1
|
Sarsarshahi S, Bhattacharya S, Zacharias ZR, Kamel ES, Houtman JCD, Nejadnik R. Highly variable aggregation and glycosylation profiles and their roles in immunogenicity to protein-based therapeutics. J Pharm Sci 2025; 114:103771. [PMID: 40139530 DOI: 10.1016/j.xphs.2025.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Production of antibodies against protein-based therapeutics (e.g., monoclonal antibodies (mAbs)) by a recipient's immune system can vary from benign symptoms to chronic neutralization of the compound, and in rare cases, a lethal cytokine storm. One critical factor that can induce or contribute to an anti-drug antibody (ADA) response is believed to be the presence of aggregated proteins in protein-based therapeutics. There is a high level of variability in the aggregation of different proteins, which adds to the complexity in understanding the immune response to these drugs. Furthermore, the level of glycosylation of proteins, which increases drug stability, functionality, and serum half-life, is highly variable and may influence their immunogenicity. Considering the abundance of literature on the effect of aggregation and glycosylation on the immunogenicity of protein-based therapeutics, this review aims to summarize the current knowledge and clarify the immunogenic effects of different protein-based therapeutics such as mAbs. This review focuses on the properties of aggregated proteins and elucidates their relationship with immunogenicity. The contribution of different immune cell subsets and the mechanisms in aggregation-induced immunogenicity are also reviewed. Finally, the potential effects of each glycan, such as sialic acid, mannose, and fucose, on protein-based therapeutics' immunogenicity and stability is discussed.
Collapse
Affiliation(s)
- Sina Sarsarshahi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Sanghati Bhattacharya
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Zeb R Zacharias
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Human Immunology Core, University of Iowa, Iowa City, IA, United States
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Jon C D Houtman
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Human Immunology Core, University of Iowa, Iowa City, IA, United States; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Reza Nejadnik
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
2
|
Shrivastava A, Patil SS, Shah R, Rathore AS. An Automated Tool for Glycosimilarity Assessment of mAb Therapeutic Biosimilars: Trastuzumab and Bevacizumab as Case Studies. BioDrugs 2025; 39:333-345. [PMID: 39873867 DOI: 10.1007/s40259-025-00704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND With the expiration of patents for multiple biotherapeutics, biosimilars are gaining traction globally as cost-effective alternatives to the original products. Glycosylation, a critical quality attribute, makes glycosimilarity assessment pivotal for biosimilar development. Given the complexity of glycoanalytical profiles, assessing glycosimilarity is nontrivial. OBJECTIVE This study proposes a Python-based automated tool for rapid estimation of glycosimilarity index (GI). MATERIALS AND METHODS A comprehensive analytical glycosimilarity comparison of the trastuzumab originator product, Herclon (Roche), with five marketed biosimilars:Trasturel (Reliance Life Sciences), Canmab (Biocon), Vivitra (Zydus Ingenia), Hertraz (Mylan), and Biceltis (Cipla), has been performed. Similarly, a comparison between the bevacizumab originator product, Avastin (Roche), and its five biosimilars: Abevmy (Mylan), Krabeva (Biocon), Ivzumab (RPG LifeSciences), Bryxta (Zydus), and Advamab (Alkem Labs), is presented. Glycan profile has been assessed using liquid chromatography-fluorescence detection, and the data have been integrated using the XGBoost-machine learning algorithm to quantify glycan composition. The GI has been calculated by combining profile similarity and compositional similarity, estimated on the basis of the criticality and tolerance of each glycan. RESULTS The tool enabled rapid GI estimation (< 1 min/sample) with reduced errors compared with Excel (> 10 min/sample). Biosimilars exhibited high GI with several exceeding 95%, while the lowest GI observed were 87.80% for trastuzumab and 92.39% for bevacizumab. CONCLUSIONS The Python-based tool offers a high-throughput and a reliable platform for glycosimilarity assessment, outperforming traditional analysis. Minor variations in glycosylation patterns were observed among the biosimilars, suggesting a modest glycosimilarity variation (GI range between 80 and 100%). However, the limited number of innovator batches analyzed constrained the establishment of definitive tolerance limits. Future studies should focus on analyzing larger datasets to improve accuracy and define precise tolerance limits, enhancing the tool's reliability and its potential to accelerate biosimilar development.
Collapse
Affiliation(s)
- Anuj Shrivastava
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sanjeet S Patil
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Rohan Shah
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
3
|
Jang D, Altern SH, Cramer SM. In silico mediated workflow for rapid development of downstream processing: Orthogonal product-related impurity removal for a Fc-containing therapeutic. J Chromatogr A 2024; 1735:465281. [PMID: 39243589 DOI: 10.1016/j.chroma.2024.465281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Therapeutic formats derived from the monoclonal antibody structure have been gaining significant traction in the biopharmaceutical market. Being structurally similar to mAbs, most Fc-containing therapeutics exhibit product-related impurities in the form of aggregates, charge variants, fragments, and glycoforms, which are inherently challenging to remove. In this work, we developed a workflow that employed rapid resin screening in conjunction with an in silico tool to identify and rank orthogonally selective processes for the removal of product-related impurities from a Fc-containing therapeutic product. Linear salt gradient screens were performed at various pH conditions on a set of ion-exchange, multimodal ion-exchange, and hydrophobic interaction resins. Select fractions from the screening experiments were analyzed by three different analytical techniques to characterize aggregates, charge variants, fragments, and glycoforms. The retention database generated by the resin screens and subsequent impurity characterization were then processed by an in silico tool that generated and ranked all possible two-step resin sequences for the removal of product-related impurities. A highly-ranked process was then evaluated and refined at the bench-scale to develop a completely flowthrough two-step polishing process which resulted in complete removal of the Man5 glycoform and aggregate impurities with a 73% overall yield. The successful implementation of the in silico mediated workflow suggests the possibility of a platformable workflow that could facilitate polishing process development for a wide variety of mAb-based therapeutics.
Collapse
Affiliation(s)
- Dongyoun Jang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Scott H Altern
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Steven M Cramer
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States.
| |
Collapse
|
4
|
Böttinger K, Regl C, Schäpertöns V, Rapp E, Wohlschlager T, Huber CG. "Small is beautiful" - Examining reliable determination of low-abundant therapeutic antibody glycovariants. J Pharm Anal 2024; 14:100982. [PMID: 39850237 PMCID: PMC11755342 DOI: 10.1016/j.jpha.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 01/25/2025] Open
Abstract
Glycans associated with biopharmaceutical drugs play crucial roles in drug safety and efficacy, and therefore, their reliable detection and quantification is essential. Our study introduces a multi-level quantification approach for glycosylation analysis in monoclonal antibodies (mAbs), focusing on minor abundant glycovariants. Mass spectrometric data is evaluated mainly employing open-source software tools. Released N-glycan and glycopeptide data form the basis for integrating information across different structural levels up to intact glycoproteins. Comprehensive comparison showed that indeed, variations across structural levels were observed especially for minor abundant species. Utilizing modification finder (MoFi), a tool for annotating mass spectra of intact proteins, we quantify isobaric glycosylation variants at the intact protein level. Our workflow's utility is demonstrated on NISTmAb, rituximab and adalimumab, profiling their minor abundant variants for the first time across diverse structural levels. This study enhances understanding and accessibility in glycosylation analysis, spotlighting minor abundant glycovariants in therapeutic antibodies.
Collapse
Affiliation(s)
- Katharina Böttinger
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, 5020, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, 5020, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, 5020, Austria
| | - Veronika Schäpertöns
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, 5020, Austria
| | - Erdmann Rapp
- glyXera GmbH, Magdeburg, Sachsen-Anhalt, 39014, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, 39106, Germany
| | - Therese Wohlschlager
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, 5020, Austria
| | - Christian G. Huber
- Department of Biosciences and Medical Biology, Bioanalytical Research Labs, University of Salzburg, Salzburg, 5020, Austria
- Center for Tumorbiology and Immunology (CTBI), University of Salzburg, Salzburg, 5020, Austria
| |
Collapse
|
5
|
Nick C. Streamlining biosimilar development based on 20 years' experience. Expert Opin Biol Ther 2024; 24:571-581. [PMID: 38315062 DOI: 10.1080/14712598.2024.2314612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Biosimilar clinical programs could be streamlined by prudent application of improved methodologies and knowledge accumulated over the past 20 years. This review focuses on whether complex comparative efficacy trials are routinely needed and how to achieve a more tailored approach to biosimilar development. AREAS COVERED Key learnings over the past 20 years are summarized. It is noted that a one size fits all approach to biosimilar development is not appropriate: biological medicines fall within a wide spectrum of complexity, with blurring at the interface between biological products and small molecules. The interrelationship between quality, potency, pharmacokinetics, pharmacology, immunogenicity, efficacy, and safety are reviewed. Current regulatory thinking is reviewed with a look into what future challenges lie ahead. EXPERT OPINION To tailor regulatory requirements for marketing approval of biosimilars, it is proposed that a biosimilarity report be introduced. This report would integrate quality, pharmacology, immunogenicity, efficacy and safety findings and address how the clinical program could be tailored based on the totality of evidence.
Collapse
Affiliation(s)
- Cecil Nick
- Parexel International, Uxbridge, Middlesex, England
| |
Collapse
|
6
|
Xie Y, Butler M. N-glycomic profiling of capsid proteins from Adeno-Associated Virus serotypes. Glycobiology 2024; 34:cwad074. [PMID: 37774344 PMCID: PMC10950483 DOI: 10.1093/glycob/cwad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023] Open
Abstract
Adeno-associated virus (AAV) vector has become the leading platform for gene delivery. Each serotype exhibits a different tissue tropism, immunogenicity, and in vivo transduction performance. Therefore, selecting the most suitable AAV serotype is critical for efficient gene delivery to target cells or tissues. Genome divergence among different serotypes is due mainly to the hypervariable regions of the AAV capsid proteins. However, the heterogeneity of capsid glycosylation is largely unexplored. In the present study, the N-glycosylation profiles of capsid proteins of AAV serotypes 1 to 9 have been systemically characterized and compared using a previously developed high-throughput and high-sensitivity N-glycan profiling platform. The results showed that all 9 investigated AAV serotypes were glycosylated, with comparable profiles. The most conspicuous feature was the high abundance mannosylated N-glycans, including FM3, M5, M6, M7, M8, and M9, that dominated the chromatograms within a range of 74 to 83%. Another feature was the relatively lower abundance of fucosylated and sialylated N-glycan structures, in the range of 23%-40% and 10%-17%, respectively. However, the exact N-glycan composition differed. These differences may be utilized to identify potential structural relationships between the 9 AAV serotypes. The current research lays the foundation for gaining better understanding of the importance of N-glycans on the AAV capsid surface that may play a significant role in tissue tropism, interaction with cell surface receptors, cellular uptake, and intracellular processing.
Collapse
Affiliation(s)
- Yongjing Xie
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Michael Butler
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
7
|
Romann P, Vuillemin T, Pavone S, Jordan M, Perilleux A, Souquet J, Bielser JM, Herwig C, Villiger TK. Maduramycin, a novel glycosylation modulator for mammalian fed-batch and steady-state perfusion processes. J Biotechnol 2024; 383:73-85. [PMID: 38340899 DOI: 10.1016/j.jbiotec.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Controlling high-mannose (HM) content of therapeutic proteins during process intensification, reformulation for subcutaneous delivery, antibody-drug conjugate or biosimilar manufacturing represents an ongoing challenge. Even though a range of glycosylation levers to increase HM content exist, modulators specially increasing M5 glycans are still scarce. Several compounds of the polyether ionophore family were screened for their ability to selectively increase M5 glycans of mAb products and compared to the well-known α-mannosidase I inhibitor kifunensine known to increase mainly M8-M9 glycans. Maduramycin, amongst other promising polyether ionophores, showed the desired effect on different cell lines. For fed-batch processes, a double bolus addition modulator feed strategy was developed maximizing the effect on glycosylation by minimizing impact on culture performance. Further, a continuous feeding strategy for steady-state perfusion processes was successfully developed, enabling consistent product quality at elevated HM glycan levels. With kifunensine and maduramycin showing inverse effects on the relative HM distribution, a combined usage of these modulators was further evaluated to fine-tune a desired HM glycan pattern. The discovered HM modulators expand the current HM modulating toolbox for biotherapeutics. Their application not only for fed-batch processes, but also steady-state perfusion processes, make them a universal tool with regards to fully continuous manufacturing processes.
Collapse
Affiliation(s)
- Patrick Romann
- Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland; Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Thomas Vuillemin
- Global Drug Substance Development, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Corsier-sur-Vevey, Switzerland
| | - Silvia Pavone
- Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Martin Jordan
- Global Drug Substance Development, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Corsier-sur-Vevey, Switzerland
| | - Arnaud Perilleux
- Global Drug Substance Development, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Corsier-sur-Vevey, Switzerland
| | - Jonathan Souquet
- Global Drug Substance Development, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Corsier-sur-Vevey, Switzerland
| | - Jean-Marc Bielser
- Global Drug Substance Development, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Corsier-sur-Vevey, Switzerland
| | - Christoph Herwig
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Thomas K Villiger
- Institute for Pharma Technology, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| |
Collapse
|
8
|
Gstöttner C, Lippold S, Hook M, Yang F, Haberger M, Wuhrer M, Falck D, Schlothauer T, Domínguez-Vega E. Benchmarking glycoform-resolved affinity separation - mass spectrometry assays for studying FcγRIIIa binding. Front Immunol 2024; 15:1347871. [PMID: 38469305 PMCID: PMC10925690 DOI: 10.3389/fimmu.2024.1347871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
The antibody- FcγRIIIa interaction triggers key immunological responses such as antibody dependent cellular cytotoxicity (ADCC), making it highly important for therapeutic mAbs. Due to the direct glycan-glycan interaction with FcγRIIIa receptor, differences in antibody glycosylation can drastically influence the binding affinity. Understanding the differential binding of mAb glycoforms is a very important, yet challenging task due to the co-existence of multiple glycoforms in a sample. Affinity liquid chromatography (AC) and affinity capillary electrophoresis (ACE) hyphenated with mass spectrometry (MS) can provide glycoform-resolved affinity profiles of proteins based on their differences in either dissociation (AC) or equilibrium (ACE) constants. To cross-validate the affinity ranking provided by these complementary novel approaches, both techniques were benchmarked using the same FcγRIIIa constructs. Both approaches were able to assess the mAb - FcγRIIIa interaction in a glycoform selective manner and showed a clear increase in binding for fully versus hemi-fucosylated mAbs. Also, other features, such as increasing affinity with elevated galactosylation or the binding affinity for high mannose glycoforms were consistent. We further applied these approaches to assess the binding towards the F158 allotype of FcγRIIIa, which was not reported before. The FcγRIIIa F158 allotype showed a very similar profile compared to the V158 receptor with the strongest increase in binding due to afucosylation and only a slight increase in binding with additional galactosylation. Both techniques showed a decrease of the binding affinity for high mannose glycoforms for FcγRIIIa F158 compared to the V158 variant. Overall, both approaches provided very comparable results in line with orthogonal methods proving the capabilities of separation-based affinity approaches to study FcγR binding of antibody glycoforms.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Steffen Lippold
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Michaela Hook
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Markus Haberger
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Baumeister J, Meudt M, Ebert S, Rosenau F, Mizaikoff B, Blech M, Aertker KMJ, Higel F. Decoding the mannose receptor-mAb interaction: the importance of high-mannose N-glycans and glycan-pairing. MAbs 2024; 16:2400414. [PMID: 39245969 PMCID: PMC11385167 DOI: 10.1080/19420862.2024.2400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
During the development process of therapeutic monoclonal antibodies (mAbs), it is crucial to control (critical) quality attributes such as N-glycosylation influencing pharmacokinetics (PK) and Fc effector functions. Previous reports have shown that mAbs containing high-mannose N-glycans are cleared faster from blood circulation, leading to reduced half-lives. The high-mannose N-glycan content of mAbs can be influenced during the cell culture process by factors such as cell lines, process conditions, and media. Furthermore, mAbs have either one high mannose N-glycan (asymmetrical high-mannose glyco-pair) or two high mannose N-glycans (symmetrical high-mannose glyco-pair). The hypothesis that the mannose receptor (MR, CD206) accelerates clearance by facilitating their internalization and subsequent lysosomal degradation is widespread. However, the interaction between MR and mAbs has not been explicitly demonstrated. This study aimed to investigate this interaction, providing the first systematic demonstration of MR binding to the Fc region of mAbs with high-mannose N-glycans. Two novel analytical methods, MR surface plasmon resonance and MR affinity chromatography, were developed and applied to investigate the MR-mAb interaction. The interaction is found to be dependent on high-mannose content, but is independent of the mAb format or sequence. However, different glyco-pairs exhibited varying binding affinities to the MR, with the symmetrical high-mannose glyco-pair showing the strongest binding properties. These findings strengthen the hypothesis for the MR-mediated mAb interaction and contribute to a deeper understanding of the MR-mAb interaction, which could affect the criticality of high-mannose containing mAbs development strategies of IgG-based molecules and improve their PK profiles.
Collapse
Affiliation(s)
- Julia Baumeister
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Maximilian Meudt
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Sybille Ebert
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach an der Riss, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Michaela Blech
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kristina M J Aertker
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Fabian Higel
- Global CMC Experts NBE, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
10
|
Cvijić T, Horvat M, Plahutnik J, Golob A, Marušič J. Multivariate quantitative analysis of glycan impact on IgG1 effector functions. MAbs 2024; 16:2430295. [PMID: 39572418 PMCID: PMC11587841 DOI: 10.1080/19420862.2024.2430295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Development of novel therapeutic proteins and biosimilars requires a thorough understanding of the relationship between their structure and function. Particularly, how IgG glycosylation affects its effector functions is a point increasingly underscored in guidelines by the World Health Organization and regulatory agencies. Our results show that just a 1% decrease in Fc fucosylation can lead to a more than 25% increase in antibody-dependent cell-mediated cytotoxicity. The intercorrelated nature of glycan patterns, combined with the low variability and lack of well-defined glycan patterns in process development and manufacture samples, makes studying the effects of individual glycan structures challenging. The conventional approach to structure-function studies often relies on a suboptimal set of tools, such as the one-factor-at-a-time method for experimental planning and univariate data analysis. Here, we introduce a systematic approach to understanding and prediction of the impact of Fc glycans on effector functions, using a combination of the design of experiment, multivariate data analysis, and in-vitro glycoengineering. This approach adheres to quality-by-design principles and aligns with regulatory agency guidelines. A variety of analytical assays, including binding and cell-based assays, were applied to investigate the effect of individual glycans of the IgG1 molecule. The regression models developed here provide a quantitative explanation and prediction of the impact of individual glycan features on the binding to FcγRs and bioactivity of the therapeutic protein. To the best of our knowledge, this is the first report of a systematic approach to quantitatively understand the multivariate impact of glycosylation on the effector functionality of therapeutic monoclonal antibodies, providing valuable tools for advancing therapeutic protein development.
Collapse
Affiliation(s)
- Tamara Cvijić
- Lek d.d. Part of Sandoz, Biopharma Technical Development, Ljubljana, Slovenia
- Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Horvat
- Lek d.d. Part of Sandoz, Biopharma Technical Development, Ljubljana, Slovenia
| | - Jakob Plahutnik
- Lek d.d. Part of Sandoz, Biopharma Technical Development, Ljubljana, Slovenia
| | - Ana Golob
- Lek d.d. Part of Sandoz, Biopharma Technical Development, Ljubljana, Slovenia
| | - Jaka Marušič
- Lek d.d. Part of Sandoz, Biopharma Technical Development, Ljubljana, Slovenia
| |
Collapse
|
11
|
Larsen HA, Atkins WM, Nath A. The origins of nonideality exhibited by monoclonal antibodies and Fab fragments in human serum. Protein Sci 2023; 32:e4812. [PMID: 37861473 PMCID: PMC10659951 DOI: 10.1002/pro.4812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The development of therapeutic antibodies remains challenging, time-consuming, and expensive. A key contributing factor is a lack of understanding of how proteins are affected by complex biological environments such as serum and plasma. Nonideality due to attractive or repulsive interactions with cosolutes can alter the stability, aggregation propensity, and binding interactions of proteins in solution. Fluorescence correlation spectroscopy (FCS) can be used to measure apparent second virial coefficient (B2,app ) values for therapeutic and model monoclonal antibodies (mAbs) that capture the nature and strength of interactions with cosolutes directly in undiluted serum and similar complex biological media. Here, we use FCS-derived B2,app measurements to identify the components of human serum responsible for nonideal interactions with mAbs and Fab fragments. Most mAbs exhibit neutral or slightly attractive interactions with intact serum. Generally, mAbs display repulsive interactions with albumin and mildly attractive interactions with IgGs in the context of whole serum. Crucially, however, these attractive interactions are much stronger with pooled IgGs isolated from other serum components, indicating that the effects of serum nonideality can only be understood by studying the intact medium (rather than isolated components). Moreover, Fab fragments universally exhibited more attractive interactions than their parental mAbs, potentially rendering them more susceptible to nonideality-driven perturbations. FCS-based B2,app measurements have the potential to advance our understanding of how physiological environments impact protein-based therapeutics in general. Furthermore, incorporating such assays into preclinical biologics development may help de-risk molecules and make for a faster and more efficient development process.
Collapse
Affiliation(s)
- Hayli A. Larsen
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - William M. Atkins
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Abhinav Nath
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
12
|
Lake BM, Rullo AF. Offsetting Low-Affinity Carbohydrate Binding with Covalency to Engage Sugar-Specific Proteins for Tumor-Immune Proximity Induction. ACS CENTRAL SCIENCE 2023; 9:2064-2075. [PMID: 38033792 PMCID: PMC10683482 DOI: 10.1021/acscentsci.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 12/02/2023]
Abstract
Carbohydrate-binding receptors are often used by the innate immune system to potentiate inflammation, target endocytosis/destruction, and adaptive immunity (e.g., CD206, DC-SIGN, MBL, and anticarbohydrate antibodies). To access this class of receptors for cancer immunotherapy, a growing repertoire of bifunctional proximity-inducing therapeutics use high-avidity multivalent carbohydrate binding domains to offset the intrinsically low affinity associated with monomeric carbohydrate-protein binding interactions (Kd ≈ 10-3-10-6 M). For applications aimed at recruiting anticarbohydrate antibodies to tumor cells, large synthetic scaffolds are used that contain both a tumor-binding domain (TBD) and a multivalent antibody-binding domain (ABD) comprising multiple l-rhamnose monosaccharides. This allows for stable bridging between tumor cells and antibodies, which activates tumoricidal immune function. Problematically, such multivalent macromolecules can face limitations including synthetic and/or structural complexity and the potential for off-target immune engagement. We envisioned that small bifunctional "proximity-inducing" molecules containing a low-affinity monovalent ABD could efficiently engage carbohydrate-binding receptors for tumor-immune proximity by coupling weak binding with covalent engagement. Typical covalent drugs and electrophilic chimeras use high-affinity ligands to promote the fast covalent engagement of target proteins (i.e., large kinact/KI), driven by a favorably small KI for binding. We hypothesized the much less favorable KI associated with carbohydrate-protein binding interactions can be offset by a favorably large kinact for the covalent labeling step. In the current study, we test this hypothesis in the context of a model system that uses rhamnose-specific antibodies to induce tumor-immune proximity and tumoricidal function. We discovered that synthetic chimeric molecules capable of preorganizing an optimal electrophile (i.e., SuFEx vs activated ester) for protein engagement can rapidly covalently engage natural sources of antirhamnose antibody using only a single low-affinity rhamnose monosaccharide ABD. Strikingly, we observe chimeric molecules lacking an electrophile, which can only noncovalently bind the antibody, completely lack tumoricidal function. This is in stark contrast to previous work targeting small molecule hapten and peptide-specific antibodies. Our findings underscore the utility of covalency as a strategy to engage low-affinity carbohydrate-specific proteins for tumor-immune proximity induction.
Collapse
Affiliation(s)
- Benjamin
P. M. Lake
- Department
of Medicine, McMaster Immunology Research Center, Center
for Discovery in Cancer Research, Department of Biochemistry and Biomedical
Sciences, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton Ontario, Canada
| | - Anthony F. Rullo
- Department
of Medicine, McMaster Immunology Research Center, Center
for Discovery in Cancer Research, Department of Biochemistry and Biomedical
Sciences, and Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton Ontario, Canada
| |
Collapse
|
13
|
Rocamora F, Peralta AG, Shin S, Sorrentino J, Wu MYM, Toth EA, Fuerst TR, Lewis NE. Glycosylation shapes the efficacy and safety of diverse protein, gene and cell therapies. Biotechnol Adv 2023; 67:108206. [PMID: 37354999 PMCID: PMC11168894 DOI: 10.1016/j.biotechadv.2023.108206] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo G Peralta
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seunghyeon Shin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - James Sorrentino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mina Ying Min Wu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Lippold S, Mistry K, Lenka S, Whang K, Liu P, Pitschi S, Kuhne F, Reusch D, Cadang L, Knaupp A, Izadi S, Dunkle A, Yang F, Schlothauer T. Function-structure approach reveals novel insights on the interplay of Immunoglobulin G 1 proteoforms and Fc gamma receptor IIa allotypes. Front Immunol 2023; 14:1260446. [PMID: 37790943 PMCID: PMC10544997 DOI: 10.3389/fimmu.2023.1260446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Human Fc gamma receptor IIa (FcγRIIa) or CD32a has two major allotypes with a single amino acid difference at position 131 (histidine or arginine). Differences in FcγRIIa allotypes are known to impact immunological responses such as the clinical outcome of therapeutic monoclonal antibodies (mAbs). FcγRIIa is involved in antibody-dependent cellular phagocytosis (ADCP), which is an important contributor to the mechanism-of-action of mAbs by driving phagocytic clearance of cancer cells. Hence, understanding the impact of individual mAb proteoforms on the binding to FcγRIIa, and its different allotypes, is crucial for defining meaningful critical quality attributes (CQAs). Here, we report a function-structure based approach guided by novel FcγRIIa affinity chromatography-mass spectrometry (AC-MS) assays to assess individual IgG1 proteoforms. This allowed to unravel allotype-specific differences of IgG1 proteoforms on FcγRIIa binding. FcγRIIa AC-MS confirmed and refined structure-function relationships of IgG1 glycoform interactions. For example, the positive impact of afucosylation was higher than galactosylation for FcγRIIa Arg compared to FcγRIIa His. Moreover, we observed FcγRIIa allotype-opposing and IgG1 proteoform integrity-dependent differences in the binding response of stress-induced IgG1 proteoforms comprising asparagine 325 deamidation. The FcγRIIa-allotype dependent binding differences resolved by AC-MS were in line with functional ADCP-surrogate bioassay models. The molecular basis of the observed allotype specificity and proteoform selectivity upon asparagine 325 deamidation was elucidated using molecular dynamics. The observed differences were attributed to the contributions of an inter-molecular salt bridge between IgG1 and FcγRIIa Arg and the contribution of an intra-molecular hydrophobic pocket in IgG1. Our work highlights the unprecedented structural and functional resolution of AC-MS approaches along with predictive biological significance of observed affinity differences within relevant cell-based methods. This makes FcγRIIa AC-MS an invaluable tool to streamline the CQA assessment of therapeutic mAbs.
Collapse
Affiliation(s)
- Steffen Lippold
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Karishma Mistry
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Sunidhi Lenka
- Pharmaceutical Development, Genentech, A Member of The Roche Group, South San Francisco, CA, United States
| | - Kevin Whang
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Peilu Liu
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Sebastian Pitschi
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Felix Kuhne
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Lance Cadang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Alexander Knaupp
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Saeed Izadi
- Pharmaceutical Development, Genentech, A Member of The Roche Group, South San Francisco, CA, United States
| | - Alexis Dunkle
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
15
|
Svecla M, Nour J, Bladergroen MR, Nicolardi S, Zhang T, Beretta G, Wuhrer M, Norata GD, Falck D. Impact of Asialoglycoprotein Receptor and Mannose Receptor Deficiency on Murine Plasma N-glycome Profiles. Mol Cell Proteomics 2023; 22:100615. [PMID: 37414249 PMCID: PMC10462831 DOI: 10.1016/j.mcpro.2023.100615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023] Open
Abstract
The asialoglycoprotein receptor (ASGPR) and the mannose receptor C-type 1 (MRC1) are well known for their selective recognition and clearance of circulating glycoproteins. Terminal galactose and N-Acetylgalactosamine are recognized by ASGPR, while terminal mannose, fucose, and N-Acetylglucosamine are recognized by MRC1. The effects of ASGPR and MRC1 deficiency on the N-glycosylation of individual circulating proteins have been studied. However, the impact on the homeostasis of the major plasma glycoproteins is debated and their glycosylation has not been mapped with high molecular resolution in this context. Therefore, we evaluated the total plasma N-glycome and plasma proteome of ASGR1 and MRC1 deficient mice. ASGPR deficiency resulted in an increase in O-acetylation of sialic acids accompanied by higher levels of apolipoprotein D, haptoglobin, and vitronectin. MRC1 deficiency decreased fucosylation without affecting the abundance of the major circulating glycoproteins. Our findings confirm that concentrations and N-glycosylation of the major plasma proteins are tightly controlled and further suggest that glycan-binding receptors have redundancy, allowing compensation for the loss of one major clearance receptor.
Collapse
Affiliation(s)
- M Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - J Nour
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - M R Bladergroen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - S Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - G Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - M Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| | - D Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
16
|
Kinzer JL, Halseth TA, Kang J, Kim SY, Kumaran P, Ford M, Saveliev S, Skilton SJ, Schwendeman A. Physicochemical characterization and functionality comparison of Humira®(adalimumab), Remicade®(infliximab) and Simponi Aria®(golimumab). Int J Pharm 2023; 635:122646. [PMID: 36709835 DOI: 10.1016/j.ijpharm.2023.122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
FDA-approved anti-TNFα biopharmaceuticals are successful in treating a range of autoimmune diseases. However, not all anti-TNFα products are identical in their patient outcomes, suggesting that there may be product-specific differences stemming from protein structural differences, doses and routes of administration. In this work, we focus only on structural and functional differences across three full-length anti-TNFα mAbs (Humira®, Remicade®, and Simponi Aria®) to better understand the implications of such differences on the products' efficacy. For structural characterization, we quantified N-glycans using mass spectrometry and fluorescence labeling. From these studies, we observed that Remicade® had the highest percent of afucosylated glycans (15.5 ± 1.3 %) and the largest number of unique glycans, 28. While Humira® had the fewest unique glycans, 15, and 11.4 ± 0.8 % of afucosylated, high-mannose glycans. For the functional studies we tested TNFα binding via ELISA, FcγRIIIa binding via AlphaLISA and effector function using an ADCC bioreporter assay. Humira® had a significantly lower EC50 (1.9 ± 0.1 pM) for ELISA and IC50 (10.5 ± 1.1 nM) for AlphaLISA, suggesting that Humira® has higher TNFα and FcγRIIIa binding affinity than Remicade® and Simponi Aria®. Humira® was also the most potent in the bioreporter assay with an EC50 value of 0.55 ± 0.03 nM compared to Remicade® (0.64 ± 0.04 nM) and Simponi Aria® (0.67 ± 0.03 nM). This comparison is significant as it highlights functional differences between mAbs with shared mechanisms of action when examined in a single laboratory and under one set of conditions.
Collapse
Affiliation(s)
- Jill L Kinzer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, United States
| | - Troy A Halseth
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, United States
| | - Jukyung Kang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, United States
| | - Sang Yeop Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, United States
| | - Preethi Kumaran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, United States
| | - Michael Ford
- MS Bioworks, 3950 Varsity Dr, Ann Arbor, MI 48108, United States
| | - Sergei Saveliev
- Promega Corporation, 2800 Woods Hollow Rd, Madison, WI 53711, United States
| | - St John Skilton
- Protein Metrics, 20863 Stevens Creek Blvd #450, Cupertino, CA 95014, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, United States; Biointerfaces Institute, NCRC, 2800 Plymouth Rd, Ann Arbor, MI 48109, United States.
| |
Collapse
|
17
|
Wei YL, Wegesser T, Kuhns S, Werner J, Lebrec H, Wang X. Strategies to evaluate potential effector function of glycan variants: a case study of ordesekimab (AMG 714 or PRV-015). J Immunotoxicol 2022; 19:109-116. [PMID: 36083248 DOI: 10.1080/1547691x.2022.2113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The potential for effector functions of therapeutic antibodies, including antibody-dependent cell-mediated cytotoxicity (ADCC), is a biological activity of interest for characterization, regardless of if ADCC is an intended primary pharmacological effect. The composition of the conserved antibody Fc glycan can vary as a function of post-translational processing which may affect the binding affinity to Fc receptors, leading to a change of effector activity. Ordesekimab (AMG 714 or PRV-015), a fully human immunoglobulin G1-kappa anti-interleukin (IL)-15 monoclonal antibody, is in clinical development for celiac disease. The binding of ordesekimab to IL-15 inhibits the interaction of IL-15 with the IL-2Rβ and common γ chain of the IL-15 receptor complex, but not with the IL-15Rα chain. Therefore, the simultaneous binding of ordesekimab to the Fcγ receptor (R) IIIα expressed on natural killer (NK) cells and to the IL-15/IL-15Rα complex on cells such as monocytes may theoretically enable ADCC toward the IL-15Rα-expressing cells. The high mannose (HM) levels on the Fc glycan were found to vary in different lots of ordesekimab resulting from refinements to the manufacturing process, and the impact on ordesekimab-mediated ADCC activity was evaluated in in vivo and in vitro studies. A review of nonclinical and clinical data found no evidence of ordesekimab-induced depletion of monocytes, or cytotoxicity in organs with wide IL-15Rα expression, suggesting a lack of in vivo ADCC activity. In addition, in vitro peripheral blood mononuclear cells-based ADCC assay did not reveal any cytolytic effect of ordesekimab with various levels of HM content when cocultured with recombinant human IL-15. Taken together, these data demonstrate that ADCC is not a potential liability for ordesekimab and does not contribute to the reduction of IL-15-mediated inflammation, the intended pharmacological effect.
Collapse
Affiliation(s)
- Yu-Ling Wei
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Teresa Wegesser
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Scott Kuhns
- Process Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Jonathan Werner
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Hervé Lebrec
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Xiaoting Wang
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| |
Collapse
|
18
|
Welch J, Ausin C, Brahme N, Lacana E, Ricci S, Schultz‐DePalo M. The Mannose in the Mirror: A Reflection on the Pharmacokinetic Impact of High Mannose Glycans of Monoclonal Antibodies in Biosimilar Development. Clin Pharmacol Ther 2022; 113:1003-1010. [PMID: 36322507 DOI: 10.1002/cpt.2783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022]
Abstract
Biosimilar development has a well-documented foundation of product quality and extensive comparative analytics providing the bulk of the "totality of the evidence" that a proposed product is biosimilar to its reference product. This work provides a retrospective evaluation of a single critical quality attribute-high mannose glycans for monoclonal antibody biosimilars. Given the well-established conclusion that high mannose glycans can impact pharmacokinetic (PK) profile, we performed a retrospective evaluation of 21 monoclonal antibody biosimilar programs (those licensed before April 2022), their levels of glycans, and the methods used to study them. We provide herein a summary of the methods used and their relative performance. We also present a subset analysis for seven biosimilar products with levels of high mannose that differ from the corresponding reference product (and where other differences in quality attributes between the two that may influence PK profile were not observed or considered minor) and compared the PK profiles. Critically, this analysis has demonstrated that the measurement of glycan profiles is highly precise, reproducible within and across programs, and can detect differences in mannose levels, even those that do not impact PK. These results provide support that analytics rather than pharmacokinetic data may be sufficient to predict whether differences within a certain magnitude of this attribute are likely to impact PK. This work enhances the Agency's understanding of this issue allowing for better understanding of challenges faced by the biotechnology industry developing biosimilars.
Collapse
Affiliation(s)
- Joel Welch
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products Silver Spring Maryland USA
| | - Cristina Ausin
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Office of Therapeutic Biologics and Biosimilars Silver Spring Maryland USA
| | - Nina Brahme
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Office of Therapeutic Biologics and Biosimilars Silver Spring Maryland USA
| | - Emanuela Lacana
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Office of Therapeutic Biologics and Biosimilars Silver Spring Maryland USA
| | - Stacey Ricci
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Office of Therapeutic Biologics and Biosimilars Silver Spring Maryland USA
| | - Marlene Schultz‐DePalo
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products Silver Spring Maryland USA
| |
Collapse
|
19
|
Haga Y, Yamada M, Fujii R, Saichi N, Yokokawa T, Hama T, Hayakawa Y, Ueda K. Fast and Ultrasensitive Glycoform Analysis by Supercritical Fluid Chromatography–Tandem Mass Spectrometry. Anal Chem 2022; 94:15948-15955. [DOI: 10.1021/acs.analchem.2c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshimi Haga
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Masaki Yamada
- Global Application Development Center, Shimadzu Corporation, Nishinokyo Kuwabara-cho 1, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Risa Fujii
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Naomi Saichi
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Takashi Yokokawa
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Toshihiro Hama
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Yoshihiro Hayakawa
- Global Application Development Center, Shimadzu Corporation, Nishinokyo Kuwabara-cho 1, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
20
|
Yang S, Cui M, Liu Q, Liao Q. Glycosylation of immunoglobin G in tumors: Function, regulation and clinical implications. Cancer Lett 2022; 549:215902. [PMID: 36096412 DOI: 10.1016/j.canlet.2022.215902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Immunoglobulin G (IgG) is the predominant component in humoral immunity and the major effector of neutralizing heterogeneous antigens. Glycosylation, as excessive posttranscriptional modification, can modulate IgG immune function. Glycosylated IgG has been reported to correlate with tumor progression, presenting several characteristic modifications, including the core fucose, galactose, sialic acid, and the bisect N-acetylglucosamine (GlcNAc). Meanwhile, IgG glycosylation regulates tumor immunity involved in tumor progression and is thus a potential target. Herein, we summarized the research progression to provide novel insight into the application of IgG glycosylation in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Feng J, Jiang L, Cao Y, Deng C, Li Y. Tractable Method for Rapid Quality Assessment of Therapeutic Antibodies in Harvested Cell Culture Fluid based on FcγRIIIa-Immobilized Magnetic Microspheres. Anal Chem 2022; 94:11492-11499. [PMID: 35938925 DOI: 10.1021/acs.analchem.2c01350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
FcγRIIIa-binding affinity is one of the key factors to ensure the efficacy of many antitumor therapeutic antibodies, which should be monitored along with the titer, protein aggregation, and other critical quality attributes. The conventional workflow for the quality assessment of therapeutic antibodies in harvested cell culture fluid (HCCF) is time-consuming and costly nevertheless. In this study, a tractable method was established for rapid quality assessment of a HCCF sample through differentially extracting IgG with different FcγRIIIa affinity levels using FcγRIIIa-immobilized magnetic microspheres, followed by size exclusion chromatography (SEC) to determine the amount and monomer percentage of IgGs in the preceding eluate. FcγRIIIa-immobilized magnetic microspheres with polydopamine (PDA) and hydrophilic dendrimer (PAMAM) coating (denoted as Fe3O4@PDA@PAMAM-FcγRIIIa) were synthesized for the first time as magnetic adsorbents. The PDA cladding endowed the composites with good chemical stability in acidic elution buffer, and the PAMAM dendrimer empowered the composites of high ligand immobilization capacity and hydrophilic surface. The labile FcγRIIIa was immobilized under mild conditions. By directly applying a simple magnetic solid phase extraction procedure to treat HCCF, favored IgG species with high FcγRIIIa affinity would be selectively captured by Fe3O4@PDA@PAMAM-FcγRIIIa composites for subsequent SEC analysis. The monomer peak area value in SEC, which was set as the read-out of the proposed method, correlated directly with the theoretical overall quality of standard-spiked HCCF samples.
Collapse
Affiliation(s)
- Jianan Feng
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Linlin Jiang
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiqing Cao
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Yan Li
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
22
|
Liu S, Shah DK. Mathematical Models to Characterize the Absorption, Distribution, Metabolism, and Excretion of Protein Therapeutics. Drug Metab Dispos 2022; 50:867-878. [PMID: 35197311 PMCID: PMC11022906 DOI: 10.1124/dmd.121.000460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Therapeutic proteins (TPs) have ranked among the most important and fastest-growing classes of drugs in the clinic, yet the development of successful TPs is often limited by unsatisfactory efficacy. Understanding pharmacokinetic (PK) characteristics of TPs is key to achieving sufficient and prolonged exposure at the site of action, which is a prerequisite for eliciting desired pharmacological effects. PK modeling represents a powerful tool to investigate factors governing in vivo disposition of TPs. In this mini-review, we discuss many state-of-the-art models that recapitulate critical processes in each of the absorption, distribution, metabolism/catabolism, and excretion pathways of TPs, which can be integrated into the physiologically-based pharmacokinetic framework. Additionally, we provide our perspectives on current opportunities and challenges for evolving the PK models to accelerate the discovery and development of safe and efficacious TPs. SIGNIFICANCE STATEMENT: This minireview provides an overview of mechanistic pharmacokinetic (PK) models developed to characterize absorption, distribution, metabolism, and elimination (ADME) properties of therapeutic proteins (TPs), which can support model-informed discovery and development of TPs. As the next-generation of TPs with diverse physicochemical properties and mechanism-of-action are being developed rapidly, there is an urgent need to better understand the determinants for the ADME of TPs and evolve existing platform PK models to facilitate successful bench-to-bedside translation of these promising drug molecules.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
23
|
Vattepu R, Sneed SL, Anthony RM. Sialylation as an Important Regulator of Antibody Function. Front Immunol 2022; 13:818736. [PMID: 35464485 PMCID: PMC9021442 DOI: 10.3389/fimmu.2022.818736] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Antibodies play a critical role in linking the adaptive immune response to the innate immune system. In humans, antibodies are categorized into five classes, IgG, IgM, IgA, IgE, and IgD, based on constant region sequence, structure, and tropism. In serum, IgG is the most abundant antibody, comprising 75% of antibodies in circulation, followed by IgA at 15%, IgM at 10%, and IgD and IgE are the least abundant. All human antibody classes are post-translationally modified by sugars. The resulting glycans take on many divergent structures and can be attached in an N-linked or O-linked manner, and are distinct by antibody class, and by position on each antibody. Many of these glycan structures on antibodies are capped by sialic acid. It is well established that the composition of the N-linked glycans on IgG exert a profound influence on its effector functions. However, recent studies have described the influence of glycans, particularly sialic acid for other antibody classes. Here, we discuss the role of glycosylation, with a focus on terminal sialylation, in the biology and function across all antibody classes. Sialylation has been shown to influence not only IgG, but IgE, IgM, and IgA biology, making it an important and unappreciated regulator of antibody function.
Collapse
Affiliation(s)
- Ravi Vattepu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sunny Lyn Sneed
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Wolf B, Piksa M, Beley I, Patoux A, Besson T, Cordier V, Voedisch B, Schindler P, Stöllner D, Perrot L, von Gunten S, Brees D, Kammüller M. Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity. Immunology 2022; 166:380-407. [PMID: 35416297 DOI: 10.1111/imm.13481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
In this study we show that glycosylation is relevant for immune recognition of therapeutic antibodies, and that defined glycan structures can modulate immunogenicity. Concerns regarding immunogenicity arise from the high heterogeneity in glycosylation that is difficult to control and can deviate from human glycosylation if produced in non-human cell lines. While non-human glycosylation is thought to cause hypersensitivity reactions and immunogenicity, less is known about effects of Fc-associated glycan structures on immune cell responses. We postulated that glycosylation influences antigen recognition and subsequently humoral responses to therapeutic antibodies by modulating 1) recognition and uptake by dendritic cells (DCs), and 2) antigen routing, processing and presentation. Here, we compared different glycosylation variants of the antibody rituximab (RTX) in in vitro assays using human DCs and T cells as well as in in vivo studies. We found that human DCs bind and internalize unmodified RTX stronger compared to its aglycosylated form suggesting that glycosylation mediates uptake after recognition by glycan-specific receptors. Furthermore, we show that DC-uptake of RTX increases or decreases if glycosylation is selectively modified to recognize activating (by mannosylation) or inhibitory lectin receptors (by sialylation). Moreover, glycosylation seems to influence antigen presentation by DCs because specific glycovariants tend to induce either stronger or weaker T cell activation. Finally, we demonstrate that antibody glycosylation impacts anti-drug antibody (ADA) responses to RTX in vivo. Hence, defined glycan structures can modulate immune recognition and alter ADA responses. Glyco-engineering may help to decrease clinical immunogenicity and ADA-associated adverse events such as hypersensitivity reactions.
Collapse
Affiliation(s)
- Babette Wolf
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mateusz Piksa
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabelle Beley
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Agnes Patoux
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thierry Besson
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Valerie Cordier
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Bernd Voedisch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Ludovic Perrot
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Dominique Brees
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
25
|
N-Glycosylation of monoclonal antibody therapeutics: A comprehensive review on significance and characterization. Anal Chim Acta 2022; 1209:339828. [DOI: 10.1016/j.aca.2022.339828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/02/2023]
|
26
|
Edwards E, Livanos M, Krueger A, Dell A, Haslam SM, Mark Smales C, Bracewell DG. Strategies to Control Therapeutic Antibody Glycosylation during Bioprocessing: Synthesis and Separation. Biotechnol Bioeng 2022; 119:1343-1358. [PMID: 35182428 PMCID: PMC9310845 DOI: 10.1002/bit.28066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Glycosylation can be a critical quality attribute in biologic manufacturing. In particular, it has implications on the half‐life, immunogenicity, and pharmacokinetics of therapeutic monoclonal antibodies (mAbs), and must be closely monitored throughout drug development and manufacturing. To address this, advances have been made primarily in upstream processing, including mammalian cell line engineering, to yield more predictably glycosylated mAbs and the addition of media supplements during fermentation to manipulate the metabolic pathways involved in glycosylation. A more robust approach would be a conjoined upstream–downstream processing strategy. This could include implementing novel downstream technologies, such as the use of Fc γ‐based affinity ligands for the separation of mAb glycovariants. This review highlights the importance of controlling therapeutic antibody glycosylation patterns, the challenges faced in terms of glycosylation during mAb biosimilar development, current efforts both upstream and downstream to control glycosylation and their limitations, and the need for research in the downstream space to establish holistic and consistent manufacturing processes for the production of antibody therapies.
Collapse
Affiliation(s)
- Elizabeth Edwards
- Department of Biochemical Engineering, University College London, London, UK
| | - Maria Livanos
- Department of Biochemical Engineering, University College London, London, UK
| | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - C Mark Smales
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent, UK.,National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
27
|
Woodall DW, Dillon TM, Kalenian K, Padaki R, Kuhns S, Semin DJ, Bondarenko PV. Non-targeted characterization of attributes affecting antibody-FcγRIIIa V158 (CD16a) binding via online affinity chromatography-mass spectrometry. MAbs 2022; 14:2004982. [PMID: 34978527 PMCID: PMC8741291 DOI: 10.1080/19420862.2021.2004982] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antibodies facilitate targeted cell killing by engaging with immune cells such as natural killer cells through weak binding interactions with Fcγ receptors on the cell surface. Here, we evaluate the binding affinity of the receptor FcγRIIIa V158 (CD16a) for several therapeutic antibody classes, isoforms, and Fc-fusion proteins using an immobilized receptor affinity liquid chromatography (LC) approach coupled with online mass spectrometry (MS) detection. Aglycosylated FcγRIIIa was used in the affinity chromatography and compared with published affinities using glycosylated receptors. Affinity LC-MS differentiated the IgG1 antibodies primarily according to their Fc glycosylation patterns, with highly galactosylated species having greater affinity for the immobilized receptors and thus eluting later from the column (M5< G0F < G0 afucosylated ≅ G1F < G2F). Sialylated species bound weaker to their asialylated counterparts as reported previously. High mannose glycoforms bound weaker than G0F, contrary to previously published studies using glycosylated receptors. Also, increased receptor binding affinity associated with afucosylated antibodies was not observed with the aglycosylated FcγRIIIa. This apparent difference from previous findings highlighted the importance of the glycans on the receptors for mediating stronger binding interactions. Characterization of temperature-stressed samples by LC-MS peptide mapping revealed over 200 chemical and post-translational modifications, but only the Fc glycans, deamidation of EU N325, and an unknown modification to either proline or cysteine residues of the hinge region were found to have a statistically significant impact on binding. Abbreviations: Antibody-dependent cell-mediated cytotoxicity (ADCC), chimeric antigen receptor (CAR), Chinese hamster ovary (CHO), dithiothreitol (DTT), electrospray ionization (ESI), hydrogen-deuterium exchange (HDX), filter aided-sample preparation (FASP), Fcγ receptor (FcγR), fragment crystallizable (Fc), high-pressure liquid chromatography (HPLC), immunoglobulin G (IgG), liquid chromatography (LC), monoclonal antibody (mAb), mass spectrometry (MS), natural killer (NK), N-glycolylneuraminic acid (NGNA), N-acetylneuraminic acid (NANA), principal component analysis (PCA), surface plasmon resonance (SPR), trifluoroacetic acid (TFA), and extracted mass chromatogram (XMC).
Collapse
Affiliation(s)
- Daniel W Woodall
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Thomas M Dillon
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Kevin Kalenian
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Rupa Padaki
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Scott Kuhns
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc, Thousand Oaks, California, USA
| |
Collapse
|
28
|
Gao D, Nie L, Yuan J, Hu F, Wu Z, Lin Q, Wang H. Physicochemical and functional characterization of HS016, a biosimilar of adalimumab (Humira). J Pharm Sci 2021; 111:1142-1151. [PMID: 34863972 DOI: 10.1016/j.xphs.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
The characterization of a biosimilar drug HS016, the reference product adalimumab (Humira), and their biosimilarities were determined using physical chemistry and functional similarity tests. The primary and higher order structures, size and charge variants, glycosylation profiles, and in vitro potency of both antibodies were characterized both for unstressed and stability samples. Slight differences were observed in the relative levels of methionine oxidation, low molecular weight components, terminal lysine variant, high mannoses and galactosylated glycans between HS016 and Humira. However, no differences in antigen binding activity, Fc receptor affinity, antibody-dependent cell-mediated cytotoxicity or complemented-dependent cytotoxicity were found. The primary and higher order structures, physicochemical properties, and biological activity of HS016 and adalimumab were similar.
Collapse
Affiliation(s)
- Dong Gao
- BioRay Pharmaceutical Co., Ltd., Taizhou, China
| | - Lei Nie
- BioRay Pharmaceutical Co., Ltd., Taizhou, China
| | - Junjie Yuan
- Hisun BioPharmaceutical Co., Ltd., Hangzhou, China
| | - Feng Hu
- Hisun BioPharmaceutical Co., Ltd., Hangzhou, China
| | - Zhenhua Wu
- BioRay Pharmaceutical Co., Ltd., Taizhou, China
| | - Qunhai Lin
- Hisun BioPharmaceutical Co., Ltd., Hangzhou, China
| | - Haibin Wang
- BioRay Pharmaceutical Co., Ltd., Taizhou, China; Hisun BioPharmaceutical Co., Ltd., Hangzhou, China.
| |
Collapse
|
29
|
Abstract
Glycosylation, one of the most common post-translational modifications in mammalian cells, impacts many biological processes such as cell adhesion, proliferation and differentiation. As the most abundant glycoprotein in human serum, immunoglobulin G (IgG) plays a vital role in immune response and protection. There is a growing body of evidence suggests that IgG structure and function are modulated by attached glycans, especially N-glycans, and aberrant glycosylation is associated with disease states. In this chapter, we review IgG glycan repertoire and function, strategies for profiling IgG N-glycome and recent studies. Mass spectrometry (MS) based techniques are the most powerful tools for profiling IgG glycome. IgG glycans can be divided into high-mannose, biantennary complex and hybrid types, modified with mannosylation, core-fucosylation, galactosylation, bisecting GlcNAcylation, or sialylation. Glycosylation of IgG affects antibody half-life and their affinity and avidity for antigens, regulates crystallizable fragment (Fc) structure and Fcγ receptor signaling, as well as antibody effector function. Because of their critical roles, IgG N-glycans appear to be promising biomarkers for various disease states. Specific IgG glycosylation can convert a pro-inflammatory response to an anti-inflammatory activity. Accordingly, IgG glycoengineering provides a powerful approach to potentially develop effective drugs and treat disease. Based on the understanding of the functional role of IgG glycans, the development of vaccines with enhanced capacity and long-term protection are possible in the near future.
Collapse
|
30
|
Glycoengineering of Therapeutic Antibodies with Small Molecule Inhibitors. Antibodies (Basel) 2021; 10:antib10040044. [PMID: 34842612 PMCID: PMC8628514 DOI: 10.3390/antib10040044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the cornerstones of modern medicine, across an increasing range of therapeutic areas. All therapeutic mAbs are glycoproteins, i.e., their polypeptide chain is decorated with glycans, oligosaccharides of extraordinary structural diversity. The presence, absence, and composition of these glycans can have a profound effect on the pharmacodynamic and pharmacokinetic profile of individual mAbs. Approaches for the glycoengineering of therapeutic mAbs—the manipulation and optimisation of mAb glycan structures—are therefore of great interest from a technological, therapeutic, and regulatory perspective. In this review, we provide a brief introduction to the effects of glycosylation on the biological and pharmacological functions of the five classes of immunoglobulins (IgG, IgE, IgA, IgM and IgD) that form the backbone of all current clinical and experimental mAbs, including an overview of common mAb expression systems. We review selected examples for the use of small molecule inhibitors of glycan biosynthesis for mAb glycoengineering, we discuss the potential advantages and challenges of this approach, and we outline potential future applications. The main aim of the review is to showcase the expanding chemical toolbox that is becoming available for mAb glycoengineering to the biology and biotechnology community.
Collapse
|
31
|
Kotidis P, Pappas I, Avraamidou S, Pistikopoulos EN, Kontoravdi C, Papathanasiou MM. DigiGlyc: A hybrid tool for reactive scheduling in cell culture systems. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Kang CE, Lee S, Seo DH, Heo W, Kwon SH, Kim J, Lee J, Ko BJ, Koiwa H, Kim WT, Kim JY. Comparison of CD20 Binding Affinities of Rituximab Produced in Nicotiana benthamiana Leaves and Arabidopsis thaliana Callus. Mol Biotechnol 2021; 63:1016-1029. [PMID: 34185248 DOI: 10.1007/s12033-021-00360-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Plants are promising drug-production platforms with high economic efficiency, stability, and convenience in mass production. However, studies comparing the equivalency between the original antibodies and those produced in plants are limited. Amino acid sequences that constitute the Fab region of an antibody are diverse, and the post-transcriptional modifications that occur according to these sequences in animals and plants are also highly variable. In this study, rituximab, a blockbuster antibody drug used in the treatment of non-Hodgkin's lymphoma, was produced in Nicotiana benthamiana leaves and Arabidopsis thaliana callus, and was compared to the original rituximab produced in CHO cells. Interestingly, the epitope recognition and antigen-binding abilities of rituximab from N. benthamiana leaves were almost lost. In the case of rituximab produced in A. thaliana callus, the specific binding ability and CD20 capping activity were maintained, but the binding affinity was less than 50% of that of original rituximab from CHO cells. These results suggest that different plant species exhibit different binding affinities. Accordingly, in addition to the differences in PTMs between mammals and plants, the differences between the species must also be considered in the process of producing antibodies in plants.
Collapse
Affiliation(s)
- Cho Eun Kang
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Seungeun Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea
| | - Dong Hye Seo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Sun Hyung Kwon
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - JeongRyeol Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Byoung Joon Ko
- Mass Analysis Team, New Drug Development Center, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Hisashi Koiwa
- Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX77843-2133, USA
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03080, Republic of Korea.
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
33
|
Shenoy A, Yalamanchili S, Davis AR, Barb AW. Expression and Display of Glycoengineered Antibodies and Antibody Fragments with an Engineered Yeast Strain. Antibodies (Basel) 2021; 10:antib10040038. [PMID: 34698072 PMCID: PMC8544235 DOI: 10.3390/antib10040038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions with cell surface receptors enhance the therapeutic properties of many important antibodies, including the low-affinity Fc γ Receptors (FcγRs). These interactions require proper processing of the immunoglobulin G Fc N-glycan, and eliminating the N-glycan abolishes binding, restricting antibody production to mammalian expression platforms. Yeasts, for example, generate extensively mannosylated N-glycans that are unsuitable for therapeutics. However, Fc with a specifically truncated N-glycan still engages receptors with considerable affinity. Here we describe the creation and applications of a novel Saccharomyces cerevisiae strain that specifically modifies the IgG1 Fc domain with an N-glycan consisting of a single N-acetylglucosamine residue. This strain displayed glycoengineered Fc on its surface for screening yeast surface display libraries and also served as an alternative platform to produce glycoengineered Rituximab. An IgG-specific endoglycosidase (EndoS2) truncates the IgG1 Fc N-glycan. EndoS2 was targeted to the yeast ER using the signal peptide from the yeast protein disulfide isomerase (PDI) and a yeast ER retention signal (HDEL). Furthermore, >99% of the yeast expressed Rituximab displayed the truncated glycoform as determined by SDS-PAGE and ESI-MS analyses. Lastly, the yeast expressed Rituximab engaged the FcγRIIIa with the expected affinity (KD = 2.0 ± 0.5 μM) and bound CD20 on Raji B cells.
Collapse
Affiliation(s)
- Anjali Shenoy
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Srisaimaneesh Yalamanchili
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Alexander R. Davis
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
| | - Adam W. Barb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (A.S.); (S.Y.); (A.R.D.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
34
|
Schulze M, Niemann J, Wijffels RH, Matuszczyk J, Martens DE. Rapid intensification of an established CHO cell fed-batch process. Biotechnol Prog 2021; 38:e3213. [PMID: 34542245 PMCID: PMC9286570 DOI: 10.1002/btpr.3213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Currently, the mammalian biomanufacturing industry explores process intensification (PI) to meet upcoming demands of biotherapeutics while keeping production flexible but, more importantly, as economic as possible. However, intensified processes often require more development time compared with conventional fed‐batches (FBs) preventing their implementation. Hence, rapid and efficient, yet straightforward strategies for PI are needed. In this study we demonstrate such a strategy for the intensification of an N‐stage FB by implementing N‐1 perfusion cell culture and high inoculum cell densities resulting in a robust intensified FB (iFB). Furthermore, we show successful combination of such an iFB with the addition of productivity enhancers, which has not been reported so far. The conventional CHO cell FB process was step‐wise improved and intensified rapidly in multi‐parallel small‐scale bioreactors using N‐1 perfusion. The iFBs were performed in 15 and 250 ml bioreactors and allowed to evaluate the impact on key process indicators (KPI): the space–time yield (STY) was successfully doubled from 0.28 to 0.55 g/L d, while product quality was maintained. This gain was generated by initially increasing the inoculation density, thus shrinking process time, and second supplementation with butyric acid (BA), which reduced cell growth and enhanced cell‐specific productivity from ~25 to 37 pg/(cell d). Potential impacts of PI on cell metabolism were evaluated using flux balance analysis. Initial metabolic differences between the standard and intensified process were observed but disappeared quickly. This shows that PI can be achieved rapidly for new as well as existing processes without introducing sustained changes in cellular and metabolic behavior.
Collapse
Affiliation(s)
- Markus Schulze
- Corporate Research, Sartorius Stedim Biotech GmbH, Göttingen, Germany.,Bioprocess Engineering, Wageningen University, Wageningen, Netherlands
| | - Julia Niemann
- Corporate Research, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University, Wageningen, Netherlands.,Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Jens Matuszczyk
- Product Development, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
35
|
Di Marco F, Berger T, Esser-Skala W, Rapp E, Regl C, Huber CG. Simultaneous Monitoring of Monoclonal Antibody Variants by Strong Cation-Exchange Chromatography Hyphenated to Mass Spectrometry to Assess Quality Attributes of Rituximab-Based Biotherapeutics. Int J Mol Sci 2021; 22:9072. [PMID: 34445776 PMCID: PMC8396523 DOI: 10.3390/ijms22169072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Different manufacturing processes and storage conditions of biotherapeutics can lead to a significant variability in drug products arising from chemical and enzymatic post-translational modifications (PTMs), resulting in the co-existence of a plethora of proteoforms with different physicochemical properties. To unravel the heterogeneity of these proteoforms, novel approaches employing strong cation-exchange (SCX) high-performance liquid chromatography (HPLC) hyphenated to mass spectrometry (MS) using a pH gradient of volatile salts have been developed in recent years. Here, we apply an established SCX-HPLC-MS method to characterize and compare two rituximab-based biotherapeutics, the originator MabThera® and its Indian copy product Reditux™. The study assessed molecular differences between the two drug products in terms of C-terminal lysine variants, glycosylation patterns, and other basic and acidic variants. Overall, MabThera® and Reditux™ displayed differences at the molecular level. MabThera® showed a higher degree of galactosylated and sialylated glycoforms, while Reditux™ showed increased levels of oligomannose and afucosylated glycoforms. Moreover, the two drug products showed differences in terms of basic variants such as C-terminal lysine and N-terminal truncation, present in Reditux™ but not in MabThera®. This study demonstrates the capability of this fast SCX-HPLC-MS approach to compare different drug products and simultaneously assess some of their quality attributes.
Collapse
Affiliation(s)
- Fiammetta Di Marco
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Thomas Berger
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Wolfgang Esser-Skala
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Department of Biosciences, Computational Systems Biology Group, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestraße 20—ZENIT, 39120 Magdeburg, Germany;
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Christof Regl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
36
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
37
|
Kwiatkowski A, Co C, Kameoka S, Zhang A, Coughlin J, Cameron T, Chiao E, Bergelson S, Schmid Mason C. Assessment of the role of afucosylated glycoforms on the in vitro antibody-dependent phagocytosis activity of an antibody to Aβ aggregates. MAbs 2021; 12:1803645. [PMID: 32812835 PMCID: PMC7531570 DOI: 10.1080/19420862.2020.1803645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The terminal sugars of Fc glycans can influence the Fc-dependent biological activities of monoclonal antibody therapeutics. Afucosylated N-glycans have been shown to significantly alter binding to FcγRIIIa and affect antibody-dependent cell-mediated cytotoxicity (ADCC). Therefore, in order to maintain and ensure safety and efficacy for antibodies whose predominant mechanism of action (MOA) is ADCC, afucosylation is routinely monitored and controlled within appropriate limits. However, it is unclear how the composition and levels of afucosylated N-glycans can modulate the biological activities for a recombinant antibody whose target is not a cell surface receptor, as is the case with ADCC. The impact of different types and varying levels of enriched afucosylated N-glycan species on the in vitro bioactivities is assessed for an antibody whose target is aggregated amyloid beta (Aβ). While either the presence of complex biantennary or high mannose afucosylated glycoforms significantly increased FcγRIIIa binding activity compared to fucosylated glycoforms, they did not similarly increase aggregated Aβ uptake activity mediated by different effector cells. These experiments suggest that afucosylated N-glycans are not critical for the in vitro phagocytic activity of a recombinant antibody whose target is aggregated Aβ and uses Fc effector function as part of its MOA.
Collapse
Affiliation(s)
| | - Carl Co
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - Sei Kameoka
- Research and Development, Biogen , Cambridge, MA, USA
| | - An Zhang
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - John Coughlin
- Pharmaceutical Operations and Technology, Biogen , Cambridge, MA, USA
| | - Tom Cameron
- Research and Development, Biogen , Cambridge, MA, USA
| | - Eric Chiao
- Research and Development, Biogen , Cambridge, MA, USA
| | | | | |
Collapse
|
38
|
Bauer J, Mathias S, Kube S, Otte K, Garidel P, Gamer M, Blech M, Fischer S, Karow-Zwick AR. Rational optimization of a monoclonal antibody improves the aggregation propensity and enhances the CMC properties along the entire pharmaceutical process chain. MAbs 2021; 12:1787121. [PMID: 32658605 PMCID: PMC7531517 DOI: 10.1080/19420862.2020.1787121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The discovery of therapeutic monoclonal antibodies (mAbs) primarily focuses on their biological activity favoring the selection of highly potent drug candidates. These candidates, however, may have physical or chemical attributes that lead to unfavorable chemistry, manufacturing, and control (CMC) properties, such as low product titers, conformational and colloidal instabilities, or poor solubility, which can hamper or even prevent development and manufacturing. Hence, there is an urgent need to consider the developability of mAb candidates during lead identification and optimization. This work provides a comprehensive proof of concept study for the significantly improved developability of a mAb variant that was optimized with the help of sophisticated in silico tools relative to its difficult-to-develop parental counterpart. Interestingly, a single amino acid substitution in the variable domain of the light chain resulted in a three-fold increased product titer after stable expression in Chinese hamster ovary cells. Microscopic investigations revealed that wild type mAb-producing cells displayed potential antibody inclusions, while the in silico optimized variant-producing cells showed a rescued phenotype. Notably, the drug substance of the in silico optimized variant contained substantially reduced levels of aggregates and fragments after downstream process purification. Finally, formulation studies unraveled a significantly enhanced colloidal stability of the in silico optimized variant while its folding stability and potency were maintained. This study emphasizes that implementation of bioinformatics early in lead generation and optimization of biotherapeutics reduces failures during subsequent development activities and supports the reduction of project timelines and resources.
Collapse
Affiliation(s)
- Joschka Bauer
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Sven Mathias
- Institute of Applied Biotechnology, University of Applied Sciences Biberach , Biberach/Riss, Germany.,Early Stage Bioprocess Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Sebastian Kube
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach , Biberach/Riss, Germany
| | - Patrick Garidel
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Martin Gamer
- Early Stage Bioprocess Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Michaela Blech
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Anne R Karow-Zwick
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| |
Collapse
|
39
|
Rameez S, Gowtham YK, Nayar G, Mostafa SS. Modulation of high mannose levels in N-linked glycosylation through cell culture process conditions to increase antibody-dependent cell-mediated cytotoxicity activity for an antibody biosimilar. Biotechnol Prog 2021; 37:e3176. [PMID: 34021724 DOI: 10.1002/btpr.3176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/13/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
The regulatory approval of a biosimilar product is contingent on the favorable comparability of its safety and efficacy to that of the innovator product. As such, it is important to match the critical quality attributes of the biosimilar product to that of the innovator product. The N-glycosylation profile of a monoclonal antibody (mAb) can influence effector function activities such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity. In this study, we describe efforts to modulate the high-mannose (HM) levels of a biosimilar mAb produced in a Chinese hamster ovary cell fed-batch process. Because the HM level of the mAb was observed to impact ADCC activity, it was desirable to match it to the innovator mAb's levels. Several cell culture process related factors known to modulate the HM content of N-glycosylation were investigated, including osmolality, ammonium chloride (NH4 Cl) addition, glutamine concentration, monensin addition, and the addition of alternate sugars and amino sugars to the feed medium. The process conditions evaluated varied in impact on HM levels, process performance and product quality. One condition, the addition of alternate sugars and amino sugars to feed medium, was identified as the preferred method for increasing HM levels with minimal disruptions to process performance or other product quality attributes. Interestingly, a secondary interaction between sugar and amino sugar supplemented feeds and osmolality was observed during process scale-up. These studies demonstrate sugar and amino sugar concentrations and osmolality are critical variables to evaluate to match HM content in biosimilar and their innovator mAbs.
Collapse
Affiliation(s)
- Shahid Rameez
- Process Development, KBI Biopharma Inc., Durham, North Carolina, USA
| | | | - Gautam Nayar
- Process Development, KBI Biopharma Inc., Durham, North Carolina, USA
| | - Sigma S Mostafa
- Process Development, KBI Biopharma Inc., Durham, North Carolina, USA
| |
Collapse
|
40
|
Kaur T, Shukla BN, Yadav VK, Kulkarni MJ, Rao A. Comparison of glycoprofiles of rituximab versions licensed for sale in India and an analytical approach for quality assessment. J Proteomics 2021; 244:104267. [PMID: 34015520 DOI: 10.1016/j.jprot.2021.104267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/26/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Glycosylation affects clinical efficacy and safety; therefore, is a critical quality attribute of therapeutic monoclonal antibodies. Glycans are often labile and complex in patterns, giving rise to macro- and micro-heterogeneity. Recombinant production, diverse geographical locations, associated transportation and storage conditions further compound the problem. Two-way studies comparing glycoprofile of the originator and its given biosimilar are aplenty. However, the extent of analytical variation and similarity in glycoprofile across all approved versions of a drug is hardly explored. Using UHPLC and mass spectrometry, we compared the glycoprofiles of eight rituximab drug samples licensed for sale in India. While the types of glycans were found identical, the abundance of some glycans varied significantly within the tested population. The quality range of glycosylation parameters of the tested sample population differed significantly from the previously established values for US/EU licensed rituximab. As the mean abundance of the 90% of identified glycans falls within ±3SD, the extent of mutual variations amongst tested lots is less significant compared to the extreme deviation from previously established QR limits. Thus, we propose this approach as an orthogonal method to capture glycan variations in licensed versions of mAbs for quality surveillance and in cases where originator samples' are limiting. SIGNIFICANCE: As fluctuation in glycosylation may be of clinical significance, we identify that a one-to-one comparison with originator alone is insufficient in sensing the extent of variations in glycosylation parameters in licensed biosimilars of a given therapeutic mAb. Here we propose that future biosimilarity analysis may include an orthogonal approach of generating an additional combined QR range representing variations across the originator and its biosimilars. The glycosylation profiles of eight rituximab drug samples of different make obtained from the point of sale in India were found identical amongst the tested rituximab versions. However, the QR limits corresponding to important glycosylation parameters differed significantly across all tested samples from the previously established QR limits of US- and EU-licensed rituximab in statistical terms. Such an approach may be useful in defining the true range of glycan variations in licensed versions of therapeutic mAbs.
Collapse
Affiliation(s)
- Tejinder Kaur
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | | | - Vinay Kumar Yadav
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | | | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
41
|
Donini R, Haslam SM, Kontoravdi C. Glycoengineering Chinese hamster ovary cells: a short history. Biochem Soc Trans 2021; 49:915-931. [PMID: 33704400 PMCID: PMC8106501 DOI: 10.1042/bst20200840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.
Collapse
Affiliation(s)
- Roberto Donini
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
42
|
Fung E, Kang L, Sapashnik D, Benard S, Sievers A, Liu Y, Yan G, Zhou J, Rodriguez L, Ma W, Stochaj WR, LaVallie E, Wroblewska L, Kelleher K, Tam A, Bezy O, Breen D, Chabot JR, He T, Lin L, Wu Z, Mosyak L. Fc-GDF15 glyco-engineering and receptor binding affinity optimization for body weight regulation. Sci Rep 2021; 11:8921. [PMID: 33903632 PMCID: PMC8076310 DOI: 10.1038/s41598-021-87959-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
GDF15 is a distant TGF-β family member that induces anorexia and weight loss. Due to its function, GDF15 has attracted attention as a potential therapeutic for the treatment of obesity and its associated metabolic diseases. However, the pharmacokinetic and physicochemical properties of GDF15 present several challenges for its development as a therapeutic, including a short half-life, high aggregation propensity, and protease susceptibility in serum. Here, we report the design, characterization and optimization of GDF15 in an Fc-fusion protein format with improved therapeutic properties. Using a structure-based engineering approach, we combined knob-into-hole Fc technology and N-linked glycosylation site mutagenesis for half-life extension, improved solubility and protease resistance. In addition, we identified a set of mutations at the receptor binding site of GDF15 that show increased GFRAL binding affinity and led to significant half-life extension. We also identified a single point mutation that increases p-ERK signaling activity and results in improved weight loss efficacy in vivo. Taken together, our findings allowed us to develop GDF15 in a new therapeutic format that demonstrates better efficacy and potential for improved manufacturability.
Collapse
Affiliation(s)
- Ella Fung
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Liya Kang
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Diana Sapashnik
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Susan Benard
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Annette Sievers
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Yan Liu
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Guoying Yan
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Jing Zhou
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Linette Rodriguez
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Weijun Ma
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA.,Sanofi Research and Development, Sanofi North America, Framingham, MA, USA
| | - Wayne R Stochaj
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Edward LaVallie
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | | | - Kerry Kelleher
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Amy Tam
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Olivier Bezy
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA.,Cellarity, Cambridge, MA, USA
| | - Danna Breen
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Jeffrey R Chabot
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Tao He
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA.,JOINN Biologics US Inc, Richmond, CA, USA
| | - Laura Lin
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Lidia Mosyak
- BioMedicine Design, Pfizer Inc., 610 N Main Street, Cambridge, MA, USA.
| |
Collapse
|
43
|
Developing a medium combination to attain similar glycosylation profile to originator by DoE and cluster analysis method. Sci Rep 2021; 11:7103. [PMID: 33782463 PMCID: PMC8007809 DOI: 10.1038/s41598-021-86447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/10/2021] [Indexed: 11/08/2022] Open
Abstract
Glycosylation is critical for monoclonal antibody production because of its impact on pharmacokinetics and pharmacodynamics. Modulation of glycan profile is frequently needed in biosimilar development. However, glycosylation profile is not a single value like that of cell culture titer, hence making it challenging for the Design of Experiment (DoE) methodology to be directly applied. In this study, a Her2-binding antibody was developed as a biosimilar to Herceptin. Cluster analysis was introduced to demonstrate the similarity of glycan profiles between the samples and the reference with specific value-distance. The glycosylation was subsequently optimized with the DoE method. Basal medium and feed medium were found to be the significant factors to the glycosylation pattern. Moreover, a combination of medium and feed strategy was developed to attain the most similar glycoprotein molecule to that of the originator biologic drug. This study may provide an additional option to evaluate multivariable factors and assess biosimilarity and/or comparability in monoclonal antibody production.
Collapse
|
44
|
Shen Z, Wang Y, Xu H, Zhang Q, Sha C, Sun B, Li Q. Analytical comparability assessment on glycosylation of ziv-aflibercept and the biosimilar candidate. Int J Biol Macromol 2021; 180:494-509. [PMID: 33684428 DOI: 10.1016/j.ijbiomac.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Ziv-aflibercept (aflibercept) is a recombinant fusion protein which combines the portions of human vascular endothelial growth factor receptors extracellular domains fused to the Fc portion of human IgG1. It is a highly sialylated glycoprotein with 5 N-glycosylation sites. In this study, a comprehensive strategy for comparability study of the complex glycosylation was developed between aflibercept and the biosimilar candidate including the investigations on N-glycosylation sites, site occupancy, site-specific glycoforms, released glycans and sialic acids. The results indicated that same N-glycosylation sites were identified, site occupancy were 100% except N68 site, site-specific glycoforms and released glycans showed similar glycan species, contents of NANA were at a same level for two products. Minor differences were found between two products. The biosimilar candidate presented lower level of aglycosylation, lower level of glycans containing one terminal sialic acid, higher level of glycans containing two terminal sialic acids, higher level of G0F and Man5, lower level of G1F and G2F compared with aflibercept. However, further studies exhibited no differences were observed in the cell-based biological potency and Fc effector function. Moreover, the biosimilar candidate showed a similar pharmacokinetics curve and bioequivalence compared with aflibercept.
Collapse
Affiliation(s)
- Zhenduo Shen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanhong Wang
- Department of Pharmacy, Shandong Drug and Food Vocational College, Weihai, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunjie Sha
- Analytical Department, Shandong Boan Biotechnology Co., Ltd, Yantai, China
| | - Baiping Sun
- Analytical Department, Shandong Boan Biotechnology Co., Ltd, Yantai, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
45
|
Kaur H. Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Crit Rev Biotechnol 2021; 41:300-315. [PMID: 33430641 DOI: 10.1080/07388551.2020.1869684] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the structurally diverse and complex forms of post translational modifications observed in proteins which influence the effector functions of IgG-Fc. Although the glycosylation constitutes 2-3% of the total mass of the IgG antibody, a thorough assessment of glycoform distribution present on the antibody is a critical quality attribute (cQA) for the majority of novel and biosimilar monoclonal antibody (mAb) development. This review paper will highlight the impact of different glycoforms such as galactose, fucose, high mannose, NANA (N-acetylneuraminic acid), and NGNA (N-glycoylneuraminic acid) on the safety/immunogeneicity, efficacy/biological activity and clearance (pharmacodynamics/pharmacokinetic property (PD/PK)) of biological molecules. In addition, this paper will summarize routinely employed reliable analytical techniques such as hydrophilic interaction chromatography (HILIC), high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) for characterizing and monitoring glycosylation in monoclonal antibodies (mAbs). The advantages and disadvantages of each of the methods are addressed. The scope of this review paper is limited to only N-linked and O-linked glycosylation.
Collapse
Affiliation(s)
- Harleen Kaur
- Analytical Sciences, Aurobindo Biologics, Hyderabad, India
| |
Collapse
|
46
|
Wang X, Zhong Z, Balmer L, Wang W. Glycosylation Profiling as a Biomarker of Suboptimal Health Status for Chronic Disease Stratification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:321-339. [PMID: 34495543 DOI: 10.1007/978-3-030-70115-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
WHO defines health as "a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity." We coined and defined suboptimal health status (SHS) as a subclinical, reversible stage of the pre-chronic disease. SHS is a physical state between health and disease, characterized by health complaints, general weakness, chronic fatigue, and low energy levels. We have developed an instrument to measure SHS, Suboptimal Health Status Questionnaire-25 (SHSQ-25), a self-reported survey assessing five health components that has been validated in various ethnical populations. Our studies suggest that SHS is associated with the major components of cardiovascular health and the early onset of metabolic diseases. Besides subjective measure of health (SHS), glycans are conceived as objective biomarkers of SHS. Glycans are complex and branching carbohydrate moieties attached to proteins, participating in inflammatory regulation and chronic disease pathogenesis. We have been investigating the role of glycans and SHS in multiple cardiometabolic diseases in different ethnical populations (African, Chinese, and Caucasian). Here we present case studies to prove that a combination of subjective health measure (SHS) with objective health measure (glycans) represents a window of opportunity to halt or reverse the progression of chronic diseases.
Collapse
Affiliation(s)
- Xueqing Wang
- School of Health and Medical Sciences, Edith Cowan University, Perth, Australia
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lois Balmer
- School of Health and Medical Sciences, Edith Cowan University, Perth, Australia
| | - Wei Wang
- School of Health and Medical Sciences, Edith Cowan University, Perth, Australia.
- Centre for Precision Health, ECU Strategic Research Centre, Edith Cowan University, Perth, Australia.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China.
- First Affiliated Hospital, Shantou University Medical College, Shantou, China.
| |
Collapse
|
47
|
Zhang X. Released N-Glycan Analysis for Biotherapeutic Development Using Liquid Chromatography and Mass Spectrometry. Methods Mol Biol 2021; 2261:35-53. [PMID: 33420983 DOI: 10.1007/978-1-0716-1186-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this chapter, we describe an LC-fluorescence (FLR)/MS-based method for released N-glycan analysis in the development of biotherapeutic proteins. The method includes enzymatic release and labeling of N-glycans with a signal-enhancing tag, LC-MS data collection, and data interpretation. Using the given protocol, up to 24 glycan samples can be prepared within 1 h, while the LC-FLR/MS data can be collected and analyzed using an established data processing method in a semi-automated manner.
Collapse
|
48
|
Falck D, Thomann M, Lechmann M, Koeleman CAM, Malik S, Jany C, Wuhrer M, Reusch D. Glycoform-resolved pharmacokinetic studies in a rat model employing glycoengineered variants of a therapeutic monoclonal antibody. MAbs 2021; 13:1865596. [PMID: 33382957 PMCID: PMC7781607 DOI: 10.1080/19420862.2020.1865596] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Good pharmacokinetic (PK) behavior is a key prerequisite for sufficient efficacy of therapeutic monoclonal antibodies (mAbs). Fc glycosylation is a critical quality attribute (CQA) of mAbs, due to its impact on stability and effector functions. However, the effects of various IgG Fc glycoforms on antibody PK remain unclear. We used a combination of glycoengineering and glycoform-resolved PK measurements by mass spectrometry (MS) to assess glycoform effects on PK. Four differently glycoengineered mAbs, each still containing multiple glycoforms, were separately injected into rats. Rat models have been shown to be predictive of human PK. At different time points, blood was taken, from which the mAbs were purified and analyzed with a liquid chromatography-MS-based bottom-up glycoproteomics approach. This allowed us to follow changes in the glycosylation profiles of each glycoengineered mAb over time. Enzyme-linked immunosorbent assay measurements provided an absolute concentration in the form of a sum value for all glycoforms. Information from both readouts was then combined to calculate PK parameters per glycoform. Thereby, multiple glycoform kinetics were resolved within one mAb preparation. We confirmed increased clearance of high-mannose (Man5) and hybrid-type (Man5G0) glycoforms. Specifically, Man5 showed a 1.8 to 2.6-fold higher clearance than agalactosylated, complex glycans (G0F). Unexpectedly, clearance was even higher (4.7-fold) for the hybrid-type glycan Man5G0. In contrast, clearance of agalactosylated, monoantennary glycoforms (G0F-N) was only slightly increased over G0F (1.2 to 1.4-fold). Thus, monoantennary, hybrid-type and high-mannose glycoforms should be distinguished in CQA assessments. Strikingly, α2,3-linked sialylation did not affect clearance, contradicting the involvement of the asialoglycoprotein receptor in mAb clearance.
Collapse
Affiliation(s)
- David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco Thomann
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Martin Lechmann
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Carolien A. M. Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastian Malik
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Cordula Jany
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dietmar Reusch
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
49
|
Pleass RJ. The therapeutic potential of sialylated Fc domains of human IgG. MAbs 2021; 13:1953220. [PMID: 34288809 PMCID: PMC8296966 DOI: 10.1080/19420862.2021.1953220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pathogens frequently use multivalent binding to sialic acid to infect cells or to modulate immunity through interactions with human sialic acid-binding immunoglobulin-type lectins (Siglecs). Molecules that interfere with these interactions could be of interest as diagnostics, anti-infectives or as immune modulators. This review describes the development of molecular scaffolds based on the crystallizable fragment (Fc) region of immunoglobulin (Ig) G that deliver high-avidity binding to innate immune receptors, including sialic acid-dependent receptors. The ways in which the sialylated Fc may be engineered as immune modulators that mimic the anti-inflammatory properties of intravenous polyclonal Ig or as blockers of sialic-acid-dependent infectivity by viruses are also discussed.
Collapse
Affiliation(s)
- Richard J. Pleass
- Department of Tropical Disease Biology, Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
50
|
Kissner T, Blaich G, Baumann A, Kronenberg S, Hey A, Kiessling A, Schmitt PM, Driessen W, Carrez C, Kramer D, Fretland J, Richter WF, Paehler T, Hopfer U, Rattel B. Challenges of non-clinical safety testing for biologics: A Report of the 9th BioSafe European Annual General Membership Meeting. MAbs 2021; 13:1938796. [PMID: 34241561 PMCID: PMC8274438 DOI: 10.1080/19420862.2021.1938796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 10/26/2022] Open
Abstract
New challenges and other topics in non-clinical safety testing of biotherapeutics were presented and discussed at the nineth European BioSafe Annual General Membership meeting in November 2019. The session topics were selected by European BioSafe organization committee members based on recent company achievements, agency interactions and new data obtained in the non-clinical safety testing of biotherapeutics, for which data sharing would be of interest and considered as valuable information. The presented session topics ranged from strategies of in vitro testing, immunogenicity prediction, bioimaging, and developmental and reproductive toxicology (DART) assessments to first-in-human (FIH) dose prediction and bioanalytical challenges, reflecting the entire space of different areas of expertise and different molecular modalities. During the 9th meeting of the European BioSafe members, the following topics were presented and discussed in 6 main sessions (with 3 or 4 presentations per session) and in three small group breakout sessions: 1) DART assessment with biotherapeutics: what did we learn and where to go?; 2) Non-animal testing strategies; 3) Seeing is believing: new frontiers in imaging; 4) Predicting immunogenicity during early drug development: hope or despair?; 5) Challenges in FIH dose projections; and 6) Non-canonical biologics formats: challenges in bioanalytics, PKPD and biotransformation for complex biologics formats. Small group breakout sessions were organized for team discussion about 3 specific topics: 1) Testing of cellular immune function in vitro and in vivo; 2) MABEL approach (toxicology and pharmacokinetic perspective); and 3) mRNA treatments. This workshop report presents the sessions and discussions at the meeting.
Collapse
Affiliation(s)
- Thomas Kissner
- Preclinical Safety, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Guenter Blaich
- Preclinical Safety, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Andreas Baumann
- R&D Pharmaceuticals, Translational Sciences, Bayer AG, Berlin, Germany
| | - Sven Kronenberg
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Adam Hey
- Oncology Safety, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | | | - Petra M. Schmitt
- Preclinical Safety, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Wouter Driessen
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Chantal Carrez
- Sanofi R&D, Translational In Vivo Models, Sanofi S.A, Vitry-sur-Seine, France
| | - Daniel Kramer
- Sanofi R&D, Translational Medicine & Early Development, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | - Wolfgang F. Richter
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tobias Paehler
- Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Ulrike Hopfer
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Benno Rattel
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| |
Collapse
|