1
|
Schlossbauer P, Naumann L, Klingler F, Burkhart M, Handrick R, Korff K, Neusüß C, Otte K, Hesse F. Stable overexpression of native and artificial miRNAs for the production of differentially fucosylated antibodies in CHO cells. Eng Life Sci 2024; 24:2300234. [PMID: 38845814 PMCID: PMC11151017 DOI: 10.1002/elsc.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 06/09/2024] Open
Abstract
Cell engineering strategies typically rely on energy-consuming overexpression of genes or radical gene-knock out. Both strategies are not particularly convenient for the generation of slightly modulated phenotypes, as needed in biosimilar development of for example differentially fucosylated monoclonal antibodies (mAbs). Recently, transiently transfected small noncoding microRNAs (miRNAs), known to be regulators of entire gene networks, have emerged as potent fucosylation modulators in Chinese hamster ovary (CHO) production cells. Here, we demonstrate the applicability of stable miRNA overexpression in CHO production cells to adjust the fucosylation pattern of mAbs as a model phenotype. For this purpose, we applied a miRNA chaining strategy to achieve adjustability of fucosylation in stable cell pools. In addition, we were able to implement recently developed artificial miRNAs (amiRNAs) based on native miRNA sequences into a stable CHO expression system to even further fine-tune fucosylation regulation. Our results demonstrate the potential of miRNAs as a versatile tool to control mAb fucosylation in CHO production cells without adverse side effects on important process parameters.
Collapse
Affiliation(s)
- Patrick Schlossbauer
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | | | - Florian Klingler
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | - Madina Burkhart
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | - René Handrick
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | | | | | - Kerstin Otte
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | - Friedemann Hesse
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| |
Collapse
|
2
|
Kanata E, Thüne K, Xanthopoulos K, Ferrer I, Dafou D, Zerr I, Sklaviadis T, Llorens F. MicroRNA Alterations in the Brain and Body Fluids of Humans and Animal Prion Disease Models: Current Status and Perspectives. Front Aging Neurosci 2018; 10:220. [PMID: 30083102 PMCID: PMC6064744 DOI: 10.3389/fnagi.2018.00220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Prion diseases are transmissible progressive neurodegenerative conditions characterized by rapid neuronal loss accompanied by a heterogeneous neuropathology, including spongiform degeneration, gliosis and protein aggregation. The pathogenic mechanisms and the origins of prion diseases remain unclear on the molecular level. Even though neurodegenerative diseases, including prion diseases, represent distinct entities, their pathogenesis shares a number of features including disturbed protein homeostasis, an overload of protein clearance pathways, the aggregation of pathological altered proteins, and the dysfunction and/or loss of specific neuronal populations. Recently, direct links have been established between neurodegenerative diseases and miRNA dysregulated patterns. miRNAs are a class of small non-coding RNAs involved in the fundamental post-transcriptional regulation of gene expression. Studies of miRNA alterations in the brain and body fluids in human prion diseases provide important insights into potential miRNA-associated disease mechanisms and biomarker candidates. miRNA alterations in prion disease models represent a unique tool to investigate the cause-consequence relationships of miRNA dysregulation in prion disease pathology, and to evaluate the use of miRNAs in diagnosis as biomarkers. Here, we provide an overview of studies on miRNA alterations in human prion diseases and relevant disease models, in relation to pertinent studies on other neurodegenerative diseases.
Collapse
Affiliation(s)
- Eirini Kanata
- Laboratory of Pharmacology, Prion Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katrin Thüne
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Isidre Ferrer
- Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Network Center for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, Madrid, Spain
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, Prion Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Network Center for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, Madrid, Spain
| |
Collapse
|
3
|
Barbutti I, Xavier-Ferrucio JM, Machado-Neto JA, Ricon L, Traina F, Bohlander SK, Saad STO, Archangelo LF. CATS (FAM64A) abnormal expression reduces clonogenicity of hematopoietic cells. Oncotarget 2018; 7:68385-68396. [PMID: 27588395 PMCID: PMC5356563 DOI: 10.18632/oncotarget.11724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
The CATS (FAM64A) protein interacts with CALM (PICALM) and the leukemic fusion protein CALM/AF10. CATS is highly expressed in leukemia, lymphoma and tumor cell lines and its protein levels strongly correlates with cellular proliferation in both malignant and normal cells. In order to obtain further insight into CATS function we performed an extensive analysis of CATS expression during differentiation of leukemia cell lines. While CATS expression decreased during erythroid, megakaryocytic and monocytic differentiation, a markedly increase was observed in the ATRA induced granulocytic differentiation. Lentivirus mediated silencing of CATS in U937 cell line resulted in somewhat reduced proliferation, altered cell cycle progression and lower migratory ability in vitro; however was not sufficient to inhibit tumor growth in xenotransplant model. Of note, CATS knockdown resulted in reduced clonogenicity of CATS-silenced cells and reduced expression of the self-renewal gene, GLI-1. Moreover, retroviral mediated overexpression of the murine Cats in primary bone marrow cells lead to decreased colony formation. Although our in vitro data suggests that CATS play a role in cellular processes important for tumorigenesis, such as cell cycle control and clonogenicity, these effects were not observed in vivo.
Collapse
Affiliation(s)
- Isabella Barbutti
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Juliana M Xavier-Ferrucio
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - João Agostinho Machado-Neto
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Lauremilia Ricon
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Leticia Fröhlich Archangelo
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil.,Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Aarthy M, Panwar U, Selvaraj C, Singh SK. Advantages of Structure-Based Drug Design Approaches in Neurological Disorders. Curr Neuropharmacol 2017; 15:1136-1155. [PMID: 28042767 PMCID: PMC5725545 DOI: 10.2174/1570159x15666170102145257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/05/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The purpose of the review is to portray the theoretical concept on neurological disorders from research data. BACKGROUND The freak changes in chemical response of nerve impulse causes neurological disorders. The research evidence of the effort done in the older history suggests that the biological drug targets and their effective feature with responsive drugs could be valuable in promoting the future development of health statistics structure for improved treatment for curing the nervous disorders. METHODS In this review, we summarized the most iterative theoretical concept of structure based drug design approaches in various neurological disorders to unfathomable understanding of reported information for future drug design and development. RESULTS On the premise of reported information we analyzed the model of theoretical drug designing process for understanding the mechanism and pathology of the neurological diseases which covers the development of potentially effective inhibitors against the biological drug targets. Finally, it also suggests the management and implementation of the current treatment in improving the human health system behaviors. CONCLUSION With the survey of reported information we concluded the development strategies of diagnosis and treatment against neurological diseases which leads to supportive progress in the drug discovery.
Collapse
Affiliation(s)
- Murali Aarthy
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630004, Tamil Nadu, India
| | - Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630004, Tamil Nadu, India
| | - Chandrabose Selvaraj
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Postal Code: 143-701, Seoul, Korea
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630004, Tamil Nadu, India
| |
Collapse
|
5
|
Wan X, Yang R, Liu G, Zhu M, Zhang T, Liu L, Wu R. Downregulation of cellular prion protein inhibited the proliferation and invasion and induced apoptosis of Marek's disease virus-transformed avian T cells. J Vet Sci 2017; 17:171-8. [PMID: 26243599 PMCID: PMC4921665 DOI: 10.4142/jvs.2016.17.2.171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/30/2015] [Accepted: 07/03/2015] [Indexed: 11/20/2022] Open
Abstract
Cellular prion protein (PrP(C)) is ubiquitously expressed in the cytomembrane of a considerable number of eukaryotic cells. Although several studies have investigated the functions of PrP(C) in cell proliferation, cell apoptosis, and tumorigenesis of mammals, the correlated functions of chicken PrP(C) (chPrP(C)) remain unknown. In this study, stable chPrP(C)-downregulated Marek's disease (MD) virus-transformed avian T cells (MSB1-SiRNA-3) were established by introducing short interfering RNA (SiRNA) targeting chicken prion protein genes. We found that downregulation of chPrP(C) inhibits proliferation, invasion, and migration, and induces G1 cell cycle phase arrest and apoptosis of MSB1-SiRNA-3 cells compared with Marek's disease virus-transformed avian T cells (MSB1) and negative control cells. To the best of our knowledge, the present study provides the first evidence supporting the positive correlation between the expression level of chPrP(C) and the proliferation, migration, and invasion ability of MSB1 cells, but appears to protect MSB1 cells from apoptosis, which suggests it functions in the formation and development of MD tumors. This evidence may contribute to future research into the specific molecular mechanisms of chPrP(C) in the formation and development of MD tumors.
Collapse
Affiliation(s)
- Xuerui Wan
- Department of Preventive Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Runxia Yang
- Department of Preventive Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Guilin Liu
- Department of Preventive Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Manling Zhu
- Department of Preventive Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tianliang Zhang
- Department of Preventive Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Liu
- Department of Preventive Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Run Wu
- Department of Preventive Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Kang SG, Kim C, Aiken J, Yoo HS, McKenzie D. Dual MicroRNA to Cellular Prion Protein Inhibits Propagation of Pathogenic Prion Protein in Cultured Cells. Mol Neurobiol 2017; 55:2384-2396. [PMID: 28357807 DOI: 10.1007/s12035-017-0495-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 01/08/2023]
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders affecting humans and various mammals. In spite of intensive efforts, there is no effective cure or treatment for prion diseases. Cellular forms of prion protein (PrPC) is essential for propagation of abnormal isoforms of prion protein (PrPSc) and pathogenesis. The effect of an artificial dual microRNA (DmiR) on PrPC suppression and resultant inhibition of prion replication was determined using prion-infectible cell cultures: differentiated C2C12 culture and primary mixed neuronal and glial cells culture (MNGC). Processing of DmiR by prion-susceptible myotubes, but not by reserve cells, in differentiated C2C12 culture slowed prion replication, implying an importance of cell type-specific PrPC targeting. In MNGC, reduction of PrPC with DmiR was effective for suppressing prion replication. MNGC lentivirally transduced with non-targeting control miRNAs (scrambled) reduced prion replication at a level similar to that with a synthetic analogue of viral RNA, poly I:C. The results suggest that a synergistic combination of the immunostimulatory RNA duplexes (miRNA) and PrPC silencing with DmiR might augment a therapeutic potential of RNA interference.
Collapse
Affiliation(s)
- Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chiye Kim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, BK21 PLUS, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada. .,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Choi W, Kim E, Yum SY, Lee C, Lee J, Moon J, Ramachandra S, Malaweera BO, Cho J, Kim JS, Kim S, Jang G. Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells. Prion 2016. [PMID: 26217959 DOI: 10.1080/19336896.2015.1071459] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even though prion (encoded by the PRNP gene) diseases like bovine spongiform encephalopathy (BSE) are fatal neurodegenerative diseases in cattle, their study via gene deletion has been limited due to the absence of cell lines or mutant models. In this study, we aim to develop an immortalized fibroblast cell line in which genome-engineering technology can be readily applied to create gene-modified clones for studies. To this end, this study is designed to 1) investigate the induction of primary fibroblasts to immortalization by introducing Bmi-1 and hTert genes; 2) investigate the disruption of the PRNP in those cells; and 3) evaluate the gene expression and embryonic development using knockout (KO) cell lines. Primary cells from a male neonate were immortalized with Bmi-1and hTert. Immortalized cells were cultured for more than 180 days without any changes in their doubling time and morphology. Furthermore, to knockout the PRNP gene, plasmids that encode transcription activator-like effector nuclease (TALEN) pairs were transfected into the cells, and transfected single cells were propagated. Mutated clonal cell lines were confirmed by T7 endonuclease I assay and sequencing. Four knockout cell lines were used for somatic cell nuclear transfer (SCNT), and the resulting embryos were developed to the blastocyst stage. The genes (CSNK2A1, FAM64A, MPG and PRND) were affected after PRNP disruption in immortalized cells. In conclusion, we established immortalized cattle fibroblasts using Bmi-1 and hTert genes, and used TALENs to knockout the PRNP gene in these immortalized cells. The efficient PRNP KO is expected to be a useful technology to develop our understanding of in vitro prion protein functions in cattle.
Collapse
Affiliation(s)
- WooJae Choi
- a Laboratory of Theriogenology and Biotechnology; Department of Veterinary Clinical Science ; College of Veterinary Medicine and the Research Institute of Veterinary Science; Seoul National University ; Seoul , Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Campbell K, Booth SA. MicroRNA in neurodegenerative drug discovery: the way forward? Expert Opin Drug Discov 2014; 10:9-16. [DOI: 10.1517/17460441.2015.981254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Ang CE, Wernig M. Induced neuronal reprogramming. J Comp Neurol 2014; 522:2877-86. [PMID: 24771471 DOI: 10.1002/cne.23620] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 12/21/2022]
Abstract
Cellular differentiation processes during normal embryonic development are guided by extracellular soluble factors such as morphogen gradients and cell contact signals, eventually resulting in induction of specific combinations of lineage-determining transcription factors. The young field of epigenetic reprogramming takes advantage of this knowledge and uses cell fate determination factors to convert one lineage into another such as the conversion of fibroblasts into pluripotent stem cells or neurons. These induced cell fate conversions open up new avenues for studying disease processes, generating cell material for therapeutic intervention such as drug screening and potentially also for cell-based therapies. However, there are still limitations that have to be overcome to fulfill these promises, centering on reprogramming efficiencies, cell identity, and maturation. In this review, we discuss the discovery of induced neuronal reprogramming, ways to improve the conversion process, and finally how to define properly the identity of those converted neuronal cells.
Collapse
Affiliation(s)
- Cheen Euong Ang
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, 94305; Department of Bioengineering, Stanford University School of Medicine, Stanford, California, 94305
| | | |
Collapse
|
10
|
Silber BM, Gever JR, Rao S, Li Z, Renslo AR, Widjaja K, Wong C, Giles K, Freyman Y, Elepano M, Irwin JJ, Jacobson MP, Prusiner SB. Novel compounds lowering the cellular isoform of the human prion protein in cultured human cells. Bioorg Med Chem 2014; 22:1960-72. [PMID: 24530226 DOI: 10.1016/j.bmc.2014.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/23/2013] [Accepted: 01/01/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE Previous studies showed that lowering PrP(C) concomitantly reduced PrP(Sc) in the brains of mice inoculated with prions. We aimed to develop assays that measure PrP(C) on the surface of human T98G glioblastoma and IMR32 neuroblastoma cells. Using these assays, we sought to identify chemical hits, confirmed hits, and scaffolds that potently lowered PrP(C) levels in human brains cells, without lethality, and that could achieve drug concentrations in the brain after oral or intraperitoneal dosing in mice. METHODS We utilized HTS ELISA assays to identify small molecules that lower PrP(C) levels by ≥30% on the cell surface of human glioblastoma (T98G) and neuroblastoma (IMR32) cells. RESULTS From 44,578 diverse chemical compounds tested, 138 hits were identified by single point confirmation (SPC) representing 7 chemical scaffolds in T98G cells, and 114 SPC hits representing 6 scaffolds found in IMR32 cells. When the confirmed SPC hits were combined with structurally related analogs, >300 compounds (representing 6 distinct chemical scaffolds) were tested for dose-response (EC₅₀) in both cell lines, only studies in T98G cells identified compounds that reduced PrP(C) without killing the cells. EC₅₀ values from 32 hits ranged from 65 nM to 4.1 μM. Twenty-eight were evaluated in vivo in pharmacokinetic studies after a single 10 mg/kg oral or intraperitoneal dose in mice. Our results showed brain concentrations as high as 16.2 μM, but only after intraperitoneal dosing. CONCLUSIONS Our studies identified leads for future studies to determine which compounds might lower PrP(C) levels in rodent brain, and provide the basis of a therapeutic for fatal disorders caused by PrP prions.
Collapse
Affiliation(s)
- B Michael Silber
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
| | - Joel R Gever
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States
| | - Satish Rao
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States
| | - Zhe Li
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States
| | - Adam R Renslo
- Small Molecule Discovery Center, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - Kartika Widjaja
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States
| | - Casper Wong
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States
| | - Yevgeniy Freyman
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States
| | - Manuel Elepano
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - Matthew P Jacobson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States.
| |
Collapse
|
11
|
Boese AS, Majer A, Saba R, Booth SA. Small RNA drugs for prion disease: a new frontier. Expert Opin Drug Discov 2013; 8:1265-84. [DOI: 10.1517/17460441.2013.818976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Hong Q, Yang L, Zhang M, Pan XQ, Guo M, Fei L, Tong ML, Chen RH, Guo XR, Chi X. Increased locomotor activity and non-selective attention and impaired learning ability in SD rats after lentiviral vector-mediated RNA interference of Homer 1a in the brain. Int J Med Sci 2013; 10:90-102. [PMID: 23289010 PMCID: PMC3534882 DOI: 10.7150/ijms.4892] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/24/2012] [Indexed: 12/27/2022] Open
Abstract
Our previous studies found that Homer 1a, a scaffolding protein localized at the post-synaptic density (PSD) of glutamatergic excitatory synapses, is significantly down-regulated in the brain of spontaneous hypertensive rats (SHR), an animal model of attention deficit hyperactivity disorder (ADHD). Furthermore, a first-line treatment drug for ADHD, methylphenidate, can up-regulate the expression of Homer 1a. To investigate the possible role of Homer 1a in the etiology and pathogenesis of ADHD, a lentiviral vector containing miRNA specific for Homer 1a was constructed in this study. Intracerebroventricular injection of this vector into the brain of Sprague Dawley (SD) rats significantly decreased Homer 1a mRNA and protein expression levels. Compared to their negative controls, these rats displayed a range of abnormal behaviors, including increased locomotor activity and non-selective attention and impaired learning ability. Our results indicated that Homer 1a down-regulation results in deficits in control over behavioral output and learning similar to ADHD.
Collapse
Affiliation(s)
- Qin Hong
- State Key Laboratory of Reproductive Medicine, Department of Pediatrics, Nanjing Maternity and Child Health Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jardeleza C, Jones D, Baker L, Miljkovic D, Boase S, Tan NCW, Vreugde S, Tan LW, Wormald PJ. Gene expression differences in nitric oxide and reactive oxygen species regulation point to an altered innate immune response in chronic rhinosinusitis. Int Forum Allergy Rhinol 2012; 3:193-8. [PMID: 23136082 DOI: 10.1002/alr.21114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/29/2012] [Accepted: 09/25/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND The complex interplay between host, environment, and microbe in the etiopathogenesis of chronic rhinosinusitis (CRS) remains unclear. This study focuses on the host-microbe interaction, specifically the regulation of nitric oxide (NO) and reactive oxygen species (ROS) against the pathogenic organism Staphylococcus aureus (S. aureus). NO and ROS play crucial roles in innate immunity and in the first-line defense against microbial invasion. METHODS Sinonasal tissue samples were harvested from CRS and control patients during surgery. CRS patients were classified S. aureus biofilm-positive (B+) or biofilm-negative (B-) using fluorescence in situ hybridization and clinically as polyp-positive (P+) or polyp-negative (P-). Samples were assessed using an NO polymerase chain reaction (PCR) array containing 84 genes involved in NO and ROS regulation, and gene expression of all subgroups were compared to each other. RESULTS Twenty-three samples were analyzed with 31 genes significantly changed, the greatest seen in the B+P+ CRS patients. Four genes consistently displayed differential expression between the groups including the cytoprotective oxidation resistance 1 (OXR1) and peroxiredoxin 6 (PRDX6), neutrophil cytosolic factor 2 (NCF2), and the prion protein (PRNP) genes. CONCLUSION Alteration in gene expression points to impaired innate immune responses differing among CRS subgroups based on S. aureus biofilm and polyp status. The consistent alteration of 4 genes among distinct groups demonstrates that S. aureus biofilms and polyps are associated with specific changes in gene expression. Further studies are required to validate these findings in a wider cohort of patients and correlate this to protein expression and disease manifestation.
Collapse
Affiliation(s)
- Camille Jardeleza
- Department of Surgery, Otorhinolaryngology-Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|