1
|
Kourkoulou A, Martzoukou O, Fischer R, Amillis S. A type II phosphatidylinositol-4-kinase coordinates sorting of cargo polarizing by endocytic recycling. Commun Biol 2024; 7:855. [PMID: 38997419 PMCID: PMC11245547 DOI: 10.1038/s42003-024-06553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Depending on their phosphorylation status, derivatives of phosphatidylinositol play important roles in vesicle identity, recognition and intracellular trafficking processes. In eukaryotic cells, phosphatidylinositol-4 phosphate pools generated by specific kinases are key determinants of the conventional secretion pathways. Earlier work in yeast has classified phosphatidylinositol-4 kinases in two types, Stt4p and Pik1p belonging to type III and Lsb6p to type II, with distinct cellular localizations and functions. Eurotiomycetes appear to lack Pik1p homologues. In Aspergillus nidulans, unlike homologues in other fungi, AnLsb6 is associated to late Golgi membranes and when heterologously overexpressed, it compensates for the thermosensitive phenotype in a Saccharomyces cerevisiae pik1 mutant, whereas its depletion leads to disorganization of Golgi-associated PHOSBP-labelled membranes, that tend to aggregate dependent on functional Rab5 GTPases. Evidence provided herein, indicates that the single type II phosphatidylinositol-4 kinase AnLsb6 is the main contributor for decorating secretory vesicles with relevant phosphatidylinositol-phosphate species, which navigate essential cargoes following the route of apical polarization via endocytic recycling.
Collapse
Affiliation(s)
- Anezia Kourkoulou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Olga Martzoukou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Reinhard Fischer
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Sotiris Amillis
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece.
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany.
| |
Collapse
|
2
|
Fernandez-Rojo MA, Pearen MA, Burgess AG, Ikonomopoulou MP, Hoang-Le D, Genz B, Saggiomo SL, Nawaratna SSK, Poli M, Reissmann R, Gobert GN, Deutsch U, Engelhardt B, Brooks AJ, Jones A, Arosio P, Ramm GA. The heavy subunit of ferritin stimulates NLRP3 inflammasomes in hepatic stellate cells through ICAM-1 to drive hepatic inflammation. Sci Signal 2024; 17:eade4335. [PMID: 38564492 DOI: 10.1126/scisignal.ade4335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1β (IL-1β) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule-1 (ICAM-1). FTH-ICAM-1 stimulated the expression of Il1b, NLRP3 inflammasome activation, and the processing and secretion of IL-1β in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH-ICAM-1 signaling at early endosomes stimulated Il1b expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1β secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1β production in liver slices from wild-type mice but not in those from Icam1-/- or Nlrp3-/- mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.
Collapse
Affiliation(s)
- Manuel A Fernandez-Rojo
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Medicine, University of Queensland, Brisbane, Herston, QLD 4006, Australia
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies in Food, Madrid 28049, Spain
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Michael A Pearen
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Anita G Burgess
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Maria P Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Medicine, University of Queensland, Brisbane, Herston, QLD 4006, Australia
- Translational Venomics Laboratory, Madrid Institute for Advanced Studies in Food, Madrid 28049, Spain
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Diem Hoang-Le
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Berit Genz
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | - Silvia L Saggiomo
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
| | | | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Regina Reissmann
- Department for BioMedical Research (DBMR), University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Geoffrey N Gobert
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Andrew J Brooks
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Herston, QLD 4006, Australia
- School of Medicine, University of Queensland, Brisbane, Herston, QLD 4006, Australia
| |
Collapse
|
3
|
Nandi I, Ramachandran RP, Shalev DE, Schneidman-Duhovny D, Shtuhin-Rahav R, Melamed-Book N, Zlotkin-Rivkin E, Rouvinski A, Rosenshine I, Aroeti B. EspH utilizes phosphoinositide and Rab binding domains to interact with plasma membrane infection sites and Rab GTPases. Gut Microbes 2024; 16:2400575. [PMID: 39312647 PMCID: PMC11421376 DOI: 10.1080/19490976.2024.2400575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Enteropathogenic E. coli (EPEC) is a Gram-negative bacterial pathogen that causes persistent diarrhea. Upon attachment to the apical plasma membrane of the intestinal epithelium, the pathogen translocates virulence proteins called effectors into the infected cells. These effectors hijack numerous host processes for the pathogen's benefit. Therefore, studying the mechanisms underlying their action is crucial for a better understanding of the disease. We show that translocated EspH interacts with multiple host Rab GTPases. AlphaFold predictions and site-directed mutagenesis identified glutamic acid and lysine at positions 37 and 41 as Rab interacting residues in EspH. Mutating these sites abolished the ability of EspH to inhibit Akt and mTORC1 signaling, lysosomal exocytosis, and bacterial invasion. Knocking out the endogenous Rab8a gene expression highlighted the involvement of Rab8a in Akt/mTORC1 signaling and lysosomal exocytosis. A phosphoinositide binding domain with a critical tyrosine was identified in EspH. Mutating the tyrosine abolished the localization of EspH at infection sites and its capacity to interact with the Rabs. Our data suggest novel EspH-dependent mechanisms that elicit immune signaling and membrane trafficking during EPEC infection.
Collapse
Affiliation(s)
- Ipsita Nandi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Rachana Pattani Ramachandran
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Deborah E Shalev
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- The Department of Pharmaceutical Engineering, Azrieli College of Engineering, Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raisa Shtuhin-Rahav
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Naomi Melamed-Book
- Bioimaging Unit, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, of Jerusalem, Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| |
Collapse
|
4
|
Niñoles R, Arjona P, Azad SM, Hashim A, Casañ J, Bueso E, Serrano R, Espinosa A, Molina I, Gadea J. Kaempferol-3-rhamnoside overaccumulation in flavonoid 3'-hydroxylase tt7 mutants compromises seed coat outer integument differentiation and seed longevity. THE NEW PHYTOLOGIST 2023; 238:1461-1478. [PMID: 36829299 DOI: 10.1111/nph.18836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Seeds slowly accumulate damage during storage, which ultimately results in germination failure. The seed coat protects the embryo from the external environment, and its composition is critical for seed longevity. Flavonols accumulate in the outer integument. The link between flavonol composition and outer integument development has not been explored. Genetic, molecular and ultrastructural assays on loss-of-function mutants of the flavonoid biosynthesis pathway were used to study the effect of altered flavonoid composition on seed coat development and seed longevity. Controlled deterioration assays indicate that loss of function of the flavonoid 3' hydroxylase gene TT7 dramatically affects seed longevity and seed coat development. Outer integument differentiation is compromised from 9 d after pollination in tt7 developing seeds, resulting in a defective suberin layer and incomplete degradation of seed coat starch. These distinctive phenotypes are not shared by other mutants showing abnormal flavonoid composition. Genetic analysis indicates that overaccumulation of kaempferol-3-rhamnoside is mainly responsible for the observed phenotypes. Expression profiling suggests that multiple cellular processes are altered in the tt7 mutant. Overaccumulation of kaempferol-3-rhamnoside in the seed coat compromises normal seed coat development. This observation positions TRANSPARENT TESTA 7 and the UGT78D1 glycosyltransferase, catalysing flavonol 3-O-rhamnosylation, as essential players in the modulation of seed longevity.
Collapse
Affiliation(s)
- Regina Niñoles
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Paloma Arjona
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Sepideh M Azad
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Aseel Hashim
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Jose Casañ
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Ana Espinosa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Isabel Molina
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Jose Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| |
Collapse
|
5
|
Wang H, Luo Y, Ou S, Ni T, Chu Z, Feng X, Dai X, Zhang X, Liu Y. Celastrus orbiculatus Thunb. extract inhibits EMT and metastasis of gastric cancer by regulating actin cytoskeleton remodeling. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115737. [PMID: 36179952 DOI: 10.1016/j.jep.2022.115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine herb Celastrus orbiculatus Thunb. is an important folk medicinal plant in China that has been used as an anti-inflammatory, antitumor, and analgesic in various diseases. Recent years, many studies have reported the significant effects of Celastrus orbiculatus Thunb. extract (COE) on gastric cancer. However, the specific mechanism by which COE regulates gastric cancer cytoskeleton remodeling and thus inhibits EMT has not yet been reported. AIM OF STUDY To study the effect and mechanism of COE in inhibiting the epithelial-mesenchymal transition (EMT) and metastasis of gastric cancer cells, laying an experimental foundation for the clinical application and further development of COE. METHODS The high-content cell dynamic tracking system was used to continuously track the trajectory of cell movement in real time. Through the high-content data, the average movement distance and movement speed of the cells are calculated. Additionally, the dynamic images of the cell movement in the high-content imaging system are derived to analyze the impact of COE on the movement of gastric cancer cells. Cytoskeleton staining experiment was performed to detect the effect of COE on the assembly of gastric cancer cell cytoskeleton proteins. Western blot was employed to detect the changes of EMT and metastasis-related proteins in the gastric cancer cells treated by COE. The effect of COE on the key regulatory protein Cofilin-1 (CFL1) of cell movement was examined by Western blot and protein degradation experiment. The effect of COE on EMT and metastasis of the gastric cancer cells lacking CFL1 was assessed by a transwell assay. The in vivo inhibitory effect of COE on EMT and metastasis of gastric cancer was determined by the animal living image system. IHC assays were used to detect the levels of EMT-related proteins in COE reversal in vivo. RESULT The results showed that the movement distance and average movement speed of gastric cancer cells after COE treatment were significantly lower than those of the control group. Cytoskeleton staining experiments revealed that COE can significantly change the distribution of skeletal proteins in gastric cancer cells. Additionally, COE treatment significantly reduced the expression of Matrix metalloproteinases (MMP-2, MMP-9) and other proteins. Furthermore, COE can significantly accelerate the degradation of CFL1 protein, and both COE treatment and CFL1 deletion can significantly inhibit EMT and metastasis of gastric cancer cells. Lastly, the number of peritoneal metastases of gastric cancer cells was significantly reduced in animals after COE treatment. COE can reverse the levels of EMT-related proteins while reducing the expression levels of CFL1 protein in vivo. CONCLUSION COE can significantly inhibit EMT and metastasis of gastric cancer cells in vivo and in vitro. This effect may be achieved by reducing the stability of CFL1 and inhibiting the assembly of actin in gastric cancer cells.
Collapse
Affiliation(s)
- Haibo Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| | - YuanYuan Luo
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.
| | - Shiya Ou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| | - Tengyang Ni
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| | - Zewen Chu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| | - Xinyi Feng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| | - Xiaojun Dai
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China; Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| | - Xiaochun Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China; Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| | - Yanqing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| |
Collapse
|
6
|
Palmitate Inhibits Mouse Macrophage Efferocytosis by Activating an mTORC1-Regulated Rho Kinase 1 Pathway: Therapeutic Implications for the Treatment of Obesity. Cells 2022; 11:cells11213502. [PMID: 36359898 PMCID: PMC9657837 DOI: 10.3390/cells11213502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Every day, billions of our cells die and get cleared without inducing inflammation. When, clearance is improper, uncleared cells undergo secondary necrosis and trigger inflammation. In addition, proper efferocytosis would be required for inducing resolution of inflammation, thus clearance deficiencies in the long term lead to development of various chronic inflammatory diseases. Increasing evidence indicates that obesity, itself being a low-grade inflammatory disease, predisposes to a variety of other chronic inflammatory diseases. Previous studies indicated that this later might be partially related to an impaired efferocytosis induced by increased uptake of circulating saturated fatty acids by macrophages in obese people. Here, we show that palmitate inhibits efferocytosis by bone marrow-derived macrophages in a dose-dependent manner. Palmitate triggers autophagy but also activates an energy-sensing mTORC1/ROCK1 signaling pathway, which interferes with the autophagosome–lysosome fusion, resulting in accumulation of the cellular membranes in autophagosomes. We propose that lack of sufficient plasma membrane supply attenuates efferocytosis of palmitate-exposed macrophages. AMP-activated protein kinase activators lead to mTORC1 inhibition and, consequently, released the palmitate-induced efferocytosis block in macrophages. Thus, they might be useful in the treatment of obesity not only by affecting metabolism thought so far. ROCK1 inhibitors could also be considered.
Collapse
|
7
|
Hou W, Wang S, Wu H, Xue L, Wang B, Wang S, Wang H. Small GTPase-a Key Role in Host Cell for Coronavirus Infection and a Potential Target for Coronavirus Vaccine Adjuvant Discovery. Viruses 2022; 14:v14092044. [PMID: 36146850 PMCID: PMC9504349 DOI: 10.3390/v14092044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Small GTPases are signaling molecules in regulating key cellular processes (e.g., cell differentiation, proliferation, and motility) as well as subcellular events (e.g., vesicle trafficking), making them key participants, especially in a great array of coronavirus infection processes. In this review, we discuss the role of small GTPases in the coronavirus life cycle, especially pre-entry, endocytosis, intracellular traffic, replication, and egress from the host cell. Furthermore, we also suggest the molecules that have potent adjuvant activity by targeting small GTPases. These studies provide deep insights and references to understand the pathogenesis of coronavirus as well as to propose the potential of small GTPases as targets for adjuvant development.
Collapse
Affiliation(s)
- Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Sibei Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Heqiong Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Linli Xue
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | | | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence:
| |
Collapse
|
8
|
He S, Zhang K, Cao Y, Liu G, Zou H, Song R, Liu Z. Effect of cadmium on Rho GTPases signal transduction during osteoclast differentiation. ENVIRONMENTAL TOXICOLOGY 2022; 37:1608-1617. [PMID: 35257471 DOI: 10.1002/tox.23510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Osteoclasts are the key target cells for cadmium (Cd)-induced bone metabolism diseases, while Rho GTPases play an important role in osteoclast differentiation and bone resorption. To identify new therapeutic targets of Cd-induced bone diseases; we evaluated signal transduction through Rho GTPases during osteoclast differentiation under the influence of Cd. In osteoclastic precursor cells, 10 nM Cd induced pseudopodia stretching, promoted cell migration, upregulated the levels of Cdc42, and RhoQ mRNAs and downstream Rho-associated coiled-coil kinase 1 (ROCK1) and ROCK2 proteins, and downregulated the actin-related protein 2/3 (ARP2/3) levels. Cd at 2 and 5 μM shortened the pseudopodia, inhibited cell migration, and decreased ROCK1, ROCK2, and ARP2/3 protein levels; Cd at 5 μM also reduced the mRNA expression levels of Rac1, Rac2, and RhoU mRNAs and decreased the level of phosphorylated (p)-cofilin. In osteoclasts, 10 nM Cd induced the formation of sealing zones, slightly upregulated Cdc42 mRNA levels and ROCK2 and ARP2/3 protein levels and significantly reduced p-cofilin levels. Cd at 2 μM and 5 μM Cd blocked the fusion of precursor cells; and 5 μM Cd downregulated the expression levels of RhoB, Rac1, Rac3, and RhoU mRNAs, and ROCK1, p-cofilin and ARP2/3 protein levels, significantly. In vivo, Cd (at 5 or 25 mg/L) increased the levels of key proteins RhoA, Rac1/2/3, Cdc42, and RhoU and their mRNAs in bone marrow cells. In summary, the results suggested that Cd affected the differentiation process of osteoclast and altered the expression of several Rho GTPases, which might be crucial targets of Cd during the differentiation of osteoclasts.
Collapse
Affiliation(s)
- Shuangjiang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Fine-tuning cell organelle dynamics during mitosis by small GTPases. Front Med 2022; 16:339-357. [PMID: 35759087 DOI: 10.1007/s11684-022-0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
During mitosis, the allocation of genetic material concurs with organelle transformation and distribution. The coordination of genetic material inheritance with organelle dynamics directs accurate mitotic progression, cell fate determination, and organismal homeostasis. Small GTPases belonging to the Ras superfamily regulate various cell organelles during division. Being the key regulators of membrane dynamics, the dysregulation of small GTPases is widely associated with cell organelle disruption in neoplastic and non-neoplastic diseases, such as cancer and Alzheimer's disease. Recent discoveries shed light on the molecular properties of small GTPases as sophisticated modulators of a remarkably complex and perfect adaptors for rapid structure reformation. This review collects current knowledge on small GTPases in the regulation of cell organelles during mitosis and highlights the mediator role of small GTPase in transducing cell cycle signaling to organelle dynamics during mitosis.
Collapse
|
10
|
Jahid S, Ortega JA, Vuong LM, Acquistapace IM, Hachey SJ, Flesher JL, La Serra MA, Brindani N, La Sala G, Manigrasso J, Arencibia JM, Bertozzi SM, Summa M, Bertorelli R, Armirotti A, Jin R, Liu Z, Chen CF, Edwards R, Hughes CCW, De Vivo M, Ganesan AK. Structure-based design of CDC42 effector interaction inhibitors for the treatment of cancer. Cell Rep 2022; 39:110641. [PMID: 35385746 PMCID: PMC9127750 DOI: 10.1016/j.celrep.2022.110641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 01/21/2023] Open
Abstract
CDC42 family GTPases (RHOJ, RHOQ, CDC42) are upregulated but rarely mutated in cancer and control both the ability of tumor cells to invade surrounding tissues and the ability of endothelial cells to vascularize tumors. Here, we use computer-aided drug design to discover a chemical entity (ARN22089) that has broad activity against a panel of cancer cell lines, inhibits S6 phosphorylation and MAPK activation, activates pro-inflammatory and apoptotic signaling, and blocks tumor growth and angiogenesis in 3D vascularized microtumor models (VMT) in vitro. Additionally, ARN22089 has a favorable pharmacokinetic profile and can inhibit the growth of BRAF mutant mouse melanomas and patient-derived xenografts in vivo. ARN22089 selectively blocks CDC42 effector interactions without affecting the binding between closely related GTPases and their downstream effectors. Taken together, we identify a class of therapeutic agents that influence tumor growth by modulating CDC42 signaling in both the tumor cell and its microenvironment.
Collapse
Affiliation(s)
- Sohail Jahid
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Jose A Ortega
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Linh M Vuong
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Isabella Maria Acquistapace
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Stephanie J Hachey
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Jessica L Flesher
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Maria Antonietta La Serra
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Nicoletta Brindani
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Giuseppina La Sala
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jacopo Manigrasso
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jose M Arencibia
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Maria Summa
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rosalia Bertorelli
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Chi-Fen Chen
- Department of Dermatology, University of California, Irvine, CA 92697, USA
| | - Robert Edwards
- Department of Pathology and Lab Medicine, University of California, Irvine, CA 92697, USA
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Design, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Shaffer AL, Phelan JD, Wang JQ, Huang D, Wright GW, Kasbekar M, Choi J, Young RM, Webster DE, Yang Y, Zhao H, Yu X, Xu W, Roulland S, Ceribelli M, Zhang X, Wilson KM, Chen L, McKnight C, Klumpp-Thomas C, Thomas CJ, Häupl B, Oellerich T, Rae Z, Kelly MC, Ahn IE, Sun C, Gaglione EM, Wilson WH, Wiestner A, Staudt LM. Overcoming Acquired Epigenetic Resistance to BTK Inhibitors. Blood Cancer Discov 2021; 2:630-647. [PMID: 34778802 DOI: 10.1158/2643-3230.bcd-21-0063] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/17/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
The use of Bruton tyrosine kinase (BTK) inhibitors to block B-cell receptor (BCR)-dependent NF-κB activation in lymphoid malignancies has been a major clinical advance, yet acquired therapeutic resistance is a recurring problem. We modeled the development of resistance to the BTK inhibitor ibrutinib in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma, which relies on chronic active BCR signaling for survival. The primary mode of resistance was epigenetic, driven in part by the transcription factor TCF4. The resultant phenotypic shift altered BCR signaling such that the GTPase RAC2 substituted for BTK in the activation of phospholipase Cγ2, thereby sustaining NF-κB activity. The interaction of RAC2 with phospholipase Cγ2 was also increased in chronic lymphocytic leukemia cells from patients with persistent or progressive disease on BTK inhibitor treatment. We identified clinically available drugs that can treat epigenetic ibrutinib resistance, suggesting combination therapeutic strategies. Significance In diffuse large B-cell lymphoma, we show that primary resistance to BTK inhibitors is due to epigenetic rather than genetic changes that circumvent the BTK blockade. We also observed this resistance mechanism in chronic lymphocytic leukemia, suggesting that epigenetic alterations may contribute more to BTK inhibitor resistance than currently thought.See related commentary by Pasqualucci, p. 555. This article is highlighted in the In This Issue feature, p. 549.
Collapse
Affiliation(s)
- Arthur L Shaffer
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James D Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James Q Wang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - DaWei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - George W Wright
- Biometric Research Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Monica Kasbekar
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ryan M Young
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel E Webster
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yandan Yang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hong Zhao
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xin Yu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Weihong Xu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sandrine Roulland
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michele Ceribelli
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Craig J Thomas
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt; German Cancer Consortium/German Cancer Research Center, Heidelberg; and Department of Molecular Diagnostics and Translational Proteomics, Frankfurt Cancer Institute, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt; German Cancer Consortium/German Cancer Research Center, Heidelberg; and Department of Molecular Diagnostics and Translational Proteomics, Frankfurt Cancer Institute, Frankfurt, Germany
| | - Zachary Rae
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael C Kelly
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Inhye E Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Erika M Gaglione
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Wu A, Lin L, Li X, Xu Q, Xu W, Zhu X, Teng Y, Yang X, Ai Z. Overexpression of ARHGAP30 suppresses growth of cervical cancer cells by downregulating ribosome biogenesis. Cancer Sci 2021; 112:4515-4525. [PMID: 34490691 PMCID: PMC8586670 DOI: 10.1111/cas.15130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
We aimed to identify whether Rho GTPase activating proteins (RhoGAPs) were downregulated in cervical cancers and might be targeted to reduce the growth of cervical cancer using the GEO database and immunohistochemical analysis to identified changes in transcription and protein levels. We analyzed their proliferation, clone formation ability, and their growth as subcutaneous tumors in mice. To detect ARHGAP30 localization in cells, immunofluorescence assays were conducted. Mass spectrometry combined with immunoprecipitation experiments were used to identify binding proteins. Protein interactions were validated with co-immunoprecipitation assays. Western-blot and q-PCR were applied to analyze candidate binding proteins that were associated with ribosome biogenesis. Puromycin incorporation assay was used to detect the global protein synthesis rate. We identified that ARHGAP30 was the only downregulated RhoGAP and was related to the survival of cervical cancer patients. Overexpression of ARHGAP30 in cervical cancer cells inhibited cell proliferation and migration. ARHGAP30 immunoprecipitated proteins were enriched in the ribosome biogenesis process. ARHGAP30 was located in the nucleous and interacted with nucleolin (NCL). Overexpression of ARHGAP30 inhibited rRNA synthesis and global protein synthesis. ARHGAP30 overexpression induced the ubiquitination of NCL and decreased its protein level in Hela cells. The function of ARHGAP30 on cervical cancer cell ribosome biogenesis and proliferation was independent of its RhoGAP activity as assessed with a RhoGAP-deficient plasmid of ARHGAP30R55A . Overall, the findings revealed that ARHGAP30 was frequently downregulated and associated with shorter survival of cervical cancer patients. ARHGAP30 may suppress growth of cervical cancer by reducing ribosome biogenesis and protein synthesis through promoting ubiquitination of NCL.
Collapse
Affiliation(s)
- Aijia Wu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Lan Lin
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiao Li
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Qinyang Xu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Wei Xu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiaolu Zhu
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yincheng Teng
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiao‐Mei Yang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Zhihong Ai
- Department of Obstetrics and GynecologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
13
|
Madhivanan K, Ramadesikan S, Hsieh WC, Aguilar MC, Hanna CB, Bacallao RL, Aguilar RC. Lowe syndrome patient cells display mTOR- and RhoGTPase-dependent phenotypes alleviated by rapamycin and statins. Hum Mol Genet 2021; 29:1700-1715. [PMID: 32391547 DOI: 10.1093/hmg/ddaa086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/25/2022] Open
Abstract
Lowe syndrome (LS) is an X-linked developmental disease characterized by cognitive deficiencies, bilateral congenital cataracts and renal dysfunction. Unfortunately, this disease leads to the early death of affected children often due to kidney failure. Although this condition was first described in the early 1950s and the affected gene (OCRL1) was identified in the early 1990s, its pathophysiological mechanism is not fully understood and there is no LS-specific cure available to patients. Here we report two important signaling pathways affected in LS patient cells. While RhoGTPase signaling abnormalities led to adhesion and spreading defects as compared to normal controls, PI3K/mTOR hyperactivation interfered with primary cilia assembly (scenario also observed in other ciliopathies with compromised kidney function). Importantly, we identified two FDA-approved drugs able to ameliorate these phenotypes. Specifically, statins mitigated adhesion and spreading abnormalities while rapamycin facilitated ciliogenesis in LS patient cells. However, no single drug was able to alleviate both phenotypes. Based on these and other observations, we speculate that Ocrl1 has dual, independent functions supporting proper RhoGTPase and PI3K/mTOR signaling. Therefore, this study suggest that Ocrl1-deficiency leads to signaling defects likely to require combinatorial drug treatment to suppress patient phenotypes and symptoms.
Collapse
Affiliation(s)
- Kayalvizhi Madhivanan
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| | - Swetha Ramadesikan
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| | - Wen-Chieh Hsieh
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| | - Mariana C Aguilar
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| | - Claudia B Hanna
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| | - Robert L Bacallao
- Division of Nephrology, Indiana University School of Medicine, 340 W 10th St #6200, Indianapolis, IN 46202, USA
| | - R Claudio Aguilar
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Building, Room 321, 201 S. University street, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Salameh J, Cantaloube I, Benoit B, Poüs C, Baillet A. Cdc42 and its BORG2 and BORG3 effectors control the subcellular localization of septins between actin stress fibers and microtubules. Curr Biol 2021; 31:4088-4103.e5. [PMID: 34329591 DOI: 10.1016/j.cub.2021.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/28/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
Cell resistance to taxanes involves several complementary mechanisms, among which septin relocalization from actin stress fibers to microtubules plays an early role. By investigating the molecular mechanism underlying this relocalization, we found that acute paclitaxel treatment triggers the release from stress fibers and subsequent proteasome-mediated degradation of binder of Rho GTPases 2 (BORG2)/Cdc42 effector protein 3 (Cdc42EP3) and to a lesser extent of BORG3/Cdc42EP5, two Cdc42 effectors that link septins to actin in interphase cells. BORG2 or BORG3 silencing not only caused septin detachment from stress fibers but also mimicked the effects of paclitaxel by triggering both septin relocalization to microtubules and significant drug resistance. Conversely, BORG2 or BORG3 overexpression retained septins on actin fibers even after paclitaxel treatment, without affecting paclitaxel sensitivity. We found that drug-induced inhibition of Cdc42 resulted in a drop in BORG2 level and in the relocalization of septins to microtubules. Accordingly, although septins relocalized when overexpressing an inactive mutant of Cdc42, the expression of a constitutively active mutant acted locally at actin stress fibers to prevent septin release, even after paclitaxel treatment. These findings reveal the role of Cdc42 upstream of BORG2 and BORG3 in controlling the interplay between septins, actin fibers, and microtubules in basal condition and in response to taxanes.
Collapse
Affiliation(s)
- Joëlle Salameh
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Isabelle Cantaloube
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Béatrice Benoit
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France
| | - Christian Poüs
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France; Laboratoire de Biochimie-Hormonologie, Hôpital Antoine Béclère, AP-HP, Clamart, France.
| | - Anita Baillet
- INSERM UMR-S 1193, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
15
|
Ding Y, Zhang R, Li B, Du Y, Li J, Tong X, Wu Y, Ji X, Zhang Y. Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116974. [PMID: 33784569 DOI: 10.1016/j.envpol.2021.116974] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 05/14/2023]
Abstract
With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.
Collapse
Affiliation(s)
- Yunfei Ding
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Ruiqing Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yunqiu Du
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohan Tong
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yulong Wu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaofei Ji
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
16
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
17
|
Hussein NA, Malla S, Pasternak MA, Terrero D, Brown NG, Ashby CR, Assaraf YG, Chen ZS, Tiwari AK. The role of endolysosomal trafficking in anticancer drug resistance. Drug Resist Updat 2021; 57:100769. [PMID: 34217999 DOI: 10.1016/j.drup.2021.100769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) remains a major obstacle towards curative treatment of cancer. Despite considerable progress in delineating the basis of intrinsic and acquired MDR, the underlying molecular mechanisms remain to be elucidated. Emerging evidences suggest that dysregulation in endolysosomal compartments is involved in mediating MDR through multiple mechanisms, such as alterations in endosomes, lysosomes and autophagosomes, that traffic and biodegrade the molecular cargo through macropinocytosis, autophagy and endocytosis. For example, altered lysosomal pH, in combination with transcription factor EB (TFEB)-mediated lysosomal biogenesis, increases the sequestration of hydrophobic anti-cancer drugs that are weak bases, thereby producing an insufficient and off-target accumulation of anti-cancer drugs in MDR cancer cells. Thus, the use of well-tolerated, alkalinizing compounds that selectively block Vacuolar H⁺-ATPase (V-ATPase) may be an important strategy to overcome MDR in cancer cells and increase chemotherapeutic efficacy. Other mechanisms of endolysosomal-mediated drug resistance include increases in the expression of lysosomal proteases and cathepsins that are involved in mediating carcinogenesis and chemoresistance. Therefore, blocking the trafficking and maturation of lysosomal proteases or direct inhibition of cathepsin activity in the cytosol may represent novel therapeutic modalities to overcome MDR. Furthermore, endolysosomal compartments involved in catabolic pathways, such as macropinocytosis and autophagy, are also shown to be involved in the development of MDR. Here, we review the role of endolysosomal trafficking in MDR development and discuss how targeting endolysosomal pathways could emerge as a new therapeutic strategy to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Mariah A Pasternak
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Noah G Brown
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA; Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, 43614, OH, USA.
| |
Collapse
|
18
|
Abstract
Dynamic remodeling of the actin cytoskeleton is an essential feature for virtually all actin-dependent cellular processes, including cell migration, cell cycle progression, chromatin remodeling and gene expression, and even the DNA damage response. An altered actin cytoskeleton is a structural hallmark associated with numerous pathologies ranging from cardiovascular diseases to immune disorders, neurological diseases and cancer. The actin cytoskeleton in cells is regulated through the orchestrated actions of a myriad of actin-binding proteins. In this Review, we provide a brief overview of the structure and functions of the actin-monomer-binding protein profilin-1 (Pfn1) and then discuss how dysregulated expression of Pfn1 contributes to diseases associated with the cardiovascular system.
Collapse
Affiliation(s)
| | - David Gau
- Bioengineering, University of Pittsburgh
| | - Partha Roy
- Bioengineering, University of Pittsburgh.,Pathology, University of Pittsburgh, 306 Center for Bioengineering, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
19
|
Zhang L, Chai Z, Kong S, Feng J, Wu M, Tan J, Yuan M, Chen G, Li Z, Zhou H, Cheng S, Xu H. Nujiangexanthone A Inhibits Hepatocellular Carcinoma Metastasis via Down Regulation of Cofilin 1. Front Cell Dev Biol 2021; 9:644716. [PMID: 33791303 PMCID: PMC8006445 DOI: 10.3389/fcell.2021.644716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the malignant tumors with poor prognosis. High expression level of cofilin 1 (CFL1) has been found in many types of cancers. However, the role of CFL1 in HCC hasn’t been known clearly. Here, we found that CFL1 was up regulated in human HCC and significantly associated with both overall survival and disease-free survival in HCC patients. Nujiangexanthone A (NJXA), the caged xanthones, isolated from gamboge plants decreased the expression of CFL1, which also inhibited the migration, invasion and metastasis of HCC cells in vitro and in vivo. Down regulation of CFL1 inhibited aggressiveness of HCC cells, which mimicked the effect of NJXA. Mechanism study indicated that, knockdown of CFL1 or treatment with NJXA increased the level of F-actin and disturbed the balance between F-actin and G-actin. In conclusion, our findings reveal the role of CFL1 in HCC metastasis through the CFL1/F-actin axis, and suggest that CFL1 may be a potential prognostic marker and a new therapeutic target. NJXA can effectively inhibit the metastasis of HCC cells by down regulating the expression of CFL1, which indicates the potential of NJXA for preventing metastasis in HCC.
Collapse
Affiliation(s)
- Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Siyuan Kong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiling Feng
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gan Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuo Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Zhang Q, Wang Y, Qu D, Yu J, Yang J. Role of HDAC6 inhibition in sepsis-induced acute respiratory distress syndrome (Review). Exp Ther Med 2021; 21:422. [PMID: 33747162 DOI: 10.3892/etm.2021.9866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) induced by sepsis contributes remarkably to the high mortality rate observed in intensive care units, largely due to a lack of effective drug therapies. Histone deacetylase 6 (HDAC6) is a class-IIb deacetylase that modulates non-nuclear protein functions via deacetylation and ubiquitination. Importantly, HDAC6 has been shown to exert anti-cancer, anti-neurodegeneration, and immunological effects, and several HDAC6 inhibitors have now entered clinical trials. It has also been recently shown to modulate inflammation, and HDAC6 inhibition has been demonstrated to markedly suppress experimental sepsis. The present review summarizes the role of HDAC6 in sepsis-induced inflammation and endothelial barrier dysfunction in recent years. It is proposed that HDAC6 inhibition predominantly ameliorates sepsis-induced ARDS by directly attenuating inflammation, which modulates the innate and adaptive immunity, transcription of pro-inflammatory genes, and protects endothelial barrier function. HDAC6 inhibition protects against sepsis-induced ARDS, thereby making HDAC6 a promising therapeutic target. However, HDAC inhibition may be associated with adverse effects on the embryo sac and oocyte, necessitating further studies.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Danhua Qu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jinyan Yu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Junling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
21
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
22
|
Review of PIP2 in Cellular Signaling, Functions and Diseases. Int J Mol Sci 2020; 21:ijms21218342. [PMID: 33172190 PMCID: PMC7664428 DOI: 10.3390/ijms21218342] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
Phosphoinositides play a crucial role in regulating many cellular functions, such as actin dynamics, signaling, intracellular trafficking, membrane dynamics, and cell-matrix adhesion. Central to this process is phosphatidylinositol bisphosphate (PIP2). The levels of PIP2 in the membrane are rapidly altered by the activity of phosphoinositide-directed kinases and phosphatases, and it binds to dozens of different intracellular proteins. Despite the vast literature dedicated to understanding the regulation of PIP2 in cells over past 30 years, much remains to be learned about its cellular functions. In this review, we focus on past and recent exciting results on different molecular mechanisms that regulate cellular functions by binding of specific proteins to PIP2 or by stabilizing phosphoinositide pools in different cellular compartments. Moreover, this review summarizes recent findings that implicate dysregulation of PIP2 in many diseases.
Collapse
|
23
|
Hormones Secretion and Rho GTPases in Neuroendocrine Tumors. Cancers (Basel) 2020; 12:cancers12071859. [PMID: 32664294 PMCID: PMC7408961 DOI: 10.3390/cancers12071859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.
Collapse
|
24
|
Wymant JM, Sayers EJ, Muir D, Jones AT. Strategic Trastuzumab Mediated Crosslinking Driving Concomitant HER2 and HER3 Endocytosis and Degradation in Breast Cancer. J Cancer 2020; 11:3288-3302. [PMID: 32231734 PMCID: PMC7097966 DOI: 10.7150/jca.32470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/04/2020] [Indexed: 01/03/2023] Open
Abstract
Efficacious anticancer therapies for targeting plasma membrane receptors with antibody based therapeutics are often contingent on sufficient endocytic delivery of receptor and conjugate to lysosomes. This results in downregulation of receptor activity and, in the case of antibody-drug conjugates (ADCs), intracellular release of a drug payload. The oncogenic receptor HER2 is a priority therapeutic target in breast cancer. Known as an "endocytosis resistant" receptor, HER2 thwarts the receptor downregulating efficiency of the frontline treatment trastuzumab and reduces the potential of trastuzumab-based therapies such as trastuzumab-emtansine. We previously demonstrated that strategically inducing trastuzumab and HER2 crosslinking in breast cancer cells promoted endocytosis and lysosomal delivery of the HER2-trastuzumab complex, stimulating downregulation of the receptor. Here we reveal that HER3, but not EGFR, is also concomitantly downregulated with HER2 after crosslinking. This is accompanied by strong activation of MEK/ERK pathway that we show does not directly contribute to HER2/trastuzumab endocytosis. We show that crosslinking induced trastuzumab endocytosis occurs via clathrin-dependent and independent pathways and is an actin-dependent process. Detailed ultrastructural studies of the plasma membrane highlight crosslinking-specific remodelling of microvilli and induction of extensive ruffling. Investigations in a cell model of acquired trastuzumab resistance demonstrate, for the first time, that they are refractory to crosslinking induced HER2 endocytosis and downregulation. This implicates further arrest of HER2 internalisation in developing trastuzumab resistance. Overall our findings highlight the potential of receptor crosslinking as a therapeutic strategy for cancer while exposing the ability of cancer cells to develop resistance via endocytic mechanisms.
Collapse
Affiliation(s)
- Jennifer Mary Wymant
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB
| | - Edward John Sayers
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB
| | - Duncan Muir
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT
| | - Arwyn Tomos Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB
| |
Collapse
|
25
|
De Pasquale V, Costanzo M, Siciliano RA, Mazzeo MF, Pistorio V, Bianchi L, Marchese E, Ruoppolo M, Pavone LM, Caterino M. Proteomic Analysis of Mucopolysaccharidosis IIIB Mouse Brain. Biomolecules 2020; 10:biom10030355. [PMID: 32111039 PMCID: PMC7175334 DOI: 10.3390/biom10030355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mucopolysaccharidosis IIIB (MPS IIIB) is an inherited metabolic disease due to deficiency of α-N-Acetylglucosaminidase (NAGLU) enzyme with subsequent storage of undegraded heparan sulfate (HS). The main clinical manifestations of the disease are profound intellectual disability and neurodegeneration. A label-free quantitative proteomic approach was applied to compare the proteome profile of brains from MPS IIIB and control mice to identify altered neuropathological pathways of MPS IIIB. Proteins were identified through a bottom up analysis and 130 were significantly under-represented and 74 over-represented in MPS IIIB mouse brains compared to wild type (WT). Multiple bioinformatic analyses allowed to identify three major clusters of the differentially abundant proteins: proteins involved in cytoskeletal regulation, synaptic vesicle trafficking, and energy metabolism. The proteome profile of NAGLU-/- mouse brain could pave the way for further studies aimed at identifying novel therapeutic targets for the MPS IIIB. Data are available via ProteomeXchange with the identifier PXD017363.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
| | | | | | - Valeria Pistorio
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
| | - Laura Bianchi
- Laboratory of Functional Proteomics, Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Emanuela Marchese
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
- Department of Mental Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- Correspondence: ; Tel.: +39-081-7463043
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
| |
Collapse
|
26
|
Lin D, Lin J, Li X, Zhang J, Lai P, Mao Z, Zhang L, Zhu Y, Liu Y. The Identification of Differentially Expressed Genes Showing Aberrant Methylation Patterns in Pheochromocytoma by Integrated Bioinformatics Analysis. Front Genet 2019; 10:1181. [PMID: 31803246 PMCID: PMC6873930 DOI: 10.3389/fgene.2019.01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022] Open
Abstract
Malignant pheochromocytoma (PHEO) can only be fully diagnosed when metastatic foci develop. However, at this point in time, patients gain little benefit from traditional therapeutic methods. Methylation plays an important role in the pathogenesis of PHEO. The aim of this research was to use integrated bioinformatics analysis to identify differentially expressed genes (DEGs) showing aberrant methylation patterns in PHEO and therefore provide further understanding of the molecular mechanisms underlying this condition. Aberrantly methylated DEGs were first identified by using R software (version 3.6) to combine gene expression microarray data (GSE19422) with gene methylation microarray data (GSE43293). An online bioinformatics database (DAVID) was then used to identify all overlapping DEGs showing aberrant methylation; these were annotated and then functional enrichment was ascertained by gene ontology (GO) analysis. The online STRING tool was then used to analyze interactions between all overlapping DEGs showing aberrant methylation; these results were then visualized by Cytoscape (version 3.61). Next, using the cytoHubba plugin within Cytoscape, we identified the top 10 hub genes and found that these were predominantly enriched in pathways related to cancer. Reference to The Cancer Genome Atlas (TCGA) further confirmed our results and further identified an upregulated hypomethylated gene (SCN2A) and a downregulated hypermethylated gene (KCNQ1). Logistic regression analysis and receiver operating characteristic (ROC) curve analysis indicated that KCNQ1 and SCN2A represent promising differential diagnostic biomarkers between benign and malignant PHEO. Finally, clinical data showed that there were significant differences in the concentrations of potassium and sodium when compared between pre-surgery and post-surgery day 1. These suggest that KCNQ1 and SCN2A, genes that encode potassium and sodium channels, respectively, may serve as putative diagnostic targets for the diagnosis and prognosis of PHEO and therefore facilitate the clinical management of PHEO.
Collapse
Affiliation(s)
- Dengqiang Lin
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Jinglai Lin
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Xiaoxia Li
- Department of Radiology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Jianping Zhang
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Peng Lai
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Zhifeng Mao
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Li Zhang
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Yujun Liu
- Department of Urology, Xiamen Hospital of Zhongshan Hospital, Fudan University, Xiamen, China
| |
Collapse
|
27
|
Olayioye MA, Noll B, Hausser A. Spatiotemporal Control of Intracellular Membrane Trafficking by Rho GTPases. Cells 2019; 8:cells8121478. [PMID: 31766364 PMCID: PMC6952795 DOI: 10.3390/cells8121478] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
As membrane-associated master regulators of cytoskeletal remodeling, Rho GTPases coordinate a wide range of biological processes such as cell adhesion, motility, and polarity. In the last years, Rho GTPases have also been recognized to control intracellular membrane sorting and trafficking steps directly; however, how Rho GTPase signaling is regulated at endomembranes is still poorly understood. In this review, we will specifically address the local Rho GTPase pools coordinating intracellular membrane trafficking with a focus on the endo- and exocytic pathways. We will further highlight the spatiotemporal molecular regulation of Rho signaling at endomembrane sites through Rho regulatory proteins, the GEFs and GAPs. Finally, we will discuss the contribution of dysregulated Rho signaling emanating from endomembranes to the development and progression of cancer.
Collapse
|
28
|
Lattner J, Leng W, Knust E, Brankatschk M, Flores-Benitez D. Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P 2 in Drosophila. eLife 2019; 8:e50900. [PMID: 31697234 PMCID: PMC6881148 DOI: 10.7554/elife.50900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.
Collapse
Affiliation(s)
- Johanna Lattner
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Weihua Leng
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Marko Brankatschk
- The Biotechnological Center of the TU Dresden (BIOTEC)DresdenGermany
| | - David Flores-Benitez
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| |
Collapse
|
29
|
Tiwari P, Nagatake T, Hirata S, Sawane K, Saika A, Shibata Y, Morimoto S, Honda T, Adachi J, Abe Y, Isoyama J, Tomonaga T, Kiyono H, Kabashima K, Kunisawa J. Dietary coconut oil ameliorates skin contact hypersensitivity through mead acid production in mice. Allergy 2019; 74:1522-1532. [PMID: 30843234 DOI: 10.1111/all.13762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/19/2018] [Accepted: 01/13/2019] [Indexed: 01/03/2023]
Abstract
Coconut oil is used as a dietary oil worldwide, and its healthy effects are recognized by the fact that coconut oil is easy to digest, helps in weight management, increases healthy cholesterol, and provides instant energy. Although topical application of coconut oil is known to reduce skin infection and inflammation, whether dietary coconut oil has any role in decreasing skin inflammation is unknown. In this study, we showed the impact of dietary coconut oil in allergic skin inflammation by using a mouse model of contact hypersensitivity (CHS). Mice maintained on coconut oil showed amelioration of skin inflammation and increased levels of cis-5, 8, 11-eicosatrienoic acid (mead acid) in serum. Intraperitoneal injection of mead acid inhibited CHS and reduced the number of neutrophils infiltrating to the skin. Detailed mechanistic studies unveiled that mead acid inhibited the directional migration of neutrophils by inhibiting the filamentous actin polymerization and leukotriene B4 production required for secondary recruitment of neutrophils. Our findings provide valuable insights into the preventive roles of coconut oil and mead acid against skin inflammation, thereby offering attractive therapeutic possibilities.
Collapse
Affiliation(s)
- Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
| | - So‐ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
- Department of Microbiology and Immunology Kobe University Graduate School of Medicine Kobe‐city, Hyogo Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city, Osaka Japan
- Innovation Center Nippon Flour Mills Co., Ltd Atsugi-city, Kanagawa Japan
| | - Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city, Osaka Japan
| | - Yuki Shibata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city, Osaka Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
| | - Tetsuya Honda
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto-city, Kyoto Japan
| | - Jun Adachi
- Laboratory of Proteome Research NIBIOHN Ibaraki‐city, Osaka Japan
| | - Yuichi Abe
- Laboratory of Proteome Research NIBIOHN Ibaraki‐city, Osaka Japan
| | - Junko Isoyama
- Laboratory of Proteome Research NIBIOHN Ibaraki‐city, Osaka Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research NIBIOHN Ibaraki‐city, Osaka Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines The Institute of Medical Science, The University of Tokyo Minato-ku, Tokyo Japan
- Department of Immunology, Graduate School of Medicine Chiba University Chiba‐city, Chiba Japan
- Division of Gastroenterology, Department of Medicine University of California, San Diego (UCSD) San Diego California
- CU‐UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV) UCSD San Diego California
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto-city, Kyoto Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) Ibaraki‐city, Osaka Japan
- Department of Microbiology and Immunology Kobe University Graduate School of Medicine Kobe‐city, Hyogo Japan
- Graduate School of Pharmaceutical Sciences Osaka University Suita‐city, Osaka Japan
- International Research and Development Center for Mucosal Vaccines The Institute of Medical Science, The University of Tokyo Minato-ku, Tokyo Japan
- Graduate School of Medicine and Graduate School of Dentistry Osaka University Suita‐city, Osaka Japan
| |
Collapse
|
30
|
Eaton AF, Clayton DR, Ruiz WG, Griffiths SE, Rubio ME, Apodaca G. Expansion and contraction of the umbrella cell apical junctional ring in response to bladder filling and voiding. Mol Biol Cell 2019; 30:2037-2052. [PMID: 31166831 PMCID: PMC6727774 DOI: 10.1091/mbc.e19-02-0115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epithelial junctional complex, composed of tight junctions, adherens junctions, desmosomes, and an associated actomyosin cytoskeleton, forms the apical junctional ring (AJR), which must maintain its continuity in the face of external mechanical forces that accompany normal physiological functions. The AJR of umbrella cells, which line the luminal surface of the bladder, expands during bladder filling and contracts upon voiding; however, the mechanisms that drive these events are unknown. Using native umbrella cells as a model, we observed that the umbrella cell's AJR assumed a nonsarcomeric organization in which filamentous actin and ACTN4 formed unbroken continuous rings, while nonmuscle myosin II (NMMII) formed linear tracts along the actin ring. Expansion of the umbrella cell AJR required formin-dependent actin assembly, but was independent of NMMII ATPase function. AJR expansion also required membrane traffic, RAB13-dependent exocytosis, specifically, but not trafficking events regulated by RAB8A or RAB11A. In contrast, the voiding-induced contraction of the AJR depended on NMMII and actin dynamics, RHOA, and dynamin-dependent endocytosis. Taken together, our studies indicate that a mechanism by which the umbrella cells retain continuity during cyclical changes in volume is the expansion and contraction of their AJR, processes regulated by the actomyosin cytoskeleton and membrane trafficking events.
Collapse
Affiliation(s)
- Amity F Eaton
- Department of Medicine, George M. O'Brien Pittsburgh Center for Kidney Research.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Dennis R Clayton
- Department of Medicine, George M. O'Brien Pittsburgh Center for Kidney Research
| | - Wily G Ruiz
- Department of Medicine, George M. O'Brien Pittsburgh Center for Kidney Research
| | - Shawn E Griffiths
- Department of Medicine, George M. O'Brien Pittsburgh Center for Kidney Research
| | - Maria Eulalia Rubio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Gerard Apodaca
- Department of Medicine, George M. O'Brien Pittsburgh Center for Kidney Research.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
31
|
Noll B, Benz D, Frey Y, Meyer F, Lauinger M, Eisler SA, Schmid S, Hordijk PL, Olayioye MA. DLC3 suppresses MT1-MMP-dependent matrix degradation by controlling RhoB and actin remodeling at endosomal membranes. J Cell Sci 2019; 132:jcs.223172. [PMID: 31076513 DOI: 10.1242/jcs.223172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer cells degrade the extracellular matrix through actin-rich protrusions termed invadopodia. The formation of functional invadopodia requires polarized membrane trafficking driven by Rho GTPase-mediated cytoskeletal remodeling. We identify the Rho GTPase-activating protein deleted in liver cancer 3 (DLC3; also known as STARD8) as an integral component of the endosomal transport and sorting machinery. We provide evidence for the direct regulation of RhoB by DLC3 at endosomal membranes to which DLC3 is recruited by interacting with the sorting nexin SNX27. In TGF-β-treated MCF10A breast epithelial cells, DLC3 knockdown enhanced metalloproteinase-dependent matrix degradation, which was partially rescued by RhoB co-depletion. This was recapitulated in MDA-MB-231 breast cancer cells in which early endosomes demonstrated aberrantly enriched F-actin and accumulated the metalloproteinase MT1-MMP (also known as MMP14) upon DLC3 knockdown. Remarkably, Rab4 (herein referring to Rab4A) downregulation fully rescued the enhanced matrix degradation of TGF-β-treated MCF10A and MDA-MB-231 cells. In summary, our findings establish a novel role for DLC3 in the suppression of MT1-MMP-dependent matrix degradation by inactivating RhoB signaling at endosomal membranes. We propose that DLC3 function is required to limit endosomal actin polymerization, Rab4-dependent recycling of MT1-MMP and, consequently, matrix degradation mediated by invadopodial activity.
Collapse
Affiliation(s)
- Bettina Noll
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - David Benz
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Yannick Frey
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Florian Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Manuel Lauinger
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Stephan A Eisler
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Simone Schmid
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Center, VUmc, De Boelelaan 1118,1081 HV Amsterdam, The Netherlands
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany .,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
32
|
Barbera S, Nardi F, Elia I, Realini G, Lugano R, Santucci A, Tosi GM, Dimberg A, Galvagni F, Orlandini M. The small GTPase Rab5c is a key regulator of trafficking of the CD93/Multimerin-2/β1 integrin complex in endothelial cell adhesion and migration. Cell Commun Signal 2019; 17:55. [PMID: 31138217 PMCID: PMC6537425 DOI: 10.1186/s12964-019-0375-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background In the endothelium, the single-pass membrane protein CD93, through its interaction with the extracellular matrix protein Multimerin-2, activates signaling pathways that are critical for vascular development and angiogenesis. Trafficking of adhesion molecules through endosomal compartments modulates their signaling output. However, the mechanistic basis coordinating CD93 recycling and its implications for endothelial cell (EC) function remain elusive. Methods Human umbilical vein ECs (HUVECs) and human dermal blood ECs (HDBEC) were used in this study. Fluorescence confocal microscopy was employed to follow CD93 retrieval, recycling, and protein colocalization in spreading cells. To better define CD93 trafficking, drug treatments and transfected chimeric wild type and mutant CD93 proteins were used. The scratch assay was used to evaluate cell migration. Gene silencing strategies, flow citometry, and quantification of migratory capability were used to determine the role of Rab5c during CD93 recycling to the cell surface. Results Here, we identify the recycling pathway of CD93 following EC adhesion and migration. We show that the cytoplasmic domain of CD93, by its interaction with Moesin and F-actin, is instrumental for CD93 retrieval in adhering and migrating cells and that aberrant endosomal trafficking of CD93 prevents its localization at the leading edge of migration. Moreover, the small GTPase Rab5c turns out to be a key component of the molecular machinery that is able to drive CD93 recycling to the EC surface. Finally, in the Rab5c endosomal compartment CD93 forms a complex with Multimerin-2 and active β1 integrin, which is recycled back to the basolaterally-polarized cell surface by clathrin-independent endocytosis. Conclusions Our findings, focusing on the pro-angiogenic receptor CD93, unveil the mechanisms of its polarized trafficking during EC adhesion and migration, opening novel therapeutic opportunities for angiogenic diseases. Electronic supplementary material The online version of this article (10.1186/s12964-019-0375-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Federica Nardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Ines Elia
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Giulia Realini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University of Siena, Policlinico "Le Scotte", Viale Bracci, 53100, Siena, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| |
Collapse
|
33
|
Low Electric Treatment activates Rho GTPase via Heat Shock Protein 90 and Protein Kinase C for Intracellular Delivery of siRNA. Sci Rep 2019; 9:4114. [PMID: 30858501 PMCID: PMC6412017 DOI: 10.1038/s41598-019-40904-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/28/2019] [Indexed: 11/08/2022] Open
Abstract
Low electric treatment (LET) promotes intracellular delivery of naked siRNA by altering cellular physiology. However, which signaling molecules and cellular events contribute to LET-mediated siRNA uptake are unclear. Here, we used isobaric tags in relative and absolute quantification (iTRAQ) proteomic analysis to identify changes in the levels of phosphorylated proteins that occur during cellular uptake of siRNA promoted by LET. iTRAQ analysis revealed that heat shock protein 90 (Hsp90)α and myristoylated alanine-rich C-kinase substrate (Marcks) were highly phosphorylated following LET of NIH 3T3 cells, but not untreated cells. Furthermore, the levels of phosphorylated Hsp90α and protein kinase C (PKC)γ were increased by LET both with siRNA and liposomes having various physicochemical properties used as model macromolecules, suggesting that PKCγ activated partly by Ca2+ influx as well as Hsp90 chaperone function were involved in LET-mediated cellular siRNA uptake. Furthermore, LET with siRNA induced activation of Rho GTPase via Hsp90 and PKC, which could contribute to cellular siRNA uptake accompanied by actin cytoskeleton remodeling. Collectively, our results suggested that LET-induced Rho GTPase activation via Hsp90 and PKC would participate in actin-dependent cellular uptake of siRNA.
Collapse
|
34
|
IQGAP-related protein IqgC suppresses Ras signaling during large-scale endocytosis. Proc Natl Acad Sci U S A 2019; 116:1289-1298. [PMID: 30622175 DOI: 10.1073/pnas.1810268116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Macropinocytosis and phagocytosis are evolutionarily conserved forms of bulk endocytosis used by cells to ingest large volumes of fluid and solid particles, respectively. Both processes are regulated by Ras signaling, which is precisely controlled by mechanisms involving Ras GTPase activating proteins (RasGAPs) responsible for terminating Ras activity on early endosomes. While regulation of Ras signaling during large-scale endocytosis in WT Dictyostelium has been, for the most part, attributed to the Dictyostelium ortholog of human RasGAP NF1, in commonly used axenic laboratory strains, this gene is mutated and inactive. Moreover, none of the RasGAPs characterized so far have been implicated in the regulation of Ras signaling in large-scale endocytosis in axenic strains. In this study, we establish, using biochemical approaches and complementation assays in live cells, that Dictyostelium IQGAP-related protein IqgC interacts with active RasG and exhibits RasGAP activity toward this GTPase. Analyses of iqgC - and IqgC-overexpressing cells further revealed participation of this GAP in the regulation of both types of large-scale endocytosis and in cytokinesis. Moreover, given the localization of IqgC to phagosomes and, most prominently, to macropinosomes, we propose IqgC acting as a RasG-specific GAP in large-scale endocytosis. The data presented here functionally distinguish IqgC from other members of the Dictyostelium IQGAP family and call for repositioning of this genuine RasGAP outside of the IQGAP group.
Collapse
|
35
|
Endosomal trafficking defects in patient cells with KIAA1109 biallelic variants. Genes Dis 2019; 6:56-67. [PMID: 30906834 PMCID: PMC6411657 DOI: 10.1016/j.gendis.2018.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023] Open
Abstract
The uncharacterized gene KIAA1 109 has recently been associated with a congenital neurological malformation disorder that variably presents with arthrogryposis, craniofacial and/or cardiac abnormalities. We have identified two additional patients with compound heterozygous KIAA1109 variants presenting with the same neurological malformations. The mechanism whereby KIAA1109 loss of function causes this spectrum of disorders was the primary focus of our studies. We hypothesized that KIAA1109 function could be conserved relative to the fly gene tweek and examined endocytosis and endosome recycling in patient fibroblasts. Furthermore, we examined the structure of the cytoskeleton and cilia based on functional overlap with endocytosis and several known etiologies for neuronal migration disorders. Utilizing primary dermal fibroblasts from one patient and a healthy donor, we performed immunofluorescence and endocytosis assays to examine the endosomal, cytoskeletal, and ciliary cellular phenotypes. We found notable abnormalities in endosomal trafficking and endosome recycling pathways. We also observed changes in the actin cytoskeleton and cilia structural dynamics. We conclude that the function of KIAA1109 in humans may indeed overlap with the function of the Drosophila ortholog, resulting in perturbations to endosomal trafficking and the actin cytoskeleton. These alterations have ripple effects, altering many pathways that are critical for proper neuronal migration and embryonic development.
Collapse
|
36
|
Nygård Skalman L, Holst MR, Larsson E, Lundmark R. Plasma membrane damage caused by listeriolysin O is not repaired through endocytosis of the membrane pore. Biol Open 2018; 7:bio.035287. [PMID: 30254077 PMCID: PMC6215411 DOI: 10.1242/bio.035287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endocytic mechanisms have been suggested to be important for plasma membrane repair in response to pore-forming toxins such as listeriolysin O (LLO), which form membrane pores that disrupt cellular homeostasis. Yet, little is known about the specific role of distinct endocytic machineries in this process. Here, we have addressed the importance of key endocytic pathways and developed reporter systems for real-time imaging of the endocytic response to LLO pore formation. We found that loss of clathrin-independent endocytic pathways negatively influenced the efficiency of membrane repair. However, we did not detect any increased activity of these pathways, or co-localisation with the toxin or markers of membrane repair, suggesting that they were not directly involved in removal of LLO pores from the plasma membrane. In fact, markers of clathrin-independent carriers (CLICs) were rapidly disassembled in the acute phase of membrane damage due to Ca2+ influx, followed by a reassembly about 2 min after pore formation. We propose that these endocytic mechanisms might influence membrane repair by regulating the plasma membrane composition and tension, but not via direct internalisation of LLO pores.
Collapse
Affiliation(s)
- Lars Nygård Skalman
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden.,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| | - Mikkel R Holst
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - Elin Larsson
- Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| | - Richard Lundmark
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden .,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
37
|
Schoenherr C, Frame MC, Byron A. Trafficking of Adhesion and Growth Factor Receptors and Their Effector Kinases. Annu Rev Cell Dev Biol 2018; 34:29-58. [PMID: 30110558 DOI: 10.1146/annurev-cellbio-100617-062559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell adhesion to macromolecules in the microenvironment is essential for the development and maintenance of tissues, and its dysregulation can lead to a range of disease states, including inflammation, fibrosis, and cancer. The biomechanical and biochemical mechanisms that mediate cell adhesion rely on signaling by a range of effector proteins, including kinases and associated scaffolding proteins. The intracellular trafficking of these must be tightly controlled in space and time to enable effective cell adhesion and microenvironmental sensing and to integrate cell adhesion with, and compartmentalize it from, other cellular processes, such as gene transcription, protein degradation, and cell division. Delivery of adhesion receptors and signaling proteins from the plasma membrane to unanticipated subcellular locales is revealing novel biological functions. Here, we review the expected and unexpected trafficking, and sites of activity, of adhesion and growth factor receptors and intracellular kinase partners as we begin to appreciate the complexity and diversity of their spatial regulation.
Collapse
Affiliation(s)
- Christina Schoenherr
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| |
Collapse
|
38
|
Hemshekhar M, Choi KYG, Mookherjee N. Host Defense Peptide LL-37-Mediated Chemoattractant Properties, but Not Anti-Inflammatory Cytokine IL-1RA Production, Is Selectively Controlled by Cdc42 Rho GTPase via G Protein-Coupled Receptors and JNK Mitogen-Activated Protein Kinase. Front Immunol 2018; 9:1871. [PMID: 30158931 PMCID: PMC6104452 DOI: 10.3389/fimmu.2018.01871] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
The human host defense peptide LL-37 promotes immune activation such as induction of chemokine production and recruitment of leukocytes. Conversely, LL-37 also mediates anti-inflammatory responses such as production of anti-inflammatory cytokines, e.g., IL-1RA, and the control of pro-inflammatory cytokines, e.g., TNF. The mechanisms regulating these disparate immunomodulatory functions of LL-37 are not completely understood. Rho GTPases are GTP-binding proteins that promote fundamental immune functions such as chemokine production and recruitment of leukocytes. However, recent studies have shown that distinct Rho proteins can both negatively and positively regulate inflammation. Therefore, we interrogated the role of Rho GTPases in LL-37-mediated immunomodulation. We demonstrate that LL-37-induced production of chemokines, e.g., GRO-α and IL-8 is largely dependent on Cdc42/Rac1 Rho GTPase, but independent of the Ras pathway. In contrast, LL-37-induced production of the anti-inflammatory cytokine IL-1RA is not dependent on either Cdc42/Rac1 RhoGTPase or Ras GTPase. Functional studies confirmed that LL-37-induced recruitment of leukocytes (monocytes and neutrophils) is also dependent on Cdc42/Rac1 RhoGTPase activity. We demonstrate that Cdc42/Rac1-dependent bioactivity of LL-37 involves G-protein-coupled receptors (GPCR) and JNK mitogen-activated protein kinase (MAPK) signaling, but not p38 or ERK MAPK signaling. We further show that LL-37 specifically enhances the activity of Cdc42 Rho GTPase, and that the knockdown of Cdc42 suppresses LL-37-induced production of chemokines without altering the peptide's ability to induce IL-1RA. This is the first study to demonstrate the role of Rho GTPases in LL-37-mediated responses. We demonstrate that LL-37 facilitates chemokine production and leukocyte recruitment engaging Cdc42/Rac1 Rho GTPase via GPCR and the JNK MAPK pathway. In contrast, LL-37-mediated anti-inflammatory cytokine IL-1RA production is independent of either Rho or Ras GTPase. The results of this study suggest that Cdc42 Rho GTPase may be the molecular switch that controls the opposing functions of LL-37 in the process of inflammation.
Collapse
Affiliation(s)
- Mahadevappa Hemshekhar
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ka-Yee Grace Choi
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
39
|
IP 3R3 silencing induced actin cytoskeletal reorganization through ARHGAP18/RhoA/mDia1/FAK pathway in breast cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:945-958. [PMID: 29630900 DOI: 10.1016/j.bbamcr.2018.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Abstract
Cell morphology is altered in the migration process, and the underlying cytoskeleton remodeling is highly dependent of intracellular Ca2+ concentration. Many calcium channels are known to be involved in migration. Inositol 1,4,5-trisphosphate receptor (IP3R) was demonstrated to be implicated in breast cancer cells migration, but its involvement in morphological changes during the migration process remains unclear. In the present work, we showed that IP3R3 expression was correlated to cell morphology. IP3R3 silencing induced rounding shape and decreased adhesion in invasive breast cancer cell lines. Moreover, IP3R3 silencing decreased ARHGAP18 expression, RhoA activity, Cdc42 expression and Y861FAK phosphorylation. Interestingly, IP3R3 was able to regulate profilin remodeling, without inducing any myosin II reorganization. IP3R3 silencing revealed an oscillatory calcium signature, with a predominant oscillating profile occurring in early wound repair. To summarize, we demonstrated that IP3R3 is able to modulate intracellular Ca2+ availability and to coordinate the remodeling of profilin cytoskeleton organization through the ARHGAP18/RhoA/mDia1/FAK pathway.
Collapse
|
40
|
Venditti M, Fasano C, Santillo A, Aniello F, Minucci S. First evidence of DAAM1 localization in mouse seminal vesicles and its possible involvement during regulated exocytosis. C R Biol 2018; 341:228-234. [PMID: 29571963 DOI: 10.1016/j.crvi.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/26/2022]
Abstract
Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a protein belonging to the formin family, which regulates, together with the small GTPase RhoA, the nucleation and the assembly of actin fibres through Wnt-Dishevelled PCP pathway. Its role has been investigated in essential biological processes, such as cell polarity, movement and adhesion during morphogenesis and organogenesis. In this work, we studied the expression of DAAM1 mRNA and protein by PCR and Western blot analyses and its co-localization with actin in adult mouse seminal vesicles by immunofluorescence. We show that both proteins are cytoplasmic: actin is evident at cell-cell junctions and at cell cortex; DAAM1 had a more diffused localization, but is also prominent at the apical plasmatic membrane of epithelial cells. These findings support our hypothesis of a role of DAAM1 in cytoskeletal rearrangement that occurs during the exocytosis of secretory vesicles, and in particular concerning actin filaments. We were also able to detect DAAM1 and actin association in the smooth muscle cells that surround the epithelium too. In this case, we could only speculate the possible involvement of this formin in muscular cells in the maintenance and the regulation of the contractile structures. The present results strongly suggest that DAAM1 could have a pivotal role in vesicle exocytosis and in the physiology of mouse seminal vesicles.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate, Università degli studi della Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Napoli, Italy
| | - Chiara Fasano
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate, Università degli studi della Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Aniello
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate, Università degli studi della Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Napoli, Italy.
| |
Collapse
|
41
|
Wang H, Gu H, Feng J, Qian Y, Yang L, Jin F, Wang X, Chen J, Shi Y, Lu S, Zhao M, Liu Y. Celastrus orbiculatus extract suppresses the epithelial-mesenchymal transition by mediating cytoskeleton rearrangement via inhibition of the Cofilin 1 signaling pathway in human gastric cancer. Oncol Lett 2017; 14:2926-2932. [PMID: 28927046 PMCID: PMC5588110 DOI: 10.3892/ol.2017.6470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/21/2017] [Indexed: 12/17/2022] Open
Abstract
Celastrus orbiculatus is a traditional medicinal plant used in the anti-inflammatory and analgesic treatment of various diseases. A previous study demonstrated that ethyl acetate extract of C. orbiculatus (COE) exhibited significant antitumor effects. However, studies concerning the effects and mechanism of COE in terms of suppressing the epithelial-mesenchymal transition (EMT) in human gastric adenocarcinoma cells have not been performed at present. The present study hypothesized that COE may inhibit EMT in gastric adenocarcinoma cells by regulating cell cytoskeleton rearrangement. The effect of COE on the viability of AGS cells was detected by MTT assay. An EMT model was induced by transforming growth factor-β1. Cell cytoskeleton staining, laser scanning confocal microscopy and electronic microscopy were used to detect the changes in cell morphology and microstructure of gastric adenocarcinoma cells prior and subsequent to COE treatment. Invasion and migration assays were used to observe the effect of COE on the metastatic ability of AGS cells in vitro. The effect of COE on the expression of Cofilin 1 and EMT biomarkers, including Epithelial-cadherin, Neural-cadherin, Vimentin and matrix metalloproteinases, was examined by western blotting in AGS cells. The correlation between Cofilin 1 and EMT was investigated with immunofluorescence and cytoskeleton staining methods. The results demonstrated that COE may significantly inhibit the process of EMT in AGS cells, and that this was concentration-dependent. In addition, COE significantly downregulated the level of Cofilin 1 in a concentration-dependent manner. In conclusion, these results suggested that Cofilin 1 was directly involved in the process of EMT in AGS cells, and that it served an important function. COE may significantly inhibit EMT in AGS cells, potentially by inhibiting the activation of the Cofilin 1 signaling pathway. The present study may provide a basis for the development of novel anticancer drugs and the development of novel therapeutic strategies, targeting Cofilin 1 protein.
Collapse
Affiliation(s)
- Haibo Wang
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Hao Gu
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Jun Feng
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yayun Qian
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Lin Yang
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Feng Jin
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xuanyi Wang
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Jue Chen
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Youyang Shi
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Songhua Lu
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Min Zhao
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yanqing Liu
- Yangzhou Cancer Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,The Key Laboratory of Cancer Prevention and Treatment, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Medical and Pharmaceutical Institute, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
42
|
Johnson SM, Dempsey C, Parker C, Mironov A, Bradley H, Saha V. Acute lymphoblastic leukaemia cells produce large extracellular vesicles containing organelles and an active cytoskeleton. J Extracell Vesicles 2017; 6:1294339. [PMID: 28386390 PMCID: PMC5373679 DOI: 10.1080/20013078.2017.1294339] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles have been described in non-paracrine cellular interactions in cancer. We report a similar phenomenon in B-cell precursor (BCP) acute lymphoblastic leukaemia (ALL). Using advanced microscopy and high throughput screening, we further characterise a subset of large vesicles (LEVs) identified in cell lines, murine models of human BCP-ALL and clinical samples. Primary ALL blasts and cell lines released heterogeneous anucleate vesicles <6 micron into extracellular fluids. Larger LEVs were enclosed in continuous membranes, contained intact organelles and demonstrated an organised cytoskeleton. An excess of circulating CD19-positive LEVs were observed in diagnostic samples and isolated from mice engrafted with BCP-ALL primary cells. LEVs exhibited dynamic shape change in vitro and were internalised by other leukaemic cell lines leading to phenotypic transformation analogous to the cell of origin. In patient-derived xenografts, LEVs were released by primary ALL cells into extracellular spaces and internalised by murine mesenchymal cells in vivo. Collectively these data highlight the heterogeneity but accessibility of LEVs in clinical samples and their potential to provide a unique insight into the biology of the cell of origin and to their development as novel biomarkers to aid diagnosis and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Suzanne M Johnson
- Children's Cancer Group, Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , UK
| | - Clare Dempsey
- Children's Cancer Group, Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , UK
| | - Catriona Parker
- Children's Cancer Group, Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , UK
| | - Aleksandr Mironov
- Children's Cancer Group, Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , UK
| | - Helen Bradley
- Faculty of Biology, Medicine and Health, CRUK Manchester Institute, University of Manchester , Manchester , UK
| | - Vaskar Saha
- Children's Cancer Group, Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Tata Translational Cancer Research Centre, Tata Medical Center, Kolkata, India
| |
Collapse
|
43
|
Greene NDE, Leung KY, Copp AJ. Inositol, neural tube closure and the prevention of neural tube defects. Birth Defects Res 2017; 109:68-80. [PMID: 27324558 PMCID: PMC5353661 DOI: 10.1002/bdra.23533] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/24/2016] [Accepted: 05/08/2016] [Indexed: 12/29/2022]
Abstract
Susceptibility to neural tube defects (NTDs), such as anencephaly and spina bifida is influenced by genetic and environmental factors including maternal nutrition. Maternal periconceptional supplementation with folic acid significantly reduces the risk of an NTD-affected pregnancy, but does not prevent all NTDs, and "folic acid non-responsive" NTDs continue to occur. Similarly, among mouse models of NTDs, some are responsive to folic acid but others are not. Among nutritional factors, inositol deficiency causes cranial NTDs in mice while supplemental inositol prevents spinal and cranial NTDs in the curly tail (Grhl3 hypomorph) mouse, rodent models of hyperglycemia or induced diabetes, and in a folate-deficiency induced NTD model. NTDs also occur in mice lacking expression of certain inositol kinases. Inositol-containing phospholipids (phosphoinositides) and soluble inositol phosphates mediate a range of functions, including intracellular signaling, interaction with cytoskeletal proteins, and regulation of membrane identity in trafficking and cell division. Myo-inositol has been trialed in humans for a range of conditions and appears safe for use in human pregnancy. In pilot studies in Italy and the United Kingdom, women took inositol together with folic acid preconceptionally, after one or more previous NTD-affected pregnancies. In nonrandomized cohorts and a randomized double-blind study in the United Kingdom, no recurrent NTDs were observed among 52 pregnancies reported to date. Larger-scale fully powered trials are needed to determine whether supplementation with inositol and folic acid would more effectively prevent NTDs than folic acid alone. Birth Defects Research 109:68-80, 2017. © 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas D E Greene
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| | - Kit-Yi Leung
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
44
|
Zhang D, Jin N, Sun W, Li X, Liu B, Xie Z, Qu J, Xu J, Yang X, Su Y, Tang S, Han H, Chen D, Ding J, Tan M, Huang M, Geng M. Phosphoglycerate mutase 1 promotes cancer cell migration independent of its metabolic activity. Oncogene 2016; 36:2900-2909. [PMID: 27991922 DOI: 10.1038/onc.2016.446] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 12/28/2022]
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a glycolytic enzyme that coordinates glycolysis and biosynthesis to promote cancer growth via its metabolic activity. Here, we report the discovery of a non-metabolic function of PGAM1 in promoting cancer metastasis. A proteomic study identified α-smooth muscle actin (ACTA2) as a PGAM1-associated protein. PGAM1 modulated actin filaments assembly, cell motility and cancer cell migration via directly interacting with ACTA2, which was independent of its metabolic activity. The enzymatically inactive H186R mutant retained its association with ACTA2, whereas 201-210 amino acids deleted PGAM1 mutant lost the interaction with ACTA2 regardless of intact metabolic activity. Importantly, PGAM1 knockdown decreased metastatic potential of breast cancer cells in vivo and PGAM1 and ACTA2 were jointly associated with the prognosis of breast cancer patients. Together, this study provided the first evidence revealing a non-metabolic function of PGAM1 in promoting cell migration, and gained new insights into the role of PGAM1 in cancer progression.
Collapse
Affiliation(s)
- D Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - N Jin
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - W Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - X Li
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - B Liu
- The Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Z Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - J Qu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - J Xu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - X Yang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Y Su
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - S Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - H Han
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - D Chen
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - J Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - M Tan
- The Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - M Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - M Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
45
|
RalF-Mediated Activation of Arf6 Controls Rickettsia typhi Invasion by Co-Opting Phosphoinositol Metabolism. Infect Immun 2016; 84:3496-3506. [PMID: 27698019 PMCID: PMC5116726 DOI: 10.1128/iai.00638-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023] Open
Abstract
Rickettsiae are obligate intracellular pathogens that induce their uptake into nonphagocytic cells; however, the events instigating this process are incompletely understood. Importantly, diverse Rickettsia species are predicted to utilize divergent mechanisms to colonize host cells, as nearly all adhesins and effectors involved in host cell entry are differentially encoded in diverse Rickettsia species. One particular effector, RalF, a Sec7 domain-containing protein that functions as a guanine nucleotide exchange factor of ADP-ribosylation factors (Arfs), is critical for Rickettsia typhi (typhus group rickettsiae) entry but pseudogenized or absent from spotted fever group rickettsiae. Secreted early during R. typhi infection, RalF localizes to the host plasma membrane and interacts with host ADP-ribosylation factor 6 (Arf6). Herein, we demonstrate that RalF activates Arf6, a process reliant on a conserved Glu within the RalF Sec7 domain. Furthermore, Arf6 is activated early during infection, with GTP-bound Arf6 localized to the R. typhi entry foci. The regulation of phosphatidylinositol 4-phosphate 5-kinase (PIP5K), which generates PI(4,5)P2, by activated Arf6 is instrumental for bacterial entry, corresponding to the requirement of PI(4,5)P2 for R. typhi entry. PI(3,4,5)P3 is then synthesized at the entry foci, followed by the accumulation of PI(3)P on the short-lived vacuole. Inhibition of phosphoinositide 3-kinases, responsible for the synthesis of PI(3,4,5)P3 and PI(3)P, negatively affects R. typhi infection. Collectively, these results identify RalF as the first bacterial effector to directly activate Arf6, a process that initiates alterations in phosphoinositol metabolism critical for a lineage-specific Rickettsia entry mechanism.
Collapse
|
46
|
Yu J, Lin S, Wang M, Liang L, Zou Z, Zhou X, Wang M, Chen P, Wang Y. Metastasis suppressor 1 regulates neurite outgrowth in primary neuron cultures. Neuroscience 2016; 333:123-31. [DOI: 10.1016/j.neuroscience.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 10/25/2022]
|
47
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
48
|
Blume LC, Leone-Kabler S, Luessen DJ, Marrs GS, Lyons E, Bass CE, Chen R, Selley DE, Howlett AC. Cannabinoid receptor interacting protein suppresses agonist-driven CB 1 receptor internalization and regulates receptor replenishment in an agonist-biased manner. J Neurochem 2016; 139:396-407. [PMID: 27513693 DOI: 10.1111/jnc.13767] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/09/2016] [Accepted: 08/03/2016] [Indexed: 01/30/2023]
Abstract
Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1 R) distal C-terminus-associated protein that modulates CB1 R signaling via G proteins, and CB1 R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1 R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB1 Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1 R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown clones to investigate gene dose effects of CRIP1a on CB1 R plasma membrane expression. Results indicate that CP55940 or WIN55212-2 (10 nM, 5 min) reduced cell surface CB1 R by a dynamin- and clathrin-dependent process, and this was attenuated by CRIP1a over-expression. CP55940-mediated cell surface CB1 R loss was followed by a cycloheximide-sensitive recovery of surface receptors (30-120 min), suggesting the requirement for new protein synthesis. In contrast, WIN55212-2-mediated cell surface CB1 Rs recovered only in CRIP1a knockdown cells. Changes in CRIP1a expression levels did not affect a transient rimonabant (10 nM)-mediated increase in cell surface CB1 Rs, which is postulated to be as a result of rimonabant effects on 'non-agonist-driven' internalization. These studies demonstrate a novel role for CRIP1a in agonist-driven CB1 R cell surface regulation postulated to occur by two mechanisms: 1) attenuating internalization that is agonist-mediated, but not that in the absence of exogenous agonists, and 2) biased agonist-dependent trafficking of de novo synthesized receptor to the cell surface.
Collapse
Affiliation(s)
- Lawrence C Blume
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Deborah J Luessen
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Glen S Marrs
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA.,Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Erica Lyons
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Caroline E Bass
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA. .,Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina, USA.
| |
Collapse
|
49
|
Shibata S, Kawanai T, Hara T, Yamamoto A, Chaya T, Tokuhara Y, Tsuji C, Sakai M, Tachibana T, Inagaki S. ARHGEF10 directs the localization of Rab8 to Rab6-positive executive vesicles. J Cell Sci 2016; 129:3620-3634. [PMID: 27550519 DOI: 10.1242/jcs.186817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
The function of ARHGEF10, a known guanine nucleotide exchange factor (GEF) for RhoA with proposed roles in various diseases, is poorly understood. To understand the precise function of this protein, we raised a monoclonal antibody against ARHGEF10 and determined its localization in HeLa cells. ARHGEF10 was found to localize to vesicles containing Rab6 (of which there are three isoforms, Rab6a, Rab6b and Rab6c), Rab8 (of which there are two isoforms, Rab8a and Rab8b), and/or the secretion marker neuropeptide Y (NPY)-Venus in a Rab6-dependent manner. These vesicles were known to originate from the Golgi and contain secreted or membrane proteins. Ectopic expression of an N-terminal-truncated ARHGEF10 mutant led to the generation of large vesicle-like structures containing both Rab6 and Rab8. Additionally, small interfering (si)RNA-mediated knockdown of ARHGEF10 impaired the localization of Rab8 to these exocytotic vesicles. Furthermore, the invasiveness of MDA-MB231 cells was markedly decreased by knockdown of ARHGEF10, as well as of Rab8. From these results, we propose that ARHGEF10 acts in exocytosis and tumor invasion in a Rab8-dependent manner.
Collapse
Affiliation(s)
- Satoshi Shibata
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tsubasa Kawanai
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takayuki Hara
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Asuka Yamamoto
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taro Chaya
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yasunori Tokuhara
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Chinami Tsuji
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Manabu Sakai
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Abstract
Most functions of eukaryotic cells are controlled by cellular membranes, which are not static entities but undergo frequent budding, fission, fusion, and sculpting reactions collectively referred to as membrane dynamics. Consequently, regulation of membrane dynamics is crucial for cellular functions. A key mechanism in such regulation is the reversible recruitment of cytosolic proteins or protein complexes to specific membranes at specific time points. To a large extent this recruitment is orchestrated by phosphorylated derivatives of the membrane lipid phosphatidylinositol, known as phosphoinositides. The seven phosphoinositides found in nature localize to distinct membrane domains and recruit distinct effectors, thereby contributing strongly to the maintenance of membrane identity. Many of the phosphoinositide effectors are proteins that control membrane dynamics, and in this review we discuss the functions of phosphoinositides in membrane dynamics during exocytosis, endocytosis, autophagy, cell division, cell migration, and epithelial cell polarity, with emphasis on protein effectors that are recruited by specific phosphoinositides during these processes.
Collapse
Affiliation(s)
- Kay O Schink
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Kia-Wee Tan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway.,Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|