1
|
Kambli L, Raut D, Bhatt LK. Sulfamethizole Attenuates Pentylenetetrazole-Induced Seizures in Mice via mTOR Inhibition. Drug Dev Res 2025; 86:e70039. [PMID: 39723688 DOI: 10.1002/ddr.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Epilepsy affects at least 1% of the global population of all socioeconomic backgrounds. Data obtained from previous studies suggest the role of mTOR signaling in epileptogenesis. The present study aimed to investigate the hypothesis that mTOR inhibitor sulfamethizole might produce antiepileptic effects in pentylenetetrazole (PTZ)-induced kindling seizures in mice. For induction of kindling, mice were administered 40 mg/kg PTZ on alternate days for 13 days. The severity of kindling was analyzed using a seizure intensity score. Rotarod performance, actophotometer, and chimney tests were performed to check muscle coordination and locomotor functions. mTOR and IL-6 levels were measured in the brain homogenate. Histological analyses were done using hematoxylin-eosin and cresyl violet stains. Sulfamethizole was administered daily at 10 and 50 mg/kg doses. PTZ administration resulted in kindling seizures in the PTZ-veh group. In addition, mice from the PTZ-veh group showed decreased fall time in rotarod performance, reduced locomotor activity, and failed chimney tests. mTOR and IL-6 levels were also increased in the brain, along with neuronal degeneration and a decreased layer of neuronal cells in the hippocampus. Treatment with sulfamethizole at 50 mg/kg significantly ameliorated seizure intensity score, seizure latency and duration, muscle coordination, and locomotor functions compared to the PTZ-veh group. It also downregulated brain mTOR and IL-6 expression significantly. In conclusion, sulfamethizole showed antiepileptic activity against PTZ-induced kindling seizure in mice via mTOR inhibition.
Collapse
Affiliation(s)
- Lazari Kambli
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Dezaree Raut
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
He W, Song H, Yang Z, Zhao S, Min J, Jiang Y. Beneficial effect of GABA-rich fermented milk whey on nervous system and intestinal microenvironment of aging mice induced by D-galactose. Microbiol Res 2024; 278:127547. [PMID: 37976737 DOI: 10.1016/j.micres.2023.127547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
This study aims to investigate the protective effect of a freeze-dried powder prepared from a fermentation milk whey containing a high-yield GABA strain (FDH-GABA) against D-galactose-induced brain injury and gut microbiota imbalances in mice by probing changes to the PI3K/AKT/mTOR signaling pathway. A prematurely aged mouse model was established by performing the subcutaneous injection of D-galactose. Subsequently, the effects of FDH-GABA on the nervous system and intestinal microenvironment of the mice were explored by measuring their antioxidant activities, anti-inflammatory state, autophagy, pathway-related target protein expression levels, and intestinal microorganisms. Compared to the D-gal group, FDH-GABA improved the levels of SOD, T-AOC, IL-10, and neurotransmitters, while it reduced the contents of MDA and TNF-α. FDH-GABA also promoted autophagy and inhibited the PI3K/AKT/mTOR signaling pathway in the brains of the aged mice. Moreover, FDH-GABA restored the diversity of their intestinal flora. Pathological observations indicated that FDH-GABA was protective against damage to the brain and intestine of D-galactose-induced aging mice. These results reveal that FDH-GABA not only improved antioxidant stress, attenuated inflammation, restored the neurotransmitter content, and protected the tissue structure of the intestine and brain, but also effectively improved their intestinal microenvironment. The ameliorative effect of FDH-GABA on premature aging showed a clear dose-response relationship, and at the same time, the changes of intestinal microorganisms showed a certain correlation with the relevant indexes of nervous system. These findings provide insight into the effect of the FDH-GABA intervention on aging, providing a novel means for alleviating detrimental neurodegenerative changes in the aging population.
Collapse
Affiliation(s)
- Wei He
- School of Public Health, Dali University, China
| | - He Song
- School of Public Health, Dali University, China
| | | | | | - Juan Min
- School of Public Health, Dali University, China
| | - Yan Jiang
- School of Public Health, Dali University, China.
| |
Collapse
|
3
|
Tian X, Wei J. Sestrin 2 protects human lens epithelial cells from oxidative stress and apoptosis induced by hydrogen peroxide by regulating the mTOR/Nrf2 pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241234741. [PMID: 38379215 PMCID: PMC10880533 DOI: 10.1177/03946320241234741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE We aimed to explore the effect and potential mechanism of Sestrin 2 (SESN2) in human lens epithelial cells (HLECs). METHODS To mimic the oxidative stress environment, SAR01/04 cells were treated with 200 μM hydrogen peroxide (H2O2) for 24 h. Cell viability and apoptosis were checked by cell counting kit-8 and flow cytometry. Western blot was taken to check the protein changes of SESN2, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, ribosomal protein S6 kinase B1 (p70S6K), p-p70S6K, and nuclear factor erythroid 2-related factor 2 (Nrf2). Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and reactive oxygen species (ROS) were detected via the corresponding reagent kit. The levels of interleukin (IL)-1β, IL-18, and tumor necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent assay. RESULTS SESN2 was down-regulated in cataract lens tissue and up-regulated in SAR01/04 cells treated with H2O2. Under treatment of H2O2, up-regulation of SESN2 improved cell viability, enhanced the activity of SOD and CAT, inhibited cell apoptosis, and reduced the levels of MDA, ROS, IL-1β, IL-18, and TNF-α, while down-regulation of SESN2 caused the contrary effects. Further bioinformatics analysis suggested that SESN2 regulated the mTOR signaling pathway. Treatment of H2O2 inhibited p-mTOR and p-p70S6K protein expression, while overexpression of SESN2 increased p-mTOR and p-p70S6K protein expression in the H2O2 group and down-regulation of SESN2 further decreased p-mTOR and p-p70S6K protein expression in the H2O2 group. Additionally, H2O2 increased Nrf2 protein expression, and overexpression of SESN2 further increased Nrf2 protein expression in the H2O2 group. Importantly, rapamycin (an inhibitor of mTOR signaling pathway) and knockdown of Nrf2 reversed the promotive effects of SESN2 on cell viability and the inhibitive effects of SESN2 on cell apoptosis, oxidative stress, and inflammatory reaction. CONCLUSION SESN2 protected HLECs damage induced by H2O2, which was related to the activation of mTOR/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Ophthalmology, Jinan Aier Eye Hospital, Jinan, China
| | - Jie Wei
- Department of Ophthalmology, No. 960 Hospital of PLA Joint Logistic Support Force, Jinan, China
| |
Collapse
|
4
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Redhwan MAM, M G H, Samaddar S, Hard SAAA, Yadav V, Mukherjee A, Kumar R. Small interference (RNAi) technique: Exploring its clinical applications, benefits and limitations. Eur J Clin Invest 2023; 53:e14039. [PMID: 37309221 DOI: 10.1111/eci.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Small interference RNA (siRNA) has emerged as the most desired method for researchers and clinicians who wish to silence a specific gene of interest and has been extensively developed as a therapeutic agent. This review points to collecting all clinical trials on siRNA and understanding its benefits, pharmacokinetics and safety by reading articles published in the last 5 years. MATERIALS AND METHODS Searching in the PubMed database using 'siRNA' and 'in vivo' with limits to articles published in the previous 5 years, article type 'clinical trials' and language 'English' to acquire papers on in vivo studies on siRNA approaches. Features of siRNA clinical trials registered at https://clinicaltrials.gov/ were analysed. RESULTS So far, 55 clinical studies have been published on siRNA. Many published clinical trials on siRNA showed tolerability, safety and effectiveness in treating cancers like breast, lung, colon, and other organs and other diseases like viral infections and hereditary diseases. Many different routes of administration can silence many genes at the same time. Limitations and uncertainties associated with siRNA treatment include the effectiveness of cellular uptake, precise targeting of the intended tissue or cell and prompt elimination from the body. CONCLUSIONS The siRNA or RNAi method will be one of the most critical and influential techniques to fight against many different diseases. Although the RNAi approach has certain advantages, it also has limitations concerning clinical applications. Overcoming these limitations remains a daunting challenge.
Collapse
Affiliation(s)
- Moqbel Ali Moqbel Redhwan
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
| | - Hariprasad M G
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
| | - Suman Samaddar
- BGS GIMS Research Institute, BGS Global Institute of Medical Sciences, Bengaluru, India
| | - Sumaia Abdulbari Ahmed Ali Hard
- Basic Science Research Center (Off-Campus), KLE College of Pharmacy, Bengaluru, India
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, India
| | | | - Apurbo Mukherjee
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
| | - Rahul Kumar
- Department of Pharmacology, KLE College of Pharmacy, Bengaluru, India
| |
Collapse
|
6
|
Melanis K, Stefanou MI, Themistoklis KM, Papasilekas T. mTOR pathway - a potential therapeutic target in stroke. Ther Adv Neurol Disord 2023; 16:17562864231187770. [PMID: 37576547 PMCID: PMC10413897 DOI: 10.1177/17562864231187770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Stroke is ranked as the second leading cause of death worldwide and a major cause of long-term disability. A potential therapeutic target that could offer favorable outcomes in stroke is the mammalian target of rapamycin (mTOR) pathway. mTOR is a serine/threonine kinase that composes two protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), and is regulated by other proteins such as the tuberous sclerosis complex. Through a significant number of signaling pathways, the mTOR pathway can modulate the processes of post-ischemic inflammation and autophagy, both of which play an integral part in the pathophysiological cascade of stroke. Promoting or inhibiting such processes under ischemic conditions can lead to apoptosis or instead sustained viability of neurons. The purpose of this review is to examine the pathophysiological role of mTOR in acute ischemic stroke, while highlighting promising neuroprotective agents such as hamartin for therapeutic modulation of this pathway. The therapeutic potential of mTOR is also discussed, with emphasis on implicated molecules and pathway steps that warrant further elucidation in order for their neuroprotective properties to be efficiently tested in future clinical trials.
Collapse
Affiliation(s)
- Konstantinos Melanis
- Second Department of Neurology, School of Medicine and ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Rimini 1 Chaidari, Athens 12462, Greece
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine and ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos M. Themistoklis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Neurosurgery, ‘Korgialenio, Benakio, H.R.C’. General Hospital of Athens, Athens, Greece
| | - Themistoklis Papasilekas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Neurosurgery, ‘Korgialenio, Benakio, H.R.C’. General Hospital of Athens, Athens, Greece
| |
Collapse
|
7
|
Gao J, Yao M, Chang D, Liu J. mTOR (Mammalian Target of Rapamycin): Hitting the Bull's Eye for Enhancing Neurogenesis After Cerebral Ischemia? Stroke 2023; 54:279-285. [PMID: 36321454 DOI: 10.1161/strokeaha.122.040376] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic stroke remains a leading cause of morbidity and disability around the world. The sequelae of serious neurological damage are irreversible due to body's own limited repair capacity. However, endogenous neurogenesis induced by cerebral ischemia plays a critical role in the repair and regeneration of impaired neural cells after ischemic brain injury. mTOR (mammalian target of rapamycin) kinase has been suggested to regulate neural stem cells ability to self-renew and differentiate into proliferative daughter cells, thus leading to improved cell growth, proliferation, and survival. In this review, we summarized the current evidence to support that mTOR signaling pathways may enhance neurogenesis, angiogenesis, and synaptic plasticity following cerebral ischemia, which could highlight the potential of mTOR to be a viable therapeutic target for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Jiale Gao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, China (J.G., M.Y., J.L.)
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, China (J.G., M.Y., J.L.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, Australia (D.C.)
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, China (J.G., M.Y., J.L.)
| |
Collapse
|
8
|
Subramanian A, Tamilanban T, Alsayari A, Ramachawolran G, Wong LS, Sekar M, Gan SH, Subramaniyan V, Chinni SV, Izzati Mat Rani NN, Suryadevara N, Wahab S. Trilateral association of autophagy, mTOR and Alzheimer's disease: Potential pathway in the development for Alzheimer's disease therapy. Front Pharmacol 2022; 13:1094351. [PMID: 36618946 PMCID: PMC9817151 DOI: 10.3389/fphar.2022.1094351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The primary and considerable weakening event affecting elderly individuals is age-dependent cognitive decline and dementia. Alzheimer's disease (AD) is the chief cause of progressive dementia, and it is characterized by irreparable loss of cognitive abilities, forming senile plaques having Amyloid Beta (Aβ) aggregates and neurofibrillary tangles with considerable amounts of tau in affected hippocampus and cortex regions of human brains. AD affects millions of people worldwide, and the count is showing an increasing trend. Therefore, it is crucial to understand the underlying mechanisms at molecular levels to generate novel insights into the pathogenesis of AD and other cognitive deficits. A growing body of evidence elicits the regulatory relationship between the mammalian target of rapamycin (mTOR) signaling pathway and AD. In addition, the role of autophagy, a systematic degradation, and recycling of cellular components like accumulated proteins and damaged organelles in AD, is also pivotal. The present review describes different mechanisms and signaling regulations highlighting the trilateral association of autophagy, the mTOR pathway, and AD with a description of inhibiting drugs/molecules of mTOR, a strategic target in AD. Downregulation of mTOR signaling triggers autophagy activation, degrading the misfolded proteins and preventing the further accumulation of misfolded proteins that inhibit the progression of AD. Other target mechanisms such as autophagosome maturation, and autophagy-lysosomal pathway, may initiate a faulty autophagy process resulting in senile plaques due to defective lysosomal acidification and alteration in lysosomal pH. Hence, the strong link between mTOR and autophagy can be explored further as a potential mechanism for AD therapy.
Collapse
Affiliation(s)
- Arunkumar Subramanian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamilnadu, India
| | - T. Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamilnadu, India,*Correspondence: T. Tamilanban, ; Gobinath Ramachawolran, ; Ling Shing Wong, ; Mahendran Sekar,
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia,Complementary and Alternative Medicine Unit, King Khalid University, Abha, Saudi Arabia
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, Georgetown, Pulau Pinang, Malaysia,*Correspondence: T. Tamilanban, ; Gobinath Ramachawolran, ; Ling Shing Wong, ; Mahendran Sekar,
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia,*Correspondence: T. Tamilanban, ; Gobinath Ramachawolran, ; Ling Shing Wong, ; Mahendran Sekar,
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia,*Correspondence: T. Tamilanban, ; Gobinath Ramachawolran, ; Ling Shing Wong, ; Mahendran Sekar,
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia,Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Nagaraja Suryadevara
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia,Complementary and Alternative Medicine Unit, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
9
|
Hetze S, Barthel L, Lückemann L, Günther HS, Wülfing C, Salem Y, Jakobs M, Hörbelt-Grünheidt T, Petschulat J, Bendix I, Weber-Stadlbauer U, Sure U, Schedlowski M, Hadamitzky M. Taste-immune associative learning amplifies immunopharmacological effects and attenuates disease progression in a rat glioblastoma model. Brain Behav Immun 2022; 106:270-279. [PMID: 36115545 DOI: 10.1016/j.bbi.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR)-signaling is one key driver of glioblastoma (GBM), facilitating tumor growth by promoting the shift to an anti-inflammatory, pro-cancerogenic microenvironment. Even though mTOR inhibitors such as rapamycin (RAPA) have been shown to interfere with GBM disease progression, frequently chaperoned toxic drug side effects urge the need for developing alternative or supportive treatment strategies. Importantly, previous work document that taste-immune associative learning with RAPA may be utilized to induce learned pharmacological placebo responses in the immune system. Against this background, the current study aimed at investigating the potential efficacy of a taste-immune associative learning protocol with RAPA in a syngeneic GBM rat model. Following repeated pairings of a novel gustatory stimulus with injections of RAPA, learned immune-pharmacological effects could be retrieved in GBM-bearing animals when re-exposed to the gustatory stimulus together with administering 10 % amount of the initial drug dose (0.5 mg/kg). These inhibitory effects on tumor growth were accompanied by an up-regulation of central and peripheral pro-inflammatory markers, suggesting that taste-immune associative learning with RAPA promoted the development of a pro-inflammatory anti-tumor microenvironment that attenuated GBM tumor growth to an almost identical outcome as obtained after 100 % (5 mg/kg) RAPA treatment. Together, our results confirm the applicability of taste-immune associative learning with RAPA in animal disease models where mTOR overactivation is one key driver. This proof-of-concept study may also be taken as a role model for implementing learning protocols as alternative or supportive treatment strategy in clinical settings, allowing the reduction of required drug doses and side effects without losing treatment efficacy.
Collapse
Affiliation(s)
- Susann Hetze
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Germany; Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany.
| | - Lennart Barthel
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Germany; Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Hauke S Günther
- Group for Interdisciplinary Neurobiology and Immunology (INI)-RESEARCH, University of Hamburg, Germany
| | - Clemens Wülfing
- Group for Interdisciplinary Neurobiology and Immunology (INI)-RESEARCH, University of Hamburg, Germany
| | - Yasmin Salem
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Marie Jakobs
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Tina Hörbelt-Grünheidt
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Jasmin Petschulat
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I/ Experimental Perinatal Neurosciences, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany; Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Germany.
| |
Collapse
|
10
|
Gonzalez-Alcocer A, Gopar-Cuevas Y, Soto-Dominguez A, Loera-Arias MDJ, Saucedo-Cardenas O, Montes de Oca-Luna R, Rodriguez-Rocha H, Garcia-Garcia A. Peripheral tissular analysis of rapamycin's effect as a neuroprotective agent in vivo. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1239-1255. [PMID: 35895156 DOI: 10.1007/s00210-022-02276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Rapamycin is the best-characterized autophagy inducer, which is related to its antiaging and neuroprotective effects. Although rapamycin is an FDA-approved drug for human use in organ transplantation and cancer therapy, its administration as an antiaging and neuroprotective agent is still controversial because of its immunosuppressive and reported side effects. Therefore, it is critical to determine whether the dose that exerts a neuroprotective effect, 35 times lower than that used as an immunosuppressant agent, harms peripheral organs. We validated the rapamycin neuroprotective dosage in a Parkinson's disease (PD) model induced with paraquat. C57BL/6 J mice were treated with intraperitoneal (IP) rapamycin (1 mg/kg) three times per week, followed by paraquat (10 mg/kg) twice per week for 6 weeks, along with rapamycin on alternate days. Rapamycin significantly decreased dopaminergic neuronal loss induced by paraquat. Since rapamycin's neuroprotective effect in a PD model was observed at 7 weeks of treatment; we evaluated its effect on the liver, kidney, pancreas, and spleen. In addition, we prolonged treatment with rapamycin for 14 weeks. Tissue sections were subjected to histochemical, immunodetection, and morphometric analysis. Chronic rapamycin administration does not affect bodyweight, survival, and liver or kidney morphology. Although the pancreas tissular architecture and cellular distribution in Langerhans islets are modified, they may be reversible. The spleen B lymphocyte and macrophage populations were decreased. Notably, the lymphocyte T population was not affected. Therefore, chronic administration of a rapamycin neuroprotective dose does not produce significant tissular alterations. Our findings support the therapeutic potential of rapamycin as a neuroprotective agent.
Collapse
Affiliation(s)
- Alfredo Gonzalez-Alcocer
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Yareth Gopar-Cuevas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Adolfo Soto-Dominguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Maria de Jesus Loera-Arias
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Odila Saucedo-Cardenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Roberto Montes de Oca-Luna
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Humberto Rodriguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México
| | - Aracely Garcia-Garcia
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, 64460, Monterrey, Nuevo León, México.
| |
Collapse
|
11
|
Gao J, Liu J, Yao M, Zhang W, Yang B, Wang G. Panax notoginseng Saponins Stimulates Neurogenesis and Neurological Restoration After Microsphere-Induced Cerebral Embolism in Rats Partially Via mTOR Signaling. Front Pharmacol 2022; 13:889404. [PMID: 35770087 PMCID: PMC9236302 DOI: 10.3389/fphar.2022.889404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
P. Notoginseng Saponins (PNS), the main active component of herbal medicine Panax notoginseng, has been widely used to treat cerebrovascular diseases. It has been acknowledged that PNS exerted protection on nerve injuries induced by ischemic stroke, however, the long-term impacts of PNS on the restoration of neurological defects and neuroregeneration after stroke have not been thoroughly studied and the underlying molecular mechanism of stimulating neurogenesis is difficult to precisely clarify, much more in-depth researches are badly needed. In the present study, cerebral ischemia injury was induced by microsphere embolism (ME) in rats. After 14 days, PNS administration relieved cerebral ischemia injury as evidenced by alleviating neurological deficits and reducing hippocampal pathological damage. What’s more, PNS stimulated hippocampal neurogenesis by promoting cell proliferation, migration and differentiation activity and modulated synaptic plasticity. Increased number of BrdU/Nestin, BrdU/DCX and NeuroD1-positive cells and upregulated synapse-related GAP43, SYP, and PSD95 expression were observed in the hippocampus. We hypothesized that upregulation of brain-derived neurotrophic factor (BDNF) expression and activation of Akt/mTOR/p70S6K signaling after ME could partially underlie the neuroprotective effects of PNS against cerebral ischemia injury. Our findings offer some new viewpoints into the beneficial roles of PNS against ischemic stroke.
Collapse
Affiliation(s)
- Jiale Gao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jianxun Liu,
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangrui Wang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Senousy MA, Hanafy ME, Shehata N, Rizk SM. Erythropoietin and Bacillus Calmette-Guérin Vaccination Mitigate 3-Nitropropionic Acid-Induced Huntington-like Disease in Rats by Modulating the PI3K/Akt/mTOR/P70S6K Pathway and Enhancing the Autophagy. ACS Chem Neurosci 2022; 13:721-732. [PMID: 35226456 DOI: 10.1021/acschemneuro.1c00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are among the mechanisms expected to explain the pathogenesis of Huntington's disease. Erythropoietin (EPO) and the Bacillus Calmette-Guérin (BCG) vaccine have neuroprotective effects against neurodegenerative diseases; however, the full mechanisms of their action are currently unclear. Here, for the first time, we investigated the neuroprotective effect of BCG vaccination in Huntington-like disease induced by 3-nitropropionic acid (3-NP) and its combination with EPO. Male Wistar rats were randomized into five groups: saline-treated control; 3-NP group (20 mg/kg/day, i.p.) for 7 days; EPO-treated group (5000 IU/kg/day, i.p.) for 14 days after 3-NP administration; live BCG vaccine prophylactic group (5000 cfu/g, i.p.) 10 days prior to 3-NP administration; and live BCG vaccine (5000 cfu/g, i.p.) 10 days before 3-NP administration, followed by EPO treatment (5000 IU/kg/day, i.p.) for 14 days. In a histopathological examination, striatum neurodegeneration was evidenced in the 3-NP injected rats. Administration of 3-NP elevated the levels of p-PI3K, p-Akt, p-mTOR, p-P70S6K, BAX, malondialdehyde, nitric oxide, and cytochrome oxidase while reduced the levels of BCL-2, superoxide dismutase, reduced glutathione, and the autophagy marker microtubule-associated protein light chain 3 in the striatum. EPO and BCG ameliorated the biochemical, histopathological, and behavioral derangements induced by 3-NP, with prominent neuroprotection observed in rats administered the BCG prophylactic combined with EPO treatment. These results highlight the role played by EPO and BCG in the management of 3-NP-induced Huntington-like disease by inhibiting the PI3K/Akt/mTOR/P70S6K pathway and enhancing the autophagy.
Collapse
Affiliation(s)
- Mahmoud A. Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona Essam Hanafy
- Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority, Giza 00202, Egypt
| | - Nahla Shehata
- Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority, Giza 00202, Egypt
| | - Sherine M. Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
13
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Badavath VN, Ul Hassan SS, Hasan MM, Bhatia S, Al-Harassi A, Khan H, Bungau S. Unravelling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer's disease. Metab Brain Dis 2022; 37:1-16. [PMID: 34436747 DOI: 10.1007/s11011-021-00820-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
During the last three decades, recombinant DNA technology has produced a wide range of hematopoietic and neurotrophic growth factors, including erythropoietin (EPO), which has emerged as a promising protein drug in the treatment of several diseases. Cumulative studies have recently indicated the neuroprotective role of EPO in preclinical models of acute and chronic neurodegenerative disorders, including Alzheimer's disease (AD). AD is one of the most prevalent neurodegenerative illnesses in the elderly, characterized by the accumulation of extracellular amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs), which serve as the disease's two hallmarks. Unfortunately, AD lacks a successful treatment strategy due to its multifaceted and complex pathology. Various clinical studies, both in vitro and in vivo, have been conducted to identify the various mechanisms by which erythropoietin exerts its neuroprotective effects. The results of clinical trials in patients with AD are also promising. Herein, it is summarized and reviews all such studies demonstrating erythropoietin's potential therapeutic benefits as a pleiotropic neuroprotective agent in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | | - Syed Shams Ul Hassan
- School of Medicine and Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Amity Institute of Pharmacy, Amity University, Noida, Haryana, India
| | - Ahmed Al-Harassi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
14
|
Glibenclamide ameliorates the expression of neurotrophic factors in sevoflurane anaesthesia-induced oxidative stress and cognitive impairment in hippocampal neurons of old rats. J Vet Res 2021; 65:527-538. [PMID: 35112009 PMCID: PMC8775723 DOI: 10.2478/jvetres-2021-0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Several antidiabetic medications have been proposed as prospective treatments for cognitive impairments in type 2 diabetes patients, glibenclamide (GBC) among them. Our research aimed to evaluate the impact of GBC on hippocampal learning memory and inflammation due to enhanced neurotrophic signals induced by inhalation of sevoflurane. Material and Methods Rats (Sprague Dawley, both sexes) were assigned to four groups: a control (vehicle, p.o.), GBC (10 mg/kg b.w.; p.o.), low-dose sevoflurane and low-dose sevoflurane + GBC (10 mg/kg b.w.; p.o.) for 23 days. Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining was performed to analyse the count of apoptotic cells and ELISA was conducted to assess the protein signals. A Western blot, a Y-maze test, and a Morris maze test were performed, and the results analysed. Blood and tissues were collected, and isolation of RNA was performed with qRT-PCR. Results The Morris maze test results revealed an improvement in the length of the escape latency on days 1 (P < 0.05), 2 (P < 0.01), 3, and 4 in the low-dose Sevo group. Time spent in the quadrant and crossing axis and the percentage of spontaneous alterations showed a substantial decrease in the low-dose Sevo group which received GBC at 10 mg/kg b.w. Significant increases were shown in IL-6 and TNF-α levels in the low-dose Sevo group, whereas a decrease was evident in the GBC group. Conclusion Our results indicate that glibenclamide may be a novel drug to prevent sevoflurane inhalation-induced impaired learning and reduce brain-derived neurotrophic factor release, which may be a vital target for the development of potential therapies for cognitive deficits and neurodegeneration.
Collapse
|
15
|
Twible C, Abdo R, Zhang Q. Astrocyte Role in Temporal Lobe Epilepsy and Development of Mossy Fiber Sprouting. Front Cell Neurosci 2021; 15:725693. [PMID: 34658792 PMCID: PMC8514632 DOI: 10.3389/fncel.2021.725693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects approximately 50 million people worldwide, with 60% of adult epilepsies presenting an onset of focal origin. The most common focal epilepsy is temporal lobe epilepsy (TLE). The role of astrocytes in the presentation and development of TLE has been increasingly studied and discussed within the literature. The most common histopathological diagnosis of TLE is hippocampal sclerosis. Hippocampal sclerosis is characterized by neuronal cell loss within the Cornu ammonis and reactive astrogliosis. In some cases, mossy fiber sprouting may be observed. Mossy fiber sprouting has been controversial in its contribution to epileptogenesis in TLE patients, and the mechanisms surrounding the phenomenon have yet to be elucidated. Several studies have reported that mossy fiber sprouting has an almost certain co-existence with reactive astrogliosis within the hippocampus under epileptic conditions. Astrocytes are known to play an important role in the survival and axonal outgrowth of central and peripheral nervous system neurons, pointing to a potential role of astrocytes in TLE and associated cellular alterations. Herein, we review the recent developments surrounding the role of astrocytes in the pathogenic process of TLE and mossy fiber sprouting, with a focus on proposed signaling pathways and cellular mechanisms, histological observations, and clinical correlations in human patients.
Collapse
Affiliation(s)
- Carolyn Twible
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada
| | - Rober Abdo
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Qi Zhang
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Pathology and Lab Medicine, London Health Sciences Centre, University Hospital, London, ON, Canada
| |
Collapse
|
16
|
Buyang Huanwu Decoction promotes neurogenesis via sirtuin 1/autophagy pathway in a cerebral ischemia model. Mol Med Rep 2021; 24:791. [PMID: 34515326 PMCID: PMC8441980 DOI: 10.3892/mmr.2021.12431] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke is one of the main causes of disease-related mortality worldwide. Buyang Huanwu Decoction (BHD) has been used to protect against stroke and stroke-induced disability for several years in China. Studies have shown that BHD can relieve neuronal damage in rats with cerebral ischemia/reperfusion (I/R) injury. However, the mechanism remains unclear. A middle cerebral artery occlusion and reperfusion (MCAO-R) model was used in the present study. The animals were treated with BHD (5, 10 and 20 g/kg) or rapamycin. Infarct size and modified neurological severity score were calculated on day 5 following MCAO-R surgery. Cellular changes around the ischemic penumbra were revealed by hematoxylin and eosin and Nissl staining. The protein expression levels of nestin, brain-derived neurotrophic factor (BDNF), doublecortin on the X chromosome (DCX) and autophagy-related proteins (beclin 1, LC3-II and p62) in the peri-ischemic area of the brain were detected. The results demonstrated that post-surgical treatment with BHD reduced the brain infarct size and improved neurological deficits in MCAO-R rats. BHD protected against MCAO-R-induced neuronal impairment and promoted neurogenesis, increased the protein expression of nestin, BDNF and DCX and markedly enhanced autophagy by increasing beclin 1 and LC3-II and decreasing p62. Meanwhile, BHD promoted the expression of sirtuin 1 (SIRT1), an important regulator of autophagy. In conclusion, the present study suggested that post-surgical treatment with BHD could protect rat brains from I/R injury, potentially through the SIRT1/autophagy pathway.
Collapse
|
17
|
Incomplete reminder cues trigger memory reconsolidation and sustain learned immune responses. Brain Behav Immun 2021; 95:115-121. [PMID: 33691148 DOI: 10.1016/j.bbi.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral immune responses can be modulated by taste-immune associative learning where the presentation of a sweet taste as conditioned stimulus (CS) is paired with the injection of an immunosuppressive substance as unconditioned stimulus (US). Previous findings demonstrate conditioned immunopharmacological properties of the mechanistic target of rapamycin (mTOR)-inhibitor rapamycin, a drug used to ameliorate neurological diseases and for the prevention of graft rejection. However, conditioned responses gradually weaken over time and eventually disappear following repeated exposure to the CS in the absence of the US. Thus, in order to employ learning paradigms in clinical conditions as supportive immunopharmacological therapy it is important to understand the central and peripheral mechanisms of how learned immune responses can be protected from extinction. Against this background, the present study used a taste-immune learning paradigm with rapamycin as US (5 mg/kg). By applying only 10% (0.5 mg/kg) of the therapeutic dose rapamycin together with the CS (taste stimulus) during eight retrieval trials, conditioned animals still displayed suppressed interleukin-10 production and T cell proliferation in splenocytes as well as diminished activity of the mTOR target protein p70s6k in amygdala tissue samples. Together, these findings indicate that reminder cues in form of only 10% (0.5 mg/kg) of the therapeutic dose rapamycin together with the CS (taste stimulus) at retrieval preserved the memory of conditioned properties of rapamycin, characterizing this approach as a potential supportive tool in peripheral and central pharmacotherapy with the aim to maximize the therapeutic outcome for the patient's benefit.
Collapse
|
18
|
Vieira ÉLM, Martins FMA, Bellozi PMQ, Gonçalves AP, Siqueira JM, Gianetti A, Teixeira AL, de Oliveira ACP. PI3K, mTOR and GSK3 modulate cytokines' production in peripheral leukocyte in temporal lobe epilepsy. Neurosci Lett 2021; 756:135948. [PMID: 33979699 DOI: 10.1016/j.neulet.2021.135948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Epilepsy is a common pathological condition that predisposes individuals to seizures, as well as cognitive and emotional dysfunctions. Different studies have demonstrated that inflammation contributes to the pathophysiology of epilepsy. Indeed, seizures change the peripheral inflammatory pattern, which, in turn, could contribute to seizures. However, the cause of the altered production of peripheral inflammatory mediators is not known. The PI3K/mTOR/GSK3β pathway is important for different physiological and pharmacological phenomena. Therefore, in the present study, we tested the hypothesis that the PI3K/mTOR/GSK3β pathway is deregulated in immune cells from patients with epilepsy and contributes to the abnormal production of inflammatory mediators. METHODS Patients with temporal lobe epilepsy presenting hippocampal sclerosis and controls aged between 18 and 65 years-old were selected for this study. Peripheral blood was collected for the isolation of peripheral mononuclear blood cells (PBMC). Cells were pre-incubated with different PI3K, mTOR and GSK-3 inhibitors for 30 min and further stimulated with phytohaemaglutinin (PHA) or vehicle for 24 h. The supernatant was used to evaluate the production of IL-1β, IL-6, IL-10, TNF e IL-12p70. RESULTS Non-selective inhibition of PI3K, as well as inhibition of PI3Kγ and GSK-3, reduced the levels of TNF and IL-10 in PHA-stimulated cells from TLE individuals. This stimulus increased the production of IL-12p70 only in cells from TLE individuals, while the inhibition of PI3K and mTOR enhanced the production of this cytokine. On the other hand, inhibition of GSK3 reduced the PHA-induced production of IL-12p70. CONCLUSIONS Herein we demonstrated that the production of cytokines by immune cells from patients with TLE differs from non-epileptic patients. This differential regulation may be associated with the altered activity and responsiveness of intracellular molecules, such as PI3K, mTOR and GSK-3, which, in turn, might contribute to the inflammatory state that exists in epilepsy and its pathogenesis.
Collapse
Affiliation(s)
- Érica Leandro Marciano Vieira
- Centre for Addiction and Mental Health - CAMH, Toronto, Canada; Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Mendes Amaral Martins
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Maria Quaglio Bellozi
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Molecular Biology Program, Universidade de Brasília, Brasília, DF, Brazil
| | - Ana Paula Gonçalves
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - José Maurício Siqueira
- Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - Alexandre Gianetti
- Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States; Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
19
|
Bibyk MJ, Campbell MJ, Hummon AB. Mass spectrometric investigations of caloric restriction mimetics. Proteomics 2021; 21:e2000121. [PMID: 33460282 PMCID: PMC8262777 DOI: 10.1002/pmic.202000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 11/11/2022]
Abstract
Caloric restriction (CR) is an innovative therapy used in tumor tissue and tumor model studies to promote cell death and decrease cell viability. Caloric restriction mimetics (CRMs) are a class of drugs that induce CR and starvation conditions within a cell. When used simultaneously with other chemotherapy agents, the effects are synergistic and effective at promoting tumor cell death. In this review, we discuss CRMs and their potential as cancer therapeutics. Firstly, we establish an overview of CR and its impacts on healthy and tumor cells. CR and CRM drugs have shown to decrease age-related diseases and can act as an anti-cancer agent. As it can be challenging for an individual to diligently stick to a diet that would induce CR, CRMs are even more desirable. Then, we discuss the drug class by highlighting three CRMs: resveratrol, (-)-hydroxycitric acid, and rapamycin. These CRMs are commonly known for their dietary effects, but the underlying mechanisms that drive cellular metabolic and proteomic changes show promise as a cancer therapeutic. Lastly, we highlight the use of mass spectrometry and proteomic techniques on experiments utilizing CRM drugs to understand the cellular pathways impacted by this drug class, leading to a better understanding of the anti-cancer properties and potentials of CRM.
Collapse
Affiliation(s)
- Michael J. Bibyk
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Melanie J. Campbell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
20
|
Kabaklıoğlu M, Kaya M, Şahin IE, Gamsızkan M, Bahçıvan A, Eröz R. Short- and long-term effects of rapamycin on ischemic damage and apoptotic changes in torsion of rat testes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:85-94. [PMID: 32813042 DOI: 10.1007/s00210-020-01965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Rapamycin has antioxidant defense mechanisms and immune suppressive effects. To detect the short- and long-term effects of rapamycin on ischemic damage and apoptotic changes in torsion of rat testes, mature male albino Wistar rats (n = 48) were included in the study as control, sham, early torsion-detorsion (T/D), early rapamycin treatment, early rapamycin control, late T/D, late rapamycin treatment, and late rapamycin control. The right testis was rotated 720° in a clockwise direction during 4 h in operation groups. Rapamycin was administered orally three times: 30 min before detorsion and 24 and 48 h after detorsion. The animals were killed on the third day in early groups and on the tenth day in late groups after detorsion. Statistically significant differences among all groups were detected for SOD and TBARS, mean seminiferous tubule diameter (MSTD) and Cosentino's histologic score (CHS), caspase 3, bax, average number of apoptotic cells per tubule (ANPCT), and percentage of apoptotic tubule (PAT) values. ANPCT values were 10% lower in the rapamycin treatment groups compared with the untreated T/D groups, and the PAT values were also approximately 1.3 times lower. Although short-term usage of rapamycin may reduce to the tubular injury caused by I/R conversely to apoptosis in the testicular tissue after testicular torsion, rapamycin may have the potential to increase the long-term apoptosis with/without testicular torsion and a subsequent regression in fertility.
Collapse
Affiliation(s)
- Murat Kabaklıoğlu
- Department of Pediatric Surgery, Duzce University Medical Faculty, Duzce, Turkey.
| | - Murat Kaya
- Department of Pediatric Surgery, Duzce University Medical Faculty, Duzce, Turkey
| | - Ibrahim Ethem Şahin
- Department of Medical Biochemistry, Duzce University Medical Faculty, Duzce, Turkey
| | - Mehmet Gamsızkan
- Department of Medical Pathology, Duzce University Medical Faculty, Duzce, Turkey
| | - Atike Bahçıvan
- Department of Medical Pathology, Duzce University Medical Faculty, Duzce, Turkey
| | - Recep Eröz
- Department of Medical Genetics, Duzce University Medical Faculty, Duzce, Turkey
| |
Collapse
|
21
|
Unteroberdörster M, Herring A, Bendix I, Lückemann L, Petschulat J, Sure U, Keyvani K, Hetze S, Schedlowski M, Hadamitzky M. Neurobehavioral effects in rats with experimentally induced glioblastoma after treatment with the mTOR-inhibitor rapamycin. Neuropharmacology 2020; 184:108424. [PMID: 33285202 DOI: 10.1016/j.neuropharm.2020.108424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
Psychiatric symptoms as seen in affective and anxiety disorders frequently appear during glioblastoma (GBM) treatment and disease progression, additionally deteriorate patient's daily life routine. These central comorbidities are difficult to recognize and the causes for these effects are unknown. Since overactivation of mechanistic target of rapamycin (mTOR)- signaling is one key driver in GBM growth, the present study aimed at examining in rats with experimentally induced GBM, neurobehavioral consequences during disease progression and therapy. Male Fisher 344 rats were implanted with syngeneic RG2 tumor cells in the right striatum and treated with the mTOR inhibitor rapamycin (3 mg/kg; once daily, for eight days) before behavioral performance, brain protein expression, and blood samples were analyzed. We could show that treatment with rapamycin diminished GBM tumor growth, confirming mTOR-signaling as one key driver for tumor growth. Importantly, in GBM animals' anxiety-like behavior was observed but only after treatment with rapamycin. These behavioral alterations were moreover accompanied by aberrant glucocorticoid receptor, phosphorylated p70 ribosomal S6 kinase alpha (p-p70s6k), and brain derived neurotrophic factor protein expression in the hippocampus and amygdala in the non-tumor-infiltrated hemisphere of the brain. Despite the beneficial effects on GBM tumor growth, our findings indicate that therapy with rapamycin impaired neurobehavioral functioning. This experimental approach has a high translational value. For one, it emphasizes aberrant mTOR functioning as a central feature mechanistically linking complex brain diseases and behavioral disturbances. For another, it highlights the importance of elaborating the cause of unwanted central effects of immunosuppressive and antiproliferative drugs used in transplantation medicine, immunotherapy, and oncology.
Collapse
Affiliation(s)
- Meike Unteroberdörster
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany; Department of Neurosurgery, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Arne Herring
- Institute of Neuropathology, University Hospital Essen, 45122, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I/ Neonatology & Experimental Perinatal Neuroscience, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Jasmin Petschulat
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, 45122, Essen, Germany
| | - Susann Hetze
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany; Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
22
|
Moustafa M, Abokrysha NT, Eldesoukey NA, Amin DG, Mounir N, Labib DM. Role of circulating miR 194-5p, miR 106b, and miR 146a as potential biomarkers for epilepsy: a case-control study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00214-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
Epilepsy is a chronic neurological disease. A suitable biomarker for epilepsy diagnosis remains lacking. MicroRNAs (miRNAs) were pronounced as promising biomarkers for epileptogenesis.
Objectives
To analyze the expression levels of miR 194-5p, miR 106b, and miR 146a in Egyptian epileptic patients compared to control subjects and to detect their correlation to clinical characteristics.
Subjects and methods
We evaluated the expression levels of miR 106b, miR 146a, and miR 194-5p using real-time quantitative polymerase chain reaction (qRT-PCR) in 50 subjects: 15 patients with idiopathic generalized epilepsy, 15 patients with focal epilepsy (3 idiopathic and 12 cryptogenic), and 20 healthy controls.
Results
miR 106b and miR 194-5p were upregulated in the generalized epilepsy group compared to control; miR 194-5p was significantly downregulated in the focal epilepsy group compared to the generalized epilepsy group and control (p ˂ 0.05). miR 194-5p was negatively correlated to disease duration in patients with focal epilepsy; the three microRNAs were positively correlated to each other (p ˂ 0.05).
Conclusion
Serum miR 194-5P and miR 106b can be used as potential non-invasive biomarkers in the evaluation of idiopathic generalized epilepsy.
Collapse
|
23
|
Eyob W, George AK, Homme RP, Stanisic D, Sandhu H, Tyagi SC, Singh M. Regulation of the parental gene GRM4 by circGrm4 RNA transcript and glutamate-mediated neurovascular toxicity in eyes. Mol Cell Biochem 2020; 476:663-673. [PMID: 33074445 DOI: 10.1007/s11010-020-03934-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/07/2020] [Indexed: 01/30/2023]
Abstract
Epigenetic memory plays crucial roles in gene regulation. It not only modulates the expression of specific genes but also has ripple effects on transcription as well as translation of other genes. Very often an alteration in expression occurs either via methylation or demethylation. In this context, "1-carbon metabolism" assumes a special significance since its dysregulation by higher levels of homocysteine; Hcy (known as hyperhomocysteinemia; HHcy), a byproduct of "1-Carbon Metabolism" during methionine biosynthesis leads to serious implications in cardiovascular, renal, cerebrovascular systems, and a host of other conditions. Currently, the circular RNAs (circRNAs) generated via non-canonical back-splicing events from the pre-mRNA molecules are at the center stage for their essential roles in diseases via their epigenetic manifestations. We recently identified a circular RNA transcript (circGRM4) that is significantly upregulated in the eye of cystathionine β-synthase-deficient mice. We also discovered a concurrent over-expression of the mGLUR4 receptor in the eyes of these mice. In brief, circGRM4 is selectively transcribed from its parental mGLUR4 receptor gene (GRM4) functions as a "molecular-sponge" for the miRNAs and results into excessive turnover of the mGLUR4 receptor in the eye in response to extremely high circulating glutamate concentration. We opine that this epigenetic manifestation potentially predisposes HHcy people to retinovascular malfunctioning.
Collapse
Affiliation(s)
- Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Dragana Stanisic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Harpal Sandhu
- Department of Ophthalmology and Visual Sciences and Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
24
|
Maiese K. Prospects and Perspectives for WISP1 (CCN4) in Diabetes Mellitus. Curr Neurovasc Res 2020; 17:327-331. [PMID: 32216738 PMCID: PMC7529678 DOI: 10.2174/1567202617666200327125257] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 02/08/2023]
Abstract
The prevalence of diabetes mellitus (DM) continues to increase throughout the world. In the United States (US) alone, approximately ten percent of the population is diagnosed with DM and another thirty-five percent of the population is considered to have prediabetes. Yet, current treatments for DM are limited and can fail to block the progression of multi-organ failure over time. Wnt1 inducible signaling pathway protein 1 (WISP1), also known as CCN4, is a matricellular protein that offers exceptional promise to address underlying disease progression and develop innovative therapies for DM. WISP1 holds an intricate relationship with other primary pathways of metabolism that include protein kinase B (Akt), mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and mammalian forkhead transcription factors (FoxOs). WISP1 is an exciting prospect to foster vascular as well as neuronal cellular protection and regeneration, control cellular senescence, block oxidative stress injury, and maintain glucose homeostasis. However, under some scenarios WISP1 can promote tumorigenesis, lead to obesity progression with adipocyte hyperplasia, foster fibrotic hepatic disease, and lead to dysregulated inflammation with the progression of DM. Given these considerations, it is imperative to further elucidate the complex relationship WISP1 holds with other vital metabolic pathways to successfully develop WISP1 as a clinically effective target for DM and metabolic disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY10022, USA
| |
Collapse
|
25
|
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13:23-34. [PMID: 31794280 PMCID: PMC6959472 DOI: 10.1080/17512433.2020.1698288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Dementia is the 7th leading cause of death that imposes a significant financial and service burden on the global population. Presently, only symptomatic care exists for cognitive loss, such as Alzheimer's disease.Areas covered: Given the advancing age of the global population, it becomes imperative to develop innovative therapeutic strategies for cognitive loss. New studies provide insight to the association of cognitive loss with metabolic disorders, such as diabetes mellitus.Expert opinion: Diabetes mellitus is increasing in incidence throughout the world and affects 350 million individuals. Treatment strategies identifying novel pathways that oversee metabolic and neurodegenerative disorders offer exciting prospects to treat dementia. The mechanistic target of rapamycin (mTOR) and circadian clock gene pathways that include AMP activated protein kinase (AMPK), Wnt1 inducible signaling pathway protein 1 (WISP1), erythropoietin (EPO), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) provide novel strategies to treat cognitive loss that has its basis in metabolic cellular dysfunction. However, these pathways are complex and require precise regulation to maximize treatment efficacy and minimize any potential clinical disability. Further investigations hold great promise to treat both the onset and progression of cognitive loss that is associated with metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
26
|
Lückemann L, Unteroberdörster M, Martinez Gomez E, Schedlowski M, Hadamitzky M. Behavioral conditioning of anti-proliferative and immunosuppressive properties of the mTOR inhibitor rapamycin. Brain Behav Immun 2019; 79:326-331. [PMID: 30953772 DOI: 10.1016/j.bbi.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/05/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Suppression of immune functions can be elicited by behavioral conditioning using drugs such as cyclosporine A, cyclophosphamide, or opioids. Nevertheless, little is known regarding the conditioned actions of clinically approved immunosuppressive drugs with distinct cell signaling pathways. The present study tested the assumption to condition immunopharmacological properties of rapamycin (sirolimus), a small-molecule drug widely used as anti-tumor medication and to prevent graft rejection. For this purpose, a conditioned taste avoidance (CTA) paradigm was used, pairing the presentation of a novel taste (saccharin) as conditioned stimulus (CS) with injections of rapamycin as unconditioned stimulus (US). Subsequent re-exposure to the CS at a later time revealed that conditioning with rapamycin induced an only moderate CTA. However, pronounced conditioned immunopharmacological effects were observed, reflected by significantly reduced levels of IL-10 cytokine production and diminished proliferation of splenic CD4+ and CD8+ T cells in Dark Agouti and Fischer 344 rats. For one, these findings support earlier observations revealing that not a pronounced CTA but rather re-exposure to the CS or taste itself is essential for conditioned immunosuppression. Moreover, our results provide first evidence that the phenomenon of learned immune responses generalizes across many, if not all, small-molecule drugs with immunosuppressive properties, thereby providing the basis for employing learned immunopharmacological strategies in clinical contexts such as supportive therapy.
Collapse
Affiliation(s)
- Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Meike Unteroberdörster
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Elian Martinez Gomez
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
27
|
Takimoto M. Multidisciplinary Roles of LRRFIP1/GCF2 in Human Biological Systems and Diseases. Cells 2019; 8:cells8020108. [PMID: 30709060 PMCID: PMC6406849 DOI: 10.3390/cells8020108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 01/28/2023] Open
Abstract
Leucine Rich Repeat of Flightless-1 Interacting Protein 1/GC-binding factor 2 (LRRFIP1/GCF2) cDNA was cloned for a transcriptional repressor GCF2, which bound sequence-specifically to a GC-rich element of epidermal growth factor receptor (EGFR) gene and repressed its promotor. LRRFIP1/GCF2 was also cloned as a double stranded RNA (dsRNA)-binding protein to trans-activation responsive region (TAR) RNA of Human Immunodeficiency Virus-1 (HIV-1), termed as TAR RNA interacting protein (TRIP), and as a binding protein to the Leucine Rich Repeat (LRR) of Flightless-1(Fli-1), termed as Flightless-1 LRR associated protein 1 (FLAP1) and LRR domain of Flightless-1 interacting Protein 1 (LRRFIP1). Subsequent functional studies have revealed that LRRFIP1/GCF2 played multiple roles in the regulation of diverse biological systems and processes, such as in immune response to microorganisms and auto-immunity, remodeling of cytoskeletal system, signal transduction pathways, and transcriptional regulations of genes. Dysregulations of LRRFIP1/GCF2 have been implicated in the causes of several experimental and clinico-pathological states and the responses to them, such as autoimmune diseases, excitotoxicity after stroke, thrombosis formation, inflammation and obesity, the wound healing process, and in cancers. LRRFIP1/GCF2 is a bioregulator in multidisciplinary systems of the human body and its dysregulation can cause diverse human diseases.
Collapse
Affiliation(s)
- Masato Takimoto
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan.
| |
Collapse
|
28
|
Tramutola A, Lanzillotta C, Barone E, Arena A, Zuliani I, Mosca L, Blarzino C, Butterfield DA, Perluigi M, Di Domenico F. Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome. Transl Neurodegener 2018; 7:28. [PMID: 30410750 PMCID: PMC6218962 DOI: 10.1186/s40035-018-0133-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023] Open
Abstract
Background Down syndrome (DS) individuals, by the age of 40s, are at increased risk to develop Alzheimer-like dementia, with deposition in brain of senile plaques and neurofibrillary tangles. Our laboratory recently demonstrated the disturbance of PI3K/AKT/mTOR axis in DS brain, prior and after the development of Alzheimer Disease (AD). The aberrant modulation of the mTOR signalling in DS and AD age-related cognitive decline affects crucial neuronal pathways, including insulin signaling and autophagy, involved in pathology onset and progression. Within this context, the therapeutic use of mTOR-inhibitors may prevent/attenuate the neurodegenerative phenomena. By our work we aimed to rescue mTOR signalling in DS mice by a novel rapamycin intranasal administration protocol (InRapa) that maximizes brain delivery and reduce systemic side effects. Methods Ts65Dn mice were administered with InRapa for 12 weeks, starting at 6 months of age demonstrating, at the end of the treatment by radial arms maze and novel object recognition testing, rescued cognition. Results The analysis of mTOR signalling, after InRapa, demonstrated in Ts65Dn mice hippocampus the inhibition of mTOR (reduced to physiological levels), which led, through the rescue of autophagy and insulin signalling, to reduced APP levels, APP processing and APP metabolites production, as well as, to reduced tau hyperphosphorylation. In addition, a reduction of oxidative stress markers was also observed. Discussion These findings demonstrate that chronic InRapa administration is able to exert a neuroprotective effect on Ts65Dn hippocampus by reducing AD pathological hallmarks and by restoring protein homeostasis, thus ultimately resulting in improved cognition. Results are discussed in term of a potential novel targeted therapeutic approach to reduce cognitive decline and AD-like neuropathology in DS individuals.
Collapse
Affiliation(s)
- Antonella Tramutola
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Lanzillotta
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Eugenio Barone
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.,2Universidad Autònoma de Chile, Instituto de Ciencias Biomédicas, Facultad de alud, Avenida Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Andrea Arena
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Zuliani
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luciana Mosca
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Carla Blarzino
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - D Allan Butterfield
- 3Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055 USA
| | - Marzia Perluigi
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Di Domenico
- 1Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
29
|
Fanoudi S, Hosseini M, Alavi MS, Boroushaki MT, Hosseini A, Sadeghnia HR. Everolimus, a mammalian target of rapamycin inhibitor, ameliorated streptozotocin-induced learning and memory deficits via neurochemical alterations in male rats. EXCLI JOURNAL 2018; 17:999-1017. [PMID: 30564080 PMCID: PMC6295637 DOI: 10.17179/excli2018-1626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022]
Abstract
Everolimus (EVR), as a rapamycin analog, is a selective inhibitor of the mammalian target of rapamycin (mTOR) kinase and its associated signaling pathway. mTOR is a serine/threonine protein kinase and its hyperactivity is involved in the pathophysiology of Alzheimer's disease (AD) and associated cognitive deficits. The present study evaluated the impact of EVR, on cognitive functions, hippocampal cell loss, and neurochemical parameters in the intracerebroventricular streptozotocin (icv-STZ) model of AD rats. EVR (1 and 5 mg/kg) was administered for 21 days following the single administration of STZ (3 mg/kg, icv) or for 7 days on days 21-28 post-STZ injection after establishment of cognitive dysfunction. Cognitive deficits (passive avoidance and spatial memory), oxidative stress parameters, acetylcholinesterase (AChE) activity, and percentage of cell loss were evaluated in the hippocampus. Chronic administration (1 and 5 mg/kg for 21 days from the day of surgery and icv-STZ infusion) or acute injection (5 mg/kg for 7 days after establishment of cognitive impairment) of EVR significantly attenuated cognitive dysfunction, neuronal loss, oxidative stress and AChE activity in the hippocampus of STZ-AD rats. In conclusion, our study showed that EVR could prevent or improve deteriorations in behavioral, biochemical and histopathological features of the icv-STZ rat model of AD. Therefore, inhibition of the hyperactivated mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Sahar Fanoudi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R. Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Shirooie S, Nabavi SF, Dehpour AR, Belwal T, Habtemariam S, Argüelles S, Sureda A, Daglia M, Tomczyk M, Sobarzo-Sanchez E, Xu S, Nabavi SM. Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration? Pharmacol Res 2018; 135:37-48. [PMID: 29990625 DOI: 10.1016/j.phrs.2018.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022]
Abstract
Neurodegenerative diseases (NDs) such as Parkinson's (PD), Alzheimer's (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) cause significant world-wide morbidity and mortality. To date, there is no drug of cure for these, mostly age-related diseases, although approaches in delaying the pathology and/or giving patients some symptomatic relief have been adopted for the last few decades. Various studies in recent years have shown the beneficial effects of omega-3 poly unsaturated fatty acids (PUFAs) through diverse mechanisms including anti-inflammatory effects. This review now assesses the potential of this class of compounds in NDs therapy through specific action against the mammalian target of rapamycin (mTOR) signaling pathway. The role of mTOR in neurodegenerative diseases and targeted therapies by PUFAs are discussed.
Collapse
Affiliation(s)
- Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Fazel Nabavi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Ahmad R Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tarun Belwal
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi Katarmal, Almora, Uttarakhand, India
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Instituto de Investigación en Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14623, United States
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran.
| |
Collapse
|
31
|
Li N, Wang F, Zhang Q, Jin M, Lu Y, Chen S, Guo C, Zhang X. Rapamycin mediates mTOR signaling in reactive astrocytes and reduces retinal ganglion cell loss. Exp Eye Res 2018; 176:10-19. [PMID: 29928901 DOI: 10.1016/j.exer.2018.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/20/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022]
Abstract
Damage and loss of retinal ganglion cells (RGCs) can cause visual impairment. The underlying molecular mechanisms that mediate RGC death in ischemic retinal diseases are still unclear. In this study, we sought to understand the neuroprotective effect of rapamycin, the selective inhibitor of mTORC1, on RGC survival and the cellular mechanics that mediate this effect. Recent studies have reported that the epidermal growth factor (EGF) receptor shows an increase in expression in astrocytes after injury, and this receptor can promote their transformation into reactive astrocytes. Our results, along with previous works from others, show the colocalization of phosphor-EGF receptors with the astrocyte marker glial fibrillary acidic proteins in reactive astrocytes in the injured retina. In our in vitro studies, using primary astrocyte cultures of the optic nerve head of rats, showed that rapamycin significantly blocked EGF-induced mTOR signaling mainly through the PI3K/Akt pathway in primary astrocytes, but not through the MAPK/Erk pathway. Additionally, rapamycin dramatically inhibited the activation of mTOR signaling in our ratinal ischemia-reperfusion (I/R) injury model in vivo. Astrocyte activation was assessed by immunostaining retinal flat mounts or cross sections with antibody against GFAP, and we also used western blots to detect the expression of GFAP. Taken together, these results revealed that rapamycin decreases the activation of astrocytes after retinal ischemia-reperfusion injury. Furthermore, rapamycin can improve retinal RGC survival in rats during I/R, as detected by FluoroGold labeling. Our data reveals the neuroprotective effects of rapamycin in an experimental retina injury model, possibly through decreasing glial-dependent intracellular signaling mechanisms for suppressing apoptosis of RGCs. Our study also presents an approach to targeting reactive astrocytes for the treatment of optic neurodegenerations.
Collapse
Affiliation(s)
- Ningfeng Li
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Qinglin Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ye Lu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Shanshan Chen
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Cuiju Guo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China.
| |
Collapse
|
32
|
Li X, Zhu G, Gou X, He W, Yin H, Yang X, Li J. Negative feedback loop of autophagy and endoplasmic reticulum stress in rapamycin protection against renal ischemia-reperfusion injury during initial reperfusion phase. FASEB J 2018; 32:fj201800299R. [PMID: 29771603 DOI: 10.1096/fj.201800299r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Rapamycin, an immunosuppressant, is widely used in patients with kidney transplant. However, the therapeutic effects of rapamycin remain controversial. Additionally, previous studies have revealed deleterious effects of rapamycin predominantly when administered for ≥24 h. Few studies, however, have focused on the short-term effects of rapamycin administered only during the initial reperfusion phase. As such, we designed this study to explore the potential effects and mechanisms of rapamycin under a specific therapeutic regimen in which rapamycin is mixed in the perfusate during the initial reperfusion phase (within 24 h). Interestingly, we found that rapamycin maintained renal function and attenuated ischemia-reperfusion (I/R)-induced apoptosis in vivo and in vitro during the initial reperfusion phase, especially at 8 h after reperfusion. Simultaneously, rapamycin activated autophagy and inhibited endoplasmic reticulum (ER) stress and 3 pathways of unfolding protein response: ATF6, PERK, and IRE1α. Interestingly, we further found that the protective effects of rapamycin were suppressed when autophagy was inhibited by chloroquine and 3-methyladenine or when ER stress was induced by thapsigargin. Moreover, in terms of the regulatory effects of rapamycin, a negative-feedback loop between autophagy and ER stress occurred, with autophagy inhibiting ER stress and increased ER stress promoting autophagy during the initial reperfusion phase of renal I/R injury. Our study provides evidence that immediate reperfusion with rapamycin during the initial reperfusion phase repairs renal function and reduces apoptosis via activating autophagy, which could further inhibit ER stress. These results suggest a novel treatment modality for application during the initial reperfusion phase of renal I/R injury caused by kidney transplantation.-Li, X., Zhu, G., Gou, X., He, W., Yin, H., Yang, X., Li, J. Negative feedback loop of autophagy and endoplasmic reticulum stress in rapamycin protection against renal ischemia-reperfusion injury during initial reperfusion phase.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Gongmin Zhu
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xin Gou
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Weiyang He
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Hubin Yin
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xiaoyu Yang
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Jie Li
- Department of Urology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| |
Collapse
|
33
|
Maiese K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr Neurovasc Res 2018; 14:299-304. [PMID: 28721811 DOI: 10.2174/1567202614666170718092010] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease. METHODS In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis. RESULTS In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth. CONCLUSION Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, NY. United States
| |
Collapse
|
34
|
Zhang ZH, Wu QY, Chen C, Zheng R, Chen Y, Liu Q, Ni JZ, Song GL. Selenomethionine Attenuates the Amyloid-β Level by Both Inhibiting Amyloid-β Production and Modulating Autophagy in Neuron-2a/AβPPswe Cells. J Alzheimers Dis 2018; 59:591-602. [PMID: 28671121 DOI: 10.3233/jad-170216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a complex and progressive neurological disorder, and amyloid-β (Aβ) has been recognized as the major cause of AD. Inhibiting Aβ production and/or enhancing the clearance of Aβ to reduce its levels are still the effective therapeutic strategies pursued in anti-AD research. In previous studies, we have reported that selenomethionine (Se-Met), a major form of selenium in animals and humans with significant antioxidant capacity, can reduce both amyloid-β (Aβ) deposition and tau hyperphosphorylation in a triple transgenic mouse model of AD. In this study, a Se-Met treatment significantly decreased the Aβ levels in Neuron-2a/AβPPswe (N2asw) cells, and the anti-amyloid effect of Se-Met was attributed to its ability to inhibit Aβ generation by suppressing the activity of BACE1. Furthermore, both the LC3-II/LC3-I ratio and the number of LC3-positive puncta were significantly decreased in Se-Met-treated cells, suggesting that Se-Met also promoted Aβ clearance by modulating the autophagy pathway. Subsequently, Se-Met inhibited the initiation of autophagy through the AKT-mTOR-p70S6K signaling pathway and enhanced autophagic turnover by promoting autophagosome-lysosome fusion and autophagic clearance. Our results further highlight the potential therapeutic effects of Se-Met on AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiu-Yan Wu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Rui Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yao Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
35
|
The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018. [PMID: 29523769 DOI: 10.1042/bst20170121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a result of the advancing age of the global population and the progressive increase in lifespan, neurodegenerative disorders continue to increase in incidence throughout the world. New strategies for neurodegenerative disorders involve the novel pathways of the mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) that can modulate pathways of apoptosis and autophagy. The pathways of mTOR and SIRT1 are closely integrated. mTOR forms the complexes mTOR Complex 1 and mTOR Complex 2 and can impact multiple neurodegenerative disorders that include Alzheimer's disease, Huntington's disease, and Parkinson's disease. SIRT1 can control stem cell proliferation, block neuronal injury through limiting programmed cell death, drive vascular cell survival, and control clinical disorders that include dementia and retinopathy. It is important to recognize that oversight of programmed cell death by mTOR and SIRT1 requires a fine degree of precision to prevent the progression of neurodegenerative disorders. Additional investigations and insights into these pathways should offer effective and safe treatments for neurodegenerative disorders.
Collapse
|
36
|
Hadamitzky M, Herring A, Kirchhof J, Bendix I, Haight MJ, Keyvani K, Lückemann L, Unteroberdörster M, Schedlowski M. Repeated Systemic Treatment with Rapamycin Affects Behavior and Amygdala Protein Expression in Rats. Int J Neuropsychopharmacol 2018; 21:592-602. [PMID: 29462337 PMCID: PMC6007742 DOI: 10.1093/ijnp/pyy017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Clinical data indicate that therapy with small-molecule immunosuppressive drugs is frequently accompanied by an incidence rate of neuropsychiatric symptoms. In the current approach, we investigated in rats whether repeated administration of rapamycin, reflecting clinical conditions of patients undergoing therapy with this mammalian target of rapamycin inhibitor, precipitates changes in neurobehavioral functioning. METHODS Male adult Dark Agouti rats were daily treated with i.p. injections of rapamycin (1, 3 mg/kg) or vehicle for 8 days. On days 6 and 7, respectively, behavioral performance in the Elevated Plus-Maze and the Open-Field Test was evaluated. One day later, amygdala tissue and blood samples were taken to analyze protein expression ex vivo. RESULTS The results show that animals treated with rapamycin displayed alterations in Elevated Plus-Maze performance with more pronounced effects in the higher dose group. Besides, an increase in glucocorticoid receptor density in the amygdala was seen in both treatment groups even though p-p70 ribosomal S6 kinase alpha, a marker for mammalian target of rapamycin functioning, was not affected. Protein level of the neuronal activity marker c-Fos was again only elevated in the higher dose group. Importantly, effects occurred in the absence of acute peripheral neuroendocrine changes. CONCLUSIONS Our findings indicate that anxiety-related behavior following rapamycin treatment was not directly attributed to mTOR-dependent mechanisms or stress but rather due to hyperexcitability of the amygdala together with glucocorticoid receptor-regulated mechanism(s) in this brain region. Together, the present results support the contention that subchronic treatment with rapamycin may induce neurobehavioral alterations in healthy, naive subjects. We here provide novel insights in central effects of systemic rapamycin in otherwise healthy subjects but also raise the question whether therapy with this drug may have detrimental effects on patients' neuropsychological functioning during immune therapy.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,Correspondence: Martin Hadamitzky, PhD, Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany ()
| | - Arne Herring
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Julia Kirchhof
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I/ Experimental perinatal Neuroscience, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthew J Haight
- Department of Anesthesia, School of Medicine, University of San Francisco, San Francisco CA
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Meike Unteroberdörster
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Wu M, Zhang H, Kai J, Zhu F, Dong J, Xu Z, Wong M, Zeng LH. Rapamycin prevents cerebral stroke by modulating apoptosis and autophagy in penumbra in rats. Ann Clin Transl Neurol 2017; 5:138-146. [PMID: 29468175 PMCID: PMC5817831 DOI: 10.1002/acn3.507] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022] Open
Abstract
Objective Whether activation or inhibition of the mTOR pathway is beneficial to ischemic injury remains controversial. It may result from the different reaction of ischemic penumbra and core to modulation of mTOR pathway after cerebral ischemia-reperfusion injury in rats. Methods Longa's middle cerebral artery occlusion (MCAO) method was conducted to induce the focal cerebral ischemia-reperfusion. Western blot analysis was used to examine the protein expression involving mTOR pathway, apoptosis, and autophagy-related proteins. TTC staining and Fluoro-Jade B staining was conducted to detect the infarct volume and cell apoptosis, respectively. Neurological function was measured by modified neurological severity score and left-biased swing. Results mTOR signaling pathway was activated in ischemic penumbra and decreased in ischemic core after ischemia and ischemia-reperfusion. Ischemia-reperfusion injury induced the increase in cleaved caspase 9 and caspase 3 both in ischemic penumbra and in ischemic core, whereas the expression of phosphorylated ULK1, Beclin 1 and LC3-II was decreased. Rapamycin pre or postadministration inhibited the overactivation of mTOR pathway in ischemic penumbra. Ameliorated neurological function and reduced infarct volume were observed after pre or postrapamycin treatment. Rapamycin markedly decreased the number of FJB-positive cells and the expression of cleaved caspase-3 and cleaved caspase-9 proteins as well as increased the activation of autophagy reflected by ULK1, Beclin-1 and LC3. Interpretation mTOR signaling pathway was activated in ischemic penumbra after cerebral ischemia-reperfusion injury in rats. mTOR inhibitor rapamycin significantly decreased the mTOR activation and infarct volume and subsequently improved neurological function. These results may relate to inhibition of neuron apoptosis and activation of autophagy.
Collapse
Affiliation(s)
- Meiling Wu
- Department of Pharmacology School of Medicine Zhejiang University City College Hangzhou Zhejiang 310015 China
| | - Huadan Zhang
- Department of Pharmacology School of Medicine Zhejiang University City College Hangzhou Zhejiang 310015 China
| | - Jiejing Kai
- Department of Pharmacology School of Medicine Zhejiang University City College Hangzhou Zhejiang 310015 China
| | - Feng Zhu
- Department of Pharmacology School of Medicine Zhejiang University City College Hangzhou Zhejiang 310015 China
| | - Jingyin Dong
- Department of Pharmacology School of Medicine Zhejiang University City College Hangzhou Zhejiang 310015 China
| | - Ziwei Xu
- Department of Pharmacology School of Medicine Zhejiang University City College Hangzhou Zhejiang 310015 China
| | - Michael Wong
- Department of Neurology School of Medicine Washington University in St. Louis Saint Louis Missouri 63110
| | - Ling-Hui Zeng
- Department of Pharmacology School of Medicine Zhejiang University City College Hangzhou Zhejiang 310015 China
| |
Collapse
|
38
|
Deng M, Xiao H, Peng H, Yuan H, Xu Y, Zhang G, Tang J, Hu Z. Preservation of neuronal functions by exosomes derived from different human neural cell types under ischemic conditions. Eur J Neurosci 2017; 47:150-157. [PMID: 29178548 DOI: 10.1111/ejn.13784] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Stem cell-based therapies have been reported in protecting cerebral infarction-induced neuronal dysfunction and death. However, most studies used rat/mouse neuron as model cell when treated with stem cell or exosomes. Whether these findings can be translated from rodent to humans has been in doubt. Here, we used human embryonic stem cell-derived neurons to detect the protective potential of exosomes against ischemia. Neurons were treated with in vitro oxygen-glucose deprivation (OGD) for 1 h. For treatment group, different exosomes were derived from neuron, embryonic stem cell, neural progenitor cell and astrocyte differentiated from H9 human embryonic stem cell and added to culture medium 30 min after OGD (100 μg/mL). Western blotting was performed 12 h after OGD, while cell counting and electrophysiological recording were performed 48 h after OGD. We found that these exosomes attenuated OGD-induced neuronal death, Mammalian target of rapamycin (mTOR), pro-inflammatory and apoptotic signaling pathway changes, as well as basal spontaneous synaptic transmission inhibition in varying degrees. The results implicate the protective effect of exosomes on OGD-induced neuronal death and dysfunction in human embryonic stem cell-derived neurons, potentially through their modulation on mTOR, pro-inflammatory and apoptotic signaling pathways.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yuan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yunxiao Xu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
39
|
de Almeida AA, Gomes da Silva S, Lopim GM, Vannucci Campos D, Fernandes J, Cabral FR, Arida RM. Physical exercise alters the activation of downstream proteins related to BDNF-TrkB signaling in male Wistar rats with epilepsy. J Neurosci Res 2017; 96:911-920. [DOI: 10.1002/jnr.24196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Alexandre Aparecido de Almeida
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
- Instituto Federal Goiano (IF Goiano), Campus Ceres; Ceres Brazil
| | - Sérgio Gomes da Silva
- Hospital Israelita Albert Einstein; São Paulo Brazil
- Universidade de Mogi das Cruzes; Mogi das Cruzes Brazil
| | | | | | - Jansen Fernandes
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
| | - Francisco Romero Cabral
- Hospital Israelita Albert Einstein; São Paulo Brazil
- Faculdade de Ciências Médicas da Santa Casa de São Paulo; São Paulo Brazil
| | - Ricardo Mario Arida
- Departamento de Fisiologia; Universidade Federal de São Paulo; São Paulo Brazil
| |
Collapse
|
40
|
Yu TM, Chuang YW, Sun KT, Yu MC, Kung SC, Lee BK, Huang ST, Chen CH, Lin CL, Kao CH. Polycystic kidney disease is significantly associated with dementia risk. Neurology 2017; 89:1457-1463. [PMID: 28855402 DOI: 10.1212/wnl.0000000000004434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/13/2017] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Data on the risk of neurodegenerative diseases, including Alzheimer disease (AD) and Parkinson disease (PD), in patients with polycystic kidney disease (PKD) are lacking. METHODS A total of 4,229 patients who were aged ≥20 years and had received a diagnosis of PKD were included in the PKD cohort. For each PKD case identified, 1 participant aged ≥20 years without a history of PKD, dementia, or PD was selected from the comparison cohort. For each patient with PKD, the corresponding controls were selected 1:1 on the basis of the nearest propensity score calculated using logistic regression. RESULTS The incidence density rates of dementia were 4.31 and 2.50 per 1,000 person-years in the PKD and control cohorts, respectively. A 2.04-fold higher risk of dementia was observed in patients with PKD than in controls (adjusted hazard ratio [aHR] 2.04; 95% confidence interval [CI] 1.46-2.85). Regarding the risk of different dementia subtypes, including AD and vascular dementia (VaD), the aHR for AD and presenile dementia was 2.71 (95% CI 1.08-6.75) and that for VaD was 0.90 (95% CI 0.43-1.87) in patients with PKD compared with controls, after adjustment for age, sex, and comorbidities. Compared with controls, the risk of PD increased by 1.78-fold (95% CI 1.14-2.79) in patients with PKD. CONCLUSIONS In clinical practice, health care professionals should be aware of the risk of neurodegenerative diseases in patients with PKD.
Collapse
Affiliation(s)
- Tung-Min Yu
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Ya-Wen Chuang
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Kuo-Ting Sun
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Mei-Ching Yu
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Shiang-Cheng Kung
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Brian K Lee
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Shih-Ting Huang
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Cheng-Hsu Chen
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Cheng-Li Lin
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan
| | - Chia-Hung Kao
- From the Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine (T.-M.Y., K.-T.S., S.-T.H., C.-H.C., C.-H.K.), Pediatric Dentistry, Dental Department (K.-T.S.), and College of Medicine (C.-L.L.), China Medical University, Taichung; Division of Nephrology (T.-M.Y., Y.-W.C., S.-T.H., C.-H.C.) and Department of Medical Research and Center of Quality Management (C.-H.C.), Taichung Veterans General Hospital, Taiwan; Connie Frank Transplant Center, Division of Nephrology, Department of Medicine (S.-C.K., B.K.L.), UCSF Medical Center, San Francisco, CA; Department of Pediatrics, Division of Nephrology (M.-C.Y.), Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan; Department of Life Science (C.-H.C.), Tunghai University; Management Office for Health Data (C.-L.L.) and Department of Nuclear Medicine and PET Center (C.-H.K.), China Medical University Hospital; and Department of Bioinformatics and Medical Engineering (C.-H.K.), Asia University, Taichung, Taiwan.
| |
Collapse
|
41
|
Park JA, Lee CH. Temporal changes in mammalian target of rapamycin (mTOR) and phosphorylated-mTOR expressions in the hippocampal CA1 region of rat with vascular dementia. J Vet Sci 2017; 18:11-16. [PMID: 27297423 PMCID: PMC5366295 DOI: 10.4142/jvs.2017.18.1.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/21/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) has an important role in various biological processes in cells. In the present study, we investigated temporal changes in mTOR and phosphorylated-mTOR (p-mTOR) expressions in the rat hippocampal CA1 region following chronic cerebral hypoperfusion (CCH) induced by permanent bilateral common carotid arteries occlusion (2VO). The mTOR immunoreactivity in the pyramidal neurons and mTOR protein level in the hippocampal CA1 region were markedly decreased at 21 and 28 days after 2VO surgery. However, p-mTOR protein expression was significantly increased at 7 days following CCH but then decreased with time. The results indicate that mTOR and p-mTOR expressions change in the hippocampal CA1 region after 2VO surgery and that reduced expressions of mTOR and p-mTOR may be closely related to the CCH-induced neuronal damage in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Jin-A Park
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
42
|
Li L. The Molecular Mechanism of Glucagon-Like Peptide-1 Therapy in Alzheimer's Disease, Based on a Mechanistic Target of Rapamycin Pathway. CNS Drugs 2017; 31:535-549. [PMID: 28540646 DOI: 10.1007/s40263-017-0431-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is an important molecule that connects aging, lifespan, energy balance, glucose and lipid metabolism, and neurodegeneration. Rapamycin exerts effects in numerous biological activities via its target protein, playing a key role in energy balance, regulation of autophagy, extension of lifespan, immunosuppression, and protection against neurodegeneration. There are many similar pathophysiological processes and molecular pathways between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), and pharmacologic agents used to treat T2DM, including glucagon-like peptide-1 (GLP-1) analogs, seem to be beneficial for AD. mTOR mediates the effects of GLP-1 analogs in the treatment of T2DM; hence, I hypothesize that mTOR is a key molecule for mediating the protective effects of GLP-1 for AD.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
43
|
Lloyd BA, Hake HS, Ishiwata T, Farmer CE, Loetz EC, Fleshner M, Bland ST, Greenwood BN. Exercise increases mTOR signaling in brain regions involved in cognition and emotional behavior. Behav Brain Res 2017; 323:56-67. [PMID: 28130174 DOI: 10.1016/j.bbr.2017.01.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
Exercise can enhance learning and memory and produce resistance against stress-related psychiatric disorders such as depression and anxiety. In rats, these beneficial effects of exercise occur regardless of exercise controllability: both voluntary and forced wheel running produce stress-protective effects. The mechanisms underlying these beneficial effects of exercise remain unknown. The mammalian target of rapamycin (mTOR) is a translation regulator important for cell growth, proliferation, and survival. mTOR has been implicated in enhancing learning and memory as well as antidepressant effects. Moreover, mTOR is sensitive to exercise signals such as metabolic factors. The effects of exercise on mTOR signaling, however, remain unknown. The goal of the present study was to test the hypothesis that exercise, regardless of controllability, increases levels of phosphorylated mTOR (p-mTOR) in brain regions important for learning and emotional behavior. Rats were exposed to 6 weeks of either sedentary (locked wheel), voluntary, or forced wheel running conditions. At 6 weeks, rats were sacrificed during peak running and levels of p-mTOR were measured using immunohistochemistry. Overall, both voluntary and forced exercise increased p-mTOR-positive neurons in the medial prefrontal cortex, striatum, hippocampus, hypothalamus, and amygdala compared to locked wheel controls. Exercise, regardless of controllability, also increased numbers of p-mTOR-positive glia in the striatum, hippocampus, and amygdala. For both neurons and glia, the largest increase in p-mTOR positive cells was observed after voluntary running, with forced exercise causing a more modest increase. Interestingly, voluntary exercise preferentially increased p-mTOR in astrocytes (GFAP+), while forced running increased p-mTOR in microglia (CD11+) in the inferior dentate gyrus. Results suggest that mTOR signaling is sensitive to exercise, but subtle differences exist depending on exercise controllability. Increases in mTOR signaling could contribute to the beneficial effects of exercise on cognitive function and mental health.
Collapse
Affiliation(s)
- Brian A Lloyd
- Department of Psychology, University of Colorado Denver, United States
| | - Holly S Hake
- Department of Psychology, University of Colorado Denver, United States
| | | | - Caroline E Farmer
- Department of Psychology, University of Colorado Denver, United States
| | - Esteban C Loetz
- Department of Psychology, University of Colorado Denver, United States
| | - Monika Fleshner
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, United States
| | - Sondra T Bland
- Department of Psychology, University of Colorado Denver, United States
| | | |
Collapse
|
44
|
Does any drug to treat cancer target mTOR and iron hemostasis in neurodegenerative disorders? Biometals 2016; 30:1-16. [PMID: 27853903 DOI: 10.1007/s10534-016-9981-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 12/23/2022]
Abstract
The prevalence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are increased by age. Alleviation of their symptoms and protection of normal neurons against degeneration are the main aspects of the research to establish novel therapeutic strategies. Iron as the one of most important cation not only play important role in the structure of electron transport chain proteins but also has pivotal duties in cellular activities. But disruption in iron hemostasis can make it toxin to neurons which causes lipid peroxidation, DNA damage and etc. In patients with Alzheimer and Parkinson misbalancing in iron homeostasis accelerate neurodegeneration and cause neuroinflmmation. mTOR as the common signaling pathway between cancer and neurodegenerative disorders controls iron uptake and it is in active form in both diseases. Anti-cancer drugs which target mTOR causes iron deficiency and dual effects of mTOR inhibitors can candidate them as a therapeutic strategy to alleviate neurodegeneration/inflammation because of iron overloading.
Collapse
|
45
|
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82:1245-1266. [PMID: 26469771 PMCID: PMC5061806 DOI: 10.1111/bcp.12804] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders are significantly increasing in incidence as the age of the global population continues to climb with improved life expectancy. At present, more than 30 million individuals throughout the world are impacted by acute and chronic neurodegenerative disorders with limited treatment strategies. The mechanistic target of rapamycin (mTOR), also known as the mammalian target of rapamycin, is a 289 kDa serine/threonine protein kinase that offers exciting possibilities for novel treatment strategies for a host of neurodegenerative diseases that include Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, stroke and trauma. mTOR governs the programmed cell death pathways of apoptosis and autophagy that can determine neuronal stem cell development, precursor cell differentiation, cell senescence, cell survival and ultimate cell fate. Coupled to the cellular biology of mTOR are a number of considerations for the development of novel treatments involving the fine control of mTOR signalling, tumourigenesis, complexity of the apoptosis and autophagy relationship, functional outcome in the nervous system, and the intimately linked pathways of growth factors, phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), AMP activated protein kinase (AMPK), silent mating type information regulation two homologue one (Saccharomyces cerevisiae) (SIRT1) and others. Effective clinical translation of the cellular signalling mechanisms of mTOR offers provocative avenues for new drug development in the nervous system tempered only by the need to elucidate further the intricacies of the mTOR pathway.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey, 07101, USA.
| |
Collapse
|
46
|
4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression. Viruses 2016; 8:v8100287. [PMID: 27763553 PMCID: PMC5086619 DOI: 10.3390/v8100287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5' cap with 2'-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.
Collapse
|
47
|
Tramutola A, Lanzillotta C, Di Domenico F. Targeting mTOR to reduce Alzheimer-related cognitive decline: from current hits to future therapies. Expert Rev Neurother 2016; 17:33-45. [PMID: 27690737 DOI: 10.1080/14737175.2017.1244482] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The mTOR pathway is involved in the regulation of a wide repertoire of cellular functions in the brain and its dysregulation is emerging as a leitmotif in a large number of neurological disorders. In AD, altered mTOR signaling contributes to the inhibition of autophagy deposition of Aβ and tau aggregates and to the alteration of several neuronal metabolic pathways. Areas covered: In this review, we report all the current findings on the use of mTOR inhibitors (rapamycin, rapalogues) in the treatment of AD. These results support the role of mTOR inhibitors as potential therapeutic agents able to reduce AD hallmarks and recover cognitive performances. Expert commentary: Despite mTOR inhibitors appearing to be ideal compounds to counteract AD, further studies are needed in order to gain knowledge on the involvement of aberrant mTOR in AD, and to standardize a valuable therapeutic approach that can be translated to humans.
Collapse
Affiliation(s)
- Antonella Tramutola
- a Department of Biochemical Sciences , Sapienza University of Rome , Rome , Italy
| | - Chiara Lanzillotta
- a Department of Biochemical Sciences , Sapienza University of Rome , Rome , Italy
| | - Fabio Di Domenico
- a Department of Biochemical Sciences , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
48
|
Singh AK, Singh S, Garg G, Rizvi SI. Rapamycin alleviates oxidative stress-induced damage in rat erythrocytes. Biochem Cell Biol 2016; 94:471-479. [DOI: 10.1139/bcb-2016-0048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An imbalanced cellular redox system promotes the production of reactive oxygen species (ROS) that may lead to oxidative stress-mediated cell death. Erythrocytes are the best-studied model of antioxidant defense mechanism. The present study was undertaken to investigate the effect of the immunosuppressant drug rapamycin, an inducer of autophagy, on redox balance of erythrocytes and blood plasma of oxidatively challenged rats. Male Wistar rats were oxidatively challenged with HgCl2 (5 mg/kg body mass (b.m.)). A significant (p < 0.05) induction in ROS production, plasma membrane redox system (PMRS), intracellular Ca2+ influx, lipid peroxidation (LPO), osmotic fragility, plasma protein carbonyl (PCO) content, and plasma advanced oxidation protein products (AOPP) and simultaneously significant reduction in glutathione (GSH) level and ferric reducing ability of plasma (FRAP) were observed in rats exposed to HgCl2. Furthermore, rapamycin (0.5 mg/kg b.m.) provided significant protection against HgCl2-induced alterations in rat erythrocytes and plasma by reducing ROS production, PMRS activity, intracellular Ca2+ influx, LPO, osmotic fragility, PCO content, and AOPP and also restored the level of antioxidant GSH and FRAP. Our observations provide evidence that rapamycin improves redox status and attenuates oxidative stress in oxidatively challenged rats. Our data also demonstrate that rapamycin is a comparatively safe immunosuppressant drug.
Collapse
Affiliation(s)
- Abhishek Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
49
|
Chen LL, Wu ML, Zhu F, Kai JJ, Dong JY, Wu XM, Zeng LH. Neural Progenitor Cells Rptor Ablation Impairs Development but Benefits to Seizure-Induced Behavioral Abnormalities. CNS Neurosci Ther 2016; 22:1000-1008. [PMID: 27677248 DOI: 10.1111/cns.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 01/21/2023] Open
Abstract
AIMS Previous study suggests that mTOR signaling pathway may play an important role in epileptogenesis. The present work was designed to explore the contribution of raptor protein to the development of epilepsy and comorbidities. METHODS Mice with conditional knockout of raptor protein were generated by cross-bred Rptorflox/flox mice with nestin-CRE mice. The expression of raptor protein was analyzed by Western blotting in brain tissue samples. Neuronal death and mossy fiber sprouting were detected by FJB staining and Timm staining, respectively. Spontaneous seizures were recorded by EEG-video system. Morris water maze, open field test, and excitability test were used to study the behaviors of Rptor CKO mice. RESULTS As the consequence of deleting Rptor, downstream proteins of raptor in mTORC1 signaling were partly blocked. Rptor CKO mice exhibited decrease in body and brain weight under 7 weeks old and accordingly, cortical layer thickness. After kainic acid (KA)-induced status epilepticus, overactivation of mTORC1 signaling was markedly reversed in Rptor CKO mice. Although low frequency of spontaneous seizure and seldom neuronal cell death were observed in both Rptor CKO and control littermates, KA seizure-induced mossy fiber spouting were attenuated in Rptor CKO mice. Additionally, cognitive-deficit and anxiety-like behavior after KA-induced seizures were partly reversed in Rptor CKO mice. CONCLUSION Loss of the Rptor gene in mice neural progenitor cells affects normal development in young age and may contribute to alleviate KA seizure-induced behavioral abnormalities, suggesting that raptor protein plays an important role in seizure comorbidities.
Collapse
Affiliation(s)
- Ling-Lin Chen
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mei-Ling Wu
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Feng Zhu
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jie-Jing Kai
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jing-Yin Dong
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Xi-Mei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling-Hui Zeng
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
50
|
Adenosine A1-Receptors Modulate mTOR Signaling to Regulate White Matter Inflammatory Lesions Induced by Chronic Cerebral Hypoperfusion. Neurochem Res 2016; 41:3272-3277. [PMID: 27662851 DOI: 10.1007/s11064-016-2056-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/12/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022]
Abstract
We sought to investigate the role of the adenosine A1 receptors (A1ARs) in white matter lesions under chronic cerebral hypoperfusion (CCH) and explore the potential repair mechanisms by activation of the receptors. A right unilateral common carotid artery occlusion (rUCCAO) method was used to construct a CCH model. 2-chloro-N6-cyclopentyladenosine (CCPA), a specific agonist of A1ARs, was used to explore the biological mechanisms of repair in white matter lesions under CCH. The expression of mammalian target of rapamycin (mTOR), phosphorylation of mTOR (P-mTOR), myelin basic protein (MBP, a marker of white matter myelination) were detected by Western-blot. Pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and anti-inflammatory cytokine interleukin-10 (IL-10) levels were determined by ELISA. Compared with the control groups on week 2, 4 and 6, in CCPA-treated groups, the ratio of P-mTOR/mTOR, expression of MBP and IL-10 increased markedly, while the expression of TNF-α reduced at week 6. In conclusion, A1ARs appears to reduce inflammation in white matter via the mTOR signaling pathway in the rUCCAO mice. Therefore, A1ARs may serve as a therapeutic target during the repair of white matter lesions under CCH.
Collapse
|