1
|
Rai P, Pathania R, Bhagat N, Bongirwar R, Shukla P, Srivastava S. Current insights into molecular mechanisms of environmental stress tolerance in Cyanobacteria. World J Microbiol Biotechnol 2025; 41:53. [PMID: 39875631 DOI: 10.1007/s11274-025-04260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/12/2025] [Indexed: 01/30/2025]
Abstract
The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation. Metabolic pathways play an important role in stress tolerance; their modification is also a very promising approach to adapting to stress conditions. Several synthetic as well as systems biology approaches have been developed to identify and manipulate genes regulating cellular responses under different stresses. In this review, we summarize the impact of different stresses on metabolic processes, the small RNAs, genes and heat shock proteins (HSPs) involved, changes in the metabolome and their adaptive mechanisms. The developing knowledge of the adaptive behaviour of cyanobacteria may also be utilised to develop better stress-responsive strains for various applications.
Collapse
Affiliation(s)
- Preeti Rai
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchi Pathania
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, USA
| | - Namrata Bhagat
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Shireesh Srivastava
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2
|
Han NN, Jin JA, Yang JH, Fan NS, Jin RC. Polystyrene nanoparticles regulate microbial stress response and cold adaptation in mainstream anammox process at low temperature. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135860. [PMID: 39298955 DOI: 10.1016/j.jhazmat.2024.135860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Nanoplastic pollution has become one of the most pressing environmental issues, and its bioaccumulation in aquatic environment also causes a great difficulty in treatment. Therefore, this work investigated the microbial dynamics of mainstream anaerobic ammonia oxidizing (anammox) process to treat the wastewater containing typical nanoplastics, as well as the fate and regulation mechanism of polystyrene nanoparticles (PS-NPs) with different concentrations. The results showed that 0.1-0.5 mg L-1 of PS-NPs had no significant effect on the nitrogen removal efficiency (NRE). When the concentration of PS-NPs increased from 0.5 mg L-1 to 2 mg L-1, the NRE of R1 with PS-NPs decreased from 94.9 ± 2.3 % to 77.0 ± 1.6 %, while the control reactor R0 maintained a stable NRE. Notably, the relative abundance of Ca. Kuenenia decreased from 17.4 % to 14.8 %, and that of Ca. Brocadia slightly decreased from 5.9 % to 5.0 % in R1. In addition, PS-NPs induced oxidative stress in anammox consortia, leading to the significant increase in reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as cell membrane damage. PS-NPs also downregulated the content of heme c and further inhibited anammox activity. Based on the molecular docking simulation and western blotting, cold shock proteins (CSPs) could bind to PS-NPs and reduce the performance of anammox processes at low temperatures.
Collapse
Affiliation(s)
- Na-Na Han
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing-Ao Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia-Hui Yang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Yang XH, Song JY, Li K, Sun ML, Cao HY, Wang P, Zhang Y. The complete genome sequence of proteases-producing Shewanella sp. H8 isolated from Antarctica. Mar Genomics 2024; 78:101147. [PMID: 39515971 DOI: 10.1016/j.margen.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Bacteria of the genus Shewanella in the class Gammaproteobacteria are widely distributed in marine environments. Shewanella sp. H8, was isolated from a red algae sample collected from Nelson Island, Antarctica. Here, we present the complete genome sequence of strain H8, which consists of a single circular chromosome comprising 4,490,743 nucleotides with 40.59 % G + C content without any plasmid. In total, 3983 protein coding genes, 95 tRNA genes, and 25 rRNA genes were obtained. Genomic analysis of strain H8 showed that it contains four cold shock proteins and three fatty acid desaturases and possesses the potential to synthesize hglE-KS, arylpolyene, betalactone and RiPP-like compounds. Through genomic annotation, 91 protease-encoding genes were identified within the genome of strain H8. These proteases are classified into six categories based on their catalytic types. Among these proteases, metalloproteinases and serine proteases are dominant. These proteases may provide carbon and nitrogen sources to H8 by degrading proteins in the environment. This study will provide potential genetic information for the future research and development of cold-adapted proteases.
Collapse
Affiliation(s)
- Xiao-Hui Yang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Jia-Yi Song
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Kang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Mei-Ling Sun
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Hai-Yan Cao
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yi Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Hossain A, Gnanagobal H, Cao T, Chakraborty S, Chukwu-Osazuwa J, Soto-Dávila M, Vasquez I, Santander J. Role of cold shock proteins B and D in Aeromonas salmonicida subsp. salmonicida physiology and virulence in lumpfish ( Cyclopterus lumpus). Infect Immun 2024; 92:e0001124. [PMID: 38920386 PMCID: PMC11320987 DOI: 10.1128/iai.00011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Cold shock proteins (Csp) are pivotal nucleic acid binding proteins known for their crucial roles in the physiology and virulence of various bacterial pathogens affecting plant, insect, and mammalian hosts. However, their significance in bacterial pathogens of teleost fish remains unexplored. Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a psychrotrophic pathogen and the causative agent of furunculosis in marine and freshwater fish. Four csp genes (cspB, cspD, cspA, and cspC) have been identified in the genome of A. salmonicida J223 (wild type). Here, we evaluated the role of DNA binding proteins, CspB and CspD, in A. salmonicida physiology and virulence in lumpfish (Cyclopterus lumpus). A. salmonicida ΔcspB, ΔcspD, and the double ΔcspBΔcspD mutants were constructed and characterized. A. salmonicida ΔcspB and ΔcspBΔcspD mutants showed a faster growth at 28°C, and reduced virulence in lumpfish. A. salmonicida ΔcspD showed a slower growth at 28°C, biofilm formation, lower survival in low temperatures and freezing conditions (-20°C, 0°C, and 4°C), deficient in lipopolysaccharide synthesis, and low virulence in lumpfish. Additionally, ΔcspBΔcspD mutants showed less survival in the presence of bile compared to the wild type. Transcriptome analysis revealed that 200, 37, and 921 genes were differentially expressed in ΔcspB, ΔcspD, and ΔcspBΔcspD, respectively. In ΔcspB and ΔcspBΔcspD virulence genes in the chromosome and virulence plasmid were downregulated. Our analysis indicates that CspB and CspD mostly act as a transcriptional activator, influencing cell division (e.g., treB), virulence factors (e.g., aexT), and ultimately virulence.
Collapse
Affiliation(s)
- Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Manuel Soto-Dávila
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| |
Collapse
|
5
|
Sass TH, Lovett ST. The DNA damage response of Escherichia coli, revisited: Differential gene expression after replication inhibition. Proc Natl Acad Sci U S A 2024; 121:e2407832121. [PMID: 38935560 PMCID: PMC11228462 DOI: 10.1073/pnas.2407832121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
In 1967, in this journal, Evelyn Witkin proposed the existence of a coordinated DNA damage response in Escherichia coli, which later came to be called the "SOS response." We revisited this response using the replication inhibitor azidothymidine (AZT) and RNA-Seq analysis and identified several features. We confirm the induction of classic Save our ship (SOS) loci and identify several genes, including many of the pyrimidine pathway, that have not been previously demonstrated to be DNA damage-inducible. Despite a strong dependence on LexA, these genes lack LexA boxes and their regulation by LexA is likely to be indirect via unknown factors. We show that the transcription factor "stringent starvation protein" SspA is as important as LexA in the regulation of AZT-induced genes and that the genes activated by SspA change dramatically after AZT exposure. Our experiments identify additional LexA-independent DNA damage inducible genes, including 22 small RNA genes, some of which appear to activated by SspA. Motility and chemotaxis genes are strongly down-regulated by AZT, possibly as a result of one of more of the small RNAs or other transcription factors such as AppY and GadE, whose expression is elevated by AZT. Genes controlling the iron siderophore, enterobactin, and iron homeostasis are also strongly induced, independent of LexA. We confirm that IraD antiadaptor protein is induced independent of LexA and that a second antiadaptor, IraM is likewise strongly AZT-inducible, independent of LexA, suggesting that RpoS stabilization via these antiadaptor proteins is an integral part of replication stress tolerance.
Collapse
Affiliation(s)
- Thalia H. Sass
- Department of Biology, Brandeis University, Waltham, MA02454-9110
- Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA02454-9110
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, MA02454-9110
- Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, MA02454-9110
| |
Collapse
|
6
|
Cardoza E, Singh H. From Stress Tolerance to Virulence: Recognizing the Roles of Csps in Pathogenicity and Food Contamination. Pathogens 2024; 13:69. [PMID: 38251376 PMCID: PMC10819108 DOI: 10.3390/pathogens13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Be it for lab studies or real-life situations, bacteria are constantly exposed to a myriad of physical or chemical stresses that selectively allow the tolerant to survive and thrive. In response to environmental fluctuations, the expression of cold shock domain family proteins (Csps) significantly increases to counteract and help cells deal with the harmful effects of stresses. Csps are, therefore, considered stress adaptation proteins. The primary functions of Csps include chaperoning nucleic acids and regulating global gene expression. In this review, we focus on the phenotypic effects of Csps in pathogenic bacteria and explore their involvement in bacterial pathogenesis. Current studies of csp deletions among pathogenic strains indicate their involvement in motility, host invasion and stress tolerance, proliferation, cell adhesion, and biofilm formation. Through their RNA chaperone activity, Csps regulate virulence-associated genes and thereby contribute to bacterial pathogenicity. Additionally, we outline their involvement in food contamination and discuss how foodborne pathogens utilize the stress tolerance roles of Csps against preservation and sanitation strategies. Furthermore, we highlight how Csps positively and negatively impact pathogens and the host. Overall, Csps are involved in regulatory networks that influence the expression of genes central to stress tolerance and virulence.
Collapse
Affiliation(s)
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle West, Mumbai 400056, India
| |
Collapse
|
7
|
Buscaglia M, Iriarte JL, Schulz F, Díez B. Adaptation strategies of giant viruses to low-temperature marine ecosystems. THE ISME JOURNAL 2024; 18:wrae162. [PMID: 39178288 PMCID: PMC11512752 DOI: 10.1093/ismejo/wrae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024]
Abstract
Microbes in marine ecosystems have evolved their gene content to thrive successfully in the cold. Although this process has been reasonably well studied in bacteria and selected eukaryotes, less is known about the impact of cold environments on the genomes of viruses that infect eukaryotes. Here, we analyzed cold adaptations in giant viruses (Nucleocytoviricota and Mirusviricota) from austral marine environments and compared them with their Arctic and temperate counterparts. We recovered giant virus metagenome-assembled genomes (98 Nucleocytoviricota and 12 Mirusviricota MAGs) from 61 newly sequenced metagenomes and metaviromes from sub-Antarctic Patagonian fjords and Antarctic seawater samples. When analyzing our data set alongside Antarctic and Arctic giant viruses MAGs already deposited in the Global Ocean Eukaryotic Viral database, we found that Antarctic and Arctic giant viruses predominantly inhabit sub-10°C environments, featuring a high proportion of unique phylotypes in each ecosystem. In contrast, giant viruses in Patagonian fjords were subject to broader temperature ranges and showed a lower degree of endemicity. However, despite differences in their distribution, giant viruses inhabiting low-temperature marine ecosystems evolved genomic cold-adaptation strategies that led to changes in genetic functions and amino acid frequencies that ultimately affect both gene content and protein structure. Such changes seem to be absent in their mesophilic counterparts. The uniqueness of these cold-adapted marine giant viruses may now be threatened by climate change, leading to a potential reduction in their biodiversity.
Collapse
Affiliation(s)
- Marianne Buscaglia
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| | - José Luis Iriarte
- Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Avda. El Bosque 01789, Punta Arenas 6210445, Chile
- Instituto de Acuicultura y Medio Ambiente, Universidad Austral de Chile, Los Pinos s/n Balneario Pelluco, Puerto Montt 5500000, Chile
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Beatriz Díez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| |
Collapse
|
8
|
Grünberger F, Schmid G, El Ahmad Z, Fenk M, Vogl K, Reichelt R, Hausner W, Urlaub H, Lenz C, Grohmann D. Uncovering the temporal dynamics and regulatory networks of thermal stress response in a hyperthermophile using transcriptomics and proteomics. mBio 2023; 14:e0217423. [PMID: 37843364 PMCID: PMC10746257 DOI: 10.1128/mbio.02174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Extreme environments provide unique challenges for life, and the study of extremophiles can shed light on the mechanisms of adaptation to such conditions. Pyrococcus furiosus, a hyperthermophilic archaeon, is a model organism for studying thermal stress response mechanisms. In this study, we used an integrated analysis of RNA-sequencing and mass spectrometry data to investigate the transcriptomic and proteomic responses of P. furiosus to heat and cold shock stress and recovery. Our results reveal the rapid and dynamic changes in gene and protein expression patterns associated with these stress responses, as well as the coordinated regulation of different gene sets in response to different stressors. These findings provide valuable insights into the molecular adaptations that facilitate life in extreme environments and advance our understanding of stress response mechanisms in hyperthermophilic archaea.
Collapse
Affiliation(s)
- Felix Grünberger
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Georg Schmid
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Zubeir El Ahmad
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Martin Fenk
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Katharina Vogl
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Winfried Hausner
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Van Gundy T, Patel D, Bowler BE, Rothfuss MT, Hall AJ, Davies C, Hall LS, Drecktrah D, Marconi RT, Samuels DS, Lybecker MC. c-di-GMP regulates activity of the PlzA RNA chaperone from the Lyme disease spirochete. Mol Microbiol 2023; 119:711-727. [PMID: 37086029 PMCID: PMC10330241 DOI: 10.1111/mmi.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
PlzA is a c-di-GMP-binding protein crucial for adaptation of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi during its enzootic life cycle. Unliganded apo-PlzA is important for vertebrate infection, while liganded holo-PlzA is important for survival in the tick; however, the biological function of PlzA has remained enigmatic. Here, we report that PlzA has RNA chaperone activity that is inhibited by c-di-GMP binding. Holo- and apo-PlzA bind RNA and accelerate RNA annealing, while only apo-PlzA can strand displace and unwind double-stranded RNA. Guided by the crystal structure of PlzA, we identified several key aromatic amino acids protruding from the N- and C-terminal domains that are required for RNA-binding and unwinding activity. Our findings illuminate c-di-GMP as a switch controlling the RNA chaperone activity of PlzA, and we propose that complex RNA-mediated modulatory mechanisms allow PlzA to regulate gene expression during both the vector and host phases of the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Taylor Van Gundy
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Dhara Patel
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Michael T. Rothfuss
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Allie J. Hall
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, University of Southern Alabama, Mobile, AL 36688, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - D. Scott Samuels
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C. Lybecker
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO 80521, USA
- Department of Biology, University of Colorado, 1420 Austin Bluffs Parkway, Colorado Springs CO 80917, USA
| |
Collapse
|
10
|
Moon S, Ham S, Jeong J, Ku H, Kim H, Lee C. Temperature Matters: Bacterial Response to Temperature Change. J Microbiol 2023; 61:343-357. [PMID: 37010795 DOI: 10.1007/s12275-023-00031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 04/04/2023]
Abstract
Temperature is one of the most important factors in all living organisms for survival. Being a unicellular organism, bacterium requires sensitive sensing and defense mechanisms to tolerate changes in temperature. During a temperature shift, the structure and composition of various cellular molecules including nucleic acids, proteins, and membranes are affected. In addition, numerous genes are induced during heat or cold shocks to overcome the cellular stresses, which are known as heat- and cold-shock proteins. In this review, we describe the cellular phenomena that occur with temperature change and bacterial responses from a molecular perspective, mainly in Escherichia coli.
Collapse
Affiliation(s)
- Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Soojeong Ham
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Juwon Jeong
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Heechan Ku
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
11
|
Sex dependent transcriptome responses of the diamondback moth, Plutella xylostella L. to cold stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101053. [PMID: 36527761 DOI: 10.1016/j.cbd.2022.101053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/04/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Temperature has fundamental influences on the performance and distribution of insects. While considerable attention has been devoted to extreme conditions, particularly extreme cold conditions, few studies have investigated effects of mild cold conditions on insects. We examined the transcriptomic changes in mid-fourth instar larvae of both sexes reared at 10 °C and 25 °C to investigate sex-dependent responses of Plutella xylostella to mild cold stress. There were 624 differentially expressed genes (DEGs) in females, the majority of which (n = 386) were down-regulated. In males 3239 genes were differentially expressed and the majority (n = 2341) were up-regulated. Only 280 DEGs were common to both sexes. In females, there were no DEGs encoding heat shock or cold shock proteins, but six of these DEGs were found in males. These differences suggest that females and males might adopt some different strategies to cope with cold stress and/or that they were affected by rearing under cold conditions to different degrees and in different ways. In addition, DEGs encoding antimicrobial peptides, cytochrome P450 monooxygenases, fatty acid-related enzymes, cuticle proteins, myofilament, and hormone-related proteins were found in both sexes under cold stress. The transcriptome study reveals unexpected sex-dependent thermal responses and provides new information of how an insect that does not diapause copes with low temperatures.
Collapse
|
12
|
Abstract
Microbial communities experience continuous environmental changes, with temperature fluctuations being the most impacting. This is particularly important considering the ongoing global warming but also in the "simpler" context of seasonal variability of sea-surface temperature. Understanding how microorganisms react at the cellular level can improve our understanding of their possible adaptations to a changing environment. In this work, we investigated the mechanisms through which metabolic homeostasis is maintained in a cold-adapted marine bacterium during growth at temperatures that differ widely (15 and 0°C). We have quantified its intracellular and extracellular central metabolomes together with changes occurring at the transcriptomic level in the same growth conditions. This information was then used to contextualize a genome-scale metabolic reconstruction, and to provide a systemic understanding of cellular adaptation to growth at 2 different temperatures. Our findings indicate a strong metabolic robustness at the level of the main central metabolites, counteracted by a relatively deep transcriptomic reprogramming that includes changes in gene expression of hundreds of metabolic genes. We interpret this as a transcriptomic buffering of cellular metabolism, able to produce overlapping metabolic phenotypes, despite the wide temperature gap. Moreover, we show that metabolic adaptation seems to be mostly played at the level of few key intermediates (e.g., phosphoenolpyruvate) and in the cross talk between the main central metabolic pathways. Overall, our findings reveal a complex interplay at gene expression level that contributes to the robustness/resilience of core metabolism, also promoting the leveraging of state-of-the-art multi-disciplinary approaches to fully comprehend molecular adaptations to environmental fluctuations. IMPORTANCE This manuscript addresses a central and broad interest topic in environmental microbiology, i.e. the effect of growth temperature on microbial cell physiology. We investigated if and how metabolic homeostasis is maintained in a cold-adapted bacterium during growth at temperatures that differ widely and that match measured changes on the field. Our integrative approach revealed an extraordinary robustness of the central metabolome to growth temperature. However, this was counteracted by deep changes at the transcriptional level, and especially in the metabolic part of the transcriptome. This conflictual scenario was interpreted as a transcriptomic buffering of cellular metabolism, and was investigated using genome-scale metabolic modeling. Overall, our findings reveal a complex interplay at gene expression level that contributes to the robustness/resilience of core metabolism, also promoting the use of state-of-the-art multi-disciplinary approaches to fully comprehend molecular adaptations to environmental fluctuations.
Collapse
|
13
|
Stress Responses in Pathogenic Vibrios and Their Role in Host and Environmental Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:213-232. [PMID: 36792878 DOI: 10.1007/978-3-031-22997-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio is a genus of bacteria commonly found in estuarine, marine, and freshwater environments. Vibrio species have evolved to occupy diverse niches in the aquatic ecosystem, with some having complex lifestyles. About a dozen of the described Vibrio species have been reported to cause human disease, while many other species cause disease in other organisms. Vibrio cholerae causes epidemic cholera, a severe dehydrating diarrheal disease associated with the consumption of contaminated food or water. The human pathogenic non-cholera Vibrio species, Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Infections caused by V. parahaemolyticus and V. vulnificus are normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. The human pathogenic Vibrios are exposed to numerous different stress-inducing agents and conditions in the aquatic environment and when colonizing a human host. Therefore, they have evolved a variety of mechanisms to survive in the presence of these stressors. Here we discuss what is known about important stress responses in pathogenic Vibrio species and their role in bacterial survival.
Collapse
|
14
|
de Lemos EA, Procópio L, da Mota FF, Jurelevicius D, Rosado AS, Seldin L. Molecular characterization of Paenibacillus antarcticus IPAC21, a bioemulsifier producer isolated from Antarctic soil. Front Microbiol 2023; 14:1142582. [PMID: 37025627 PMCID: PMC10072262 DOI: 10.3389/fmicb.2023.1142582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Paenibacillus antarcticus IPAC21, an endospore-forming and bioemulsifier-producing strain, was isolated from King George Island, Antarctica. As psychrotolerant/psychrophilic bacteria can be considered promising sources for novel products such as bioactive compounds and other industrially relevant substances/compounds, the IPAC21 genome was sequenced using Illumina Hi-seq, and a search for genes related to the production of bioemulsifiers and other metabolic pathways was performed. The IPAC21 strain has a genome of 5,505,124 bp and a G + C content of 40.5%. Genes related to the biosynthesis of exopolysaccharides, such as the gene that encodes the extracellular enzyme levansucrase responsible for the synthesis of levan, the 2,3-butanediol pathway, PTS sugar transporters, cold-shock proteins, and chaperones were found in its genome. IPAC21 cell-free supernatants obtained after cell growth in trypticase soy broth at different temperatures were evaluated for bioemulsifier production by the emulsification index (EI) using hexadecane, kerosene and diesel. EI values higher than 50% were obtained using the three oil derivatives when IPAC21 was grown at 28°C. The bioemulsifier produced by P. antarcticus IPAC21 was stable at different NaCl concentrations, low temperatures and pH values, suggesting its potential use in lower and moderate temperature processes in the petroleum industry.
Collapse
Affiliation(s)
- Ericka Arregue de Lemos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano Procópio
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Diogo Jurelevicius
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Lucy Seldin,
| |
Collapse
|
15
|
Tomlinson BR, Denham GA, Torres NJ, Brzozowski RS, Allen JL, Jackson JK, Eswara PJ, Shaw LN. Assessing the Role of Cold-Shock Protein C: a Novel Regulator of Acinetobacter baumannii Biofilm Formation and Virulence. Infect Immun 2022; 90:e0037622. [PMID: 36121221 PMCID: PMC9584223 DOI: 10.1128/iai.00376-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is a formidable opportunistic pathogen that is notoriously difficult to eradicate from hospital settings. This resilience is often attributed to a proclivity for biofilm formation, which facilitates a higher tolerance toward external stress, desiccation, and antimicrobials. Despite this, little is known regarding the mechanisms orchestrating A. baumannii biofilm formation. Here, we performed RNA sequencing (RNA-seq) on biofilm and planktonic populations for the multidrug-resistant isolate AB5075 and identified 438 genes with altered expression. To assess the potential role of genes upregulated within biofilms, we tested the biofilm-forming capacity of their respective mutants from an A. baumannii transposon library. In so doing, we uncovered 24 genes whose disruption led to reduced biofilm formation. One such element, cold shock protein C (cspC), had a highly mucoid colony phenotype, enhanced tolerance to polysaccharide degradation, altered antibiotic tolerance, and diminished adherence to abiotic surfaces. RNA-seq of the cspC mutant revealed 201 genes with altered expression, including the downregulation of pili and fimbria genes and the upregulation of multidrug efflux pumps. Using transcriptional arrest assays, it appears that CspC mediates its effects, at least in part, through RNA chaperone activity, influencing the half-life of several important transcripts. Finally, we show that CspC is required for survival during challenge by the human immune system and is key for A. baumannii dissemination and/or colonization during systemic infection. Collectively, our work identifies a cadre of new biofilm-associated genes within A. baumannii and provides unique insight into the global regulatory network of this emerging human pathogen.
Collapse
Affiliation(s)
- Brooke R. Tomlinson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Grant A. Denham
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Nathanial J. Torres
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Robert S. Brzozowski
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Jessie L. Allen
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Jessica K. Jackson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Prahathees J. Eswara
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
16
|
Sharma P, Mondal K, Kumar S, Tamang S, Najar IN, Das S, Thakur N. RNA thermometers in bacteria: Role in thermoregulation. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194871. [DOI: 10.1016/j.bbagrm.2022.194871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 04/09/2023]
|
17
|
Grivokostopoulos NC, Makariti IP, Tsadaris S, Skandamis PN. Impact of population density and stress adaptation on the internalization of Salmonella in leafy greens. Food Microbiol 2022; 106:104053. [PMID: 35690446 DOI: 10.1016/j.fm.2022.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Salmonella enterica is capable of entering the interior of leafy greens and establishing in the apoplastic area, a phenomenon known as internalization. The ability of internalized bacteria to evade common disinfection practices poses a well-established risk. Our aim was to study the effect of: i) inoculum size and ii) prior adaptation of Salmonella to sublethal stresses, on the internalization of the pathogen in four leafy vegetables. Spinach, lettuce, arugula and chicory were inoculated, by immersion for 2 min at room temperature with: i) Salmonella Enteritidis at 3.0, 4.0, 5.0, 6.0, 7.0 log CFU/mL and ii) non-adapted or adapted S. Enteritidis to acid (in TSB with 1% glucose, incubated for 24 h at 37 °C), cold (in TSB for 7 days at 4 °C), starvation (0.85% NaCl of pH 6.6, 48 h at 37 °C) or desiccation (1.5 h at 42 °C, 4 days at 21 °C) stress at appx 3.5 log CFU/mL). Inoculated leafy greens were subsequently stored at 5 °C and 20 °C for 2 h and 48 h (n = 2 × 2). Population of internalized Salmonella, after surface decontamination with 1% w/v AgNO3, was assessed on selective media. Even the lowest initial bacterial inoculum was adequate for internalization of Salmonella to occur in leafy vegetables. Non-adapted Salmonella inoculum of 7.0 (maximum) and 3.0 log CFU/mL (lowest inoculation level tested) after short storage (2 h) resulted in 3.7-4.3 and 1.3-1.5 log CFU/g internalized bacterial population, respectively. Colonization (including both attachment and internalization processes), as well as internalization process, were positively correlated to initial inoculum level. These processes reached a different plateau beyond which, no further increase in internalization was observed. Adaptation of the pathogen to mild stresses enhanced internalization (P < 0.05), with desiccation- and acid-adapted Salmonella demonstrating the highest internalization capacity, regardless of the vegetable and storage temperature. These findings could contribute to further elucidation of colonization capacity of Salmonella in leafy vegetables and assist in selecting the proper conditions that contribute to the prevention of fresh produce contamination with Salmonella.
Collapse
Affiliation(s)
- N C Grivokostopoulos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - I P Makariti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - S Tsadaris
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - P N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece.
| |
Collapse
|
18
|
Thomas SE, Balcerowicz M, Chung BYW. RNA structure mediated thermoregulation: What can we learn from plants? FRONTIERS IN PLANT SCIENCE 2022; 13:938570. [PMID: 36092413 PMCID: PMC9450479 DOI: 10.3389/fpls.2022.938570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
RNA molecules have the capacity to form a multitude of distinct secondary and tertiary structures, but only the most energetically favorable conformations are adopted at any given time. Formation of such structures strongly depends on the environment and consequently, these structures are highly dynamic and may refold as their surroundings change. Temperature is one of the most direct physical parameters that influence RNA structure dynamics, and in turn, thermosensitive RNA structures can be harnessed by a cell to perceive and respond to its temperature environment. Indeed, many thermosensitive RNA structures with biological function have been identified in prokaryotic organisms, but for a long time such structures remained elusive in eukaryotes. Recent discoveries, however, reveal that thermosensitive RNA structures are also found in plants, where they affect RNA stability, pre-mRNA splicing and translation efficiency in a temperature-dependent manner. In this minireview, we provide a short overview of thermosensitive RNA structures in prokaryotes and eukaryotes, highlight recent advances made in identifying such structures in plants and discuss their similarities and differences to established prokaryotic RNA thermosensors.
Collapse
Affiliation(s)
- Sherine E. Thomas
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Martin Balcerowicz
- Division of Plant Sciences, The James Hutton Institute, University of Dundee, Dundee, United Kingdom
| | - Betty Y.-W. Chung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Acetylation of CspC Controls the Las Quorum-Sensing System through Translational Regulation of rsaL in Pseudomonas aeruginosa. mBio 2022; 13:e0054722. [PMID: 35467416 PMCID: PMC9239060 DOI: 10.1128/mbio.00547-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous pathogenic bacterium that can adapt to a variety environments. The ability to effectively sense and respond to host local nutrients is critical for the infection of P. aeruginosa. However, the mechanisms employed by the bacterium to respond to nutrients remain to be explored. CspA family proteins are RNA binding proteins that are involved in gene regulation. We previously demonstrated that the P. aeruginosa CspA family protein CspC regulates the type III secretion system in response to temperature shift. In this study, we found that CspC regulates the quorum-sensing (QS) systems by repressing the translation of a QS negative regulatory gene, rsaL. Through RNA immunoprecipitation coupled with real-time quantitative reverse transcription-PCR (RIP-qRT-PCR) and electrophoretic mobility shift assays (EMSAs), we found that CspC binds to the 5′ untranslated region of the rsaL mRNA. Unlike glucose, itaconate (a metabolite generated by macrophages during infection) reduces the acetylation of CspC, which increases the affinity between CspC and the rsaL mRNA, leading to upregulation of the QS systems. Our results revealed a novel regulatory mechanism of the QS systems in response to a host-generated metabolite.
Collapse
|
20
|
Abstract
RNase J exerts both 5'-3' exoribonuclease and endoribonuclease activities and plays a major role in ribonucleotide metabolism in various bacteria; however, its gene regulation is not well understood. In this study, we investigated the regulation of rnj expression in Corynebacterium glutamicum. rnj mRNA expression was increased in a strain with an rnj mutation. Deletion of the genes encoding RNase E/G also resulted in increased rnj mRNA levels, although the effect was smaller than that of the rnj mutation. rnj mRNA was more stable in the rnj mutant strain than in wild-type cells. These results indicate that RNase J regulates its own gene by degrading its mRNA. The growth of rnj and pnp mutant cells was impaired at cold temperatures. The expression of rnj mRNA was transiently induced by cold shock; however, this induction was not observed in the rnj mutant strain, suggesting that autoregulation by self-degradation is responsible for inducing of rnj expression under cold-shock conditions. IMPORTANCE Corynebacterium glutamicum harbors one RNase E/G-type enzyme and one RNase J-type enzyme which are major ribonucleases in various bacteria. However, little is known about these gene regulations. Here, we show that RNase J autoregulates its own gene expression and RNase E/G is also involved in the rnj mRNA degradation. Furthermore, we show that transient induction of the rnj mRNA in the cold-shock condition is dependent on RNase J autoregulation. This study sheds light on the regulatory mechanism of RNase J in C. glutamicum.
Collapse
|
21
|
Muchaamba F, Wambui J, Stephan R, Tasara T. Cold Shock Proteins Promote Nisin Tolerance in Listeria monocytogenes Through Modulation of Cell Envelope Modification Responses. Front Microbiol 2022; 12:811939. [PMID: 35003042 PMCID: PMC8740179 DOI: 10.3389/fmicb.2021.811939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes continues to be a food safety challenge owing to its stress tolerance and virulence traits. Several listeriosis outbreaks have been linked to the consumption of contaminated ready-to-eat food products. Numerous interventions, including nisin application, are presently employed to mitigate against L. monocytogenes risk in food products. In response, L. monocytogenes deploys several defense mechanisms, reducing nisin efficacy, that are not yet fully understood. Cold shock proteins (Csps) are small, highly conserved nucleic acid-binding proteins involved in several gene regulatory processes to mediate various stress responses in bacteria. L. monocytogenes possesses three csp gene paralogs; cspA, cspB, and cspD. Using a panel of single, double, and triple csp gene deletion mutants, the role of Csps in L. monocytogenes nisin tolerance was examined, demonstrating their importance in nisin stress responses of this bacterium. Without csp genes, a L. monocytogenes ΔcspABD mutant displayed severely compromised growth under nisin stress. Characterizing single (ΔcspA, ΔcspB, and ΔcspD) and double (ΔcspBD, ΔcspAD, and ΔcspAB) csp gene deletion mutants revealed a hierarchy (cspD > cspB > cspA) of importance in csp gene contributions toward the L. monocytogenes nisin tolerance phenotype. Individual eliminations of either cspA or cspB improved the nisin stress tolerance phenotype, suggesting that their expression has a curbing effect on the expression of nisin resistance functions through CspD. Gene expression analysis revealed that Csp deficiency altered the expression of DltA, MprF, and penicillin-binding protein-encoding genes. Furthermore, the ΔcspABD mutation induced an overall more electronegative cell surface, enhancing sensitivity to nisin and other cationic antimicrobials as well as the quaternary ammonium compound disinfectant benzalkonium chloride. These observations demonstrate that the molecular functions of Csps regulate systems important for enabling the constitution and maintenance of an optimal composed cell envelope that protects against cell-envelope-targeting stressors, including nisin. Overall, our data show an important contribution of Csps for L. monocytogenes stress protection in food environments where antimicrobial peptides are used. Such knowledge can be harnessed in the development of better L. monocytogenes control strategies. Furthermore, the potential that Csps have in inducing cross-protection must be considered when combining hurdle techniques or using them in a series.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| | - Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zurich, Switzerland
| |
Collapse
|
22
|
Evdokimova V. Y-box Binding Protein 1: Looking Back to the Future. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S5-S145. [PMID: 35501983 DOI: 10.1134/s0006297922140024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding protein 1 is a member of the cold shock domain (CSD) protein family and one of the most studied proteins associated with a large number of human diseases. This review aims to critically reassess the growing number of pathological functions ascribed to YB-1 in the past decades. The focus is given on the important role of YB-1 and related CSD proteins in the physiology of normal cells. The functional significance of these proteins is highlighted by their high evolutionary conservation from bacteria to men, where they are ubiquitously expressed and involved in coordinating all steps of mRNA biogenesis, including transcription, translation, storage, and degradation. Their activities are especially important under conditions requiring rapid change in the gene expression programs, such as early embryonic development, differentiation, stress, and adaptation to new environments. Therefore, to define a precise role of YB-1 in tumorigenic transformation and in other pathological conditions, it is important to understand its basic properties and functions in normal cells, and how they are interrupted in complex diseases including cancer.
Collapse
|
23
|
Halder S, Bansal M. The effect of mutation in the stem of the MicroROSE thermometer on its thermosensing ability: insights from molecular dynamics simulation studies. RSC Adv 2022; 12:11853-11865. [PMID: 35481095 PMCID: PMC9016746 DOI: 10.1039/d2ra00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/05/2022] [Indexed: 01/17/2023] Open
Abstract
Mutation induced thermosensing ability of MicroROSE thermometer.
Collapse
Affiliation(s)
- Swagata Halder
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
24
|
Kim SY, Kim JS, Cho W, Jun KM, Du X, Kim KD, Kim YK, Lee GS. A Cold-Shock Protein from the South Pole-Dwelling Soil Bacterium Arthrobacter sp. Confers Cold Tolerance to Rice. Genes (Basel) 2021; 12:genes12101589. [PMID: 34680989 PMCID: PMC8535255 DOI: 10.3390/genes12101589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Low temperature is a critical environmental factor restricting the physiology of organisms across kingdoms. In prokaryotes, cold shock induces the expression of various genes and proteins involved in cellular processes. Here, a cold-shock protein (ArCspA) from the South Pole-dwelling soil bacterium Arthrobacter sp. A2-5 was introduced into rice, a monocot model plant species. Four-week-old 35S:ArCspA transgenic rice plants grown in a cold chamber at 4 °C survived for 6 days. Cold stress significantly decreased the chlorophyll content in WT plants after 4 days compared with that in 35S:ArCspA transgenic plants. RNA-seq analysis was performed on WT and 35S:ArCspA transgenic rice with/without cold stress. GO terms such as “response to stress (GO:0006950)”, “response to cold (GO:0009409)”, and “response to heat (GO:0009408)” were significantly enriched among the upregulated genes in the 35S:ArCspA transgenic rice under normal conditions, even without cold-stress treatment. The expression of five cold stress-related genes, Rab16B (Os11g0454200), Rab21 (Os11g0454300), LEA22 (Os01g0702500), ABI5 (Os01 g0859300), and MAPK5 (Os03g0285800), was significantly upregulated in the transgenic rice compared with the WT rice. These results indicate that the ArCspA gene might be involved in the induction of cold-responsive genes and provide cold tolerance.
Collapse
Affiliation(s)
- So Young Kim
- Biosafety Division, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.Y.K.); (W.C.); (X.D.)
| | - Joung Sug Kim
- Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17060, Korea; (J.S.K.); (K.D.K.)
| | - Woosuk Cho
- Biosafety Division, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.Y.K.); (W.C.); (X.D.)
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene BioTech, Inc., 16-4 Dongbaek jungang-ro 16beon-gil, Giheung-gu, Yongin 17015, Korea;
| | - Xiaoxuan Du
- Biosafety Division, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.Y.K.); (W.C.); (X.D.)
| | - Kyung Do Kim
- Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17060, Korea; (J.S.K.); (K.D.K.)
| | - Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17060, Korea; (J.S.K.); (K.D.K.)
- Correspondence: (Y.-K.K.); (G.-S.L.)
| | - Gang-Seob Lee
- Biosafety Division, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (S.Y.K.); (W.C.); (X.D.)
- Correspondence: (Y.-K.K.); (G.-S.L.)
| |
Collapse
|
25
|
de Araújo HL, Martins BP, Vicente AM, Lorenzetti APR, Koide T, Marques MV. Cold Regulation of Genes Encoding Ion Transport Systems in the Oligotrophic Bacterium Caulobacter crescentus. Microbiol Spectr 2021; 9:e0071021. [PMID: 34479415 PMCID: PMC8552747 DOI: 10.1128/spectrum.00710-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we characterize the response of the free-living oligotrophic alphaproteobacterium Caulobacter crescentus to low temperatures by global transcriptomic analysis. Our results showed that 656 genes were upregulated and 619 were downregulated at least 2-fold after a temperature downshift. The identified differentially expressed genes (DEG) belong to several functional categories, notably inorganic ion transport and metabolism, and a subset of these genes had their expression confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). Several genes belonging to the ferric uptake regulator (Fur) regulon were downregulated, indicating that iron homeostasis is relevant for adaptation to cold. Several upregulated genes encode proteins that interact with nucleic acids, particularly RNA: cspA, cspB, and the DEAD box RNA helicases rhlE, dbpA, and rhlB. Moreover, 31 small regulatory RNAs (sRNAs), including the cell cycle-regulated noncoding RNA (ncRNA) CcnA, were upregulated, indicating that posttranscriptional regulation is important for the cold stress response. Interestingly, several genes related to transport were upregulated under cold stress, including three AcrB-like cation/multidrug efflux pumps, the nitrate/nitrite transport system, and the potassium transport genes kdpFABC. Further characterization showed that kdpA is upregulated in a potassium-limited medium and at a low temperature in a SigT-independent way. kdpA mRNA is less stable in rho and rhlE mutant strains, but while the expression is positively regulated by RhlE, it is negatively regulated by Rho. A kdpA-deleted strain was generated, and its viability in response to osmotic, acidic, or cold stresses was determined. The implications of such variation in the gene expression for cold adaptation are discussed. IMPORTANCE Low-temperature stress is an important factor for nucleic acid stability and must be circumvented in order to maintain the basic cell processes, such as transcription and translation. The oligotrophic lifestyle presents further challenges to ensure the proper nutrient uptake and osmotic balance in an environment of slow nutrient flow. Here, we show that in Caulobacter crescentus, the expression of the genes involved in cation transport and homeostasis is altered in response to cold, which could lead to a decrease in iron uptake and an increase in nitrogen and high-affinity potassium transport by the Kdp system. This previously uncharacterized regulation of the Kdp transporter has revealed a new mechanism for adaptation to low temperatures that may be relevant for oligotrophic bacteria.
Collapse
Affiliation(s)
- Hugo L. de Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Bianca P. Martins
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre M. Vicente
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alan P. R. Lorenzetti
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marilis V. Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Prezza G, Ryan D, Mädler G, Reichardt S, Barquist L, Westermann AJ. Comparative genomics provides structural and functional insights into Bacteroides RNA biology. Mol Microbiol 2021; 117:67-85. [PMID: 34379855 DOI: 10.1111/mmi.14793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Bacteria employ noncoding RNA molecules for a wide range of biological processes, including scaffolding large molecular complexes, catalyzing chemical reactions, defending against phages, and controlling gene expression. Secondary structures, binding partners, and molecular mechanisms have been determined for numerous small noncoding RNAs (sRNAs) in model aerobic bacteria. However, technical hurdles have largely prevented analogous analyses in the anaerobic gut microbiota. While experimental techniques are being developed to investigate the sRNAs of gut commensals, computational tools and comparative genomics can provide immediate functional insight. Here, using Bacteroides thetaiotaomicron as a representative microbiota member, we illustrate how comparative genomics improves our understanding of the RNA biology in an understudied gut bacterium. We investigate putative RNA-binding proteins and predict a Bacteroides cold-shock protein homologue to have an RNA-related function. We apply an in-silico protocol incorporating both sequence and structural analysis to determine the consensus structures and conservation of nine Bacteroides noncoding RNA families. Using structure probing, we validate and refine these predictions, and deposit them in the Rfam database. Through synteny analyses, we illustrate how genomic co-conservation can serve as a predictor of sRNA function. Altogether, this work showcases the power of RNA informatics for investigating the RNA biology of anaerobic microbiota members.
Collapse
Affiliation(s)
- Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Daniel Ryan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Gohar Mädler
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Li S, Weng Y, Li X, Yue Z, Chai Z, Zhang X, Gong X, Pan X, Jin Y, Bai F, Cheng Z, Wu W. Acetylation of the CspA family protein CspC controls the type III secretion system through translational regulation of exsA in Pseudomonas aeruginosa. Nucleic Acids Res 2021; 49:6756-6770. [PMID: 34139014 PMCID: PMC8266623 DOI: 10.1093/nar/gkab506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
The ability to fine tune global gene expression in response to host environment is critical for the virulence of pathogenic bacteria. The host temperature is exploited by the bacteria as a cue for triggering virulence gene expression. However, little is known about the mechanism employed by Pseudomonas aeruginosa to response to host body temperature. CspA family proteins are RNA chaperones that modulate gene expression. Here we explored the functions of P. aeruginosa CspA family proteins and found that CspC (PA0456) controls the bacterial virulence. Combining transcriptomic analyses, RNA-immunoprecipitation and high-throughput sequencing (RIP-Seq), we demonstrated that CspC represses the type III secretion system (T3SS) by binding to the 5' untranslated region of the mRNA of exsA, which encodes the T3SS master regulatory protein. We further demonstrated that acetylation at K41 of the CspC reduces its affinity to nucleic acids. Shifting the culture temperature from 25°C to 37°C or infection of mouse lung increased the CspC acetylation, which derepressed the expression of the T3SS genes, resulting in elevated virulence. Overall, our results identified the regulatory targets of CspC and revealed a regulatory mechanism of the T3SS in response to temperature shift and host in vivo environment.
Collapse
Affiliation(s)
- Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuding Weng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoxiao Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhouyi Chai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xuetao Gong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Li H, Yang R, Hao L, Wang C, Li M. CspB and CspC are induced upon cold shock in Bacillus cereus strain D2. Can J Microbiol 2021; 67:703-712. [PMID: 34058099 DOI: 10.1139/cjm-2021-0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus cereus D2, a psychrotrophic strain, plays an essential role in the restoration of heavy metal-contaminated soils, especially at low temperatures. However, the cold shock response mechanisms of this strain are unclear. In this study, the cold shock response of B. cereus D2 was characterized; as per the Arrhenius curve, 10 °C was chosen as the cold shock temperature. Six cold shock-like proteins were found and temporarily named cold shock protein (Csp)1-6; the respective genes were cloned and identified. Quantitative real-time PCR results showed that csp1, csp2, csp3, and csp6 were overexpressed under cold shock conditions. Interestingly, after cloning the respective encoding genes into pET-28a (+) vector and their subsequent transformation into E. coli BL21 (DE3), the strains expressing Csp2 and Csp6 grew faster at 10 °C, showing a large number of bacteria. These results suggest that Csp2 and Csp6 are the major cold shock proteins in B. cereus D2. Of note, the comparison of amino acid sequences and structures showed that Csp2 and Csp6 belong to the CspB and CspC families, respectively. Additionally, we show that the number of hydrophobic residues is not a determining feature of major Csps, while, on the other hand, the formation of an α-helix in the context of a leucine residue is the most dominant difference between major, and other Bacillus and E. coli Csps.
Collapse
Affiliation(s)
- Haoyang Li
- Jilin Agricultural University, 85112, Changchun, China;
| | - Rui Yang
- Jilin University, 12510, Changchun, China;
| | - Linlin Hao
- Jilin University, 12510, Changchun, China;
| | | | - Mingtang Li
- Jilin Agricultural University, 85112, Changchun, China, 130018;
| |
Collapse
|
29
|
Listeria monocytogenes Cold Shock Proteins: Small Proteins with A Huge Impact. Microorganisms 2021; 9:microorganisms9051061. [PMID: 34068949 PMCID: PMC8155936 DOI: 10.3390/microorganisms9051061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes has evolved an extensive array of mechanisms for coping with stress and adapting to changing environmental conditions, ensuring its virulence phenotype expression. For this reason, L. monocytogenes has been identified as a significant food safety and public health concern. Among these adaptation systems are cold shock proteins (Csps), which facilitate rapid response to stress exposure. L. monocytogenes has three highly conserved csp genes, namely, cspA, cspB, and cspD. Using a series of csp deletion mutants, it has been shown that L. monocytogenes Csps are important for biofilm formation, motility, cold, osmotic, desiccation, and oxidative stress tolerance. Moreover, they are involved in overall virulence by impacting the expression of virulence-associated phenotypes, such as hemolysis and cell invasion. It is postulated that during stress exposure, Csps function to counteract harmful effects of stress, thereby preserving cell functions, such as DNA replication, transcription and translation, ensuring survival and growth of the cell. Interestingly, it seems that Csps might suppress tolerance to some stresses as their removal resulted in increased tolerance to stresses, such as desiccation for some strains. Differences in csp roles among strains from different genetic backgrounds are apparent for desiccation tolerance and biofilm production. Additionally, hierarchical trends for the different Csps and functional redundancies were observed on their influences on stress tolerance and virulence. Overall current data suggest that Csps have a wider role in bacteria physiology than previously assumed.
Collapse
|
30
|
Molecular and Physiological Adaptations to Low Temperature in Thioalkalivibrio Strains Isolated from Soda Lakes with Different Temperature Regimes. mSystems 2021; 6:6/2/e01202-20. [PMID: 33906913 PMCID: PMC8092127 DOI: 10.1128/msystems.01202-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Thioalkalivibrio comprises sulfur-oxidizing bacteria thriving in soda lakes at high pH and salinity. Depending on the geographical location and the season, these lakes can strongly vary in temperature. To obtain a comprehensive understanding of the molecular and physiological adaptations to low temperature, we compared the responses of two Thioalkalivibrio strains to low (10°C) and high (30°C) temperatures. For this, the strains were grown under controlled conditions in chemostats and analyzed for their gene expression (RNA sequencing [RNA-Seq]), membrane lipid composition, and glycine betaine content. The strain Thioalkalivibrio versutus AL2T originated from a soda lake in southeast Siberia that is exposed to strong seasonal temperature differences, including freezing winters, whereas Thioalkalivibrio nitratis ALJ2 was isolated from an East African Rift Valley soda lake with a constant warm temperature the year round. The strain AL2T grew faster than ALJ2 at 10°C, likely due to its 3-fold-higher concentration of the osmolyte glycine betaine. Moreover, significant changes in the membrane lipid composition were observed for both strains, leading to an increase in their unsaturated fatty acid content via the Fab pathway to avoid membrane stiffness. Genes for the transcriptional and translational machinery, as well as for counteracting cold-induced hampering of nucleotides and proteins, were upregulated. Oxidative stress was reduced by induction of vitamin B12 biosynthesis genes, and growth at 10°C provoked downregulation of genes involved in the second half of the sulfur oxidation pathway. Genes for intracellular signal transduction were differentially expressed, and interestingly, AL2T upregulated flagellin expression, whereas ALJ2 downregulated it. IMPORTANCE In addition to their haloalkaline conditions, soda lakes can also harbor a variety of other extreme parameters, to which their microbial communities need to adapt. However, for most of these supplementary stressors, it is not well known yet how haloalkaliphiles adapt and resist. Here, we studied the strategy for adaptation to low temperature in the haloalkaliphilic genus Thioalkalivibrio by using two strains isolated from soda lakes with different temperature regimes. Even though the strains showed a strong difference in growth rate at 10°C, they exhibited similar molecular and physiological adaptation responses. We hypothesize that they take advantage of resistance mechanisms against other stressors commonly found in soda lakes, which are therefore maintained in the bacteria living in the absence of low-temperature pressure. A major difference, however, was detected for their glycine betaine content at 10°C, highlighting the power of this osmolyte to also act as a key compound in cryoprotection. Author Video: An author video summary of this article is available.
Collapse
|
31
|
Ray S, Da Costa R, Thakur S, Nandi D. Salmonella Typhimurium encoded cold shock protein E is essential for motility and biofilm formation. MICROBIOLOGY-SGM 2021; 166:460-473. [PMID: 32159509 DOI: 10.1099/mic.0.000900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability of bacteria to form biofilms increases their survival under adverse environmental conditions. Biofilms have enormous medical and environmental impact; consequently, the factors that influence biofilm formation are an important area of study. In this investigation, the roles of two cold shock proteins (CSP) during biofilm formation were investigated in Salmonella Typhimurium, which is a major foodborne pathogen. Among all CSP transcripts studied, the expression of cspE (STM14_0732) was higher during biofilm growth. The cspE deletion strain (ΔcspE) did not form biofilms on a cholesterol coated glass surface; however, complementation with WT cspE, but not the F30V mutant, was able to rescue this phenotype. Transcript levels of other CSPs demonstrated up-regulation of cspA (STM14_4399) in ΔcspE. The cspA deletion strain (ΔcspA) did not affect biofilm formation; however, ΔcspEΔcspA exhibited higher biofilm formation compared to ΔcspE. Most likely, the higher cspA amounts in ΔcspE reduced biofilm formation, which was corroborated using cspA over-expression studies. Further functional studies revealed that ΔcspE and ΔcspEΔcspA exhibited slow swimming but no swarming motility. Although cspA over-expression did not affect motility, cspE complementation restored the swarming motility of ΔcspE. The transcript levels of the major genes involved in motility in ΔcspE demonstrated lower expression of the class III (fliC, motA, cheY), but not class I (flhD) or class II (fliA, fliL), flagellar regulon genes. Overall, this study has identified the interplay of two CSPs in regulating two biological processes: CspE is essential for motility in a CspA-independent manner whereas biofilm formation is CspA-dependent.
Collapse
Affiliation(s)
- Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rochelle Da Costa
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Samriddhi Thakur
- Department of Undergraduate Studies, Indian Insitute of Science, Bangalore-560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
32
|
Komachi T, Maruyama A, Shimada N. Evaluation of Cooling-Induced Liquid-Liquid Phase Separation of Ureido Polymers as a Cold-Shock Stress Granules Model. Macromol Biosci 2021; 21:e2000345. [PMID: 33448121 DOI: 10.1002/mabi.202000345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Indexed: 12/31/2022]
Abstract
Many intracellular reactions occur in membrane-less organelles that form due to liquid-liquid phase separation (LLPS). Cold-shock stress granules, which are membrane-less organelles, are formed in response to a significant decrease in temperature and recruit biomolecules for regulation of their activities. The authors have reported that synthetic ureido copolymers exhibit cooling-induced LLPS under physiologically relevant conditions. In this study, influences of the cooling-induced LLPS of ureido polymers on enzymatic activity is investigated to evaluate whether the ureido polymers can mimic cold-shock stress granules. The enzyme β-galactosidase (β-Gal) is efficiently entrapped into phase-separated coacervates of ureido polymers upon cooling. The activity of β-Gal is significantly suppressed by the entrapment. The enzymatic activity is recovered after heating, which dissolves the coacervate. Thus, the LLPS formed by ureido polymers are a suitable model for cold-shock stress granules.
Collapse
Affiliation(s)
- Takuya Komachi
- Tokyo Institute of Technology, 4259 B-57, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Atsushi Maruyama
- Tokyo Institute of Technology, 4259 B-57, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Naohiko Shimada
- Tokyo Institute of Technology, 4259 B-57, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
33
|
Modulation of the RNA polymerase activity by AtcB, a protein associated with a DnaK chaperone network in Shewanella oneidensis. Biochem Biophys Res Commun 2020; 535:66-72. [PMID: 33341675 DOI: 10.1016/j.bbrc.2020.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022]
Abstract
Bacteria possess several molecular pathways to adapt to changing environments and to stress conditions. One of these pathways involves a complex network of chaperone proteins that together control proteostasis. In the aquatic bacterium Shewanella oneidensis, we have recently identified a previously unknown co-chaperone of the DnaK/Hsp70 chaperone system, AtcJ, that is essential for adaptation to low temperatures. AtcJ is encoded in the atcJABC operon, whose products, together with DnaK, form a protein network allowing growth at low temperature. However, how these proteins allow cold adaptation is unknown. Here, we found that AtcB directly interacts with the RNA polymerase and decreases its activity. In addition, AtcB overproduction prevents bacterial growth due to RNA polymerase inhibition. Together, these results suggest that the Atc proteins could direct the DnaK chaperone to the RNA polymerase to sustain life at low temperatures.
Collapse
|
34
|
Bacillus cereus Decreases NHE and CLO Exotoxin Synthesis to Maintain Appropriate Proteome Dynamics During Growth at Low Temperature. Toxins (Basel) 2020; 12:toxins12100645. [PMID: 33036317 PMCID: PMC7601483 DOI: 10.3390/toxins12100645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/02/2022] Open
Abstract
Cellular proteomes and exoproteomes are dynamic, allowing pathogens to respond to environmental conditions to sustain growth and virulence. Bacillus cereus is an important food-borne pathogen causing intoxication via emetic toxin and/or multiple protein exotoxins. Here, we compared the dynamics of the cellular proteome and exoproteome of emetic B. cereus cells grown at low (16 °C) and high (30 °C) temperature. Tandem mass spectrometry (MS/MS)-based shotgun proteomics analysis identified 2063 cellular proteins and 900 extracellular proteins. Hierarchical clustering following principal component analysis indicated that in B. cereus the abundance of a subset of these proteins—including cold-stress responders, and exotoxins non-hemolytic enterotoxin (NHE) and hemolysin I (cereolysin O (CLO))—decreased at low temperature, and that this subset governs the dynamics of the cellular proteome. NHE, and to a lesser extent CLO, also contributed significantly to exoproteome dynamics; with decreased abundances in the low-temperature exoproteome, especially in late growth stages. Our data therefore indicate that B. cereus may reduce its production of secreted protein toxins to maintain appropriate proteome dynamics, perhaps using catabolite repression to conserve energy for growth in cold-stress conditions, at the expense of virulence.
Collapse
|
35
|
Ermilova E. Cold Stress Response: An Overview in Chlamydomonas. FRONTIERS IN PLANT SCIENCE 2020; 11:569437. [PMID: 33013991 PMCID: PMC7494811 DOI: 10.3389/fpls.2020.569437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/18/2020] [Indexed: 06/01/2023]
Abstract
Low temperature (or cold) is one of the major environmental factors that limit the growth and development of many plants. Various plant species have evolved complex mechanisms to adjust to decreased temperature. Mesophilic chlorophytes are a widely distributed group of eukaryotic photosynthetic organisms, but there is insufficient information about the key molecular processes of their cold acclimation. The best available model for studying how chlorophytes respond to and cope with variations in temperature is the unicellular green alga Chlamydomonas reinhardtii. Chlamydomonas has been widely used for decades as a model system for studying the fundamental mechanisms of the plant heat stress response. At present, unraveling novel cold-regulated events in Chlamydomonas has attracted increasing research attention. This mini-review summarizes recent progress on low-temperature-dependent processes in the model alga, while information on other photosynthetic organisms (cyanobacteria and land plants) was used to strengthen generalizations or specializations of cold-induced mechanisms in plant evolution. Here, we describe recent advances in our understanding of cold stress response in Chlamydomonas, discuss areas of controversy, and highlight potential future directions in cold acclimation research.
Collapse
|
36
|
S1 Domain RNA-Binding Protein CvfD Is a New Posttranscriptional Regulator That Mediates Cold Sensitivity, Phosphate Transport, and Virulence in Streptococcus pneumoniae D39. J Bacteriol 2020; 202:JB.00245-20. [PMID: 32601068 DOI: 10.1128/jb.00245-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Posttranscriptional gene regulation often involves RNA-binding proteins that modulate mRNA translation and/or stability either directly through protein-RNA interactions or indirectly by facilitating the annealing of small regulatory RNAs (sRNAs). The human pathogen Streptococcus pneumoniae D39 (pneumococcus) does not encode homologs to RNA-binding proteins known to be involved in promoting sRNA stability and function, such as Hfq or ProQ, even though it contains genes for at least 112 sRNAs. However, the pneumococcal genome contains genes for other RNA-binding proteins, including at least six S1 domain proteins: ribosomal protein S1 (rpsA), polynucleotide phosphorylase (pnpA), RNase R (rnr), and three proteins with unknown functions. Here, we characterize the function of one of these conserved, yet uncharacterized, S1 domain proteins, SPD_1366, which we have renamed CvfD (conserved virulence factor D), since loss of the protein results in attenuation of virulence in a murine pneumonia model. We report that deletion of cvfD impacts the expression of 144 transcripts, including the pst1 operon, encoding phosphate transport system 1 in S. pneumoniae We further show that CvfD posttranscriptionally regulates the PhoU2 master regulator of the pneumococcal dual-phosphate transport system by binding phoU2 mRNA and impacting PhoU2 translation. CvfD not only controls expression of phosphate transporter genes but also functions as a pleiotropic regulator that impacts cold sensitivity and the expression of sRNAs and genes involved in diverse cellular functions, including manganese uptake and zinc efflux. Together, our data show that CvfD exerts a broad impact on pneumococcal physiology and virulence, partly by posttranscriptional gene regulation.IMPORTANCE Recent advances have led to the identification of numerous sRNAs in the major human respiratory pathogen S. pneumoniae However, little is known about the functions of most sRNAs or RNA-binding proteins involved in RNA biology in pneumococcus. In this paper, we characterize the phenotypes and one target of the S1 domain RNA-binding protein CvfD, a homolog of general stress protein 13 identified, but not extensively characterized, in other Firmicutes species. Pneumococcal CvfD is a broadly pleiotropic regulator, whose absence results in misregulation of divalent cation homeostasis, reduced translation of the PhoU2 master regulator of phosphate uptake, altered metabolism and sRNA amounts, cold sensitivity, and attenuation of virulence. These findings underscore the critical roles of RNA biology in pneumococcal physiology and virulence.
Collapse
|
37
|
Zhang X, Su Y, Alter T, Gölz G. The transcriptional response of Arcobacter butzleri to cold shock. FEBS Open Bio 2020; 10:2089-2096. [PMID: 32810909 PMCID: PMC7530382 DOI: 10.1002/2211-5463.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 11/11/2022] Open
Abstract
Arcobacter (A.) butzleri is an emerging zoonotic pathogen associated with gastrointestinal diseases, such as abdominal cramps and diarrhea, and is widely detected in animals, showing a high prevalence in poultry and seafood. The survival and adaptation of A. butzleri to cold temperatures remains poorly studied, although it might be of interest for food safety considerations. To address this, growth patterns of eight A. butzleri isolates were determined at 8 °C for 28 days. A. butzleri isolates showed strain‐dependent behavior: six isolates were unculturable after day 18, one exhibited declining but detectable cell counts until day 28 and one grew to the stationary phase level. Out of 13 A. butzleri cold shock‐related genes homologous to Escherichia coli, 10 were up‐regulated in response to a temperature downshift to 8 °C, as demonstrated by reverse transcription‐quantitative PCR. Additionally, we compared these data with the cold‐shock response in E. coli. Overall, we provide a deeper insight into the environmental adaptation capacities of A. butzleri, which we find shares similarities with the E. coli cold‐shock response.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Yulan Su
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
38
|
Carleton NM, Zhu G, Miller MC, Davis C, Kulkarni P, Veltri RW. Characterization of RNA-Binding Motif 3 (RBM3) Protein Levels and Nuclear Architecture Changes in Aggressive and Recurrent Prostate Cancer. Cancer Rep (Hoboken) 2020; 3:e1237. [PMID: 32587951 PMCID: PMC7316183 DOI: 10.1002/cnr2.1237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/04/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background The RNA-binding motif protein 3 (RBM3) has been shown to be up-regulated in several types of cancer, including prostate cancer (PCa), compared to normal tissues. Increased RBM3 nuclear expression has been linked to improved clinical outcomes. Aims Given that RBM3 has been hypothesized to play a role in critical nuclear functions such as chromatin remodeling, DNA damage response, and other post-transcriptional processes, we sought to: (1) quantify RBM3 protein levels in archival PCa samples; (2) develop a nuclear morphometric model to determine if measures of RBM3 protein levels and nuclear features could be used to predict disease aggressiveness and biochemical recurrence. Methods & Results This study utilized two tissue microarrays (TMAs) stained for RBM3 that included 80 total cases of PCa stratified by Gleason score. A software-mediated image processing algorithm identified RBM3-positive cancerous nuclei in the TMA samples and calculated twenty-two features quantifying RBM3 expression and nuclear architecture. Multivariate logistic regression (MLR) modeling was performed to determine if RBM3 levels and nuclear structural changes could predict PCa aggressiveness and biochemical recurrence (BCR). Leave-one-out cross validation (LOOCV) was used to provide insight on how the predictive capabilities of the feature set might behave with respect to an independent patient cohort to address issues such as model overfitting. RBM3 expression was found to be significantly downregulated in highly aggressive GS ≥ 8 PCa samples compared to other Gleason scores (P < 0.0001) and significantly down-regulated in recurrent PCa samples compared to non-recurrent samples (P = 0.0377). An eleven-feature nuclear morphometric MLR model accurately identified aggressive PCa, yielding a receiver operating characteristic area under the curve (ROC-AUC) of 0.90 (P < 0.0001) in the raw data set and 0.77 (95% CI: 0.83-0.97) for LOOCV testing. The same eleven-feature model was then used to predict recurrence, yielding a ROC-AUC of 0.92 (P = 0.0004) in the raw data set and 0.76 (95% CI: 0.64-0.87) for LOOCV testing. Conclusions The RBM3 biomarker alone is a strong prognostic marker for the prediction of aggressive PCa and biochemical recurrence. Further, RBM3 appears to be down-regulated in aggressive and recurrent tumors.
Collapse
Affiliation(s)
- Neil M. Carleton
- The James Buchanan Brady Urological Institute, Department of UrologyThe Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Guangjing Zhu
- The James Buchanan Brady Urological Institute, Department of UrologyThe Johns Hopkins University School of MedicineBaltimoreMaryland
| | | | - Christine Davis
- The James Buchanan Brady Urological Institute, Department of UrologyThe Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics ResearchCity of HopeDuarteCalifornia
| | - Robert W. Veltri
- The James Buchanan Brady Urological Institute, Department of UrologyThe Johns Hopkins University School of MedicineBaltimoreMaryland
| |
Collapse
|
39
|
Quendera AP, Seixas AF, Dos Santos RF, Santos I, Silva JPN, Arraiano CM, Andrade JM. RNA-Binding Proteins Driving the Regulatory Activity of Small Non-coding RNAs in Bacteria. Front Mol Biosci 2020; 7:78. [PMID: 32478092 PMCID: PMC7237705 DOI: 10.3389/fmolb.2020.00078] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are critical post-transcriptional regulators of gene expression. Distinct RNA-binding proteins (RBPs) influence the processing, stability and activity of bacterial small RNAs. The vast majority of bacterial sRNAs interact with mRNA targets, affecting mRNA stability and/or its translation rate. The assistance of RNA-binding proteins facilitates and brings accuracy to sRNA-mRNA basepairing and the RNA chaperones Hfq and ProQ are now recognized as the most prominent RNA matchmakers in bacteria. These RBPs exhibit distinct high affinity RNA-binding surfaces, promoting RNA strand interaction between a trans-encoding sRNA and its mRNA target. Nevertheless, some organisms lack ProQ and/or Hfq homologs, suggesting the existence of other RBPs involved in sRNA function. Along this line of thought, the global regulator CsrA was recently shown to facilitate the access of an sRNA to its target mRNA and may represent an additional factor involved in sRNA function. Ribonucleases (RNases) can be considered a class of RNA-binding proteins with nucleolytic activity that are responsible for RNA maturation and/or degradation. Presently RNase E, RNase III, and PNPase appear to be the main players not only in sRNA turnover but also in sRNA processing. Here we review the current knowledge on the most important bacterial RNA-binding proteins affecting sRNA activity and sRNA-mediated networks.
Collapse
Affiliation(s)
- Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
40
|
Lacoux C, Fouquier d'Hérouël A, Wessner-Le Bohec F, Innocenti N, Bohn C, Kennedy SP, Rochat T, Bonnin RA, Serror P, Aurell E, Bouloc P, Repoila F. Dynamic insights on transcription initiation and RNA processing during bacterial adaptation. RNA (NEW YORK, N.Y.) 2020; 26:382-395. [PMID: 31992590 PMCID: PMC7075262 DOI: 10.1261/rna.073288.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/20/2020] [Indexed: 05/04/2023]
Abstract
Transcription initiation and RNA processing govern gene expression and enable bacterial adaptation by reshaping the RNA landscape. The aim of this study was to simultaneously observe these two fundamental processes in a transcriptome responding to an environmental signal. A controlled σE system in E. coli was coupled to our previously described tagRNA-seq method to yield process kinetics information. Changes in transcription initiation frequencies (TIF) and RNA processing frequencies (PF) were followed using 5' RNA tags. Changes in TIF showed a binary increased/decreased pattern that alternated between transcriptionally activated and repressed promoters, providing the bacterial population with transcriptional oscillation. PF variation fell into three categories of cleavage activity: (i) constant and independent of RNA levels, (ii) increased once RNA has accumulated, and (iii) positively correlated to changes in TIF. This work provides a comprehensive and dynamic view of major events leading to transcriptomic reshaping during bacterial adaptation. It unveils an interplay between transcription initiation and the activity of specific RNA cleavage sites. This study utilized a well-known genetic system to analyze fundamental processes and can serve as a blueprint for comprehensive studies that exploit the RNA metabolism to decipher and understand bacterial gene expression control.
Collapse
Affiliation(s)
- Caroline Lacoux
- Université Paris-Saclay, INRAE, AgroParisTech, MIcalis Institute, 78350, Jouy-en-Josas, France
| | | | | | - Nicolas Innocenti
- Université Paris-Saclay, INRAE, AgroParisTech, MIcalis Institute, 78350, Jouy-en-Josas, France
- Department of Computational Biology, Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden
| | - Chantal Bohn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sean P Kennedy
- Department of Computational Biology, USR3756 CNRS, Institut Pasteur, 75 015 Paris, France
| | - Tatiana Rochat
- VIM, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Rémy A Bonnin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, MIcalis Institute, 78350, Jouy-en-Josas, France
| | - Erik Aurell
- Department of Computational Biology, Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Francis Repoila
- Université Paris-Saclay, INRAE, AgroParisTech, MIcalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
41
|
Alarcón Elvira F, Pardío Sedas VT, Martínez Herrera D, Quintana Castro R, Oliart Ros RM, López Hernández K, Flores Primo A, Ramírez Elvira K. Comparative Survival and the Cold-Induced Gene Expression of Pathogenic and Nonpathogenic Vibrio Parahaemolyticus from Tropical Eastern Oysters during Cold Storage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061836. [PMID: 32178325 PMCID: PMC7143714 DOI: 10.3390/ijerph17061836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/01/2023]
Abstract
Expression of the regulatory stress rpoS gene controls the transcription of cspA genes, which are involved in survival and adaptation to low temperatures. The purpose of this study was to assess the growth kinetics of naturally occurring V. parahaemolyticus in shellstock oysters and in vitro and the cold-shock-induced expression of the rpoS and cspA gene response in vitro during postharvest refrigeration. Naturally contaminated eastern oysters (Crassostrea virginica) and pathogenic (Vp-tdh) and nonpathogenic (Vp-tlh) isolates were stored at 7 ± 1 °C for 168 h and 216 h, respectively. The regulatory stress (rpos) and cold-shock (cspA) gene expressions were determined by reverse transcription PCR. At 24 h, the (Vp-tdh) strain grew faster (p < 0.05) than the (Vp-tlh) strain in oysters (λ = 0.33, 0.39, respectively) and in vitro (λ = 0.89, 37.65, respectively), indicating a better adaptation to cold shock for the (Vp-tdh) strain in live oysters and in vitro. At 24 h, the (Vp-tdh) strain rpoS and cspA gene expressions were upregulated by 1.9 and 2.3-fold, respectively, but the (Vp-tlh) strain rpoS and cspA gene expressions were repressed and upregulated by -0.024 and 1.9-fold, respectively. The V. parahaemolyticus strains that were isolated from tropical oysters have adaptive expression changes to survive and grow at 7 °C, according to their virulence.
Collapse
Affiliation(s)
- Francisco Alarcón Elvira
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yáñez, Col. Unidad Veracruzana, Veracruz, Ver. CP 91710, Mexico; (F.A.E.); (D.M.H.); (K.L.H.); (A.F.P.); (K.R.E.)
| | - Violeta T. Pardío Sedas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yáñez, Col. Unidad Veracruzana, Veracruz, Ver. CP 91710, Mexico; (F.A.E.); (D.M.H.); (K.L.H.); (A.F.P.); (K.R.E.)
- Correspondence: ; Tel.: +52-229-9342075 (ext. 24125); Fax: +52-229-9342075 (ext. 24104)
| | - David Martínez Herrera
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yáñez, Col. Unidad Veracruzana, Veracruz, Ver. CP 91710, Mexico; (F.A.E.); (D.M.H.); (K.L.H.); (A.F.P.); (K.R.E.)
| | - Rodolfo Quintana Castro
- Facultad de Bioanálisis, Universidad Veracruzana, Calle Iturbide s/n, Col. Centro, Veracruz, Ver. CP 91700, Mexico;
| | - Rosa María Oliart Ros
- Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Av. Miguel A. de Quevedo 2779, Veracruz, Ver. 91897, Mexico;
| | - Karla López Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yáñez, Col. Unidad Veracruzana, Veracruz, Ver. CP 91710, Mexico; (F.A.E.); (D.M.H.); (K.L.H.); (A.F.P.); (K.R.E.)
| | - Argel Flores Primo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yáñez, Col. Unidad Veracruzana, Veracruz, Ver. CP 91710, Mexico; (F.A.E.); (D.M.H.); (K.L.H.); (A.F.P.); (K.R.E.)
| | - Karen Ramírez Elvira
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Av. Miguel Ángel de Quevedo s/n esq. Yáñez, Col. Unidad Veracruzana, Veracruz, Ver. CP 91710, Mexico; (F.A.E.); (D.M.H.); (K.L.H.); (A.F.P.); (K.R.E.)
| |
Collapse
|
42
|
Wang W, Ma Y, He J, Qi H, Xiao F, He S. Gene regulation for the extreme resistance to ionizing radiation of Deinococcus radiodurans. Gene 2019; 715:144008. [DOI: 10.1016/j.gene.2019.144008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 01/05/2023]
|
43
|
Cold shock induces chromosomal qnr in Vibrio species and plasmid-mediated qnrS1 in Escherichia coli. Antimicrob Agents Chemother 2019:AAC.01472-19. [PMID: 31570402 DOI: 10.1128/aac.01472-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
qnr genes are found in aquatic bacteria and preceded the development of synthetic quinolones. Their natural functions are unknown. We evaluated the expression of chromosomal qnr in Vibrio species in response to environmental stresses and DNA damaging agents. Sub-inhibitory concentrations of quinolones, but not other DNA damaging agents, induced the expression of chromosomal qnr by more than five times in Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio mytili Cold shock also induced the expression of qnr in V. parahaemolyticus, V. vulnificus, and V. mytili, as well as qnrS1 in Escherichia coli qnrS1 induction by cold shock was not altered in ΔihfA or ΔihfB mutants or in a strain over-expressing dnaA, that otherwise directly modulate qnrS1 induction by ciprofloxacin. In contrast, qnrS1 induction by cold shock was reduced in a ΔcspA mutant in the cold shock regulon compared to the wild type. In conclusion, cold shock as well as quinolones induce chromosomal qnr in Vibrio species, and the related qnrS1 in E. coli.
Collapse
|
44
|
Kannaiah S, Livny J, Amster-Choder O. Spatiotemporal Organization of the E. coli Transcriptome: Translation Independence and Engagement in Regulation. Mol Cell 2019; 76:574-589.e7. [PMID: 31540875 DOI: 10.1016/j.molcel.2019.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/28/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022]
Abstract
RNA localization in eukaryotes is a mechanism to regulate transcripts fate. Conversely, bacterial transcripts were not assumed to be specifically localized. We previously demonstrated that E. coli mRNAs may localize to where their products localize in a translation-independent manner, thus challenging the transcription-translation coupling extent. However, the scope of RNA localization in bacteria remained unknown. Here, we report the distribution of the E. coli transcriptome between the membrane, cytoplasm, and poles by combining cell fractionation with deep-sequencing (Rloc-seq). Our results reveal asymmetric RNA distribution on a transcriptome-wide scale, significantly correlating with proteome localization and prevalence of translation-independent RNA localization. The poles are enriched with stress-related mRNAs and small RNAs, the latter becoming further enriched upon stress in an Hfq-dependent manner. Genome organization may play a role in localizing membrane protein-encoding transcripts. Our results show an unexpected level of intricacy in bacterial transcriptome organization and highlight the poles as hubs for regulation.
Collapse
Affiliation(s)
- Shanmugapriya Kannaiah
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02140, USA
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
45
|
Abstract
RNA-binding proteins (RBPs) are central to most if not all cellular processes, dictating the fate of virtually all RNA molecules in the cell. Starting with pioneering work on ribosomal proteins, studies of bacterial RBPs have paved the way for molecular studies of RNA-protein interactions. Work over the years has identified major RBPs that act on cellular transcripts at the various stages of bacterial gene expression and that enable their integration into post-transcriptional networks that also comprise small non-coding RNAs. Bacterial RBP research has now entered a new era in which RNA sequencing-based methods permit mapping of RBP activity in a truly global manner in vivo. Moreover, the soaring interest in understudied members of host-associated microbiota and environmental communities is likely to unveil new RBPs and to greatly expand our knowledge of RNA-protein interactions in bacteria.
Collapse
Affiliation(s)
- Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany. .,Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
46
|
Ahmed W, Tian X, Delatolla R. Nitrifying moving bed biofilm reactor: Performance at low temperatures and response to cold-shock. CHEMOSPHERE 2019; 229:295-302. [PMID: 31078886 DOI: 10.1016/j.chemosphere.2019.04.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
In contrast with suspended growth systems, attached growth technologies such as the moving bed biofilm reactors (MBBR) have recently demonstrated significant nitrification rates at temperatures as low as 1 °C. The purpose of this study was to investigate the performance of the nitrifying MBBR system at elevated municipal concentrations with exposures to low temperatures and cold-shock conditions down to 1 °C using an enhanced temperature-controlled room. A removal rate of 98.44 ± 4.69 gN·m-3·d-1 was identified as the intrinsic rate of nitrifying MBBR systems at 1 °C and was proposed as the conservative rate for low temperature design. A temperature threshold at which attached growth nitrification displayed a significant decrease in kinetics was identified between 2 °C and 4 °C. Arrhenius correction coefficients of 1.086 and 1.09 previously applied for low temperature nitrifying MBBR systems resulted in conservative modeled removal rates on average 21% lower than the measured rates. Thus, an Arrhenius correction coefficient of 1.049 is proposed between the temperatures of 10 °C and 4 °C and another correction coefficient of 1.149 to model rates at 1 °C. For the transition from 4 °C to 1 °C, the adjustment of a previously reported Theta model is proposed in this study to account for exposure time at low temperatures; with the modified model showing strong correlation with measured rates (R2 = 0.88). Finally, a comparison of nitrification kinetics between MBBR systems acclimatized to 1 °C and systems that are cold-shocked to 1 °C demonstrated that shocked removal rates are 21% lower.
Collapse
Affiliation(s)
- Warsama Ahmed
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, 161 Louis Pasteur, K1N 6N5, Canada.
| | - Xin Tian
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, 161 Louis Pasteur, K1N 6N5, Canada.
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, 161 Louis Pasteur, K1N 6N5, Canada.
| |
Collapse
|
47
|
Li J, Zhang B, Zhou L, Qi L, Yue L, Zhang W, Cheng H, Whitman WB, Dong X. The archaeal RNA chaperone TRAM0076 shapes the transcriptome and optimizes the growth of Methanococcus maripaludis. PLoS Genet 2019; 15:e1008328. [PMID: 31404065 PMCID: PMC6705878 DOI: 10.1371/journal.pgen.1008328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/22/2019] [Accepted: 07/22/2019] [Indexed: 11/27/2022] Open
Abstract
TRAM is a conserved domain among RNA modification proteins that are widely distributed in various organisms. In Archaea, TRAM occurs frequently as a standalone protein with in vitro RNA chaperone activity; however, its biological significance and functional mechanism remain unknown. This work demonstrated that TRAM0076 is an abundant standalone TRAM protein in the genetically tractable methanoarcheaon Methanococcus maripaludis. Deletion of MMP0076, the gene encoding TRAM0076, markedly reduced the growth and altered transcription of 55% of the genome. Substitution mutations of Phe39, Phe42, Phe63, Phe65 and Arg35 in the recombinant TRAM0076 decreased the in vitro duplex RNA unfolding activity. These mutations also prevented complementation of the growth defect of the MMP0076 deletion mutant, indicating that the duplex RNA unfolding activity was essential for its physiological function. A genome-wide mapping of transcription start sites identified many 5' untranslated regions (5'UTRs) of 20-60 nt which could be potential targets of a RNA chaperone. TRAM0076 unfolded three representative 5'UTR structures in vitro and facilitated the in vivo expression of a mCherry reporter system fused to the 5'UTRs, thus behaving like a transcription anti-terminator. Flag-tagged-TRAM0076 co-immunoprecipitated a large number of cellular RNAs, suggesting that TRAM0076 plays multiple roles in addition to unfolding incorrect RNA structures. This work demonstrates that the conserved archaeal RNA chaperone TRAM globally affects gene expression and may represent a transcriptional element in ancient life of the RNA world.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Bo Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Liguang Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Huicai Cheng
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - William B. Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| |
Collapse
|
48
|
Hernández-Cabanyero C, Lee CT, Tolosa-Enguis V, Sanjuán E, Pajuelo D, Reyes-López F, Tort L, Amaro C. Adaptation to host in Vibrio vulnificus, a zoonotic pathogen that causes septicemia in fish and humans. Environ Microbiol 2019; 21:3118-3139. [PMID: 31206984 DOI: 10.1111/1462-2920.14714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Vibrio vulnificus is a siderophilic pathogen spreading due to global warming. The zoonotic strains constitute a clonal-complex related to fish farms that are distributed worldwide. In this study, we applied a transcriptomic and single gene approach and discover that the zoonotic strains bypassed the iron requirement of the species thanks to the acquisition of two iron-regulated outer membrane proteins (IROMPs) involved in resistance to fish innate immunity. Both proteins have been acquired by horizontal gene transfer and are contributing to the successful spreading of this clonal-complex. We have also discovered that the zoonotic strains express a virulent phenotype in the blood of its main susceptible hosts (iron-overloaded humans and healthy eels) by combining a host-specific protective envelope with the common expression of two toxins (VvhA and RtxA1), one of which (RtxA1) is directly involved in sepsis. Finally, we found that both IROMPs are also present in other fish pathogenic species and have recently been transmitted to the phylogenetic lineage involved in human primary sepsis after raw seafood ingestion. Together our results highlight the potential hazard that the aquaculture industry poses to public health, which is of particular relevance in the context of a warming world.
Collapse
Affiliation(s)
| | - Chung-Te Lee
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Eva Sanjuán
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, 46100, Valencia, Spain
| | - David Pajuelo
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, 46100, Valencia, Spain
| | - Felipe Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Carmen Amaro
- ERI-Biotecmed, University of Valencia, Dr. Moliner, 50, 46100, Valencia, Spain
| |
Collapse
|
49
|
Caballero CJ, Menendez-Gil P, Catalan-Moreno A, Vergara-Irigaray M, García B, Segura V, Irurzun N, Villanueva M, Ruiz de Los Mozos I, Solano C, Lasa I, Toledo-Arana A. The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus. Nucleic Acids Res 2019; 46:1345-1361. [PMID: 29309682 PMCID: PMC5815144 DOI: 10.1093/nar/gkx1284] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
RNA-binding proteins (RBPs) are essential to fine-tune gene expression. RBPs containing the cold-shock domain are RNA chaperones that have been extensively studied. However, the RNA targets and specific functions for many of them remain elusive. Here, combining comparative proteomics and RBP-immunoprecipitation-microarray profiling, we have determined the regulon of the RNA chaperone CspA of Staphylococcus aureus. Functional analysis revealed that proteins involved in carbohydrate and ribonucleotide metabolism, stress response and virulence gene expression were affected by cspA deletion. Stress-associated phenotypes such as increased bacterial aggregation and diminished resistance to oxidative-stress stood out. Integration of the proteome and targetome showed that CspA post-transcriptionally modulates both positively and negatively the expression of its targets, denoting additional functions to the previously proposed translation enhancement. One of these repressed targets was its own mRNA, indicating the presence of a negative post-transcriptional feedback loop. CspA bound the 5′UTR of its own mRNA disrupting a hairpin, which was previously described as an RNase III target. Thus, deletion of the cspA 5′UTR abrogated mRNA processing and auto-regulation. We propose that CspA interacts through a U-rich motif, which is located at the RNase III cleavage site, portraying CspA as a putative RNase III-antagonist.
Collapse
Affiliation(s)
- Carlos J Caballero
- Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain
| | - Pilar Menendez-Gil
- Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain
| | - Arancha Catalan-Moreno
- Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain
| | - Marta Vergara-Irigaray
- Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain.,Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IDISNA. 31008 Pamplona, Navarra, Spain
| | - Begoña García
- Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain.,Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IDISNA. 31008 Pamplona, Navarra, Spain
| | - Víctor Segura
- Genomics, Proteomics and Bioinformatics Unit. Center for Applied Medical Research. University of Navarra. 31008 Pamplona, Spain
| | - Naiara Irurzun
- Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain
| | - Maite Villanueva
- Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain
| | - Igor Ruiz de Los Mozos
- Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain
| | - Cristina Solano
- Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain.,Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IDISNA. 31008 Pamplona, Navarra, Spain
| | - Iñigo Lasa
- Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain.,Navarrabiomed-Universidad Pública de Navarra (UPNA)-Complejo Hospitalario de Navarra (CHN), IDISNA. 31008 Pamplona, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología. IDAB, CSIC-UPNA-Gobierno de Navarra. 31192-Mutilva, Navarra, Spain
| |
Collapse
|
50
|
Sawasato K, Sekiya Y, Nishiyama K. Two‐step induction ofcdsApromoters leads to upregulation of the glycolipidMPIase at cold temperature. FEBS Lett 2019; 593:1711-1723. [DOI: 10.1002/1873-3468.13460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Katsuhiro Sawasato
- The United Graduate School of Agricultural Sciences Iwate University Morioka Japan
| | - Yusei Sekiya
- Department of Biological Chemistry and Food Science Faculty of Agriculture Iwate University Morioka Japan
| | - Ken‐ichi Nishiyama
- The United Graduate School of Agricultural Sciences Iwate University Morioka Japan
- Department of Biological Chemistry and Food Science Faculty of Agriculture Iwate University Morioka Japan
| |
Collapse
|