cytokines. METHODS Placental microbiota and microbiome and expression of anti-inflammatory cytokines (IL10, TIMP3, ITGAX, and MRC1MR) were analyzed in placentas from women with GDM and from control women. Fasting insulin, glucose, O'Sullivan glucose, lipids, and blood cell counts were assessed at second and third trimester of pregnancy. RESULTS Bacteria belonging to the Pseudomonadales order and Acinetobacter genus showed lower relative abundance in women with GDM compared to control (P < 0.05). In GDM, lower abundance of placental Acinetobacter associated with a more adverse metabolic (higher O'Sullivan glucose) and inflammatory phenotype (lower blood eosinophil count and lower placental expression of IL10 and TIMP3) (P < 0.05 to P = 0.001). Calcium signaling pathway was increased in GDM placental microbiome. CONCLUSION A distinct microbiota profile and microbiome is present in GDM. Acinetobacter has been recently shown to induce IL-10 in mice. GDM could constitute a state of placental microbiota-driven altered immunologic tolerance, making placental microbiota a new target for therapy in GDM.
Collapse
Affiliation(s)
- Judit Bassols
- Department of Pediatrics, Dr. Josep Trueta Hospital and Girona Institute for Biomedical Research, Girona, Spain
| | - Matteo Serino
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France
| | - Gemma Carreras-Badosa
- Department of Pediatrics, Dr. Josep Trueta Hospital and Girona Institute for Biomedical Research, Girona, Spain
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France
| | - Vincent Blasco-Baque
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France.,Faculté de Chirurgie Dentaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Abel Lopez-Bermejo
- Department of Pediatrics, Dr. Josep Trueta Hospital and Girona Institute for Biomedical Research, Girona, Spain
| | - José-Manuel Fernandez-Real
- Department of Endocrinology, Dr. Josep Trueta Hospital and Girona Institute for Biomedical Research and CIBERobn, Girona, Spain
| |
Collapse
|
13
|
Garib FY, Rizopulu AP. T-Regulatory Cells as Part of Strategy of Immune Evasion by Pathogens. BIOCHEMISTRY (MOSCOW) 2016; 80:957-71. [PMID: 26547064 DOI: 10.1134/s0006297915080015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Under physiological conditions, regulatory processes can suppress the immune response after elimination of a pathogen and restore homeostasis through the destruction and suppression of obsolete effector cells of the immune system. The main players in this process are T-regulatory cells (Tregs) and immature dendritic cells, which suppress the immune response by their own products and/or by inducing synthesis of immunosuppressive interleukins IL-10, IL-35, and transforming growth factor (TGF-β) by other cells. This mechanism is also used by widespread "successful" pathogens that are capable of chronically persisting in the human body - herpes virus, hepatitis viruses, human immunodeficiency virus, Mycobacterium tuberculosis, Helicobacter pylori, and others. During coevolution of microbial pathogens and the host immune system, the pathogens developed sophisticated strategies for evading the host defense, so-called immune evasion. In particular, molecular structures of pathogens during the interaction with dendritic cells via activating and inhibitory receptors can change intracellular signal transduction, resulting in block of maturation of dendritic cells. Immature dendritic cells become tolerogenic and cause differentiation of Tregs from the conventional T-cell CD4+. Microbial molecules can also react directly with Tregs through innate immune receptors. Costimulation of Toll-like receptor 5 (TLR5) by flagellin increases the expression of the transcription factor Foxp3, which increases the suppressive activity of Treg cells. From all evasion mechanisms, the induction of immunosuppression by Treg through IL-10, IL-35, and TGF-β appears most effective. This results in the suppression of inflammation and of adaptive immune responses against pathogens, optimizing the conditions for the survival of bacteria and viruses.
Collapse
Affiliation(s)
- F Yu Garib
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia
| | | |
Collapse
|
14
|
Kronsteiner B, Bassaganya-Riera J, Philipson C, Viladomiu M, Carbo A, Abedi V, Hontecillas R. Systems-wide analyses of mucosal immune responses to Helicobacter pylori at the interface between pathogenicity and symbiosis. Gut Microbes 2016; 7:3-21. [PMID: 26939848 PMCID: PMC4856448 DOI: 10.1080/19490976.2015.1116673] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is the dominant member of the gastric microbiota in over half of the human population of which 5-15% develop gastritis or gastric malignancies. Immune responses to H. pylori are characterized by mixed T helper cell, cytotoxic T cell and NK cell responses. The presence of Tregs is essential for the control of gastritis and together with regulatory CX3CR1+ mononuclear phagocytes and immune-evasion strategies they enable life-long persistence of H. pylori. This H. pylori-induced regulatory environment might contribute to its cross-protective effect in inflammatory bowel disease and obesity. Here we review host-microbe interactions, the development of pro- and anti-inflammatory immune responses and how the latter contribute to H. pylori's role as beneficial member of the gut microbiota. Furthermore, we present the integration of existing and new data into a computational/mathematical model and its use for the investigation of immunological mechanisms underlying initiation, progression and outcomes of H. pylori infection.
Collapse
Affiliation(s)
- Barbara Kronsteiner
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | | | - Monica Viladomiu
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | | | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| |
Collapse
|
15
|
Menheniott TR, Judd LM, Giraud AS. STAT3: a critical component in the response to Helicobacter pylori infection. Cell Microbiol 2015; 17:1570-82. [PMID: 26332850 DOI: 10.1111/cmi.12518] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/16/2015] [Accepted: 08/28/2015] [Indexed: 12/15/2022]
Abstract
STAT3 imparts a profound influence on both the epithelial and immune components of the gastric mucosa, and through regulation of key intracellular signal transduction events, is well placed to control inflammatory and oncogenic outcomes in the context of Helicobacter (H.) pylori infection. Here we review the roles of STAT3 in the host immune response to H. pylori infection, from both gastric mucosal and systemic perspectives, as well as alluding more specifically to STAT3-dependent mechanisms that might be exploited as drug targets.
Collapse
Affiliation(s)
- Trevelyan R Menheniott
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise M Judd
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew S Giraud
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
The biological functions of IL-17 in different clinical expressions of Helicobacter pylori-infection. Microb Pathog 2015; 81:33-8. [DOI: 10.1016/j.micpath.2015.03.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 02/06/2023]
|
17
|
Lactic acid bacteria strains exert immunostimulatory effect on H. pylori-induced dendritic cells. J Immunol Res 2015; 2015:106743. [PMID: 25759836 PMCID: PMC4352478 DOI: 10.1155/2015/106743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to find out if selected lactic acid bacteria (LAB) strains (antagonistic or nonantagonistic against H. pylori in vitro) would differ in their abilities to modulate the DCs maturation profiles reflected by their phenotype and cytokine expression patterns. Methods. Monocyte-derived DCs maturation was elicited by their direct exposure to the LAB strains of L. rhamnosus 900 or L. paracasei 915 (antagonistic and nonantagonistic to H. pylori, resp.), in the presence or absence of H. pylori strain cagA+. The DCs maturation profile was assessed on the basis of surface markers expression and cytokines production. Results. We observed that the LAB strains and the mixtures of LAB with H. pylori are able to induce mature DCs. At the same time, the L. paracasei 915 leads to high IL-10/IL-12p70 cytokine ratio, in contrast to L. rhamnosus 900. Conclusions. This study showed that the analyzed lactobacilli strains are more potent stimulators of DC maturation than H. pylori. Interestingly from the two chosen LAB strains the antagonistic to H. pylori-L. rhamnosus strain 900 has more proinflammatory and probably antibactericidal properties.
Collapse
|
18
|
Fyhrquist N, Ruokolainen L, Suomalainen A, Lehtimäki S, Veckman V, Vendelin J, Karisola P, Lehto M, Savinko T, Jarva H, Kosunen TU, Corander J, Auvinen P, Paulin L, von Hertzen L, Laatikainen T, Mäkelä M, Haahtela T, Greco D, Hanski I, Alenius H. Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation. J Allergy Clin Immunol 2014; 134:1301-1309.e11. [PMID: 25262465 DOI: 10.1016/j.jaci.2014.07.059] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND The human commensal microbiota interacts in a complex manner with the immune system, and the outcome of these interactions might depend on the immune status of the subject. OBJECTIVE Previous studies have suggested a strong allergy-protective effect for Gammaproteobacteria. Here we analyze the skin microbiota, allergic sensitization (atopy), and immune function in a cohort of adolescents, as well as the influence of Acinetobacter species on immune responses in vitro and in vivo. METHODS The skin microbiota of the study subjects was identified by using 16S rRNA sequencing. PBMCs were analyzed for baseline and allergen-stimulated mRNA expression. In in vitro assays human monocyte-derived dendritic cells and primary keratinocytes were incubated with Acinetobacter lwoffii. Finally, in in vivo experiments mice were injected intradermally with A lwoffii during the sensitization phase of the asthma protocol, followed by readout of inflammatory parameters. RESULTS In healthy subjects, but not in atopic ones, the relative abundance of Acinetobacter species was associated with the expression of anti-inflammatory molecules by PBMCs. Moreover, healthy subjects exhibited a robust balance between anti-inflammatory and TH1/TH2 gene expression, which was related to the composition of the skin microbiota. In cell assays and in a mouse model, Acinetobacter species induced strong TH1 and anti-inflammatory responses by immune cells and skin cells and protected against allergic sensitization and lung inflammation through the skin. CONCLUSION These results support the hypothesis that skin commensals play an important role in tuning the balance of TH1, TH2, and anti-inflammatory responses to environmental allergens.
Collapse
Affiliation(s)
- Nanna Fyhrquist
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Lasse Ruokolainen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Alina Suomalainen
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Sari Lehtimäki
- Molecular Immunology Group, Turku Centre for Biotechnology, Turku, Finland
| | - Ville Veckman
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Johanna Vendelin
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Piia Karisola
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Maili Lehto
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Terhi Savinko
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna Jarva
- Haartman Institute, Department of Bacteriology and Immunology and Research Programs Unit, Immunobiology, University of Helsinki, and Helsinki University Central Hospital Laboratory (HUSLAB), Helsinki, Finland
| | - Timo U Kosunen
- Haartman Institute, Department of Bacteriology and Immunology and Research Programs Unit, Immunobiology, University of Helsinki, and Helsinki University Central Hospital Laboratory (HUSLAB), Helsinki, Finland
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Leena von Hertzen
- Allergy Department, Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Tiina Laatikainen
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Mika Mäkelä
- Allergy Department, Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Tari Haahtela
- Allergy Department, Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Dario Greco
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Ilkka Hanski
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland.
| |
Collapse
|
19
|
Gaurav R, Agrawal DK. Clinical view on the importance of dendritic cells in asthma. Expert Rev Clin Immunol 2014; 9:899-919. [PMID: 24128155 DOI: 10.1586/1744666x.2013.837260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic asthma is characterized by airway hyperresponsiveness and inflammation and may lead to airway remodeling in uncontrolled cases. Genetic predisposition to an atopic phenotype plays a major component in the pathophysiology of asthma. However, with tremendous role of epigenetic factors and environmental stimuli in precipitating an immune response, the underlying pathophysiological mechanisms are complicated. Dendritic cells are principal antigen-presenting cells and initiators of the immune response in allergic asthma. Their phenotype, guided by multiple factors may dictate the immune reaction to an allergic or tolerogenic response. Involvement of the local cytokine milieu, microbiome and interplay between immune cells add dimension to the fate of immune response. In addition to allergen exposure, these factors modulate DC phenotype and function. In this article, integration of many factors and pathways associated with the recruitment and activation of DCs in the pathophysiology of allergic asthma is presented in a clinical and translational manner.
Collapse
Affiliation(s)
- Rohit Gaurav
- Department of Biomedical Sciences and Center for Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza Omaha, NE 68178, USA
| | | |
Collapse
|
20
|
Kronsteiner B, Bassaganya-Riera J, Philipson N, Hontecillas R. Novel insights on the role of CD8+ T cells and cytotoxic responses during Helicobacter pylori infection. Gut Microbes 2014; 5:357-62. [PMID: 24755940 PMCID: PMC4153774 DOI: 10.4161/gmic.28899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori chronically persists in 50% of the human population and causes serious gastric and duodenal pathologies in 15% of infected people. Research on the immune response to the infection has mainly focused on the induction of CD4+ T cell responses. Human studies emphasize the potential clinical relevance of CD8+ cytotoxic T lymphocytes, however this cell type has barely been reported in studies employing mouse or gerbil models. Traditionally characterized as an extracellular bacterium, H. pylori has been identified inside epithelial and immune cells. Similarly to other intracellular bacteria, H. pylori infection of macrophages can alter autophagy and phagosome processing. A novel animal model of H. pylori infection demonstrates for the first time the induction of cytotoxic CD8+ T cell responses in pigs and localization of intracellular H. pylori within lymphoid aggregates. Here, we discuss novel mechanisms of host-H. pylori interactions that could lead to the induction of cytotoxic responses.
Collapse
|
21
|
Teymournejad O, Mobarez AM, Hassan ZM, Moazzeni SM, Ahmadabad HN. In vitro suppression of dendritic cells by Helicobacter pylori OipA. Helicobacter 2014; 19:136-43. [PMID: 24495278 DOI: 10.1111/hel.12107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Outer inflammatory protein A (OipA) has an important role in Helicobacter pylori pathogenesis. In this study, we purified the outer membrane protein and evaluated the effects of this protein on maturation and cytokine production by dendritic cells (DCs). MATERIALS AND METHODS The oipA gene was inserted into pET28a, and this construct was transformed into Escherichia coli BL21 (DE3). Purification of the recombinant protein was performed by Ni-NTA affinity chromatography. Immature DCs were purified from spleen of C57BL/6 mice with more than 90% purity and were treated with several concentrations of OipA (1-20 μg/mL) overnight. Expression of maturation markers (CD86, CD40, and MHC-II) on the surface of DCs and production of IL-10 and IL-12 were assessed by flow cytometry and ELISA, respectively. RESULTS The expression of DC maturation markers CD40, CD86, and MHC-II was downregulated on the surface of OipA-treated DCs at concentrations of 10 and 20 μg/mL compared with negative control. Production of IL-10 decreases with increasing OipA concentration at a concentration of 5 μg/mL, but we detected no change in IL-12 production. CONCLUSION Inability to eliminate H. pylori from stomach is partly due to the evasion of the bacteria from the immune response. DCs are central mediators between innate and adaptive immunity, and DC cytokines direct the types of adaptive immune response. This study indicated that OipA of H. pylori is a DC maturation suppression factor. Previous studies have shown that H. pylori manage tolerogenic programming in DCs leading to long-time gastric colonization. In conclusion, H. pylori OipA helps the establishment of chronic infection with reduction in IL-10 and suppression of DC maturation.
Collapse
Affiliation(s)
- Omid Teymournejad
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
22
|
Ling SSM, Yeoh KG, Ho B. Helicobacter pyloriγ-glutamyl transpeptidase: A formidable virulence factor. World J Gastroenterol 2013; 19:8203-8210. [PMID: 24363510 PMCID: PMC3857442 DOI: 10.3748/wjg.v19.i45.8203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/07/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) produce an enzyme known as γ-glutamyl transpeptidase (HpGGT) that is highly conserved and common to all strains. HpGGT has been gaining increasing attention as an important virulence factor of the bacterium, having been demonstrated to be an important colonization factor in several animal models and has also recently been strongly associated with the development of peptic ulcer disease. From the results of various independent researcher groups, it is clear that HpGGT acts through several pathways to damage gastric epithelial cells including the induction of apoptosis and cell cycle arrest, production of reactive oxygen species leading to DNA damage, promotion of inflammation by increasing cyclooxygenase-2 and interleukin-8 expression, and upregulation of heparin-binding epidermal growth factor-like growth factor resulting in cell survival and proliferation. In addition, the potential role of HpGGT in promoting gastric carcinogenesis will also be discussed in this review. Apart from affecting the gastric epithelium, HpGGT also has immunomodulatory actions on host immune cells where it displays an antiproliferative effect on T cells by inducing cell cycle arrest and also works with other H. pylori virulence factors to skew dendritic cells towards a tolerogenic phenotype, possibly contributing to the persistence of the pathogen in the gastric mucosa.
Collapse
|
23
|
Kaebisch R, Mejías-Luque R, Prinz C, Gerhard M. Helicobacter pyloriCytotoxin-Associated Gene A Impairs Human Dendritic Cell Maturation and Function through IL-10–Mediated Activation of STAT3. THE JOURNAL OF IMMUNOLOGY 2013; 192:316-23. [DOI: 10.4049/jimmunol.1302476] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Carbo A, Bassaganya-Riera J, Pedragosa M, Viladomiu M, Marathe M, Eubank S, Wendelsdorf K, Bisset K, Hoops S, Deng X, Alam M, Kronsteiner B, Mei Y, Hontecillas R. Predictive computational modeling of the mucosal immune responses during Helicobacter pylori infection. PLoS One 2013; 8:e73365. [PMID: 24039925 PMCID: PMC3764126 DOI: 10.1371/journal.pone.0073365] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/18/2013] [Indexed: 02/06/2023] Open
Abstract
T helper (Th) cells play a major role in the immune response and pathology at the gastric mucosa during Helicobacter pylori infection. There is a limited mechanistic understanding regarding the contributions of CD4+ T cell subsets to gastritis development during H. pylori colonization. We used two computational approaches: ordinary differential equation (ODE)-based and agent-based modeling (ABM) to study the mechanisms underlying cellular immune responses to H. pylori and how CD4+ T cell subsets influenced initiation, progression and outcome of disease. To calibrate the model, in vivo experimentation was performed by infecting C57BL/6 mice intragastrically with H. pylori and assaying immune cell subsets in the stomach and gastric lymph nodes (GLN) on days 0, 7, 14, 30 and 60 post-infection. Our computational model reproduced the dynamics of effector and regulatory pathways in the gastric lamina propria (LP) in silico. Simulation results show the induction of a Th17 response and a dominant Th1 response, together with a regulatory response characterized by high levels of mucosal Treg) cells. We also investigated the potential role of peroxisome proliferator-activated receptor γ (PPARγ) activation on the modulation of host responses to H. pylori by using loss-of-function approaches. Specifically, in silico results showed a predominance of Th1 and Th17 cells in the stomach of the cell-specific PPARγ knockout system when compared to the wild-type simulation. Spatio-temporal, object-oriented ABM approaches suggested similar dynamics in induction of host responses showing analogous T cell distributions to ODE modeling and facilitated tracking lesion formation. In addition, sensitivity analysis predicted a crucial contribution of Th1 and Th17 effector responses as mediators of histopathological changes in the gastric mucosa during chronic stages of infection, which were experimentally validated in mice. These integrated immunoinformatics approaches characterized the induction of mucosal effector and regulatory pathways controlled by PPARγ during H. pylori infection affecting disease outcomes.
Collapse
Affiliation(s)
- Adria Carbo
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mireia Pedragosa
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Monica Viladomiu
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Madhav Marathe
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephen Eubank
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Katherine Wendelsdorf
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Keith Bisset
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stefan Hoops
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Xinwei Deng
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Maksudul Alam
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Barbara Kronsteiner
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yongguo Mei
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Downregulated Th17 responses are associated with reduced gastritis in Helicobacter pylori-infected children. Mucosal Immunol 2013; 6:950-959. [PMID: 23299619 PMCID: PMC3775337 DOI: 10.1038/mi.2012.133] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 11/28/2012] [Indexed: 02/04/2023]
Abstract
Helicobacter pylori induces less gastric inflammation in children than adults. Here we investigated whether this reduced inflammation involves dysregulated T helper type 17 (Th17) responses. H. pylori-infected children and adults in Santiago, Chile had similar levels of H. pylori colonization, proportions of bacteria containing cagA and s1/s2 vacA markers of virulence, and strain genotypes (predominantly hpEurope), but the children had significantly reduced levels of gastric inflammation and neutrophil infiltration. The reduced neutrophil accumulation in the infected children was accompanied by significantly fewer gastric Th17 cells and significantly lower levels of interleukin (IL)-17-specific mRNA and protein compared with the infected adults. The gastric mucosa of H. pylori-infected children also contained higher numbers of IL-10+ cells and increased levels of both IL-10 and Foxp3 mRNA compared with that of the infected adults. Thus, reduced gastric inflammation, including diminished neutrophil accumulation, in H. pylori-infected children compared with infected adults is likely due to downregulated gastric Th17/IL-17 responses as a consequence of enhanced mucosal regulatory T-cell activity in the children.
Collapse
|
26
|
Inhibition of cathepsin X enzyme influences the immune response of THP-1 cells and dendritic cells infected with Helicobacter pylori. Radiol Oncol 2013; 47:258-65. [PMID: 24133391 PMCID: PMC3794882 DOI: 10.2478/raon-2013-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/11/2013] [Indexed: 12/30/2022] Open
Abstract
Background The immune response to Helicobacter pylori importantly determines the outcome of infection as well as the success of eradication therapy. We demonstrate the role of a cysteine protease cathepsin X in the immune response to H. pylori infection. Materials and methods We analysed how the inhibition of cathepsin X influenced the immune response in experiments when THP-1 cells or dendritic cells isolated from patients were stimulated with 48 strains of H. pylori isolated from gastric biopsy samples of patients which had problems with the eradication of bacteria. Results The experiments, performed with the help of a flow cytometer, showed that the expression of Toll-like receptors (TLRs), especially TLR-4 molecules, on the membranes of THP-1 cells or dendritic cells was higher when we stimulated cells with H. pylori together with inhibitor of cathepsin X 2F12 compared to THP-1 cells or dendritic cells stimulated with H. pylori only, and also in comparison with negative control samples. We also demonstrated that when we inhibited the action of cathepsin X in THP-1 cells, the concentrations of pro-inflammatory cytokines were lower than when THP-1 cell were stimulated with H. pylori only. Conclusions We demonstrated that inhibition of cathepsin X influences the internalization of TLR-2 and TLR-4. TLR-2 and TLR-4 redistribution to intra-cytoplasmic compartments is hampered if cathepsin X is blocked. The beginning of a successful immune response against H. pylori in the case of inhibition of cathepsin X is delayed.
Collapse
|
27
|
Helicobacter pylori infection in a pig model is dominated by Th1 and cytotoxic CD8+ T cell responses. Infect Immun 2013; 81:3803-13. [PMID: 23897614 DOI: 10.1128/iai.00660-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection is the leading cause for peptic ulcer disease and gastric adenocarcinoma. Mucosal T cell responses play an important role in mediating H. pylori-related gastric immunopathology. While induced regulatory T (iTreg) cells are required for chronic colonization without disease, T helper 1 (Th1) effector responses are associated with lower bacterial loads at the expense of gastric pathology. Pigs were inoculated with either H. pylori strain SS1 or J99. Phenotypic and functional changes in peripheral blood mononuclear cell (PBMC) populations were monitored weekly, and mucosal immune responses and bacterial loads were assessed up to 2 months postinfection. Both H. pylori strains elicited a Th1 response characterized by increased percentages of CD4(+)Tbet(+) cells and elevated gamma interferon (IFN-γ) mRNA in PBMCs. A subset of CD8(+) T cells expressing Tbet and CD16 increased following infection. Moreover, a significant increase in perforin and granzyme mRNA expression was observed in PBMCs of infected pigs, indicating a predominant cytotoxic immune response. Infiltration of B cells, myeloid cells, T cells expressing Treg- and Th17-associated transcription factors, and cytotoxic T cells was found in the gastric lamina propria of both infected groups. Interestingly, based on bacterial reisolation data, strain SS1 showed greater capacity to colonize and/or persist in the gastric mucosa than did strain J99. This novel pig model of infection closely mimics human gastric pathology and presents a suitable avenue for studying effector and regulatory responses toward H. pylori described in humans.
Collapse
|
28
|
Shiu J, Blanchard TG. Dendritic cell function in the host response to Helicobacter pylori infection of the gastric mucosa. Pathog Dis 2013; 67:46-53. [PMID: 23620119 DOI: 10.1111/2049-632x.12014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) play an important role as antigen-presenting cells that direct the nature of the adaptive immune response. Subtypes are differentiated by lineage, tissue, marker expression and function. Their function in promoting regulatory T cells in the gut to maintain immunologic homeostasis is well documented, but their role in the Helicobacter pylori-infected stomach is less clear. Some analyses of bone marrow-derived DCs stimulated with H. pylori have demonstrated proinflammatory potential based on secretion of IL-12 or IL-23 or activation of Th1 and Th17 cells. Other analyses indicate that H. pylori-activated DCs are less responsive compared with other gastrointestinal bacteria and activate DCs to promote Treg development. DC depletion in mice supports a role for DCs in down-regulating H. pylori-induced gastritis. These data indicate that gastric DCs recognize H. pylori much like DCs in the gut that recognize commensal organisms and promote a regulatory T-cell response. This is consistent with a growing body of literature documenting the prevalence and function of Treg cells in the host response to H. pylori. Research is now focused on characterizing how H. pylori induces such activity in DCs and identifying the mechanisms by which H. pylori-activated DCs activate Treg cells.
Collapse
Affiliation(s)
- Jessica Shiu
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
29
|
Complex T cell interactions contribute to Helicobacter pylori gastritis in mice. Infect Immun 2012; 81:740-52. [PMID: 23264048 DOI: 10.1128/iai.01269-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Disease due to the gastric pathogen Helicobacter pylori varies in severity from asymptomatic to peptic ulcer disease and cancer. Accumulating evidence suggests that one source of this variation is an abnormal host response. The goal of this study was to use a mouse model of H. pylori gastritis to investigate the roles of regulatory T cells (Treg) as well as proinflammatory T cells (Th1 and Th17) in gastritis, gastric T cell engraftment, and gastric cytokine production. Our results support published data indicating that severe gastritis in T cell recipient mice is due to failure of Treg engraftment, that Treg ameliorate gastritis, and that the proinflammatory response is attributable to interactions between several cell subsets and cytokines. We confirmed that gamma interferon (IFN-γ) is essential for induction of gastritis but showed that IFN-γ-producing CD4 T cells are not necessary. Interleukin 17A (IL-17A) also contributed to gastritis, but to a lesser extent than IFN-γ. Tumor necrosis factor alpha (TNF-α) and IL-17F were also elevated in association with disease. These results indicate that while H. pylori-specific CD4(+) T cells and IFN-γ are both essential for induction of gastritis due to H. pylori, IFN-γ production by T cells is not essential. It is likely that other proinflammatory cytokines, such as IL-17F and TNF-α, shown to be elevated in this model, also contribute to the induction of disease. We suggest that gastritis due to H. pylori is associated with loss of immunoregulation and alteration of several cytokines and cell subsets and cannot be attributed to a single immune pathway.
Collapse
|
30
|
Berndt BE, Zhang M, Owyang SY, Cole TS, Wang TW, Luther J, Veniaminova NA, Merchant JL, Chen CC, Huffnagle GB, Kao JY. Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1384-92. [PMID: 23086919 PMCID: PMC3532546 DOI: 10.1152/ajpgi.00540.2011] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gut microbiota is essential for the maintenance of intestinal immune homeostasis and is responsible for breaking down dietary fiber into short-chain fatty acids (SCFAs). Butyrate, the most abundant bioactive SCFA in the gut, is a histone deacetylase inhibitor (HDACi), a class of drug that has potent immunomodulatory properties. This characteristic of butyrate, along with our previous discovery that conventional dendritic cells (DCs) are required for the development of experimental colitis, led us to speculate that butyrate may modulate DC function to regulate gut mucosal homeostasis. We found that butyrate, in addition to suppressing LPS-induced bone marrow-derived DC maturation and inhibiting DC IL-12 production, significantly induced IL-23 expression. The upregulation of mRNA subunit IL-23p19 at the pretranslational level was consistent with the role of HDACi on the epigenetic modification of gene expression. Furthermore, the mechanism of IL-23p19 upregulation was independent of Stat3 and ZBP89. Coculture of splenocytes with LPS-stimulated DCs pretreated with or without butyrate was performed and showed a significant induction of IL-17 and IL-10. We demonstrated further the effect of butyrate in vivo using dextran sulfate sodium (DSS)-induced colitis and found that the addition of butyrate in the drinking water of mice worsened DSS-colitis. This is in contrast to the daily intraperitoneal butyrate injection of DSS-treated mice, which mildly improved disease severity. Our study highlights a novel effect of butyrate in upregulating IL-23 production of activated DCs and demonstrates a difference in the host response to the oral vs. systemic route of butyrate administration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Natalia A. Veniaminova
- 3Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan;
| | - Juanita L. Merchant
- Divisions of 1 Gastroenterology and ,3Department of Molecular and Integrative Physiology, University of Michigan Health System, Ann Arbor, Michigan;
| | - Chun-Chia Chen
- 4Department of Medicine, Division of Gastroenterology, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Gary B. Huffnagle
- 2Pulmonary and Critical Care Medicine, Department of Internal Medicine and
| | | |
Collapse
|
31
|
Cheung DY, Kim TH. [Helicobacter pylori in human stomach: can it be called mutualism or a disease?]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2012; 59:329-37. [PMID: 22617526 DOI: 10.4166/kjg.2012.59.5.329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori (H. pylori) has been a major concern as a gastric pathogen with unique features since discovered in the end of the 20th century. Recent data on comparative genome study have revealed that H. pylori has successfully survived with its host though over 58,000 years of evolution and migration from continent to continent. To maintain the symbiotic relationship with human, H. pylori has come up with ways to induce host tolerance as well as exert harmful injuries. Studies about H. pylori have accumulated the knowledge about how the cellular and molecular interactions are controlled and regulated to decide whether the symbiotic relationship is directed to diseases or peaceful mutualism. We reviewed recent literatures and research outcomes about the H. pylori and host interaction in molecular and cellular basis.
Collapse
Affiliation(s)
- Dae Young Cheung
- Department of Internal Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine, 327 Sosa-ro, Wonmi-gu, Bucheon 420-717, Korea
| | | |
Collapse
|
32
|
Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 2012; 109:8334-9. [PMID: 22566627 PMCID: PMC3361383 DOI: 10.1073/pnas.1205624109] [Citation(s) in RCA: 598] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rapidly declining biodiversity may be a contributing factor to another global megatrend--the rapidly increasing prevalence of allergies and other chronic inflammatory diseases among urban populations worldwide. According to the "biodiversity hypothesis," reduced contact of people with natural environmental features and biodiversity may adversely affect the human commensal microbiota and its immunomodulatory capacity. Analyzing atopic sensitization (i.e., allergic disposition) in a random sample of adolescents living in a heterogeneous region of 100 × 150 km, we show that environmental biodiversity in the surroundings of the study subjects' homes influenced the composition of the bacterial classes on their skin. Compared with healthy individuals, atopic individuals had lower environmental biodiversity in the surroundings of their homes and significantly lower generic diversity of gammaproteobacteria on their skin. The functional role of the gram-negative gammaproteobacteria is supported by in vitro measurements of expression of IL-10, a key anti-inflammatory cytokine in immunologic tolerance, in peripheral blood mononuclear cells. In healthy, but not in atopic, individuals, IL-10 expression was positively correlated with the abundance of the gammaproteobacterial genus Acinetobacter on the skin. These results raise fundamental questions about the consequences of biodiversity loss for both allergic conditions and public health in general.
Collapse
Affiliation(s)
- Ilkka Hanski
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Leena von Hertzen
- Skin and Allergy Hospital, Helsinki University Central Hospital, FI-00029 Helsinki, Finland
| | - Nanna Fyhrquist
- Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland
| | - Kaisa Koskinen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kaisa Torppa
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tiina Laatikainen
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland; and
| | - Piia Karisola
- Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mika J. Mäkelä
- Skin and Allergy Hospital, Helsinki University Central Hospital, FI-00029 Helsinki, Finland
| | - Erkki Vartiainen
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland; and
| | - Timo U. Kosunen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, FI-00014 Helsinki, Finland
| | - Harri Alenius
- Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Central Hospital, FI-00029 Helsinki, Finland
| |
Collapse
|
33
|
Abstract
Infectious agents have intimately co-evolved with the host immune system, acquiring a portfolio of highly sophisticated mechanisms to modulate immunity. Among the common strategies developed by viruses, bacteria, protozoa, helminths, and fungi is the manipulation of the regulatory T cell network in order to favor pathogen survival and transmission. Treg activity also benefits the host in many circumstances by controlling immunopathogenic reactions to infection. Interestingly, some pathogens are able to directly induce the conversion of naive T cells into suppressive Foxp3-expressing Tregs, while others activate pre-existing natural Tregs, in both cases repressing pathogen-specific effector responses. However, Tregs can also act to promote immunity in certain settings, such as in initial stages of infection when effector cells must access the site of infection, and subsequently in ensuring generation of effector memory. Notably, there is little current information on whether infections selectively drive pathogen-specific Tregs, and if so whether these cells are also reactive to self-antigens. Further analysis of specificity, together with a clearer picture of the relative dynamics of Treg subsets over the course of disease, should lead to rational strategies for immune intervention to optimize immunity and eliminate infection.
Collapse
|