1
|
Fang J, Doyle PS. Quantitative and spatially resolved detection of multiplexed microRNA from plant tissue via hybridization to hydrogel-bound DNA probes in nanoliter well arrays. MICROSYSTEMS & NANOENGINEERING 2024; 10:142. [PMID: 39375353 PMCID: PMC11458878 DOI: 10.1038/s41378-024-00785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
Understanding complex regulatory networks in plant systems requires elucidating the roles of various gene regulators under a spatial landscape. MicroRNA are key regulators that impart high information value through their tissue specificity and stability when using expression patterns for evaluating network outcomes. However, current techniques that utilize spatial multiplexing and quantitation of microRNA are limited to primarily mammalian systems. Here, we present a method to spatially resolve and quantify multiple endogenous microRNA in situ using ethanol fixed, paraffin embedded model plant species. This method utilizes target-specific microRNA capture along with universal ligating and labelling, all within functionalized hydrogel posts containing DNA probes in nanoliter well arrays. We demonstrate the platform's multiplexing capabilities through analyzing three endogenous microRNA in Arabidopsis thaliana rosettes which provide useful answers to fundamental plant growth and development from the unique expression patterns. The spatial tissue technique is also validated using non-spatial small RNA assays to demonstrate the versatility of the well array platform. Our new platform expands the toolkit of spatial omics technologies for plants.
Collapse
Affiliation(s)
- Jennifer Fang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Kang L, Li C, Qin A, Liu Z, Li X, Zeng L, Yu H, Wang Y, Song J, Chen R. Identification and Expression Analysis of the Nucleotidyl Transferase Protein (NTP) Family in Soybean ( Glycine max) under Various Abiotic Stresses. Int J Mol Sci 2024; 25:1115. [PMID: 38256188 PMCID: PMC10816777 DOI: 10.3390/ijms25021115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Nucleotidyl transferases (NTPs) are common transferases in eukaryotes and play a crucial role in nucleotide modifications at the 3' end of RNA. In plants, NTPs can regulate RNA stability by influencing 3' end modifications, which in turn affect plant growth, development, stress responses, and disease resistance. Although the functions of NTP family members have been extensively studied in Arabidopsis, rice, and maize, there is limited knowledge about NTP genes in soybeans. In this study, we identified 16 members of the NTP family in soybeans, including two subfamilies (G1 and G2) with distinct secondary structures, conserved motifs, and domain distributions at the protein level. Evolutionary analysis of genes in the NTP family across multiple species and gene collinearity analysis revealed a relatively conserved evolutionary pattern. Analysis of the tertiary structure of the proteins showed that NTPs have three conserved aspartic acids that bind together to form a possible active site. Tissue-specific expression analysis indicated that some NTP genes exhibit tissue-specific expression, likely due to their specific functions. Stress expression analysis showed significant differences in the expression levels of NTP genes under high salt, drought, and cold stress. Additionally, RNA-seq analysis of soybean plants subjected to salt and drought stress further confirmed the association of soybean NTP genes with abiotic stress responses. Subcellular localization experiments revealed that GmNTP2 and GmNTP14, which likely have similar functions to HESO1 and URT1, are located in the nucleus. These research findings provide a foundation for further investigations into the functions of NTP family genes in soybeans.
Collapse
Affiliation(s)
- Liqing Kang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Changgen Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Aokang Qin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Zehui Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Xuanyue Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Liming Zeng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Hongyang Yu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Yihua Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Jianbo Song
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Rongrong Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| |
Collapse
|
3
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Li A, Li D, Gu Y, Liu R, Tang X, Zhao Y, Qi F, Wei J, Liu J. Plant-derived nanovesicles: Further exploration of biomedical function and application potential. Acta Pharm Sin B 2023; 13:3300-3320. [PMID: 37655320 PMCID: PMC10465964 DOI: 10.1016/j.apsb.2022.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 03/09/2023] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer vesicles actively secreted by cells, that contain a variety of functional nucleic acids, proteins, and lipids, and are important mediums of intercellular communication. Based on their natural properties, EVs can not only retain the pharmacological effects of their source cells but also serve as natural delivery carriers. Among them, plant-derived nanovesicles (PNVs) are characterized as natural disease therapeutics with many advantages such as simplicity, safety, eco-friendliness, low cost, and low toxicity due to their abundant resources, large yield, and low risk of immunogenicity in vivo. This review systematically introduces the biogenesis, isolation methods, physical characterization, and components of PNVs, and describes their administration and cellular uptake as therapeutic agents. We highlight the therapeutic potential of PNVs as therapeutic agents and drug delivery carriers, including anti-inflammatory, anticancer, wound healing, regeneration, and antiaging properties as well as their potential use in the treatment of liver disease and COVID-19. Finally, the toxicity and immunogenicity, the current clinical application, and the possible challenges in the future development of PNVs were analyzed. We expect the functions of PNVs to be further explored to promote clinical translation, thereby facilitating the development of a new framework for the treatment of human diseases.
Collapse
Affiliation(s)
- Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rongmei Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fu Qi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, Nanjing 210009, China
- Jiangsu Institute of Cancer Research, Nanjing 210009, China
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jiyong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pharmacy, Shanghai Proton and Heavy Ion Center, Shanghai 201315, China
| |
Collapse
|
5
|
Li Y, Hui JHL. Small RNAs in Cnidaria: A review. Evol Appl 2023; 16:354-364. [PMID: 36793685 PMCID: PMC9923473 DOI: 10.1111/eva.13445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
As fundamental components of RNA silencing, small RNA (sRNA) molecules ranging from 20 to 32 nucleotides in length have been found as potent regulators of gene expression and genome stability in many biological processes of eukaryotes. Three major small RNAs are active in animals, including the microRNA (miRNA), short interfering RNA (siRNA), and PIWI-interacting RNA (piRNA). Cnidarians, the sister group to bilaterians, are at a critical phylogenetic node to better model eukaryotic small RNA pathway evolution. To date, most of our understanding of sRNA regulation and its potential contribution to evolution has been limited to a few triploblastic bilaterian and plant models. The diploblastic nonbilaterians, including the cnidarians, are understudied in this regard. Therefore, this review will present the current-known small RNA information in cnidarians to enhance our understanding of the development of the small RNA pathways in early branch animals.
Collapse
Affiliation(s)
- Yiqian Li
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life SciencesThe Chinese University of Hong KongHong Kong CityHong Kong
| | - Jerome H. L. Hui
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life SciencesThe Chinese University of Hong KongHong Kong CityHong Kong
| |
Collapse
|
6
|
Zhang WJ, Li YY, Xiang ZH, Deng J, Li W, Lin QL, Fang Y, Liu F, Bai J, Zhang L, Li J. Emerging evidence on the effects of plant-derived microRNAs in colorectal cancer: a review. Food Funct 2023; 14:691-702. [PMID: 36625207 DOI: 10.1039/d2fo03477h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Food nutrition and human health are still interesting international issues. Early detection, risk assessment and diet are vital to mitigate the load of intestinal diseases and enhance the quality of life. Plant-derived microRNAs could be transferred to mammalian organisms by cross-kingdom regulation which adjusts relevant target genes for their participation in the process of carcinogenesis. But the mechanism of plant-derived microRNAs in colorectal cancer is still unclear. This review aims to summarize the current pathways of plant-derived microRNAs in colorectal cancer including intestinal bacteria, the tumor microenvironment, plant active substances and protein, discuss the direct or indirect effects of plant-derived microRNAs on the occurrence and/or progression of colorectal cancer and explain why plant-derived microRNAs can be used as a potential anti-cancer agent. Moreover, the drawbacks of plant-derived microRNAs are also discussed in terms of both edible plants and synthetic delivery vectors for RNAi interference technology for human disease treatment. This review will provide a potential way for plant-derived microRNAs to target colorectal cancer.
Collapse
Affiliation(s)
- Wen Jing Zhang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Ying Yi Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Zhen Hang Xiang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China. .,College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Qin Lu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Fang Liu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Lin Zhang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Juan Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
7
|
Ding N, Zhang B. microRNA production in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1096772. [PMID: 36743500 PMCID: PMC9893293 DOI: 10.3389/fpls.2023.1096772] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
In plants, microRNAs (miRNAs) associate with ARGONAUTE (AGO) proteins and act as sequence-specific repressors of target gene expression, at the post-transcriptional level through target transcript cleavage and/or translational inhibition. MiRNAs are mainly transcribed by DNA-dependent RNA polymerase II (POL II) and processed by DICER LIKE1 (DCL1) complex into 21∼22 nucleotide (nt) long. Although the main molecular framework of miRNA biogenesis and modes of action have been established, there are still new requirements continually emerging in the recent years. The studies on the involvement factors in miRNA biogenesis indicate that miRNA biogenesis is not accomplished separately step by step, but is closely linked and dynamically regulated with each other. In this article, we will summarize the current knowledge on miRNA biogenesis, including MIR gene transcription, primary miRNA (pri-miRNA) processing, miRNA AGO1 loading and nuclear export; and miRNA metabolism including methylation, uridylation and turnover. We will describe how miRNAs are produced and how the different steps are regulated. We hope to raise awareness that the linkage between different steps and the subcellular regulation are becoming important for the understanding of plant miRNA biogenesis and modes of action.
Collapse
|
8
|
What Do We Know about Barley miRNAs? Int J Mol Sci 2022; 23:ijms232314755. [PMID: 36499082 PMCID: PMC9740008 DOI: 10.3390/ijms232314755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Plant miRNAs are powerful regulators of gene expression at the post-transcriptional level, which was repeatedly proved in several model plant species. miRNAs are considered to be key regulators of many developmental, homeostatic, and immune processes in plants. However, our understanding of plant miRNAs is still limited, despite the fact that an increasing number of studies have appeared. This systematic review aims to summarize our current knowledge about miRNAs in spring barley (Hordeum vulgare), which is an important agronomical crop worldwide and serves as a common monocot model for studying abiotic stress responses as well. This can help us to understand the connection between plant miRNAs and (not only) abiotic stresses in general. In the end, some future perspectives and open questions are summarized.
Collapse
|
9
|
Abbas A, Shah AN, Tanveer M, Ahmed W, Shah AA, Fiaz S, Waqas MM, Ullah S. MiRNA fine tuning for crop improvement: using advance computational models and biotechnological tools. Mol Biol Rep 2022; 49:5437-5450. [PMID: 35182321 DOI: 10.1007/s11033-022-07231-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
MiRNAs modulate target genes expression at post-transcriptional levels, by reducing spatial abundance of mRNAs. MiRNAs regulats plant metabolism, and emerged as regulators of plant stress responses. Which make miRNAs promising candidates for fine tuning to affectively alter crop stress tolerance and other important traits. With recent advancements in the computational biology and biotechnology miRNAs structure and target prediction is possible resulting in pin point editing; miRNA modulation can be done by up or down regulating miRNAs using recently available biotechnological tools (CRISPR Cas9, TALENS and RNAi). In this review we have focused on miRNA biogenesis, miRNA roles in plant development, plant stress responses and roles in signaling pathways. Additionally we have discussed latest computational prediction models for miRNA to target gene interaction and biotechnological systems used recently for miRNA modulation. We have also highlighted setbacks and limitations in the way of miRNA modulation; providing entirely a new direction for improvement in plant genomics primarily focusing miRNAs.
Collapse
Affiliation(s)
- Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan.
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Waseem Ahmed
- Department of Horticulture, The University of Haripur, Hatatr Road, Haripur, 22620, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
10
|
Jia M, He J, Bai W, Lin Q, Deng J, Li W, Bai J, Fu D, Ma Y, Ren J, Xiong S. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct 2021; 12:9549-9562. [PMID: 34664582 DOI: 10.1039/d1fo01156a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As non-coding RNA molecules, microRNAs (miRNAs) are widely known for their critical role in gene regulation. Recent studies have shown that plant miRNAs obtained through dietary oral administration can survive in the gastrointestinal (GI) tract, enter the circulatory system and regulate endogenous mRNAs. Diet-derived plant miRNAs have 2'-O-methylated modified 3'ends and high cytosine and guanine (GC) content, as well as exosomal packaging, which gives them high stability even in the harsh environment of the digestive system and circulatory system. The latest evidence shows that dietary plant miRNAs can not only be absorbed in the intestine, but also be absorbed and packaged by gastric epithelial cells and then secreted into the circulatory system. Alternatively, these biologically active plant-derived miRNAs may also affect the health of the host by affecting the function of the microbiome, while not need to be taken into the host's circulatory system and transferred to remote tissues. This cross-kingdom regulation of miRNAs gives us hope for exploring their therapeutic potential and as dietary supplements. However, doubts have also been raised about the cross-border regulation of miRNAs, suggesting that technical flaws in the experiments may have led to this hypothesis. In this article, we summarize the visibility of dietary plant miRNAs in the development of human health and recent research data on their use in therapeutics. The regulation of plant miRNAs across kingdoms is a novel concept. Continued efforts in this area will broaden our understanding of the biological role of plant miRNAs and will open the way for the development of new approaches to prevent or treat human diseases.
Collapse
Affiliation(s)
- MingXi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China. .,College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - JinTao He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - WeiDong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - QinLu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China. .,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - YuShui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - JiaLi Ren
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - ShouYao Xiong
- College of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
11
|
Plant-Derived Nano and Microvesicles for Human Health and Therapeutic Potential in Nanomedicine. Pharmaceutics 2021; 13:pharmaceutics13040498. [PMID: 33917448 PMCID: PMC8067521 DOI: 10.3390/pharmaceutics13040498] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.
Collapse
|
12
|
Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, Giampieri F, Mezzetti B, Baldini N. Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress in Human Mesenchymal Stromal Cells. Biomolecules 2021; 11:biom11010087. [PMID: 33445656 PMCID: PMC7828105 DOI: 10.3390/biom11010087] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Plant-derived exosome-like nanovesicles (EPDENs) have recently been isolated and evaluated as potential bioactive nutraceutical biomolecules. It has been hypothesized that EPDENs may exert their activity on mammalian cells through their specific cargo. In this study, we isolated and purified EPDENs from the strawberry juice of Fragaria x ananassa (cv. Romina), a new cultivar characterized by a high content of anthocyanins, folic acid, flavonols, and vitamin C and an elevated antioxidant capacity. Fragaria-derived EPDENs were purified by a series of centrifugation and filtration steps. EPDENs showed size and morphology similar to mammalian extracellular nanovesicles. The internalization of Fragaria-derived EPDENs by human mesenchymal stromal cells (MSCs) did not negatively affect their viability, and the pretreatment of MSCs with Fragaria-derived EPDENs prevented oxidative stress in a dose-dependent manner. This is possibly due to the presence of vitamin C inside the nanovesicle membrane. The analysis of EPDEN cargo also revealed the presence of small RNAs and miRNAs. These findings suggest that Fragaria-derived EPDENs may be considered nanoshuttles contained in food, with potential health-promoting activity.
Collapse
Affiliation(s)
- Francesca Perut
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Laura Roncuzzi
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Sofia Avnet
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Annamaria Massa
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40100 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (S.S.); (B.M.)
| | - Francesca Giampieri
- Department of Clinical Specialistic and Odontostomatological Sciences, University Politecnica delle Marche, 60121 Ancona, Italy;
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (S.S.); (B.M.)
| | - Nicola Baldini
- BST Biomedical Sciences and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (F.P.); (L.R.); (S.A.); (A.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence: ; Tel.: +39-051-6366566
| |
Collapse
|
13
|
Fridrich A, Modepalli V, Lewandowska M, Aharoni R, Moran Y. Unravelling the developmental and functional significance of an ancient Argonaute duplication. Nat Commun 2020; 11:6187. [PMID: 33273471 PMCID: PMC7713132 DOI: 10.1038/s41467-020-20003-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) base-pair to messenger RNA targets and guide Argonaute proteins to mediate their silencing. This target regulation is considered crucial for animal physiology and development. However, this notion is based exclusively on studies in bilaterians, which comprise almost all lab model animals. To fill this phylogenetic gap, we characterize the functions of two Argonaute paralogs in the sea anemone Nematostella vectensis of the phylum Cnidaria, which is separated from bilaterians by ~600 million years. Using genetic manipulations, Argonaute-immunoprecipitations and high-throughput sequencing, we provide experimental evidence for the developmental importance of miRNAs in a non-bilaterian animal. Additionally, we uncover unexpected differential distribution of distinct miRNAs between the two Argonautes and the ability of one of them to load additional types of small RNAs. This enables us to postulate a novel model for evolution of miRNA precursors in sea anemones and their relatives, revealing alternative trajectories for metazoan miRNA evolution.
Collapse
Affiliation(s)
- Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, UK
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
14
|
Grzybkowska D, Nowak K, Gaj MD. Hypermethylation of Auxin-Responsive Motifs in the Promoters of the Transcription Factor Genes Accompanies the Somatic Embryogenesis Induction in Arabidopsis. Int J Mol Sci 2020; 21:E6849. [PMID: 32961931 PMCID: PMC7555384 DOI: 10.3390/ijms21186849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The auxin-induced embryogenic reprogramming of plant somatic cells is associated with extensive modulation of the gene expression in which epigenetic modifications, including DNA methylation, seem to play a crucial role. However, the function of DNA methylation, including the role of auxin in epigenetic regulation of the SE-controlling genes, remains poorly understood. Hence, in the present study, we analysed the expression and methylation of the TF genes that play a critical regulatory role during SE induction (LEC1, LEC2, BBM, WUS and AGL15) in auxin-treated explants of Arabidopsis. The results showed that auxin treatment substantially affected both the expression and methylation patterns of the SE-involved TF genes in a concentration-dependent manner. The auxin treatment differentially modulated the methylation of the promoter (P) and gene body (GB) sequences of the SE-involved genes. Relevantly, the SE-effective auxin treatment (5.0 µM of 2,4-D) was associated with the stable hypermethylation of the P regions of the SE-involved genes and a significantly higher methylation of the P than the GB fragments was a characteristic feature of the embryogenic culture. The presence of auxin-responsive (AuxRE) motifs in the hypermethylated P regions suggests that auxin might substantially contribute to the DNA methylation-mediated control of the SE-involved genes.
Collapse
Affiliation(s)
| | | | - Małgorzata D. Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (D.G.); (K.N.)
| |
Collapse
|
15
|
Angelova MT, Dimitrova DG, Da Silva B, Marchand V, Jacquier C, Achour C, Brazane M, Goyenvalle C, Bourguignon-Igel V, Shehzada S, Khouider S, Lence T, Guerineau V, Roignant JY, Antoniewski C, Teysset L, Bregeon D, Motorin Y, Schaefer MR, Carré C. tRNA 2'-O-methylation by a duo of TRM7/FTSJ1 proteins modulates small RNA silencing in Drosophila. Nucleic Acids Res 2020; 48:2050-2072. [PMID: 31943105 PMCID: PMC7038984 DOI: 10.1093/nar/gkaa002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
2′-O-Methylation (Nm) represents one of the most common RNA modifications. Nm affects RNA structure and function with crucial roles in various RNA-mediated processes ranging from RNA silencing, translation, self versus non-self recognition to viral defense mechanisms. Here, we identify two Nm methyltransferases (Nm-MTases) in Drosophila melanogaster (CG7009 and CG5220) as functional orthologs of yeast TRM7 and human FTSJ1. Genetic knockout studies together with MALDI-TOF mass spectrometry and RiboMethSeq mapping revealed that CG7009 is responsible for methylating the wobble position in tRNAPhe, tRNATrp and tRNALeu, while CG5220 methylates position C32 in the same tRNAs and also targets additional tRNAs. CG7009 or CG5220 mutant animals were viable and fertile but exhibited various phenotypes such as lifespan reduction, small RNA pathways dysfunction and increased sensitivity to RNA virus infections. Our results provide the first detailed characterization of two TRM7 family members in Drosophila and uncover a molecular link between enzymes catalyzing Nm at specific tRNAs and small RNA-induced gene silencing pathways.
Collapse
Affiliation(s)
- Margarita T Angelova
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Dilyana G Dimitrova
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Bruno Da Silva
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Virginie Marchand
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-Université de Lorraine-INSERM, BioPôle, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Caroline Jacquier
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Cyrinne Achour
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Mira Brazane
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Catherine Goyenvalle
- Eucaryiotic Translation, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, 9 Quai Saint bernard, 75005 Paris, France
| | - Valérie Bourguignon-Igel
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-Université de Lorraine-INSERM, BioPôle, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France.,Ingénierie Moléculaire et Physiopathologie Articulaire, UMR7365, CNRS - Université de Lorraine, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Salman Shehzada
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Souraya Khouider
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Tina Lence
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Guerineau
- Institut de Chimie de Substances Naturelles, Centre de Recherche de Gif CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Jean-Yves Roignant
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany.,Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Laure Teysset
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Damien Bregeon
- Eucaryiotic Translation, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, 9 Quai Saint bernard, 75005 Paris, France
| | - Yuri Motorin
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR7365, CNRS - Université de Lorraine, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Clément Carré
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
16
|
Gualtieri C, Leonetti P, Macovei A. Plant miRNA Cross-Kingdom Transfer Targeting Parasitic and Mutualistic Organisms as a Tool to Advance Modern Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:930. [PMID: 32655608 PMCID: PMC7325723 DOI: 10.3389/fpls.2020.00930] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/08/2020] [Indexed: 05/13/2023]
Abstract
MicroRNAs (miRNAs), defined as small non-coding RNA molecules, are fine regulators of gene expression. In plants, miRNAs are well-known for regulating processes spanning from cell development to biotic and abiotic stress responses. Recently, miRNAs have been investigated for their potential transfer to distantly related organisms where they may exert regulatory functions in a cross-kingdom fashion. Cross-kingdom miRNA transfer has been observed in host-pathogen relations as well as symbiotic or mutualistic relations. All these can have important implications as plant miRNAs can be exploited to inhibit pathogen development or aid mutualistic relations. Similarly, miRNAs from eukaryotic organisms can be transferred to plants, thus suppressing host immunity. This two-way lane could have a significant impact on understanding inter-species relations and, more importantly, could leverage miRNA-based technologies for agricultural practices. Additionally, artificial miRNAs (amiRNAs) produced by engineered plants can be transferred to plant-feeding organisms in order to specifically regulate their cross-kingdom target genes. This minireview provides a brief overview of cross-kingdom plant miRNA transfer, focusing on parasitic and mutualistic relations that can have an impact on agricultural practices and discusses some opportunities related to miRNA-based technologies. Although promising, miRNA cross-kingdom transfer remains a debated argument. Several mechanistic aspects, such as the availability, transfer, and uptake of miRNAs, as well as their potential to alter gene expression in a cross-kingdom manner, remain to be addressed.
Collapse
Affiliation(s)
- Carla Gualtieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Paola Leonetti
- Institute for Sustainable Plant Protection, National Council of Research, Research Unit of Bari, Bari, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Anca Macovei,
| |
Collapse
|
17
|
Wei SJ, Chai S, Zhu RM, Duan CY, Zhang Y, Li S. HUA ENHANCER1 Mediates Ovule Development. FRONTIERS IN PLANT SCIENCE 2020; 11:397. [PMID: 32351522 PMCID: PMC7174553 DOI: 10.3389/fpls.2020.00397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/03/2023]
Abstract
Ovules are female reproductive organs of angiosperms, containing sporophytic integuments and gametophytic embryo sacs. After fertilization, embryo sacs develop into embryos and endosperm whereas integuments into seed coat. Ovule development is regulated by transcription factors (TF) whose expression is often controlled by microRNAs. Mutations of Arabidopsis DICER-LIKE 1 (DCL1), a microRNA processing protein, caused defective ovule development and reduced female fertility. However, it was not clear whether other microRNA processing proteins participate in this process and how defective ovule development influenced female fertility. We report that mutations of HUA ENHANCER1 (HEN1) and HYPONASTIC LEAVES 1 (HYL1) interfered with integument growth. The sporophytic defect caused abnormal embryo sac development and inability of mutant ovules to attract pollen tubes, leading to reduced female fertility. We show that the role of HEN1 in integument growth is cell-autonomous. Although AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 were ectopically expressed in mutant ovules, consistent with the reduction of microRNA167 in hen1, introducing arf6;arf8 did not suppress ovule defects of hen1, suggesting the involvement of more microRNAs in this process. Results presented indicate that the microRNA processing machinery is critical for ovule development and seed production through multiple microRNAs and their targets.
Collapse
|
18
|
Song J, Wang X, Song B, Gao L, Mo X, Yue L, Yang H, Lu J, Ren G, Mo B, Chen X. Prevalent cytidylation and uridylation of precursor miRNAs in Arabidopsis. NATURE PLANTS 2019; 5:1260-1272. [PMID: 31792392 DOI: 10.1038/s41477-019-0562-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/28/2019] [Indexed: 05/22/2023]
Abstract
A key step in microRNA biogenesis is the processing of a primary precursor RNA by the microprocessor into a precursor miRNA (pre-miRNA) intermediate. In plants, little is known about the processes that act on pre-miRNAs to influence miRNA biogenesis. Here, we performed 3' rapid amplification of complementary DNA ends sequencing to profile pre-miRNA 3' ends in Arabidopsis. 3' end heterogeneity was prevalent, and the three microprocessor components promoted 3' end precision. Extensive cytidylation and uridylation of precise and imprecise pre-miRNA 3' ends were uncovered. The nucleotidyl transferase HESO1 uridylated pre-miRNAs in vitro and was responsible for most pre-miRNA uridylation in vivo. HESO1, NTP6 and NTP7 contribute to pre-miRNA cytidylation. Tailing of pre-miRNAs tended to restore trimmed pre-miRNAs to their intact length to promote further processing. In addition, HESO1-mediated uridylation led to the degradation of certain imprecisely processed pre-miRNAs. Thus, we uncovered widespread cytidylation and uridylation of pre-miRNAs and demonstrated diverse functions of pre-miRNA tailing in plants.
Collapse
Affiliation(s)
- Jianbo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Biochemistry and Molecular Biology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoyan Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Bo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaowei Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Luming Yue
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haiqi Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayun Lu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
19
|
Benmoussa A, Provost P. Milk MicroRNAs in Health and Disease. Compr Rev Food Sci Food Saf 2019; 18:703-722. [PMID: 33336926 DOI: 10.1111/1541-4337.12424] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs responsible for regulating 40% to 60% of gene expression at the posttranscriptional level. The discovery of circulating microRNAs in several biological fluids opened the path for their study as biomarkers and long-range cell-to-cell communication mediators. Their transfer between individuals in the case of blood transfusion, for example, and their high enrichment in milk have sparked the interest for microRNA transfer through diet, especially from mothers to infants during breastfeeding. The extension of such paradigm led to the study of milk microRNAs in the case of cow or goat milk consumption in adults. Here we provide a comprehensive critical review of the key findings surrounding milk microRNAs in human, cow, and goat milk among other species. We discuss the data on their biological properties, their use as disease biomarkers, their transfer between individuals or species, and their putative or verified functions in health and disease of infants and adult consumers. This work is based on all the literature available and integrates all the results, theories, debates, and validation studies available so far on milk microRNAs and related areas of investigations. We critically discuss the limitations and outline future aspects and avenues to explore in this rapidly growing field of research that could impact public health through infant milk formulations or new therapies. We hope that this comprehensive review of the literature will provide insight for all teams investigating milk RNAs' biological activities and help ensure the quality of future reports.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
20
|
Bajczyk M, Bhat SS, Szewc L, Szweykowska-Kulinska Z, Jarmolowski A, Dolata J. Novel Nuclear Functions of Arabidopsis ARGONAUTE1: Beyond RNA Interference. PLANT PHYSIOLOGY 2019; 179:1030-1039. [PMID: 30606888 PMCID: PMC6393810 DOI: 10.1104/pp.18.01351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/21/2018] [Indexed: 05/04/2023]
Abstract
Argonaute1 activity is not limited to the cytoplasm and has been found to be associated with the regulation of gene expression in the nucleus and to be tightly associated with chromatin and transcription.
Collapse
Affiliation(s)
- Mateusz Bajczyk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Susheel Sagar Bhat
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Lukasz Szewc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
21
|
Dimitrova DG, Teysset L, Carré C. RNA 2'-O-Methylation (Nm) Modification in Human Diseases. Genes (Basel) 2019; 10:E117. [PMID: 30764532 PMCID: PMC6409641 DOI: 10.3390/genes10020117] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Nm (2'-O-methylation) is one of the most common modifications in the RNA world. It has the potential to influence the RNA molecules in multiple ways, such as structure, stability, and interactions, and to play a role in various cellular processes from epigenetic gene regulation, through translation to self versus non-self recognition. Yet, building scientific knowledge on the Nm matter has been hampered for a long time by the challenges in detecting and mapping this modification. Today, with the latest advancements in the area, more and more Nm sites are discovered on RNAs (tRNA, rRNA, mRNA, and small non-coding RNA) and linked to normal or pathological conditions. This review aims to synthesize the Nm-associated human diseases known to date and to tackle potential indirect links to some other biological defects.
Collapse
Affiliation(s)
- Dilyana G Dimitrova
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Laure Teysset
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Clément Carré
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
22
|
Hsu PJ, Fei Q, Dai Q, Shi H, Dominissini D, Ma L, He C. Single base resolution mapping of 2'-O-methylation sites in human mRNA and in 3' terminal ends of small RNAs. Methods 2018; 156:85-90. [PMID: 30471344 DOI: 10.1016/j.ymeth.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 01/07/2023] Open
Abstract
The post-transcriptional modification 2'-O-Methyl (2'OMe) could be present on the ribose of all four ribonucleosides, and is highly prevalent in a wide variety of RNA species, including the 5' RNA cap of viruses and higher eukaryotes, as well as internally in transfer RNA and ribosomal RNA. Recent studies have suggested that 2'OMe is also located internally in low-abundance RNA species such as viral RNA and mRNA. To profile 2'OMe on different RNA species, we have developed Nm-seq, which could identify 2'OMe sites at single base resolution. Nm-seq is particularly useful for identifying 2'OMe sites located at the 3' terminal ends of small RNAs. Here, we present an optimized protocol for Nm-seq and a protocol for applying Nm-seq to identify 2'OMe sites on small RNA 3' terminal ends.
Collapse
Affiliation(s)
- Phillip J Hsu
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Qili Fei
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Qing Dai
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Dan Dominissini
- Cancer Research Center, Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lijia Ma
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Structural and biochemical insights into small RNA 3' end trimming by Arabidopsis SDN1. Nat Commun 2018; 9:3585. [PMID: 30181559 PMCID: PMC6123492 DOI: 10.1038/s41467-018-05942-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/12/2018] [Indexed: 02/08/2023] Open
Abstract
A family of DEDDh 3′→5′ exonucleases known as Small RNA Degrading Nucleases (SDNs) initiates the turnover of ARGONAUTE1 (AGO1)-bound microRNAs in Arabidopsis by trimming their 3′ ends. Here, we report the crystal structure of Arabidopsis SDN1 (residues 2-300) in complex with a 9 nucleotide single-stranded RNA substrate, revealing that the DEDDh domain forms rigid interactions with the N-terminal domain and binds 4 nucleotides from the 3′ end of the RNA via its catalytic pocket. Structural and biochemical results suggest that the SDN1 C-terminal domain adopts an RNA Recognition Motif (RRM) fold and is critical for substrate binding and enzymatic processivity of SDN1. In addition, SDN1 interacts with the AGO1 PAZ domain in an RNA-independent manner in vitro, enabling it to act on AGO1-bound microRNAs. These extensive structural and biochemical studies may shed light on a common 3′ end trimming mechanism for 3′→5′ exonucleases in the metabolism of small non-coding RNAs. Small RNA degrading nucleases (SDNs) can degrade short RNAs. Here the authors report the crystal structure of Arabidopsis SDN1 in complex with a single-stranded RNA, and provide new insight into 3′ end trimming mechanism of 3′ to 5′ riboexonucleases in the metabolism of various species of small RNAs.
Collapse
|
24
|
Chen B, Chen J, Du Q, Zhou D, Wang L, Xie J, Li Y, Zhang D. Genetic variants in microRNA biogenesis genes as novel indicators for secondary growth in Populus. THE NEW PHYTOLOGIST 2018; 219:1263-1282. [PMID: 29916214 DOI: 10.1111/nph.15262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/06/2018] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) function as key regulators of complex traits, but how genetic alterations in miRNA biogenesis genes (miRBGs) affect quantitative variation has not been elucidated. We conducted transcript analyses and association genetics to investigate how miRBGs, miRNA genes (MIRNAs) and their respective targets contribute to secondary growth in a natural population of 435 Populus tomentosa individuals. This analysis identified 29 843 common single-nucleotide polymorphisms (SNPs; frequency > 0.10) within 682 genes (80 miRBGs, 152 MIRNAs, and 457 miRNA targets). Single-SNP association analysis found SNPs in 234 candidate genes exhibited significant additive/dominant effects on phenotypes. Among these, specific candidates that associated with the same traits produced 791 miRBG-MIRNA-target combinations, suggesting possible genetic miRBG-MIRNA and MIRNA-target interactions, providing an important clue for the regulatory mechanisms of miRBGs. Multi-SNP association found 4672 epistatic pairs involving 578 genes that showed significant associations with traits and identified 106 miRBG-MIRNA-target combinations. Two multi-hierarchical networks were constructed based on correlations of miRBG-miRNA and miRNA-target expression to further probe the mechanisms of trait diversity underlying changes in miRBGs. Our study opens avenues for the investigation of miRNA function in perennial plants and underscored miRBGs as potentially modulating quantitative variation in traits.
Collapse
Affiliation(s)
- Beibei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jinhui Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Daling Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Longxin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
25
|
Modepalli V, Fridrich A, Agron M, Moran Y. The methyltransferase HEN1 is required in Nematostella vectensis for microRNA and piRNA stability as well as larval metamorphosis. PLoS Genet 2018; 14:e1007590. [PMID: 30118479 PMCID: PMC6114907 DOI: 10.1371/journal.pgen.1007590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/29/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022] Open
Abstract
Small non-coding RNAs (sRNAs) such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs) regulate the levels of endogenous, viral and transposable element RNA in plants (excluding piRNAs) and animals. These pathways are explored mainly in bilaterian animals, such as vertebrates, arthropods and nematodes, where siRNAs and piRNAs, but not miRNAs bind their targets with a perfect match and mediate the cleavage of the target RNA. Methylation of the 3′ ends of piRNAs and siRNAs by the methyltransferase HEN1 protects these sRNAs from degradation. There is a noticeable selection in bilaterian animals against miRNA-mRNA perfect matching, as it leads to the degradation of miRNAs. Cnidarians (sea anemones, corals, hydroids and jellyfish), are separated from bilaterians by more than 600 million years. As opposed to bilaterians, cnidarian miRNAs frequently bind their targets with a nearly perfect match. Knowing that an ortholog of HEN1 is widely expressed in the sea anemone Nematostella vectensis, we tested in this work whether it mediates the stabilization of its sRNAs. We show that the knockdown of HEN1 in Nematostella results in a developmental arrest. Small RNA sequencing revealed that the levels of both miRNAs and piRNAs drop dramatically in the morphant animals. Moreover, knockdown experiments of Nematostella Dicer1 and PIWI2, homologs of major bilaterian biogenesis components of miRNAs and piRNAs, respectively, resulted in developmental arrest similar to HEN1 morphants. Our findings suggest that HEN1 mediated methylation of sRNAs reflects the ancestral state, where miRNAs were also methylated. Thus, we provide the first evidence of a methylation mechanism that stabilizes miRNAs in animals, and highlight the importance of post-transcriptional regulation in non-bilaterian animals. Plants and animals use small RNAs to regulate gene expression, virus silencing and genomic integrity. These functions depend on specific binding of small RNAs to longer RNA targets. The methyltransferase HEN1 plays a crucial role in stabilizing small RNAs upon their binding to perfectly-matching targets. Lack of methylation in case of a perfect match will lead to small RNA degradation. In general, methylation of microRNAs, a class of small RNAs, is part of their biogenesis in plants, but not in bilaterian animals such as vertebrates, worms and insects, where perfectly-matching microRNA targets are rare. In contrast, in Cnidaria (sea anemones, corals and jellyfish), the sister group to Bilateria, microRNAs frequently bind their targets with a nearly perfect match. In this study, we show that in the cnidarian Nematostella vectensis methylation of microRNAs and other small RNAs is consistent and frequent throughout development and that knockdown of the cnidarian HEN1 results in a developmental arrest. Small RNA sequencing of the treated animals, reveals that small RNAs are depleted and shortened. Therefore, our findings suggest that HEN1-mediated methylation of small RNAs was present in the last common ancestor of Cnidaria and Bilateria 600 million years ago and was responsible for microRNA stabilization.
Collapse
Affiliation(s)
- Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (VM); (YM)
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Agron
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail: (VM); (YM)
| |
Collapse
|
26
|
The Stability of Medicinal Plant microRNAs in the Herb Preparation Process. Molecules 2018; 23:molecules23040919. [PMID: 29659501 PMCID: PMC6016954 DOI: 10.3390/molecules23040919] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/23/2023] Open
Abstract
Herbal medicine is now globally accepted as a valid alternative system of pharmaceutical therapies. Various studies around the world have been initiated to develop scientific evidence-based herbal therapies. Recently, the therapeutic potential of medicinal plant derived miRNAs has attracted great attraction. MicroRNAs have been indicated as new bioactive ingredients in medicinal plants. However, the stability of miRNAs during the herbal preparation process and their bioavailability in humans remain unclear. Viscum album L. (European mistletoe) has been widely used in folk medicine for the treatment of cancer and cardiovascular diseases. Our previous study has indicated the therapeutic potential of mistletoe miRNAs by using bioinformatics tools. To evaluate the stability of these miRNAs, various mistletoe extracts that mimic the clinical medicinal use as well as traditional folk medicinal use were prepared. The mistletoe miRNAs including miR166a-3p, miR159a, miR831-5p, val-miR218 and val-miR11 were quantified by stem-loop qRT-PCR. As a result, miRNAs were detectable in the majority of the extracts, indicating that consumption of medicinal plant preparations might introduce miRNAs into mammals. The factors that might cause miRNA degradation include ultrasonic treatment, extreme heat, especially RNase treatment, while to be associated with plant molecules (e.g., proteins, exosomes) might be an efficient way to protect miRNAs against degradation. Our study confirmed the stability of plant derived miRNAs during herb preparations, suggesting the possibility of functionally intact medicinal plant miRNAs in mammals.
Collapse
|
27
|
Angelova MT, Dimitrova DG, Dinges N, Lence T, Worpenberg L, Carré C, Roignant JY. The Emerging Field of Epitranscriptomics in Neurodevelopmental and Neuronal Disorders. Front Bioeng Biotechnol 2018; 6:46. [PMID: 29707539 PMCID: PMC5908907 DOI: 10.3389/fbioe.2018.00046] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 01/19/2023] Open
Abstract
Analogous to DNA methylation and histone modifications, RNA modifications represent a novel layer of regulation of gene expression. The dynamic nature and increasing number of RNA modifications offer new possibilities to rapidly alter gene expression upon specific environmental changes. Recent lines of evidence indicate that modified RNA molecules and associated complexes regulating and “reading” RNA modifications play key roles in the nervous system of several organisms, controlling both, its development and function. Mutations in several human genes that modify transfer RNA (tRNA) have been linked to neurological disorders, in particular to intellectual disability. Loss of RNA modifications alters the stability of tRNA, resulting in reduced translation efficiency and generation of tRNA fragments, which can interfere with neuronal functions. Modifications present on messenger RNAs (mRNAs) also play important roles during brain development. They contribute to neuronal growth and regeneration as well as to the local regulation of synaptic functions. Hence, potential combinatorial effects of RNA modifications on different classes of RNA may represent a novel code to dynamically fine tune gene expression during brain function. Here we discuss the recent findings demonstrating the impact of modified RNAs on neuronal processes and disorders.
Collapse
Affiliation(s)
- Margarita T Angelova
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Dilyana G Dimitrova
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Nadja Dinges
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Tina Lence
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Lina Worpenberg
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Clément Carré
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Jean-Yves Roignant
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
28
|
Yu Y, Jia T, Chen X. The 'how' and 'where' of plant microRNAs. THE NEW PHYTOLOGIST 2017; 216:1002-1017. [PMID: 29048752 PMCID: PMC6040672 DOI: 10.1111/nph.14834] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/21/2017] [Indexed: 05/18/2023]
Abstract
Contents 1002 I. 1002 II. 1007 III. 1010 IV. 1013 1013 References 1013 SUMMARY: MicroRNAs (miRNAs) are small non-coding RNAs, of typically 20-24 nt, that regulate gene expression post-transcriptionally through sequence complementarity. Since the identification of the first miRNA, lin-4, in the nematode Caenorhabditis elegans in 1993, thousands of miRNAs have been discovered in animals and plants, and their regulatory roles in numerous biological processes have been uncovered. In plants, research efforts have established the major molecular framework of miRNA biogenesis and modes of action, and are beginning to elucidate the mechanisms of miRNA degradation. Studies have implicated restricted and surprising subcellular locations in which miRNA biogenesis or activity takes place. In this article, we summarize the current knowledge on how plant miRNAs are made and degraded, and how they repress target gene expression. We discuss not only the players involved in these processes, but also the subcellular sites in which these processes are known or implicated to take place. We hope to raise awareness that the cell biology of miRNAs holds the key to a full understanding of these enigmatic molecules.
Collapse
Affiliation(s)
- Yu Yu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Tianran Jia
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, Howard Hughes Medical Institute, University of California, Riverside, CA 92521, USA
| |
Collapse
|
29
|
De Almeida C, Scheer H, Zuber H, Gagliardi D. RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28984054 DOI: 10.1002/wrna.1440] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022]
Abstract
RNA uridylation is a potent and widespread posttranscriptional regulator of gene expression. RNA uridylation has been detected in a range of eukaryotes including trypanosomes, animals, plants, and fungi, but with the noticeable exception of budding yeast. Virtually all classes of eukaryotic RNAs can be uridylated and uridylation can also tag viral RNAs. The untemplated addition of a few uridines at the 3' end of a transcript can have a decisive impact on RNA's fate. In rare instances, uridylation is an intrinsic step in the maturation of noncoding RNAs like for the U6 spliceosomal RNA or mitochondrial guide RNAs in trypanosomes. Uridylation can also switch specific miRNA precursors from a degradative to a processing mode. This switch depends on the number of uridines added which is regulated by the cellular context. Yet, the typical consequence of uridylation on mature noncoding RNAs or their precursors is to accelerate decay. Importantly, mRNAs are also tagged by uridylation. In fact, the advent of novel high throughput sequencing protocols has recently revealed the pervasiveness of mRNA uridylation, from plants to humans. As for noncoding RNAs, the main function to date for mRNA uridylation is to promote degradation. Yet, additional roles begin to be ascribed to U-tailing such as the control of mRNA deadenylation, translation control and possibly storage. All these new findings illustrate that we are just beginning to appreciate the diversity of roles played by RNA uridylation and its full temporal and spatial implication in regulating gene expression. WIREs RNA 2018, 9:e1440. doi: 10.1002/wrna.1440 This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Caroline De Almeida
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Scheer
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
Yang H, Song J, Yue L, Mo X, Song J, Mo B. Identification and expression profiling of Oryza sativa nucleotidyl transferase protein (NTP) genes under various stress conditions. Gene 2017; 628:93-102. [PMID: 28676446 DOI: 10.1016/j.gene.2017.06.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/28/2022]
Abstract
Nucleotidyl transferase proteins (NTPs) modify the 3' ends of mature small RNAs, leading to their stabilization or degradation. The first two plant NTPs, HESO1 and URT1, were identified in Arabidopsis. These two NTPs act cooperatively to uridylate the 3' terminal nucleotide of specific miRNAs, leading to their degradation and thereby affecting the expression of genes regulated by these miRNAs. Little is known about NTPs in other plants. Here, we performed a comprehensive analysis of 13 putative NTP genes in Oryza sativa, a major crop in global food production. Phylogenetic analysis showed homology among the NTPs from diverse plant species. Analysis of cis-acting promoter elements at OsNTP loci identified several stress response elements, indicating the potential involvement of NTPs in plant stress responses. The promoter analysis results were validated by expression of the OsNTP genes under abiotic stress treatments, with some OsNTPs clearly induced by salt, drought or cold stress. Moreover, the RT-PCR data showed that the OsNTP genes were differentially expressed in different developmental stages and tissues. These findings suggest that NTPs, which are involved in small RNA metabolic pathways, might play roles in plant stress resistance.
Collapse
Affiliation(s)
- Haiqi Yang
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jianbo Song
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China; Department of Biochemistry and Molecular Biology, College of Science, Jiang Xi Agricultural University, Nanchang 330045, China
| | - Luming Yue
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaowei Mo
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Beixin Mo
- Guangdong Province Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
31
|
Velayudha Vimala Kumar K, Srikakulam N, Padbhanabhan P, Pandi G. Deciphering microRNAs and Their Associated Hairpin Precursors in a Non-Model Plant, Abelmoschus esculentus. Noncoding RNA 2017; 3:ncrna3020019. [PMID: 29657290 PMCID: PMC5831935 DOI: 10.3390/ncrna3020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial regulatory RNAs, originated from hairpin precursors. For the past decade, researchers have been focusing extensively on miRNA profiles in various plants. However, there have been few studies on the global profiling of precursor miRNAs (pre-miRNAs), even in model plants. Here, for the first time in a non-model plant—Abelmoschus esculentus with negligible genome information—we are reporting the global profiling to characterize the miRNAs and their associated pre-miRNAs by applying a next generation sequencing approach. Preliminarily, we performed small RNA (sRNA) sequencing with five biological replicates of leaf samples to attain 207,285,863 reads; data analysis using miRPlant revealed 128 known and 845 novel miRNA candidates. With the objective of seizing their associated hairpin precursors, we accomplished pre-miRNA sequencing to attain 83,269,844 reads. The paired end reads are merged and adaptor trimmed, and the resulting 40–241 nt (nucleotide) sequences were picked out for analysis by using perl scripts from the miRGrep tool and an in-house built shell script for Minimum Fold Energy Index (MFEI) calculation. Applying the stringent criteria of the Dicer cleavage pattern and the perfect stem loop structure, precursors for 57 known miRNAs of 15 families and 18 novel miRNAs were revealed. Quantitative Real Time (qRT) PCR was performed to determine the expression of selected miRNAs.
Collapse
Affiliation(s)
- Kavitha Velayudha Vimala Kumar
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021,Tamil Nadu, India.
| | - Nagesh Srikakulam
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021,Tamil Nadu, India.
| | - Priyavathi Padbhanabhan
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021,Tamil Nadu, India.
| | - Gopal Pandi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021,Tamil Nadu, India.
| |
Collapse
|
32
|
Chen K, Zhao BS, He C. Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chem Biol 2016; 23:74-85. [PMID: 26933737 DOI: 10.1016/j.chembiol.2015.11.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
Nucleic acids carry a wide range of different chemical modifications. In contrast to previous views that these modifications are static and only play fine-tuning functions, recent research advances paint a much more dynamic picture. Nucleic acids carry diverse modifications and employ these chemical marks to exert essential or critical influences in a variety of cellular processes in eukaryotic organisms. This review covers several nucleic acid modifications that play important regulatory roles in biological systems, especially in regulation of gene expression: 5-methylcytosine (5mC) and its oxidative derivatives, and N(6)-methyladenine (6mA) in DNA; N(6)-methyladenosine (m(6)A), pseudouridine (Ψ), and 5-methylcytidine (m(5)C) in mRNA and long non-coding RNA. Modifications in other non-coding RNAs, such as tRNA, miRNA, and snRNA, are also briefly summarized. We provide brief historical perspective of the field, and highlight recent progress in identifying diverse nucleic acid modifications and exploring their functions in different organisms. Overall, we believe that work in this field will yield additional layers of both chemical and biological complexity as we continue to uncover functional consequences of known nucleic acid modifications and discover new ones.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Boxuan Simen Zhao
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
33
|
Wang F, Johnson NR, Coruh C, Axtell MJ. Genome-wide analysis of single non-templated nucleotides in plant endogenous siRNAs and miRNAs. Nucleic Acids Res 2016; 44:7395-405. [PMID: 27207877 PMCID: PMC5009732 DOI: 10.1093/nar/gkw457] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 11/15/2022] Open
Abstract
Plant small RNAs are subject to various modifications. Previous reports revealed widespread 3' modifications (truncations and non-templated tailing) of plant miRNAs when the 2'-O-methyltransferase HEN1 is absent. However, non-templated nucleotides in plant heterochromatic siRNAs have not been deeply studied, especially in wild-type plants. We systematically studied non-templated nucleotide patterns in plant small RNAs by analyzing small RNA sequencing libraries from Arabidopsis, tomato, Medicago, rice, maize and Physcomitrella Elevated rates of non-templated nucleotides were observed at the 3' ends of both miRNAs and endogenous siRNAs from wild-type specimens of all species. 'Off-sized' small RNAs, such as 25 and 23 nt siRNAs arising from loci dominated by 24 nt siRNAs, often had very high rates of 3'-non-templated nucleotides. The same pattern was observed in all species that we studied. Further analysis of 24 nt siRNA clusters in Arabidopsis revealed distinct patterns of 3'-non-templated nucleotides of 23 nt siRNAs arising from heterochromatic siRNA loci. This pattern of non-templated 3' nucleotides on 23 nt siRNAs is not affected by loss of known small RNA 3'-end modifying enzymes, and may result from modifications added to longer heterochromatic siRNA precursors.
Collapse
Affiliation(s)
- Feng Wang
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Nathan R Johnson
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Ceyda Coruh
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Intercollege Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA Department of Biology, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
Fabris L, Calin GA. Circulating free xeno-microRNAs - The new kids on the block. Mol Oncol 2016; 10:503-8. [PMID: 26860056 DOI: 10.1016/j.molonc.2016.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
The role of circulating free microRNAs (cfmiRNAs) as promising tools for cancer screening, prognosis and monitoring of anticancer therapies has been widely studied in the past decades. cfmiRNAs have all the characteristics of the perfect biomarkers owing high stability under storage and handling conditions and being detectable not only in plasma, but in almost all body fluids. Moreover, their levels in plasma are likely to resemble ones in the primary tumor. Recently, viral and plant miRNAs have been found in plasma of healthy individuals through deep sequencing technique, and subsequently the same ones were deregulated in patients. Growing body of literature is recently focusing on understanding the potential cross-kingdom regulation of human mRNAs by miRNAs most likely absorbed with food ingestion. In this article we will review the literature concerning the xenomiRs detected in plasma and their role in influencing cancer onset and progression. XenomiRs could potentially be used not only as early screening tool, but also for patients' prognosis.
Collapse
Affiliation(s)
- Linda Fabris
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Jung IL, Ryu M, Cho SK, Shah P, Lee JH, Bae H, Kim IG, Yang SW. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana. PLoS One 2015; 10:e0125514. [PMID: 25946015 PMCID: PMC4422737 DOI: 10.1371/journal.pone.0125514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/13/2015] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1)-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.
Collapse
Affiliation(s)
- Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, 305–353, Republic of Korea
| | - Moonyoung Ryu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Copenhagen, Denmark
| | - Seok Keun Cho
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Copenhagen, Denmark
| | - Pratik Shah
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Copenhagen, Denmark
| | - Ju Hye Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, 305–353, Republic of Korea
| | - Hansol Bae
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Copenhagen, Denmark
| | - In Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, 305–353, Republic of Korea
| | - Seong Wook Yang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
36
|
Tu B, Liu L, Xu C, Zhai J, Li S, Lopez MA, Zhao Y, Yu Y, Ramachandran V, Ren G, Yu B, Li S, Meyers BC, Mo B, Chen X. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet 2015; 11:e1005119. [PMID: 25928405 PMCID: PMC4415760 DOI: 10.1371/journal.pgen.1005119] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022] Open
Abstract
3’ uridylation is increasingly recognized as a conserved RNA modification process associated with RNA turnover in eukaryotes. 2’-O-methylation on the 3’ terminal ribose protects micro(mi)RNAs from 3’ truncation and 3’ uridylation in Arabidopsis. Previously, we identified HESO1 as the nucleotidyl transferase that uridylates most unmethylated miRNAs in vivo, but substantial 3’ tailing of miRNAs still remains in heso1 loss-of-function mutants. In this study, we found that among nine other potential nucleotidyl transferases, UTP:RNA URIDYLYLTRANSFERASE 1 (URT1) is the single most predominant nucleotidyl transferase that tails miRNAs. URT1 and HESO1 prefer substrates with different 3’ end nucleotides in vitro and act cooperatively to tail different forms of the same miRNAs in vivo. Moreover, both HESO1 and URT1 exhibit nucleotidyl transferase activity on AGO1-bound miRNAs. Although these enzymes are able to add long tails to AGO1-bound miRNAs, the tailed miRNAs remain associated with AGO1. Moreover, tailing of AGO1-bound miRNA165/6 drastically reduces the slicing activity of AGO1-miR165/6, suggesting that tailing reduces miRNA activity. However, monouridylation of miR171a by URT1 endows the miRNA the ability to trigger the biogenesis of secondary siRNAs. Therefore, 3’ tailing could affect the activities of miRNAs in addition to leading to miRNA degradation. The tailing of RNAs with non-templated uridines, known as uridylation, is often associated with RNA degradation. We previously identified HESO1 as a nucleotidyl transferase that uridylates microRNAs (miRNAs) to lead to their degradation in Arabidopsis. But HESO1 cannot account for all the miRNA uridylation activity in vivo. Here, we have uncovered UTP:RNA URIDYLYLTRANSFERASE 1 (URT1) as another nucleotidyl transferase that uridylates miRNAs. HESO1 and URT1 have different substrate preferences and act cooperatively to tail miRNAs. We show that both enzymes are able to act on ARGONAUTE1 (AGO1)-bound miRNAs and that the tailed miRNAs stay bound by AGO1. We show that URT1-mediated tailing affects the activities of miR165/6 and miR171a differently. This study reveals intricate miRNA uridylation processes as well as functional outcomes of miRNA uridylation.
Collapse
Affiliation(s)
- Bin Tu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
- Rice Research Institute, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Li Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, China
| | - Chi Xu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, China
| | - Jixian Zhai
- Department of Plant & Soil Sciences, and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Shengben Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Miguel A. Lopez
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Yuanyuan Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Yu Yu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Vanitharani Ramachandran
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Guodong Ren
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Bin Yu
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, China
| | - Blake C. Meyers
- Department of Plant & Soil Sciences, and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Beixin Mo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, China
- * E-mail: (BM); (XC)
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
- Howard Hughes Medical Institute, University of California, Riverside, Riverside, California, United States of America
- * E-mail: (BM); (XC)
| |
Collapse
|
37
|
Matzke MA, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:243-67. [PMID: 25494460 DOI: 10.1146/annurev-arplant-043014-114633] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic process in plants that involves both short and long noncoding RNAs. The generation of these RNAs and the induction of RdDM rely on complex transcriptional machineries comprising two plant-specific, RNA polymerase II (Pol II)-related RNA polymerases known as Pol IV and Pol V, as well as a host of auxiliary factors that include both novel and refashioned proteins. We present current views on the mechanism of RdDM with a focus on evolutionary innovations that occurred during the transition from a Pol II transcriptional pathway, which produces mRNA precursors and numerous noncoding RNAs, to the Pol IV and Pol V pathways, which are specialized for RdDM and gene silencing. We describe recently recognized deviations from the canonical RdDM pathway, discuss unresolved issues, and speculate on the biological significance of RdDM for flowering plants, which have a highly developed Pol V pathway.
Collapse
Affiliation(s)
- Marjori A Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; , ,
| | | | | |
Collapse
|
38
|
Slevin MK, Meaux S, Welch JD, Bigler R, Miliani de Marval PL, Su W, Rhoads RE, Prins JF, Marzluff WF. Deep sequencing shows multiple oligouridylations are required for 3' to 5' degradation of histone mRNAs on polyribosomes. Mol Cell 2014; 53:1020-30. [PMID: 24656133 DOI: 10.1016/j.molcel.2014.02.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/23/2013] [Accepted: 02/10/2014] [Indexed: 12/27/2022]
Abstract
Histone mRNAs are rapidly degraded when DNA replication is inhibited during S phase with degradation initiating with oligouridylation of the stem loop at the 3' end. We developed a customized RNA sequencing strategy to identify the 3' termini of degradation intermediates of histone mRNAs. Using this strategy, we identified two types of oligouridylated degradation intermediates: RNAs ending at different sites of the 3' side of the stem loop that resulted from initial degradation by 3'hExo and intermediates near the stop codon and within the coding region. Sequencing of polyribosomal histone mRNAs revealed that degradation initiates and proceeds 3' to 5' on translating mRNA and that many intermediates are capped. Knockdown of the exosome-associated exonuclease PM/Scl-100, but not the Dis3L2 exonuclease, slows histone mRNA degradation consistent with 3' to 5' degradation by the exosome containing PM/Scl-100. Knockdown of No-go decay factors also slowed histone mRNA degradation, suggesting a role in removing ribosomes from partially degraded mRNAs.
Collapse
Affiliation(s)
- Michael K Slevin
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stacie Meaux
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua D Welch
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca Bigler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paula L Miliani de Marval
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wei Su
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jan F Prins
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William F Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
39
|
Methylation protects microRNAs from an AGO1-associated activity that uridylates 5' RNA fragments generated by AGO1 cleavage. Proc Natl Acad Sci U S A 2014; 111:6365-70. [PMID: 24733911 DOI: 10.1073/pnas.1405083111] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In plants, methylation catalyzed by HEN1 (small RNA methyl transferase) prevents microRNAs (miRNAs) from degradation triggered by uridylation. How methylation antagonizes uridylation of miRNAs in vivo is not well understood. In addition, 5' RNA fragments (5' fragments) produced by miRNA-mediated RNA cleavage can be uridylated in plants and animals. However, the biological significance of this modification is unknown, and enzymes uridylating 5' fragments remain to be identified. Here, we report that in Arabidopsis, HEN1 suppressor 1 (HESO1, a miRNA nucleotidyl transferase) uridylates 5' fragments to trigger their degradation. We also show that Argonaute 1 (AGO1), the effector protein of miRNAs, interacts with HESO1 through its Piwi/Argonaute/Zwille and PIWI domains, which bind the 3' end of miRNA and cleave the target mRNAs, respectively. Furthermore, HESO1 is able to uridylate AGO1-bound miRNAs in vitro. miRNA uridylation in vivo requires a functional AGO1 in hen1, in which miRNA methylation is impaired, demonstrating that HESO1 can recognize its substrates in the AGO1 complex. On the basis of these results, we propose that methylation is required to protect miRNAs from AGO1-associated HESO1 activity that normally uridylates 5' fragments.
Collapse
|
40
|
Abe M, Naqvi A, Hendriks GJ, Feltzin V, Zhu Y, Grigoriev A, Bonini NM. Impact of age-associated increase in 2'-O-methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev 2014; 28:44-57. [PMID: 24395246 PMCID: PMC3894412 DOI: 10.1101/gad.226654.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
miRNAs exhibit heterogeneity in length and sequence in different biological contexts. Abe et al. found that Drosophila miRNAs undergo isoform pattern changes with age, and an increase of some miRNAs reflects increased 2′-O-methylation of select isoforms. Loading of miRNAs into Ago2, but not Ago1, increased with age. Hen1 and Ago2 mutations caused accelerated neurodegeneration and shorter life span, suggesting that the age-associated increase of 2′-O-methylation of miRNAs affects age-associated processes. MicroRNAs (miRNAs) are 20- to ∼24-nucleotide (nt) small RNAs that impact a variety of biological processes, from development to age-associated events. To study the role of miRNAs in aging, studies have profiled the levels of miRNAs with time. However, evidence suggests that miRNAs show heterogeneity in length and sequence in different biological contexts. Here, by examining the expression pattern of miRNAs by Northern blot analysis, we found that Drosophila miRNAs show distinct isoform pattern changes with age. Surprisingly, an increase of some miRNAs reflects increased 2′-O-methylation of select isoforms. Small RNA deep sequencing revealed a global increase of miRNAs loaded into Ago2, but not into Ago1, with age. Our data suggest increased loading of miRNAs into Ago2, but not Ago1, with age, indicating a mechanism for differential loading of miRNAs with age between Ago1 and Ago2. Mutations in Hen1 and Ago2, which lack 2′-O-methylation of miRNAs, result in accelerated neurodegeneration and shorter life span, suggesting a potential impact of the age-associated increase of 2′-O-methylation of small RNAs on age-associated processes. Our study highlights that miRNA 2′-O-methylation at the 3′ end is modulated by differential partitioning of miRNAs between Ago1 and Ago2 with age and that this process, along with other functions of Ago2, might impact age-associated events in Drosophila.
Collapse
Affiliation(s)
- Masashi Abe
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. THE PLANT CELL 2013; 25:2383-99. [PMID: 23881412 PMCID: PMC3753372 DOI: 10.1105/tpc.113.113159] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 04/25/2013] [Accepted: 07/08/2013] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs that control gene expression through silencing of target mRNAs. Mature miRNAs are processed from primary miRNA transcripts by the endonuclease activity of the DICER-LIKE1 (DCL1) protein complex. Mechanisms exist that allow the DCL1 complex to precisely excise the miRNA from its precursor. Our understanding of miRNA biogenesis, particularly its intersection with transcription and other aspects of RNA metabolism such as splicing, is still evolving. Mature miRNAs are incorporated into an ARGONAUTE (AGO) effector complex competent for target gene silencing but are also subjected to turnover through a degradation mechanism that is beginning to be understood. The mechanisms of miRNA target silencing in plants are no longer limited to AGO-catalyzed slicing, and the contribution of translational inhibition is increasingly appreciated. Here, we review the mechanisms underlying the biogenesis, turnover, and activities of plant miRNAs.
Collapse
Affiliation(s)
- Kestrel Rogers
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- Howard Hughes Medical Institute, University of California, Riverside, California 92521
| |
Collapse
|
42
|
Zhai J, Zhao Y, Simon SA, Huang S, Petsch K, Arikit S, Pillay M, Ji L, Xie M, Cao X, Yu B, Timmermans M, Yang B, Chen X, Meyers BC. Plant microRNAs display differential 3' truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species. THE PLANT CELL 2013; 25:2417-28. [PMID: 23839787 PMCID: PMC3753374 DOI: 10.1105/tpc.113.114603] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 06/06/2013] [Accepted: 06/20/2013] [Indexed: 05/18/2023]
Abstract
Plant small RNAs are 3' methylated by the methyltransferase HUA1 ENHANCER1 (HEN1). In plant hen1 mutants, 3' modifications of small RNAs, including oligo-uridylation (tailing), are associated with accelerated degradation of microRNAs (miRNAs). By sequencing small RNAs of the wild type and hen1 mutants from Arabidopsis thaliana, rice (Oryza sativa), and maize (Zea mays), we found 3' truncation prior to tailing is widespread in these mutants. Moreover, the patterns of miRNA truncation and tailing differ substantially among miRNA families but are conserved across species. The same patterns are also observable in wild-type libraries from a broad range of species, only at lower abundances. ARGONAUTE (AGO1), even with defective slicer activity, can bind these truncated and tailed variants of miRNAs. An ago1 mutation in hen1 suppressed such 3' modifications, indicating that they occur while miRNAs are in association with AGO1, either during or after RNA-induced silencing complex assembly. Our results showed AGO1-bound miRNAs are actively 3' truncated and tailed, possibly reflecting the activity of cofactors acting in conserved patterns in miRNA degradation.
Collapse
Affiliation(s)
- Jixian Zhai
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Yuanyuan Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Stacey A. Simon
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Sheng Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Katherine Petsch
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Siwaret Arikit
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Manoj Pillay
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Lijuan Ji
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Meng Xie
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yu
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588
| | - Marja Timmermans
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Bing Yang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- Howard Hughes Medical Institute, University of California, Riverside, California 92521
| | - Blake C. Meyers
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
- Address correspondence to
| |
Collapse
|
43
|
Rogers K, Chen X. microRNA biogenesis and turnover in plants. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 77:183-94. [PMID: 23439913 DOI: 10.1101/sqb.2013.77.014530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are short RNAs that regulate gene expression in eukaryotes. The biogenesis and turnover of miRNAs determine their spatiotemporal accumulation within tissues. miRNA biogenesis is a multistep process that entails transcription, processing, nuclear export, and formation of the miRNA-ARGONAUTE complex. Factors that perform each of these steps have been identified. Generation of mature miRNAs from primary transcripts, i.e., miRNA processing, is a key step in miRNA biogenesis. Our understanding of miRNA processing has expanded beyond the enzyme that performs the reactions, as more and more additional factors that impact the efficiency and accuracy of miRNA processing are uncovered. In contrast to miRNA biogenesis, miRNA turnover is an important but poorly understood process that contributes to the steady-state levels of miRNAs. Enzymes responsible for miRNA degradation have only recently been identified. This review describes the processes of miRNA maturation and degradation in plants.
Collapse
Affiliation(s)
- K Rogers
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|