1
|
Ghanbari Z, Makhdoumi A. In vitro photodynamic therapy of Candida albicans, the cause of vulvovaginal candidiasis, is enhanced by Bacillus and Enterococcus probiotics. Photodiagnosis Photodyn Ther 2025; 51:104483. [PMID: 39818406 DOI: 10.1016/j.pdpdt.2025.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Candida albicans is the primary cause of vulvovaginal candidiasis, a worldwide health concern for women. The use of supplemental methods, such as antimicrobial photodynamic therapy (aPDT) and probiotics, was promoted by the ineffectiveness of the existing antifungal drugs. METHODS This study examines the combined effects of probiotics (Bacillus and Enterococcus isolated from the fermented pickles) and PDT (using red laser (655 nm, 18 J/cm2) as a light source and methylene blue dye (30 mg/mL) as a photosensitizer) on the in vitro virulence activity of C. albicans including growth, biofilm formation, antifungal resistance, biofilm elimination, and biofilm dispersion. RESULTS The probiotic strains demonstrated a higher resistance to PDT compared to the fungal cell. Bacillus and Enterococcus enhanced the antifungal effects of PDT on planktonic Candida cells in both pre-PDT and post-PDT interactions. The inhibition of biofilm formation by PDT was improved upon interaction with Bacillus (70 %) and Enterococcus (58 %). The eradication of Candida biofilm using PDT was increased after a combination with Bacillus (67 %) and Enterococcus (46 %). The nystatin resistance of the fungal biofilm following PDT treatment was decreased from (µg/ml) 25 to 6.25 due to the interaction with both probiotic strains. Fungal cell dispersion from the biofilm after PDT treatment diminished by 18 % and 25 % in the presence of Bacillus and Enterococcus strains. Galleria mellonella mortality was significantly changed following the PDT of the fungi/probiotic-injected larvae. CONCLUSIONS This synergistic activity suggests the use of probiotics/PDT as a supplemental treatment for vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Zeinab Ghanbari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Makhdoumi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
2
|
Thompson Iii GR, Chastain DB, Ferraz C, Alhayek S, Salinas JL, Sillau S, Stenehjem EA, Henao-Martínez AF. Mortality patterns in candidemia: Insights from a multispecies analysis using a global research network. Med Mycol 2024; 63:myae122. [PMID: 39694690 DOI: 10.1093/mmy/myae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024] Open
Abstract
Understanding the impact of different Candida species on patient outcomes is crucial for effective management and treatment strategies. This study aims to comprehensively analyze the association between Candida species and mortality in documented candidemia. We queried TriNetX, a global research network database, to identify patients diagnosed with candidemia through polymerase chain reaction from 2020 to 2023. The primary outcome was mortality in candidemia patients, categorized by Candida species at 90 days and 1 year. The time to death was assessed using Kaplan-Meier plots. Cox proportional hazard (PH) models were also used for comparative analysis, unadjusted and adjusted for demographic and comorbidity covariates. We captured 1234 candidemia episodes during the study period. The 90-day and 1-year mortality rates for the various Candida species were as follows: C. tropicalis (33.9% and 35.6%), C. glabrata (28.3% and 34%), multispecies (27.7% and 36.4%), C. parapsilosis (25.8% and 31.8%), C. krusei (21.4% and 28.6%), C. albicans (21.1% and 23.9%), and C. auris (13.3% and 15.9%). The unadjusted Kaplan-Meier Survival analysis showed that multispecies candidemia, followed by C. tropicalis, had the lowest survival. The adjusted multivariable Cox PH model found that C.albicans, C. glabrata, C. parapsilosis, C. tropicalis, and multispecies candidemia had significantly higher mortality rates than C. auris. Age and a higher Charlson comorbidity index value emerged as independent predictors of increased mortality. Among patients with candidemia, we found an overall 1-year mortality of 28%. Multispecies candidemia, C. tropicalis, older age, and a higher comorbidity burden were associated with the highest mortality rates.
Collapse
Affiliation(s)
| | - Daniel B Chastain
- Department of Clinical and Administrative Pharmacy, UGA College of Pharmacy, Albany, Georgia, USA
| | - Carolina Ferraz
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Soubhi Alhayek
- University of California-Davis Medical Center, Sacramento, California, USA
| | - Jorge L Salinas
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Stefan Sillau
- Department of Neurology and Biostatistics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Edward A Stenehjem
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrés F Henao-Martínez
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Campbell JS, Pearce JC, Bebes A, Pradhan A, Yuecel R, Brown AJP, Wakefield JG. Characterising phagocytes and measuring phagocytosis from live Galleria mellonella larvae. Virulence 2024; 15:2313413. [PMID: 38357909 PMCID: PMC10877982 DOI: 10.1080/21505594.2024.2313413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Over the last 20 years, the larva of the greater waxmoth, Galleria mellonella, has rapidly increased in popularity as an in vivo mammalian replacement model organism for the study of human pathogens. Experimental readouts of response to infection are most often limited to observing the melanization cascade and quantifying larval death and, whilst transcriptomic and proteomic approaches, and methods to determine microbial load are also used, a more comprehensive toolkit of profiling infection over time could transform the applicability of this model. As an invertebrate, Galleria harbour an innate immune system comprised of both humoral components and a repertoire of innate immune cells - termed haemocytes. Although information on subtypes of haemocytes exists, there are conflicting reports on their exact number and function. Flow cytometry has previously been used to assay Galleria haemocytes, but protocols include both centrifugation and fixation - physical methods which have the potential to affect haemocyte morphology prior to analysis. Here, we present a method for live haemocyte analysis by flow cytometry, revealing that Galleria haemocytes constitute only a single resolvable population, based on relative size or internal complexity. Using fluorescent zymosan particles, we extend our method to show that up to 80% of the Galleria haemocyte population display phagocytic capability. Finally, we demonstrate that the developed assay reliably replicates in vitro data, showing that cell wall β-1,3-glucan masking by Candida albicans subverts phagocytic responses. As such, our method provides a new tool with which to rapidly assess phagocytosis and understand live infection dynamics in Galleria.
Collapse
Affiliation(s)
| | | | - Attila Bebes
- Exeter Centre for Cytomics, Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, UK
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Raif Yuecel
- Exeter Centre for Cytomics, Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | |
Collapse
|
4
|
Del Olmo V, Gabaldón T. Hybrids unleashed: exploring the emergence and genomic insights of pathogenic yeast hybrids. Curr Opin Microbiol 2024; 80:102491. [PMID: 38833792 PMCID: PMC11358589 DOI: 10.1016/j.mib.2024.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Hybridisation is the crossing of two divergent lineages that give rise to offspring carrying an admixture of both parental genomes. Genome sequencing has revealed that this process is common in the Saccharomycotina, where a growing number of hybrid strains or species, including many pathogenic ones, have been recently described. Hybrids can display unique traits that may drive adaptation to new niches, and some pathogenic hybrids have been shown to have higher prevalence over their parents in human and environmental niches, suggesting a higher fitness and potential to colonise humans. Here, we discuss how hybridisation and its genomic and phenotypic outcomes can shape the evolution of fungal species and may play a role in the emergence of new pathogens.
Collapse
Affiliation(s)
- Valentina Del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain; Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain; Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
5
|
Genç TT, Kaya S, Günay M, Çakaloğlu Ç. Humoral immune response of Galleria mellonella after mono- and co-injection with Hypericum perforatum extract and Candida albicans. APMIS 2024; 132:358-370. [PMID: 38344892 DOI: 10.1111/apm.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 04/16/2024]
Abstract
Galleria mellonella is used as a model organism to study the innate immune response of insects. In this study, the humoral immune response was assessed by examining phenoloxidase activity, fungal burden, and the expression of phenoloxidase and antimicrobial peptide genes at different time point following separate and combined injections of Hypericum perforatum extract and a nonlethal dose of Candida albicans. The administration of a plant extract at low doses increased phenoloxidase activity, while higher doses had no effect. Similarly, co-injection of a low dose of the extract with the pathogen allowed half of the yeast cells to survive after 24 h. Co-injection of plant extract with the pathogen decreased the phenoloxidase activity at the end of 4 h compared to C. albicans mono-injection. The phenoloxidase gene expressions was reduced in all experimental conditions with respect to the control. When plant extracts and the pathogen were administered together, gallerimycin and hemolin gene expressions were considerably higher compared to mono-injections of plant extracts and the pathogen. The results of this study reveal that gene activation and regulatory mechanisms may change for each immune gene, and that recognition and signaling pathways may differ depending on the involved immunoregulator.
Collapse
Affiliation(s)
- Tülay Turgut Genç
- Department of Biology, Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serhat Kaya
- Department of Biology, Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Melih Günay
- Graduate School of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Çağla Çakaloğlu
- Graduate School of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
6
|
Gómez-Gaviria M, García-Carnero LC, Baruch-Martínez DA, Mora-Montes HM. The Emerging Pathogen Candida metapsilosis: Biological Aspects, Virulence Factors, Diagnosis, and Treatment. Infect Drug Resist 2024; 17:171-185. [PMID: 38268929 PMCID: PMC10807450 DOI: 10.2147/idr.s448213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Fungal infections represent a constant and growing menace to public health. This concern is due to the emergence of new fungal species and the increase in antifungal drug resistance. Mycoses caused by Candida species are among the most common nosocomial infections and are associated with high mortality rates when the infection affects deep-seated organs. Candida metapsilosis is part of the Candida parapsilosis complex and has been described as part of the oral microbiota of healthy individuals. Within the complex, this species is considered the least virulent; however, the prevalence has been increasing in recent years, as well as an increment in the resistance to some antifungal drugs. One of the main concerns of candidiasis caused by this species is the wide range of clinical manifestations, ranging from tissue colonization to superficial infections, and in more severe cases it can spread, which makes diagnosis and treatment difficult. The study of virulence factors of this species is limited, however, proteomic comparisons between species indicate that virulence factors in this species could be similar to those already described for C. albicans. However, differences may exist, taking into account changes in the lifestyle of the species. Here, we provide a detailed review of the current literature about this organism, the caused disease, and some sharing aspects with other members of the complex, focusing on its biology, virulence factors, the host-fungus interaction, the identification, diagnosis, and treatment of infection.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Dario A Baruch-Martínez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto., México
| |
Collapse
|
7
|
Arévalo-Jaimes BV, Admella J, Blanco-Cabra N, Torrents E. Culture media influences Candida parapsilosis growth, susceptibility, and virulence. Front Cell Infect Microbiol 2023; 13:1323619. [PMID: 38156315 PMCID: PMC10753817 DOI: 10.3389/fcimb.2023.1323619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Candida parapsilosis, a pathogenic yeast associated with systemic infections, exhibits metabolic adaptability in response to nutrient availability. Methods We investigated the impact of RPMI glucose supplemented (RPMId), TSB, BHI and YPD media on C. parapsilosis growth, morphology, susceptibility (caspofungin and amphotericin B), and in vivo virulence (Galleria mellonella) in planktonic and biofilm states. Results High-glucose media favors growth but hinders metabolic activity and filamentation. Media promoting carbohydrate production reduces biofilm susceptibility. Virulence differences between planktonic cells and biofilm suspensions from the same media shows that biofilm-related factors influence infection outcome depending on nutrient availability. Pseudohyphal growth occurred in biofilms under low oxygen and shear stress, but its presence is not exclusively correlated with virulence. Discussion This study provides valuable insights into the intricate interplay between nutrient availability and C. parapsilosis pathogenicity. It emphasizes the importance of considering pathogen behavior in diverse conditions when designing research protocols and therapeutic strategies.
Collapse
Affiliation(s)
- Betsy V. Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Byun JH, Won EJ, Cho HW, Kim D, Lee H, Kim SH, Choi MJ, Byun SA, Lee GY, Kee SJ, Kim TY, Kim MN, Choi JY, Yong D, Shin JH. Detection and Characterization of Two Phenotypes of Candida parapsilosis in South Korea: Clinical Features and Microbiological Findings. Microbiol Spectr 2023; 11:e0006623. [PMID: 37154762 PMCID: PMC10269542 DOI: 10.1128/spectrum.00066-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/16/2023] [Indexed: 05/10/2023] Open
Abstract
We newly detected two (sinking and floating) phenotypes of Candida parapsilosis among bloodstream infection (BSI) isolates from Korean hospitals and assessed their microbiological and clinical characteristics. During the performance of a Clinical and Laboratory Standards Institute (CLSI) broth microdilution antifungal susceptibility testing, the sinking phenotype had a characteristic smaller button-like appearance because all yeast cells sank to the bottoms of the CLSI U-shaped round-bottom wells, whereas the floating phenotype comprised dispersed cells. Phenotypic analysis, antifungal susceptibility testing, ERG11 sequencing, microsatellite genotyping, and clinical analysis were performed on C. parapsilosis isolates from 197 patients with BSI at a university hospital during 2006 to 2018. The sinking phenotype was detected in 86.7% (65/75) of the fluconazole-nonsusceptible (FNS) isolates, 92.9% (65/70) of the isolates harboring the Y132F ERG11 gene substitution, and 49.7% (98/197) of all isolates. Clonality was more frequently observed for the Y132F-sinking isolates (84.6% [55/65]) than for all other isolates (26.5% [35/132]; P < 0.0001). Annual incidence of Y132F-sinking isolates increased 4.5-fold after 2014, and two dominant genotypes, persistently recovered for 6 and 10 years, accounted for 69.2% of all Y132F-sinking isolates. Azole breakthrough fungemia (odds ratio [OR], 6.540), admission to the intensive care unit (OR, 5.044), and urinary catheter placement (OR, 6.918) were independent risk factors for BSIs with Y132F-sinking isolates. The Y132F-sinking isolates exhibited fewer pseudohyphae, a higher chitin content, and lower virulence in the Galleria mellonella model than the floating isolates. These long-term results illustrate the increasing BSIs caused by clonal transmission of the Y132F-sinking isolates of C. parapsilosis. IMPORTANCE We believe that this is the first study describe the microbiological and molecular characteristics of bloodstream isolates of C. parapsilosis in Korea exhibiting two phenotypes (sinking and floating). An important aspect of our findings is that the sinking phenotype was observed predominantly in isolates harboring a Y132F substitution in the ERG11 gene (92.9%), fluconazole-nonsusceptible (FNS) isolates (86.7%), and clonal BSI isolates (74.4%) of C. parapsilosis. Although the increase in the prevalence of FNS C. parapsilosis isolates has been a major threat in developing countries, in which the vast majority of candidemia cases are treated with fluconazole, our long-term results show increasing numbers of BSIs caused by clonal transmission of Y132F-sinking isolates of C. parapsilosis in the period with an increased echinocandin use for candidemia treatment in Korea, which suggests that C. parapsilosis isolates with the sinking phenotype continue to be a nosocomial threat in the era of echinocandin therapy.
Collapse
Affiliation(s)
- Jung-Hyun Byun
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hae Weon Cho
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Myongji Hospital, Goyang, South Korea
| | - Daewon Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Hyun Kim
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Min Ji Choi
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Seung A. Byun
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Ga Yeong Lee
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jun Yong Choi
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
9
|
Lim HJ, Choi MJ, Byun SA, Won EJ, Park JH, Choi YJ, Choi HJ, Choi HW, Kee SJ, Kim SH, Shin MG, Lee SY, Kim MN, Shin JH. Whole-Genome Sequence Analysis of Candida glabrata Isolates from a Patient with Persistent Fungemia and Determination of the Molecular Mechanisms of Multidrug Resistance. J Fungi (Basel) 2023; 9:jof9050515. [PMID: 37233226 DOI: 10.3390/jof9050515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Whole-genome sequencing (WGS) was used to determine the molecular mechanisms of multidrug resistance for 10 serial Candida glabrata bloodstream isolates obtained from a neutropenic patient during 82 days of amphotericin B (AMB) or echinocandin therapy. For WGS, a library was prepared and sequenced using a Nextera DNA Flex Kit (Illumina) and the MiseqDx (Illumina) instrument. All isolates harbored the same Msh2p substitution, V239L, associated with multilocus sequence type 7 and a Pdr1p substitution, L825P, that caused azole resistance. Of six isolates with increased AMB MICs (≥2 mg/L), three harboring the Erg6p A158fs mutation had AMB MICs ≥ 8 mg/L, and three harboring the Erg6p R314K, Erg3p G236D, or Erg3p F226fs mutation had AMB MICs of 2-3 mg/L. Four isolates harboring the Erg6p A158fs or R314K mutation had fluconazole MICs of 4-8 mg/L while the remaining six had fluconazole MICs ≥ 256 mg/L. Two isolates with micafungin MICs > 8 mg/L harbored Fks2p (I661_L662insF) and Fks1p (C499fs) mutations, while six isolates with micafungin MICs of 0.25-2 mg/L harbored an Fks2p K1357E substitution. Using WGS, we detected novel mechanisms of AMB and echinocandin resistance; we explored mechanisms that may explain the complex relationship between AMB and azole resistance.
Collapse
Affiliation(s)
- Ha Jin Lim
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Min Ji Choi
- Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Seung A Byun
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Joo Heon Park
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Yong Jun Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Hyun-Jung Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Hyun-Woo Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Soo Hyun Kim
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Seung Yeob Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
10
|
Aboutalebian S, Charsizadeh A, Eshaghi H, Nikmaesh B, Mirhendi H. A case of Candida metapsilosis conjunctivitis in a neonate admitted to the cardiac heart intensive care unit. Clin Case Rep 2023; 11:e6870. [PMID: 36703771 PMCID: PMC9869643 DOI: 10.1002/ccr3.6870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023] Open
Abstract
Harmless commensal Candida species, especially uncommon and rare ones may rarely cause a serious infection. Candida metapsilosis is a recently described yeast that is phenotypically indistinguishable from Candida parapsilosis and molecular methods are essential for its identification. We report the first case of Candida conjunctivitis due to C. metapsilosis obtained from the eye discharge of a 40-day-old girl with congenital heart disease admitted to the cardiac intensive care unit (CICU). The yeast isolate was identified by sequencing the entire ITS1-5.8 rRNA-ITS2 region. Antifungal susceptibility testing performed according to the CLSI M27-A3 showed that the isolate was susceptible to amphotericin B, fluconazole, itraconazole, voriconazole, clotrimazole, nystatin, terbinafine, 5-fluorocytosine, and caspofungin. Differentiation of the fungal new species allows us the accurate diagnosis and treatment, and a better understanding the microbial epidemiology.
Collapse
Affiliation(s)
- Shima Aboutalebian
- Department of Parasitology and Mycology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
- Mycology Reference Laboratory, Research Core Facilities LaboratoryIsfahan University of Medical SciencesIsfahanIran
| | - Arezoo Charsizadeh
- Immunology, Asthma, and Allergy Research InstituteTehran University of Medical SciencesTehranIran
| | - Hamid Eshaghi
- Department of Infectious DiseaseTehran University of Medical SciencesTehranIran
| | - Bahram Nikmaesh
- Department of Medical Laboratory ScienceSchool of Allied Medical Science, Tehran University of Medical ScienceTehranIran
- Zoonoses Research CentreTehran University of Medical SciencesTehranIran
| | - Hossein Mirhendi
- Department of Parasitology and Mycology, School of MedicineIsfahan University of Medical SciencesIsfahanIran
- Mycology Reference Laboratory, Research Core Facilities LaboratoryIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
11
|
Garcia-Bustos V, Pemán J, Ruiz-Gaitán A, Cabañero-Navalon MD, Cabanilles-Boronat A, Fernández-Calduch M, Marcilla-Barreda L, Sigona-Giangreco IA, Salavert M, Tormo-Mas MÁ, Ruiz-Saurí A. Host-pathogen interactions upon Candida auris infection: fungal behaviour and immune response in Galleria mellonella. Emerg Microbes Infect 2022; 11:136-146. [PMID: 34890523 PMCID: PMC8725852 DOI: 10.1080/22221751.2021.2017756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Candida auris has globally emerged as a multidrug-resistant fungus linked to healthcare-associated outbreaks. There is still limited evidence on its virulence, pathogenicity determinants, and complex host-pathogen interactions. This study analyzes the in vivo fungal behaviour, immune response, and host-pathogen interactions upon C. auris infection compared to C. albicans and C. parapsilosis in G. mellonella. This was performed by immunolabelling fungal structures and larval plasmatocytes and using a quantitative approach incorporating bioinformatic morphometric techniques into the study of microbial pathogenesis. C. auris presents a remarkably higher immunogenic activity than expected at its moderate degree of tissue invasion. It induces a greater inflammatory response than C. albicans and C. parapsilosis at the expense of plasmatocyte nodule formation, especially in non-aggregative strains. It specifically invades the larval respiratory system, in a pattern not previously observed in other Candida species, and presents inter-phenotypic tissue tropism differences. C. auris filaments in vivo less frequently than C. albicans or C. parapsilosis mostly through pseudohyphal growth. Filamentation might not be a major pathogenic determinant in C. auris, as less virulent aggregative phenotypes form pseudohyphae to a greater extent. C. auris has important both interspecific and intraspecific virulence and phenotype heterogeneity, with aggregative phenotypes of C. auris sharing characteristics with low pathogenic species such as C. parapsilosis. Our work suggests that C. auris owns an important morphogenetic plasticity that distinguishes it from other yeasts of the genus. Routine phenotypic identification of aggregative or non-aggregative phenotypes should be performed in the clinical setting as it may impact patient management.
Collapse
Affiliation(s)
- Victor Garcia-Bustos
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Alba Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Marta Dafne Cabañero-Navalon
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Ana Cabanilles-Boronat
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - María Fernández-Calduch
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Lucía Marcilla-Barreda
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Ignacio A. Sigona-Giangreco
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Miguel Salavert
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
| | | | - Amparo Ruiz-Saurí
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
12
|
Piatek M, O'Beirne C, Beato Z, Tacke M, Kavanagh K. Exposure of Candida parapsilosis to the silver(I) compound SBC3 induces alterations in the proteome and reduced virulence. Metallomics 2022; 14:mfac046. [PMID: 35751649 PMCID: PMC9348618 DOI: 10.1093/mtomcs/mfac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/23/2022] [Indexed: 11/14/2022]
Abstract
The antimicrobial properties of silver have been exploited for many centuries and continue to gain interest in the fight against antimicrobial drug resistance. The broad-spectrum activity and low toxicity of silver have led to its incorporation into a wide range of novel antimicrobial agents, including N-heterocyclic carbene (NHC) complexes. The antimicrobial activity and in vivo efficacy of the NHC silver(I) acetate complex SBC3, derived from 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*), have previously been demonstrated, although the mode(s) of action of SBC3 remains to be fully elucidated. Label-free quantitative proteomics was applied to analyse changes in protein abundance in the pathogenic yeast Candida parapsilosis in response to SBC3 treatment. An increased abundance of proteins associated with detoxification and drug efflux were indicative of a cell stress response, whilst significant decreases in proteins required for protein and amino acid biosynthesis offer potential insight into the growth-inhibitory mechanisms of SBC3. Guided by the proteomic findings and the prolific biofilm and adherence capabilities of C. parapsilosis, our studies have shown the potential of SBC3 in reducing adherence to epithelial cells and biofilm formation and hence decrease fungal virulence.
Collapse
Affiliation(s)
- Magdalena Piatek
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Cillian O'Beirne
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Zoe Beato
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Matthias Tacke
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Kevin Kavanagh
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
13
|
Stevenson EM, Gaze WH, Gow NAR, Hart A, Schmidt W, Usher J, Warris A, Wilkinson H, Murray AK. Antifungal Exposure and Resistance Development: Defining Minimal Selective Antifungal Concentrations and Testing Methodologies. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:918717. [PMID: 37746188 PMCID: PMC10512330 DOI: 10.3389/ffunb.2022.918717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 09/26/2023]
Abstract
This scoping review aims to summarise the current understanding of selection for antifungal resistance (AFR) and to compare and contrast this with selection for antibacterial resistance, which has received more research attention. AFR is an emerging global threat to human health, associated with high mortality rates, absence of effective surveillance systems and with few alternative treatment options available. Clinical AFR is well documented, with additional settings increasingly being recognised to play a role in the evolution and spread of AFR. The environment, for example, harbours diverse fungal communities that are regularly exposed to antifungal micropollutants, potentially increasing AFR selection risk. The direct application of effect concentrations of azole fungicides to agricultural crops and the incomplete removal of pharmaceutical antifungals in wastewater treatment systems are of particular concern. Currently, environmental risk assessment (ERA) guidelines do not require assessment of antifungal agents in terms of their ability to drive AFR development, and there are no established experimental tools to determine antifungal selective concentrations. Without data to interpret the selective risk of antifungals, our ability to effectively inform safe environmental thresholds is severely limited. In this review, potential methods to generate antifungal selective concentration data are proposed, informed by approaches used to determine antibacterial minimal selective concentrations. Such data can be considered in the development of regulatory guidelines that aim to reduce selection for AFR.
Collapse
Affiliation(s)
- Emily M. Stevenson
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - William H. Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alwyn Hart
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Wiebke Schmidt
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Helen Wilkinson
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Aimee K. Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| |
Collapse
|
14
|
Silva SL, de Oliveira Pereira F, Cordeiro LV, Diniz Neto H, Dos Santos Maia M, da Silva Souza HD, de Athayde-Filho PF, Scotti MT, Scotti L, de Oliveira Lima E. Antifungal activity of 2-Chloro-N-phenylacetamide, docking and molecular dynamics studies against clinical isolates of Candida tropicalis and Candida parapsilosis. J Appl Microbiol 2022; 132:3601-3617. [PMID: 35179275 DOI: 10.1111/jam.15498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study evaluated the antifungal, antibiofilm, and molecular docking of 2-Chloro-N-phenylacetamide against clinical isolates of Candida tropicalis and Candida parapsilosis. METHODS AND RESULTS MIC of the test drugs was determined by microdilution. A1Cl obtained MIC values ranging from 16 and 256 μg/mL. Fluconazole MIC ranging from 16 and 512 μg/mL. MIC of A1Cl showed fungicide activity, emphasizing the solid antifungal potential of this drug. An association study was performed with A1Cl and fluconazole (checkerboard), revealing indifference by decreasing. Thus, we conducted this study using A1Cl isolated. In the micromorphological assay, the test drugs reduced the production of virulence structures compared to the control (concentration-dependent effect). A1Cl inhibited in vitro biofilm formation at all concentrations tested (1/4MIC to 8xMIC) (p<0.05) and reduced mature biofilm biomass (p<0.05) against C. tropicalis and C. parapsilosis. In the ex vivo biofilm susceptibility testing (human nails fragments), A1Cl inhibited biofilm formation and reduced mature biofilm biomass (p<0.05) more than 50% at MIC. Fluconazole had a similar effect at 4xMIC. In silico studies suggest that the mechanism of antifungal activity of A1Cl involves the inhibition of the enzyme dihydrofolate reductase rather than geranylgeranyltransferase-I. CONCLUSIONS The results suggest that A1Cl is a promising antifungal agent. Furthermore, this activity is related to attenuation of expression of virulence factors and antibiofilm effects against C. tropicalis and C. parapsilosis. SIGNIFICANCE AND IMPACT OF THE STUDY Our study provides the first evidence that A1Cl, a novel synthetic drug, has fungicidal effects against C. tropicalis and C. parapsilosis. Furthermore, in vitro and ex vivo biofilms assays have demonstrated the potential antibiofilm of A1Cl. The mechanism of action involves inhibiting the enzyme dihydrofolate reductase, which was supported by in silico analyses. Therefore, this potential can be explored as a therapeutic alternative for onychomycosis and, at the same time, contribute to decreasing the resistance of clinical isolates of C. tropicalis and C. parapsilosis.
Collapse
Affiliation(s)
- Shellygton Lima Silva
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Fillipe de Oliveira Pereira
- Biochemistry Laboratory, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | - Laisa Vilar Cordeiro
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Hermes Diniz Neto
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Mayara Dos Santos Maia
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Helivado Diogenes da Silva Souza
- Bioenergy and Organic Synthesis Research Laboratory, Department of Chemistry, University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Petrônio F de Athayde-Filho
- Bioenergy and Organic Synthesis Research Laboratory, Department of Chemistry, University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Edeltrudes de Oliveira Lima
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
15
|
Chen X, Wu J, Sun L, Nie J, Su S, Sun S. Antifungal Effects and Potential Mechanisms of Benserazide Hydrochloride Alone and in Combination with Fluconazole Against Candida albicans. Drug Des Devel Ther 2021; 15:4701-4711. [PMID: 34815665 PMCID: PMC8605804 DOI: 10.2147/dddt.s336667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose The resistance of C. albicans to traditional antifungal drugs brings a great challenge to clinical treatment. To overcome the resistance, developing antifungal agent sensitizers has attracted considerable attention. This study aimed to determine the anti-Candida activity of BEH alone or BEH–FLC combination and to explore the underlying mechanisms. Materials and Methods In vitro antifungal effects were performed by broth microdilution assay and XTT reduction assay. Infected Galleria mellonella larvae model was used to determine the antifungal effects in vivo. Probes Fluo-3/AM, FITC-VAD-FMK and rhodamine 6G were used to study the influence of BEH and FLC on intracellular calcium concentration, metacaspase activity and drug efflux of C. albicans. Results BEH alone exhibited obvious antifungal activities against C. albicans. BEH plus FLC not only showed synergistic effects against planktonic cells and preformed biofilms within 8 h but also enhanced the antifungal activity in infected G. mellonella larvae. Mechanistic studies indicated that antifungal effects of drugs might be associated with the increasement of calcium concentration, activation of metacaspase activity to reduce virulence and anti-biofilms, but were not related to drug efflux. Conclusion BEH alone or combined with FLC displayed potent antifungal activity both in vitro and in vivo, and the underlying mechanisms were related to reduced virulence factors.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China.,Department of Pharmacy, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, People's Republic of China
| | - Lei Sun
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, People's Republic of China
| | - Jing Nie
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, People's Republic of China
| | - Shan Su
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China.,Department of Pharmacy, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China.,Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, People's Republic of China
| |
Collapse
|
16
|
Hernando-Ortiz A, Eraso E, Quindós G, Mateo E. Candidiasis by Candida glabrata, Candida nivariensis and Candida bracarensis in Galleria mellonella: Virulence and Therapeutic Responses to Echinocandins. J Fungi (Basel) 2021; 7:jof7120998. [PMID: 34946981 PMCID: PMC8708380 DOI: 10.3390/jof7120998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is the major etiological agent of invasive candidiasis but the increasing prevalence of emerging species of Candida, such as Candida glabrata and phylogenetically closely related species, Candida nivariensis and Candida bracarensis, requires special attention. Differences in virulence among these species and their therapeutic responses using in vivo non-mammalian models are scarcely analysed. The aim of this study was analyse the survival of G. mellonella and host-pathogen interactions during infection by C. glabrata, C. nivariensis and C. bracarensis. Moreover, therapeutic responses to echinocandins were also assessed in the G. mellonella model of candidiasis. These three species produced lethal infection in G. mellonella; C. glabrata was the most virulent species and C. bracarensis the less. Haemocytes of G. mellonella phagocytised C. bracarensis cells more effectively than those of the other two species. Treatment with caspofungin and micafungin was most effective to protect larvae during C. glabrata and C. nivariensis infections while anidulafungin was during C. bracarensis infection. The model of candidiasis in G. mellonella is simple and appropriate to assess the virulence and therapeutic response of these emerging Candida species. Moreover, it successfully allows for detecting differences in the immune system of the host depending on the virulence of pathogens.
Collapse
|
17
|
Garcia-Bustos V, Cabanero-Navalon MD, Ruiz-Saurí A, Ruiz-Gaitán AC, Salavert M, Tormo MÁ, Pemán J. What Do We Know about Candida auris? State of the Art, Knowledge Gaps, and Future Directions. Microorganisms 2021; 9:2177. [PMID: 34683498 PMCID: PMC8538163 DOI: 10.3390/microorganisms9102177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Candida auris has unprecedently emerged as a multidrug resistant fungal pathogen, considered a serious global threat due to its potential to cause nosocomial outbreaks and deep-seated infections with staggering transmissibility and mortality, that has put health authorities and institutions worldwide in check for more than a decade now. Due to its unique features not observed in other yeasts, it has been categorised as an urgent threat by the Centers for Disease Control and Prevention and other international agencies. Moreover, epidemiological alerts have been released in view of the increase of healthcare-associated C. auris outbreaks in the context of the COVID-19 pandemic. This review summarises the current evidence on C. auris since its first description, from virulence to treatment and outbreak control, and highlights the knowledge gaps and future directions for research efforts.
Collapse
Affiliation(s)
- Victor Garcia-Bustos
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
| | - Marta D. Cabanero-Navalon
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
| | - Amparo Ruiz-Saurí
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
| | - Alba C. Ruiz-Gaitán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - Miguel Salavert
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, 56026 Valencia, Spain;
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - María Á. Tormo
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
| | - Javier Pemán
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (A.C.R.-G.); (M.Á.T.); (J.P.)
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| |
Collapse
|
18
|
Stączek S, Zdybicka-Barabas A, Wiater A, Pleszczyńska M, Cytryńska M. Activation of cellular immune response in insect model host Galleria mellonella by fungal α-1,3-glucan. Pathog Dis 2021; 78:6000214. [PMID: 33232457 PMCID: PMC7726367 DOI: 10.1093/femspd/ftaa062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Alpha-1,3-glucan, in addition to β-1,3-glucan, is an important polysaccharide component of fungal cell walls. It is reported for many fungal species, including human pathogenic genera: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, Histoplasma and Pneumocystis, plant pathogens, e.g. Magnaporthe oryzae and entomopathogens, e.g. Metarhizium acridum. In human and plant pathogenic fungi, α-1,3-glucan is considered as a shield for the β-1,3-glucan layer preventing recognition of the pathogen by the host. However, its role in induction of immune response is not clear. In the present study, the cellular immune response of the greater wax moth Galleria mellonella to Aspergillus niger α-1,3-glucan was investigated for the first time. The changes detected in the total hemocyte count (THC) and differential hemocyte count (DHC), formation of hemocyte aggregates and changes in apolipophorin III localization indicated activation of G. mellonella cellular mechanisms in response to immunization with A. niger α-1,3-glucan. Our results, which have clearly demonstrated the response of the insect immune system to this fungal cell wall component, will help in understanding the α-1,3-glucan role in immune response against fungal pathogens not only in insects but also in mammals, including humans.
Collapse
Affiliation(s)
- Sylwia Stączek
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Adrian Wiater
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Industrial and Environmental Microbiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Pleszczyńska
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Industrial and Environmental Microbiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Cytryńska
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
19
|
Wellham PAD, Hafeez A, Gregori A, Brock M, Kim DH, Chandler D, de Moor CH. Culture Degeneration Reduces Sex-Related Gene Expression, Alters Metabolite Production and Reduces Insect Pathogenic Response in Cordyceps militaris. Microorganisms 2021; 9:microorganisms9081559. [PMID: 34442638 PMCID: PMC8400478 DOI: 10.3390/microorganisms9081559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Cordyceps militaris is an entomopathogenic ascomycete, known primarily for infecting lepidopteran larval (caterpillars) and pupal hosts. Cordycepin, a secondary metabolite produced by this fungus has anti-inflammatory properties and other pharmacological activities. However, little is known about the biological role of this adenosine derivate and its stabilising compound pentostatin in the context of insect infection the life cycle of C. militaris. During repeated subcultivation under laboratory conditions a degeneration of C. militaris marked by decreasing levels of cordycepin production can occur. Here, using degenerated and parental control strains of an isolate of C. militaris, we found that lower cordycepin production coincides with the decline in the production of various other metabolites as well as the reduced expression of genes related to sexual development. Additionally, infection of Galleria mellonella (greater wax moth) caterpillars indicated that cordycepin inhibits the immune response in host haemocytes. Accordingly, the pathogenic response to the degenerated strain was reduced. These data indicate that there are simultaneous changes in sexual reproduction, secondary metabolite production, insect immunity and infection by C. militaris. This study may have implications for biological control of insect crop pests by fungi.
Collapse
Affiliation(s)
- Peter A. D. Wellham
- Gene Regulation and RNA Biology Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK; (P.A.D.W.); (A.H.)
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
- Fungal Genetics and Biology Group, School of Life Sciences, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Abdul Hafeez
- Gene Regulation and RNA Biology Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK; (P.A.D.W.); (A.H.)
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Andrej Gregori
- Mycomedica d.o.o., Podkoren 72, 4280 Kranjska Gora, Slovenia;
| | - Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - David Chandler
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick CV35 9EF, UK;
| | - Cornelia H. de Moor
- Gene Regulation and RNA Biology Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK; (P.A.D.W.); (A.H.)
- Correspondence:
| |
Collapse
|
20
|
Lyons N, Softley I, Balfour A, Williamson C, O'Brien HE, Shetty AC, Bruno VM, Diezmann S. Tobacco Hornworm ( Manduca sexta) caterpillars as a novel host model for the study of fungal virulence and drug efficacy. Virulence 2021; 11:1075-1089. [PMID: 32842847 PMCID: PMC7549948 DOI: 10.1080/21505594.2020.1806665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The two leading yeast pathogens of humans, Candida albicans and Cryptococcus neoformans, cause systemic infections in >1.4 million patients worldwide with mortality rates approaching 75%. It is thus imperative to study fungal virulence mechanisms, efficacy of antifungal drugs, and host response pathways. While this is commonly done in mammalian models, which are afflicted by ethical and practical concerns, invertebrate models, such as wax moth larvae and nematodes have been introduced over the last two decades. To complement existing invertebrate host models, we developed fifth instar caterpillars of the Tobacco Hornworm moth Manduca sexta as a novel host model. These caterpillars can be maintained at 37°C, are suitable for injections with defined amounts of yeast cells, and are susceptible to the most threatening yeast pathogens, including C. albicans, C. neoformans, C. auris, and C. glabrata. Importantly, fungal burden can be assessed daily throughout the course of infection in a single caterpillar’s feces and hemolymph. Infected caterpillars can be rescued by treatment with antifungal drugs. Notably, these animals are large enough for weight to provide a reliable and reproducible measure of fungal disease and to facilitate host tissue-specific expression analyses. M. sexta caterpillars combine a suite of parameters that make them suitable for the study of fungal virulence.
Collapse
Affiliation(s)
- Naomi Lyons
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University , Tel Aviv, Israel.,Department of Biology & Biochemistry, University of Bath , Bath, UK
| | - Isabel Softley
- Department of Biology & Biochemistry, University of Bath , Bath, UK
| | - Andrew Balfour
- Department of Biology & Biochemistry, University of Bath , Bath, UK
| | | | - Heath E O'Brien
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University , Cardiff, UK
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Stephanie Diezmann
- Department of Biology & Biochemistry, University of Bath , Bath, UK.,School of Cellular and Molecular Medicine, University of Bristol , Bristol, UK
| |
Collapse
|
21
|
Characterization of the Differential Pathogenicity of Candida auris in a Galleria mellonella Infection Model. Microbiol Spectr 2021; 9:e0001321. [PMID: 34106570 PMCID: PMC8552516 DOI: 10.1128/spectrum.00013-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Candida auris is an emergent multidrug-resistant fungal pathogen considered a severe global threat due to its capacity to cause nosocomial outbreaks and deep-seated infections with high transmissibility and mortality. However, evidence on its pathogenicity and the complex host-pathogen interactions is still limited. This study used the in vivo invertebrate model in Galleria mellonella to assess its virulence, exploring the mortality kinetics, melanization response, and morphological changes after fungal infection compared to Candida albicans and Candida parapsilosis, with known high and low pathogenicity, respectively. All C. auris isolates presented less virulence than C. albicans strains but higher than that induced by C. parapsilosis isolates. Increased pathogenicity was observed in nonaggregative phenotypes of C. auris, while the melanization response of the larvae to fungal infection was homogeneous and independent of the causing species. C. auris was able to filament in the in vivo animal model G. mellonella, with aggregative and nonaggregative phenotypes presenting various pseudohyphal formation degrees as pathogenicity determinants in a strain-dependent manner. Histological invasiveness of C. auris mimicked that observed for C. albicans, with effective dissemination since the early stages of infection both in yeast and filamented forms, except for a remarkable respiratory tropism not previously observed in other yeasts. These characteristics widely differ between strains and advocate the hypothesis that the morphogenetic variability of C. auris is an indicator of its flexibility and adaptability, contributing to its emergence and rising worldwide prevalence. IMPORTANCECandida auris is an emergent fungus that has become a global threat due to its multidrug resistance, mortality, and transmissibility. These unique features make it different from other Candida species, but we still do not fully know the degree of virulence and, especially, the host-pathogen interactions. In this in vivo insect model, we found that it presents an intermediate degree of virulence compared to known high- and low-virulence Candida species but with significant variability between aggregative and nonaggregative strains. Although it was previously considered unable to filament, we documented in vivo filamentation as an important pathogenic determinant. We also found that it is able to disseminate early through the host, invading both the circulatory system and many different tissues with a remarkable respiratory tropism not previously described for other yeasts. Our study provides new insights into the pathogenicity of an emergent fungal pathogen and its interaction with the host and supports the hypothesis that its morphogenetic variability contributes to its rising global prevalence.
Collapse
|
22
|
Azole Susceptibility Profiles of More than 9,000 Clinical Yeast Isolates Belonging to 40 Common and Rare Species. Antimicrob Agents Chemother 2021; 65:AAC.02615-20. [PMID: 33820766 DOI: 10.1128/aac.02615-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Invasive yeast infections represent a major global public health issue, and only few antifungal agents are available. Azoles are one of the classes of antifungals used for treatment of invasive candidiasis. The determination of antifungal susceptibility profiles using standardized methods is important to identify resistant isolates and to uncover the potential emergence of intrinsically resistant species. Here, we report data on 9,319 clinical isolates belonging to 40 pathogenic yeast species recovered in France over 17 years. The antifungal susceptibility profiles were all determined at the National Reference Center for Invasive Mycoses and Antifungals based on the EUCAST broth microdilution method. The centralized collection and analysis allowed us to describe the trends of azole susceptibility of isolates belonging to common species, confirming the high susceptibility for Candida albicans (n = 3,295), Candida tropicalis (n = 641), and Candida parapsilosis (n = 820) and decreased susceptibility for Candida glabrata (n = 1,274) and Pichia kudriavzevii (n = 343). These profiles also provide interesting data concerning azole susceptibility of Cryptococcus neoformans species complex, showing comparable MIC distributions for the three species but lower MIC50s and MIC90s for serotype D (n = 208) compared to serotype A (n = 949) and AD hybrids (n = 177). Finally, these data provide useful information for rare and/or emerging species, such as Clavispora lusitaniae (n = 221), Saprochaete clavata (n = 184), Meyerozyma guilliermondii complex (n = 150), Candida haemulonii complex (n = 87), Rhodotorula mucilaginosa (n = 55), and Wickerhamomyces anomalus (n = 36).
Collapse
|
23
|
Hernando-Ortiz A, Mateo E, Perez-Rodriguez A, de Groot PWJ, Quindós G, Eraso E. Virulence of Candida auris from different clinical origins in Caenorhabditis elegans and Galleria mellonella host models. Virulence 2021; 12:1063-1075. [PMID: 33843456 PMCID: PMC8043173 DOI: 10.1080/21505594.2021.1908765] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen responsible for nosocomial outbreaks of invasive candidiasis. Although several studies on the pathogenicity of this species have been reported, the knowledge on C. auris virulence is still limited. This study aims to analyze the pathogenicity of C. auris, using one aggregating isolate and eleven non-aggregating isolates from different clinical origins (blood, urine and oropharyngeal specimens) in two alternative host models of candidiasis: Caenorhabditis elegans and Galleria mellonella. Furthermore, possible associations between virulence, aggregation, biofilm-forming capacity, and clinical origin were assessed. The aggregating phenotype isolate was less virulent in both in vivo invertebrate infection models than non-aggregating isolates but showed higher capacity to form biofilms. Blood isolates were significantly more virulent than those isolated from urine and respiratory specimens in the G. mellonella model of candidiasis. We conclude that both models of candidiasis present pros and cons but prove useful to evaluate the virulence of C. auris in vivo. Both models also evidence the heterogeneity in virulence that this species can develop, which may be influenced by the aggregative phenotype and clinical origin.
Collapse
Affiliation(s)
- Ainara Hernando-Ortiz
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Aitzol Perez-Rodriguez
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Piet W J de Groot
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
24
|
F. Q. Smith D, Casadevall A. Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathog Dis 2021; 79:ftab013. [PMID: 33544836 PMCID: PMC7981337 DOI: 10.1093/femspd/ftab013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Scorzoni L, Alves de Paula e Silva AC, de Oliveira HC, Tavares dos Santos C, de Lacorte Singulani J, Akemi Assato P, Maria Marcos C, Teodoro Oliveira L, Ferreira Fregonezi N, Rossi DCP, Buffoni Roque da Silva L, Pelleschi Taborda C, Fusco-Almeida AM, Soares Mendes-Giannini MJ. In Vitro and In Vivo Effect of Peptides Derived from 14-3-3 Paracoccidioides spp. Protein. J Fungi (Basel) 2021; 7:jof7010052. [PMID: 33451062 PMCID: PMC7828505 DOI: 10.3390/jof7010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Paracoccidioidomycosis (PCM) is a chronic disease that causes sequelae and requires prolonged treatment; therefore, new therapeutic approaches are necessary. In view of this, three peptides from Paracoccidioides brasiliensis 14-3-3 protein were selected based on its immunogenicity and therapeutic potential. Methods: The in vitro antifungal activity and cytotoxicity of the 14-3-3 peptides were evaluated. The influence of the peptides in immunological and survival aspects was evaluated in vivo, using Galleria mellonella and the expression of antimicrobial peptide genes in Caenorhabditis elegans. Results: None of the peptides were toxic to HaCaT (skin keratinocyte), MRC-5 (lung fibroblast), and A549 (pneumocyte) cell lines, and only P1 exhibited antifungal activity against Paracoccidioides spp. The peptides could induce an immune response in G. mellonella. Moreover, the peptides caused a delay in the death of Paracoccidioides spp. infected larvae. Regarding C. elegans, the three peptides were able to increase the expression of the antimicrobial peptides. These peptides had essential effects on different aspects of Paracoccidioides spp. infection showing potential for a therapeutic vaccine. Future studies using mammalian methods are necessary to validate our findings.
Collapse
Affiliation(s)
- Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Ana Carolina Alves de Paula e Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Haroldo Cesar de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Claudia Tavares dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Junya de Lacorte Singulani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Patricia Akemi Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Caroline Maria Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Lariane Teodoro Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Nathália Ferreira Fregonezi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Diego Conrado Pereira Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Leandro Buffoni Roque da Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Maria José Soares Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
- Correspondence:
| |
Collapse
|
26
|
Guo J, Zhang M, Qiao D, Shen H, Wang L, Wang D, Li L, Liu Y, Lu H, Wang C, Ding H, Zhou S, Zhou W, Wei Y, Zhang H, Xi W, Zheng Y, Wang Y, Tang R, Zeng L, Xu H, Wu W. Prevalence and Antifungal Susceptibility of Candida parapsilosis Species Complex in Eastern China: A 15-Year Retrospective Study by ECIFIG. Front Microbiol 2021; 12:644000. [PMID: 33746933 PMCID: PMC7969513 DOI: 10.3389/fmicb.2021.644000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Candida parapsilosis complex is one of the most common non-albicans Candida species that cause candidemia, especially invasive candidiasis. The purpose of this study was to evaluate the antifungal susceptibilities of both colonized and invasive clinical C. parapsilosis complex isolates to 10 drugs: amphotericin (AMB), anidulafungin (AFG), caspofungin (CAS), micafungin (MFG), fluconazole (FLZ), voriconazole (VRZ), itraconazole (ITZ), posaconazole (POZ), 5-flucytosine (FCY), and isaconazole (ISA). In total, 884 C. parapsilosis species complex isolates were gathered between January 2005 and December 2020. C. parapsilosis, Candida metapsilosis, and Candida orthopsilosis accounted for 86.3, 8.1, and 5.5% of the cryptic species, respectively. The resistance/non-wild-type rate of bloodstream C. parapsilosis to the drugs was 3.5%, of C. metapsilosis to AFG and CAS was 7.7%, and of C. orthopsilosis to FLZ and VRZ was 15% and to CAS, MFG, and POZ was 5%. The geometric mean (GM) minimum inhibitory concentrations (MICs) of non-bloodstream C. parapsilosis for CAS (0.555 mg/L), MFG (0.853 mg/L), FLZ (0.816 mg/L), VRZ (0.017 mg/L), ITZ (0.076 mg/L), and POZ (0.042 mg/L) were significantly higher than those of bloodstream C. parapsilosis, for which the GM MICs were 0.464, 0.745, 0.704, 0.015, 0.061, and 0.033 mg/L, respectively (P < 0.05). The MIC distribution of the bloodstream C. parapsilosis strains collected from 2019 to 2020 for VRZ, POZ, and ITZ were 0.018, 0.040, and 0.073 mg/L, significantly higher than those from 2005 to 2018, which were 0.013, 0.028, and 0.052 mg/L (P < 0.05). Additionally, MIC distributions of C. parapsilosis with FLZ and the distributions of C. orthopsilosis with ITZ and POZ might be higher than those in Clinical and Laboratory Standards Institute studies. Furthermore, a total of 143 C. parapsilosis complex isolates showed great susceptibility to ISA. Overall, antifungal treatment of the non-bloodstream C. parapsilosis complex isolates should be managed and improved. The clinicians are suggested to pay more attention on azoles usage for the C. parapsilosis complex isolates. In addition, establishing the epidemiological cutoff values (ECVs) for azoles used in Eastern China may offer better guidance for clinical treatments. Although ISA acts on the same target as other azoles, it may be used as an alternative therapy for cases caused by FLZ- or VRZ-resistant C. parapsilosis complex strains.
Collapse
Affiliation(s)
- Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan Qiao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lili Wang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongjiang Wang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Liu
- Department of Laboratory Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Huaiwei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Chun Wang
- Department of Laboratory Medicine, Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ding
- Department of Laboratory Medicine, Lishui Municipal Central Hospital, Lishui, China
| | - Shuping Zhou
- Department of Laboratory Medicine, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yingjue Wei
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haomin Zhang
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xi
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yueling Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong Tang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Lingbing Zeng,
| | - Heping Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Heping Xu,
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Wenjuan Wu,
| |
Collapse
|
27
|
García-Carnero LC, Clavijo-Giraldo DM, Gómez-Gaviria M, Lozoya-Pérez NE, Tamez-Castrellón AK, López-Ramírez LA, Mora-Montes HM. Early Virulence Predictors during the Candida Species- Galleria mellonella Interaction. J Fungi (Basel) 2020; 6:jof6030152. [PMID: 32867152 PMCID: PMC7559698 DOI: 10.3390/jof6030152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
Fungal infections are a serious and increasing threat for human health, and one of the most frequent etiological agents for systemic mycoses is Candida spp. The gold standard to assess Candida virulence is the mouse model of systemic candidiasis, a restrictive, expensive, and time-consuming approach; therefore, invertebrate models have been proposed as alternatives. Galleria mellonella larvae have several traits that make them good candidates to study the fungal virulence. Here, we showed that a reduction in circulating hemocytes, increased melanin production, phenoloxidase, and lactate dehydrogenase activities were observed at 12 and 24 h postinoculation of highly virulent Candidatropicalis strains, while minimal changes in these parameters were observed in low-virulent strains. Similarly, the most virulent species Candida albicans, Candida tropicalis, Candida auris, Candida parapsilosis, and Candida orthopsilosis have led to significant changes in those parameters; while the low virulent species Candida guilliermondii, Candida krusei, and Candida metapsilosis induced modest variations in these immunological and cytotoxicity parameters. Since changes in circulating hemocytes, melanin production, phenoloxidase and lactate dehydrogenase activities showed a correlation with the larval median survival rates at 12 and 24 h postinoculation, we proposed them as candidates for early virulence predictors in G. mellonella.
Collapse
|
28
|
Fredericks LR, Lee MD, Roslund CR, Crabtree AM, Allen PB, Rowley PA. The design and implementation of restraint devices for the injection of pathogenic microorganisms into Galleria mellonella. PLoS One 2020; 15:e0230767. [PMID: 32730254 PMCID: PMC7392296 DOI: 10.1371/journal.pone.0230767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
The injection of laboratory animals with pathogenic microorganisms poses a significant safety risk because of the potential for injury by accidental needlestick. This is especially true for researchers using invertebrate models of disease due to the required precision and accuracy of the injection. The restraint of the greater wax moth larvae (Galleria mellonella) is often achieved by grasping a larva firmly between finger and thumb. Needle resistant gloves or forceps can be used to reduce the risk of a needlestick but can result in animal injury, a loss of throughput, and inconsistencies in experimental data. Restraint devices are commonly used for the manipulation of small mammals, and in this manuscript, we describe the construction of two devices that can be used to entrap and restrain G. mellonella larvae prior to injection with pathogenic microbes. These devices reduce the manual handling of larvae and provide an engineering control to protect against accidental needlestick injury while maintaining a high rate of injection.
Collapse
Affiliation(s)
- Lance R. Fredericks
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| | - Mark D. Lee
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| | - Cooper R. Roslund
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| | - Angela M. Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| | - Peter B. Allen
- Department of Chemistry, University of Idaho, Moscow, ID, United States of America
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- * E-mail:
| |
Collapse
|
29
|
Muñoz JE, Ramirez LM, Dias LDS, Rivas LA, Ramos LS, Santos ALS, Taborda CP, Parra-Giraldo CM. Pathogenicity Levels of Colombian Strains of Candida auris and Brazilian Strains of Candida haemulonii Species Complex in Both Murine and Galleria mellonella Experimental Models. J Fungi (Basel) 2020; 6:jof6030104. [PMID: 32664191 PMCID: PMC7558079 DOI: 10.3390/jof6030104] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023] Open
Abstract
Candida auris and Candida haemulonii complex (C. haemulonii, C. haemulonii var. vulnera and C. duobushaemulonii) are phylogenetically related species that share some physiological features and habits. In the present study, we compared the virulence of these yeast species using two different experimental models: (i) Galleria mellonella larvae to evaluate the survival rate, fungal burden, histopathology and phagocytosis index and (ii) BALB/c mice to evaluate the survival. In addition, the fungal capacity to form biofilm over an inert surface was analyzed. Our results showed that in both experimental models, the animal survival rate was lower when infected with C. auris strains than the C. haemulonii species complex. The hemocytes of G. mellonella showed a significantly reduced ability to phagocytize the most virulent strains forming the C. haemulonii species complex. Interestingly, for C. auris, it was impossible to measure the phagocytosis index due to a general lysis of the hemocytes. Moreover, it was observed a greater capability of biofilm formation by C. auris compared to C. haemulonii species complex. In conclusion, we observed that C. auris and C. haemulonii complex have different levels of pathogenicity in the experimental models employed in the present study.
Collapse
Affiliation(s)
- Julián E. Muñoz
- MICROS Group, Medicine Traslacional Institute, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, D.C. 111221, Colombia;
| | - Laura M. Ramirez
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C. 110231, Colombia; (L.M.R.); (L.A.R.)
| | - Lucas dos Santos Dias
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo, SP 05508-060, Brazil; (L.d.S.D.); (C.P.T.)
| | - Laura A. Rivas
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C. 110231, Colombia; (L.M.R.); (L.A.R.)
| | - Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.S.R.); (A.L.S.S.)
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.S.R.); (A.L.S.S.)
| | - Carlos P. Taborda
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo, SP 05508-060, Brazil; (L.d.S.D.); (C.P.T.)
- Laboratory of Medical Mycology-LIM53/IMTSP, University of São Paulo (USP), São Paulo, SP 05508-060, Brazil
| | - Claudia M. Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C. 110231, Colombia; (L.M.R.); (L.A.R.)
- Correspondence: ; Tel.: +57-1-3208320 (ext. 4305)
| |
Collapse
|
30
|
Marcos-Zambrano LJ, Bordallo-Cardona MÁ, Borghi E, Falleni M, Tosi D, Muñoz P, Escribano P, Guinea J. Candida isolates causing candidemia show different degrees of virulence in Galleria mellonella. Med Mycol 2020; 58:83-92. [PMID: 30874807 DOI: 10.1093/mmy/myz027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 01/22/2023] Open
Abstract
We aim to assess intra- and interspecies differences in the virulence of Candida spp. strains causing candidemia using the invertebrate Galleria mellonella model. We studied 739 Candida spp. isolates (C. albicans [n = 373], C. parapsilosis [n = 203], C. glabrata [n = 92], C. tropicalis [n = 53], and C. krusei [n = 18]) collected from patients with candidemia admitted to Gregorio Marañon Hospital (Madrid, Spain). Species-specific infecting inocula (yeast cells/larva) were adjusted (5 × 105 [C. albicans, and C. tropicalis], 2 × 106-5 × 106 [C. parapsilosis, C. glabrata, and C. krusei]) and used to infect 10 larvae per isolate; percentage of survival and median survival per isolate were calculated. According to the interquartile range of the median survival, isolates with a median survival under P25 were classified as of high-virulence and isolates with a median survival over P75 as of low virulence. The median survival of larvae infected with different species was variable: C. albicans (n = 2 days, IQR <1-3 days), C. tropicalis (n = 2 days, IQR 1.5-4 days), C. parapsilosis (n = 2 days, IQR 2-3.5 days), C. glabrata (n = 3 days, IQR 2-3 days), and C. krusei (n = 7 days, 6.5->8 days) (P < .001). Differences in virulence among species were validated by histological examination (day +1 post-infection) in the larvae infected by the isolates of each virulence category and species. Virulence-related gene expression in C. albicans isolates did not reach statistical significance. We report species-specific virulence patterns of Candida spp. and show that isolates within a given species have different degrees of virulence in the animal model.
Collapse
Affiliation(s)
- Laura Judith Marcos-Zambrano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Ángeles Bordallo-Cardona
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Elisa Borghi
- Laboratory of Microbiology, Department of Health Sciences. Università degli Studi di Milano, Milan, Italy
| | - Monica Falleni
- Division of Human Pathology, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Delfina Tosi
- Division of Human Pathology, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CD06/06/0058), Madrid, Spain.,Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias-CIBERES (CD06/06/0058), Madrid, Spain
| |
Collapse
|
31
|
Li Y, Yang J, Li X, Su S, Chen X, Sun S, Li Y. The effect of Ginkgolide B combined with fluconazole against drug-resistant Candida albicans based on common resistance mechanisms. Int J Antimicrob Agents 2020; 56:106030. [PMID: 32454072 DOI: 10.1016/j.ijantimicag.2020.106030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023]
Abstract
The number of invasive fungal infections has increased dramatically over recent years, leading to high morbidity and mortality of immunocompromised patients. Candida albicans is the most common cause of life-threatening disseminated candidiasis among invasive fungal infections. Resistance of C. albicans against conventional antifungals is frequently reported. Treatment with a combination of antifungal and non-antifungal agents is often considered in the aim to overcome drug resistance. This study shows for the first time that the combination of ginkgolide B (GB) and fluconazole (FLC) increases the sensitivity of resistant C. albicans to FLC. In vitro studies indicated that the drug combination had a synergistic effect on C. albicans in both planktonic cells and biofilms within 12 h. In vivo efficacy of this drug combination was evaluated using the Galleria mellonella infection model. Survival rate, fungal burden, and histological examination were determined. Studies indicated that the antifungal effects of GB in combination with FLC might be associated with inhibition of hyphal growth, disruption of intracellular calcium, and inhibition of drug efflux pumps. The results indicate a promising solution for overcoming drug resistance of C. albicans and expanding the clinical application of existing drugs.
Collapse
Affiliation(s)
- Yiman Li
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University. Jinan, 250014, People's Republic of China; School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Jing Yang
- Department of Pharmacy, Shandong Provincial Third Hospital, Jinan, 250014, People's Republic of China
| | - Xiuyun Li
- Pharmaceutical Department, Qilu Children's Hospital of Shandong University, Jinan, 250022, People's Republic of China
| | - Shan Su
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University. Jinan, 250014, People's Republic of China; Department of Clinical Pharmacy, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China.
| | - Yuanyuan Li
- Department of Clinical Pharmacy, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
32
|
Arastehfar A, Khodavaisy S, Daneshnia F, Najafzadeh MJ, Mahmoudi S, Charsizadeh A, Salehi MR, Zarrinfar H, Raeisabadi A, Dolatabadi S, Zare Shahrabadi Z, Zomorodian K, Pan W, Hagen F, Boekhout T. Molecular Identification, Genotypic Diversity, Antifungal Susceptibility, and Clinical Outcomes of Infections Caused by Clinically Underrated Yeasts, Candida orthopsilosis, and Candida metapsilosis: An Iranian Multicenter Study (2014-2019). Front Cell Infect Microbiol 2019; 9:264. [PMID: 31417877 PMCID: PMC6682699 DOI: 10.3389/fcimb.2019.00264] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023] Open
Abstract
Despite the increasing occurrence of Candida orthopsilosis and Candida metapsilosis in clinical settings, little is known about their microbiological and clinical properties. Herein, we conducted a national retrospective study (2014–2019) from multiple centers in Iran. Among the 1,770 Candida isolates collected, we identified 600 Candida parapsilosis species complex isolates. Isolate identification was performed by 9-plex PCR, matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS), and rDNA sequencing, and antifungal susceptibility testing (AFST) followed CLSI M27-A3/S4; genotyping was performed by amplified fragment length polymorphism (AFLP) analysis; and clinical information was mined. Thirty-one isolates of C. orthopsilosis from various clinical sources, one mixed sample (blood) concurrently containing C. orthopsilosis and C. parapsilosis and one isolate of C. metapsilosis from a nail sample were identified. Although both 9-plex PCR and MALDI-TOF successfully identified all isolates, only 9-plex PCR could identify the agents in a mixed sample. For the C. orthopsilosis isolates, resistance (non-wild type) was noted only for itraconazole (n = 4; 12.5%). Anidulafungin and fluconazole showed the highest and voriconazole had the lowest geometric mean values. AFLP analysis showed three main and four minor genotypes. Interestingly, 90% of nail isolates clustered with 80% of the blood isolates within two clusters, and four blood isolates recovered from four patients admitted to a hospital clustered into two genotypes and showed a high degree of similarity (>99.2%), which suggests that C. orthopsilosis disseminates horizontally. Supported by our data and published case studies, C. orthopsilosis and C. metapsilosis can be linked to challenging clinical failures, and successful outcomes are not always mirrored by in vitro susceptibility. Accordingly, conducting nationwide studies may provide more comprehensive data, which is required for a better prognosis and clinical management of patients.
Collapse
Affiliation(s)
- Amir Arastehfar
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Sadegh Khodavaisy
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Daneshnia
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Mohammad-Javad Najafzadeh
- Department of Medical Mycology and Parasitology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahram Mahmoudi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Charsizadeh
- Immunology, Asthma, and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Salehi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Raeisabadi
- Department of Medical Mycology and Parasitology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Dolatabadi
- Faculty of Engineering, Sabzevar University of New Technology, Sabzevar, Iran
| | - Zahra Zare Shahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Weihua Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Teun Boekhout
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Silva LN, Campos-Silva R, Ramos LS, Trentin DS, Macedo AJ, Branquinha MH, Santos ALS. Virulence of Candida haemulonii complex in Galleria mellonella and efficacy of classical antifungal drugs: a comparative study with other clinically relevant non-albicans Candida species. FEMS Yeast Res 2019; 18:5059575. [PMID: 30052907 DOI: 10.1093/femsyr/foy082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/24/2018] [Indexed: 01/14/2023] Open
Abstract
Candida haemulonii complex has emerged as notorious yeasts causing invasive infections with high rates of treatment failures. Since there is a particular interest in the development of non-mammalian host models to study microbial virulence, with the aim to evade the ethical impact of animal tests, herein we compared the virulence of C. haemulonii, C. duobushaemulonii and C. haemulonii var. vulnera with non-albicans Candida species (C. tropicalis, C. krusei and C. lusitaniae) on Galleria mellonella and the efficacy of antifungal drugs. All these fungi induced a dose-dependent effect on larvae killing, a decrease in hemocyte density and fungi were phagocytozed by hemocytes in equal proportions. Fungal inoculation caused early larvae melanization after some minutes of injection, followed by an augmented pigmentation after 24 h. Differences among species virulence can be explained, in part, by differences in growth rate and production of hydrolytic enzymes. First-line antifungals were tested with equivalent therapeutic doses and MIC profile in vitro was correlated with in vivo antifungal efficacy. Additionally, fungal burden increased in infected larvae along time and only caspofungin reduced the number of CFUs of C. haemulonii species complex. So, G. mellonella offers a simple and feasible model to study C. haemulonii complex virulence and drug efficacy.
Collapse
Affiliation(s)
- Laura N Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia e Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
| | - Rodrigo Campos-Silva
- Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia e Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
| | - Lívia S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Danielle S Trentin
- Programa de Pós-Graduação em Biociências, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, 90050-170, Brazil
| | - Alexandre J Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia e Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90610-000, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21431-909, Brazil
| |
Collapse
|
34
|
In Vitro and In Vivo Evaluation of Voriconazole-Containing Antifungal Combinations against Mucorales Using a Galleria mellonella Model of Mucormycosis. J Fungi (Basel) 2019; 5:jof5010005. [PMID: 30626083 PMCID: PMC6462937 DOI: 10.3390/jof5010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 12/28/2022] Open
Abstract
Mucorales are resistant to most antifungals. Mucormycosis associated mortality is unacceptable and new treatment approaches are needed. The objectives of this work were (i) to evaluate the nature and intensity of the in vitro effect of three drugs combinations which included voriconazole (plus amphotericin B, posaconazole and caspofungin) against 25 strains of six different Mucorales species; (ii) to evaluate a Galleria mellonella mucormycosis model; and (iii) to establish if any in vitro⁻in vivo correlation exists. As expected, amphotericin B and posaconazole were the most active drugs when tested alone. However, species-specific differences were found. The ΣFICs varied according to the used combination. Only five strains showed synergism when voriconazole was combined with posaconazole and three strains when combined with amphotericin B. Microscopic hyphae alteration were observed for some isolates when confronted against drugs combinations. Using a Galleria mellonella mucormycosis model, better survival was seen in voriconazole plus amphotericin B and plus caspofungin combined treatments when compared with AMB alone for R. microsporus. These survival improvements were obtained using a 32-fold lower amphotericin B doses when combined with VRC than when treated with the polyene alone. These lower antifungal doses emulate the antifungal concentrations where the microscopic hyphae alterations were seen.
Collapse
|
35
|
Metin B, Döğen A, Yıldırım E, de Hoog GS, Heitman J, Ilkit M. Mating type (MAT) locus and possible sexuality of the opportunistic pathogen Exophiala dermatitidis. Fungal Genet Biol 2019; 124:29-38. [PMID: 30611834 DOI: 10.1016/j.fgb.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 11/27/2022]
Abstract
Sexual reproduction among the black yeasts is generally limited to environmental saprobic species and is rarely observed among opportunists in humans. To date, a complete sexual cycle has not been observed in Exophiala dermatitidis. In this study, we aimed to gain insight into the reproductive mode of E. dermatitidis by characterizing its mating type (MAT) locus, conducting MAT screening of environmental and clinical isolates, examining the expression of the MAT genes and analyzing the virulence of the isolates of different mating types. Similar to other members of the Pezizomycotina, the E. dermatitidis genome harbors a high mobility group (HMG) domain gene (MAT1-2-1) in the vicinity of the SLA2 and APN2 genes. The MAT loci of 74 E. dermatitidis isolates (11 clinical and 63 environmental) were screened by PCR, and the surrounding region was amplified using long-range PCR. Sequencing of the ∼ 12-kb PCR product of a MAT1-1 isolate revealed an α-box gene (MAT1-1-1). The MAT1-1 idiomorph was 3544-bp long and harbored the MAT1-1-1 and MAT1-1-4 genes. The MAT1-2 idiomorph was longer, 3771-bp, and harbored only the MAT1-2-1 gene. This structure suggests a heterothallic reproduction mode. The distribution of MAT among 74 isolates was ∼ 1:1 with a MAT1-1:MAT1-2 ratio of 35:39. RT-PCR analysis indicated that the MAT genes are transcribed. No significant difference was detected in the virulence of isolates representing different mating types using a Galleria mellonella model (P > 0.05). Collectively, E. dermatitidis is the first opportunistic black yeast in which both MAT idiomorphs have been characterized. The occurrence of isolates bearing both idiomorphs, their approximately equal distribution, and the expression of the MAT genes suggest that E. dermatitidis might reproduce sexually.
Collapse
Affiliation(s)
- Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Esra Yıldırım
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - G Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, the Netherlands.
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey.
| |
Collapse
|
36
|
Pereira TC, de Barros PP, Fugisaki LRDO, Rossoni RD, Ribeiro FDC, de Menezes RT, Junqueira JC, Scorzoni L. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. J Fungi (Basel) 2018; 4:jof4040128. [PMID: 30486393 PMCID: PMC6308929 DOI: 10.3390/jof4040128] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
The use of invertebrates for in vivo studies in microbiology is well established in the scientific community. Larvae of Galleria mellonella are a widely used model for studying pathogenesis, the efficacy of new antimicrobial compounds, and immune responses. The immune system of G. mellonella larvae is structurally and functionally similar to the innate immune response of mammals, which makes this model suitable for such studies. In this review, cellular responses (hemocytes activity: phagocytosis, nodulation, and encapsulation) and humoral responses (reactions or soluble molecules released in the hemolymph as antimicrobial peptides, melanization, clotting, free radical production, and primary immunization) are discussed, highlighting the use of G. mellonella as a model of immune response to different human pathogenic microorganisms.
Collapse
Affiliation(s)
- Thais Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Raquel Teles de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| |
Collapse
|
37
|
Standardization of G. mellonella Larvae to Provide Reliable and Reproducible Results in the Study of Fungal Pathogens. J Fungi (Basel) 2018; 4:jof4030108. [PMID: 30200639 PMCID: PMC6162639 DOI: 10.3390/jof4030108] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
In the past decade, Galleria mellonella (wax moth) larvae have become widely used as a non-mammalian infection model. However, the full potential of this infection model has yet to be realised, limited by the variable quality of larvae used and the lack of standardised procedures. Here, we review larvae suitable for research, protocols for dosing larvae, and methods for scoring illness in larvae infected with fungal pathogens. The development of standardised protocols for carrying out our experimental work will allow high throughput screens to be developed, changing the way in which we evaluate panels of mutants and strains. It will also enable the in vivo screening of potential antimicrobials at an earlier stage in the research and development cycle.
Collapse
|
38
|
Pathogenesis of the Candida parapsilosis Complex in the Model Host Caenorhabditis elegans. Genes (Basel) 2018; 9:genes9080401. [PMID: 30096852 PMCID: PMC6116074 DOI: 10.3390/genes9080401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Caenorhabditiselegans is a valuable tool as an infection model toward the study of Candida species. In this work, we endeavored to develop a C. elegans-Candidaparapsilosis infection model by using the fungi as a food source. Three species of the C. parapsilosis complex (C. parapsilosis (sensu stricto), Candida orthopsilosis and Candida metapsilosis) caused infection resulting in C. elegans killing. All three strains that comprised the complex significantly diminished the nematode lifespan, indicating the virulence of the pathogens against the host. The infection process included invasion of the intestine and vulva which resulted in organ protrusion and hyphae formation. Importantly, hyphae formation at the vulva opening was not previously reported in C. elegans-Candida infections. Fungal infected worms in the liquid assay were susceptible to fluconazole and caspofungin and could be found to mount an immune response mediated through increased expression of cnc-4, cnc-7, and fipr-22/23. Overall, the C. elegans-C. parapsilosis infection model can be used to model C. parapsilosis host-pathogen interactions.
Collapse
|
39
|
Kryukov VY, Yaroslavtseva ON, Whitten MMA, Tyurin MV, Ficken KJ, Greig C, Melo NR, Glupov VV, Dubovskiy IM, Butt TM. Fungal infection dynamics in response to temperature in the lepidopteran insect Galleria mellonella. INSECT SCIENCE 2018; 25:454-466. [PMID: 27900825 DOI: 10.1111/1744-7917.12426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/02/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
This study examines how the dynamics of fungus-insect interactions can be modulated by temperature. The wax moth, Galleria mellonella, is a well-studied and important model insect whose larvae in the wild develop optimally at around 34 °C in beehives. However, surprisingly little research on wax moths has been conducted at relevant temperatures. In this study, the entomopathogenic fungus Metarhizium robertsii inflicted rapid and substantial mortality on wax moth larvae maintained at a constant temperature of 24 °C, but at 34 °C a 10 fold higher dose was required to achieve an equivalent mortality. The cooler temperature favored fungal pathogenicity, with condial adhesion to the cuticle, germination and hemocoel invasion all significantly enhanced at 24 °C, compared with 34 °C. The wax moth larvae immune responses altered with the temperature, and with the infective dose of the fungus. Enzyme-based immune defenses (lysozyme and phenoloxidase) exhibited enhanced activity at the warmer temperature. A dramatic upregulation in the basal expression of galiomicin and gallerimycin was triggered by cooling, and this was augmented in the presence of the fungus. Profiling of the predominant insect epicuticular fatty acids revealed a 4-7 fold increase in palmetic, oleic and linoleic acids in larvae maintained at 24 °C compared with those at 34 °C, but these failed to exert fungistatic effects on topically applied fungus. This study demonstrates the importance of choosing environmental conditions relevant to the habitat of the insect host when determining the dynamics and outcome of insect/fungus interactions, and has particular significance for the application of entomopathogens as biocontrol agents.
Collapse
Affiliation(s)
- Vadim Y Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia
| | - Miranda M A Whitten
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, UK
| | - Maksim V Tyurin
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia
| | - Katherine J Ficken
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, UK
| | - Carolyn Greig
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, UK
| | - Nadja R Melo
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, UK
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia
| | - Ivan M Dubovskiy
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia
| | - Tariq M Butt
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, UK
| |
Collapse
|
40
|
Brilhante RSN, Sales JA, da Silva MLQ, de Oliveira JS, Pereira LDA, Pereira-Neto WA, Cordeiro RDA, Sidrim JJC, Castelo-Branco DDSCM, Rocha MFG. Antifungal susceptibility and virulence of Candida parapsilosis species complex: an overview of their pathogenic potential. J Med Microbiol 2018; 67:903-914. [PMID: 29846153 DOI: 10.1099/jmm.0.000756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Antifungal resistance and several putative virulence factors have been associated with the pathogenicity of the Candida parapsilosis species complex. The objective of this study was to evaluate the antifungal susceptibility, the production of virulence factors and the pathogenicity of the C. parapsilosis complex. METHODOLOGY Overall, 49 isolates of C. parapsilosis sensu stricto, 19 C. orthopsilosis and nine C. metapsilosis were used. The planktonic and biofilm susceptibility to fluconazole, itraconazole, voriconazole, amphotericin B and caspofungin was assessed using a broth microdilution assay. Finally, the production of biofilm and hydrolytic enzymes and the fungal pathogenicity against Caenorhabditis elegans were investigated.Results/Key findings. Overall, one C. orthopsilosis was resistant to caspofungin and susceptible-dose-dependent to itraconazole, the other two C. orthopsilosis were susceptible-dose-dependent to fluconazole and itraconazole, and one C. metapsilosis was susceptible-dose-dependent to azoles. A total of 67.5 % of the isolates were biofilm producers. Amphotericin B and caspofungin caused the greatest reduction in the metabolic activity and biomass of mature biofilms. Phospholipase and protease production was observed in 55.1 % of C. parapsilosis sensu stricto, 42.1 % of C. orthopsilosis and 33.3 % of C. metapsilosis isolates. Moreover, 57.9 % of C. orthopsilosis and 20.4 % of C. parapsilosis sensu stricto isolates were β-haemolytic, and all C. metapsilosis were α-haemolytic. Finally, the C. parapsilosis complex caused high mortality of C. elegans after 96 h of exposure. CONCLUSION These results reinforce the heterogeneity of these cryptic species for their antifungal susceptibility, virulence and pathogenic potential, emphasizing the relevance of monitoring these emerging pathogens.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jamille Alencar Sales
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Maria Lucilene Queiroz da Silva
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jonathas Sales de Oliveira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lucas de Alencar Pereira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Waldemiro Aquino Pereira-Neto
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil.,School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
41
|
Cordeiro RDA, Sales JA, Castelo-Branco DDSCM, Brilhante RSN, Ponte YBD, dos Santos Araújo G, Mendes PBL, Pereira VS, Alencar LPD, Pinheiro ADQ, Sidrim JJC, Rocha MFG. Candida parapsilosis complex in veterinary practice: A historical overview, biology, virulence attributes and antifungal susceptibility traits. Vet Microbiol 2017; 212:22-30. [DOI: 10.1016/j.vetmic.2017.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/27/2017] [Accepted: 07/11/2017] [Indexed: 11/29/2022]
|
42
|
Detection of Cryptic Candida Species Recognized as Human Pathogens Through Molecular Biology Techniques. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0294-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Sheehan G, Kavanagh K. Analysis of the early cellular and humoral responses of Galleria mellonella larvae to infection by Candida albicans. Virulence 2017; 9:163-172. [PMID: 28872999 PMCID: PMC5955201 DOI: 10.1080/21505594.2017.1370174] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Galleria mellonella larvae were administered an inoculum of Candida albicans and the response to infection over 24 hours was monitored. The yeast cell density in infected larvae declined initially but replication commenced six hours post-infection. The hemocyte density decreased from 5.2 × 106/ml to 2.5 × 106/ml at 2 hours but increased to 4.2 × 106 at 6 hours and decreased subsequently. Administration of β – glucan to larvae also caused a fluctuation in hemocyte density (5.1 ± 0.22 × 106/ml (0 hour) to 6.25 ± 0.25 × 106/ml (6 hour) (p < 0.05) to 5 ± 2.7 × 106 (24 hour)) and the population showed an increase in the density of small, granular cells at 24 hours (p < 0.05). Hemocytes from larvae inoculated with β – glucan for 6 or 24 hours showed faster killing of C. albicans cells (53 ± 4.1% (p < 0.01), 64 ± 3.7%, (p < 0.01), respectively) than hemocytes from control larvae (24 ± 11%) at 60 min. Proteomic analysis indicated increased abundance of immune related proteins cecropin-A (5 fold) and prophenoloxidase-activating proteinase-1 (5 fold) 6 hours post infection but by 24 hours there was elevated abundance of muscle (tropomyosin 2 (141 fold), calponin (66 fold), troponin I (62 fold)) and proteins indicative of cellular stress (glutathione-S-transferase-like protein (114 fold)), fungal dissemination (muscle protein 20-like protein (174 fold)) and tissue breakdown (mitochondrial cytochrome c (10 fold)). Proteins decreased in abundance at 24 hour included β – 1,3 – glucan recognition protein precursor (29 fold) and prophenoloxidase subunit 2 (25 fold).
Collapse
Affiliation(s)
- Gerard Sheehan
- a Department of Biology , Maynooth University , Maynooth, Co. Kildare , Ireland
| | - Kevin Kavanagh
- a Department of Biology , Maynooth University , Maynooth, Co. Kildare , Ireland
| |
Collapse
|
44
|
Pharkjaksu S, Chongtrakool P, Suwannakarn K, Ngamskulrungroj P. Species distribution, virulence factors, and antifungal susceptibility among Candida parapsilosis complex isolates from clinical specimens at Siriraj Hospital, Thailand, from 2011 to 2015. Med Mycol 2017; 56:426-433. [DOI: 10.1093/mmy/myx058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/14/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sujiraphong Pharkjaksu
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand 10700
| | - Piriyaporn Chongtrakool
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand 10700
| | - Kamol Suwannakarn
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand 10700
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand 10700
| |
Collapse
|
45
|
Navarro-Arias MJ, Dementhon K, Defosse TA, Foureau E, Courdavault V, Clastre M, Le Gal S, Nevez G, Le Govic Y, Bouchara JP, Giglioli-Guivarc'h N, Noël T, Mora-Montes HM, Papon N. Group X hybrid histidine kinase Chk1 is dispensable for stress adaptation, host–pathogen interactions and virulence in the opportunistic yeast Candida guilliermondii. Res Microbiol 2017; 168:644-654. [DOI: 10.1016/j.resmic.2017.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/03/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
46
|
Döğen A, Metin B, Ilkit M, de Hoog GS, Heitman J. MTL genotypes, phenotypic switching, and susceptibility profiles of Candida parapsilosis species group compared to Lodderomyces elongisporus. PLoS One 2017; 12:e0182653. [PMID: 28771588 PMCID: PMC5542550 DOI: 10.1371/journal.pone.0182653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Reference isolates of Candida parapsilosis (n = 8), Candida metapsilosis (n = 6), Candida orthopsilosis (n = 7), and Lodderomyces elongisporus (n = 11) were analyzed to gain insight into their pathobiology and virulence mechanisms. Initial evaluation using BBL Chromagar Candida medium misidentified L. elongisporus isolates as C. albicans. Polymerase chain reaction analysis of isolate MTL idiomorphs revealed that all C. parapsilosis isolates were MTLa homozygous and no MTL α1, α2, a1, or a2 gene was detected in L. elongisporus isolates. For C. orthopsilosis, two isolates were MTLa homozygous and five were MTL-heterozygous. Similarly, one C. metapsilosis isolate was MTLα homozygous whereas five were MTL-heterozygous. Isolate phenotypic switching analysis revealed potential phenotypic switching in the MTLα homozygous C. metapsilosis isolate, resulting in concomitant elongated cell formation. Minimum inhibitory concentrations of fluconazole (FLC) and FK506, alone or in combination, were determined by checkerboard assay, with data analyzed using the fractional inhibitory concentration index model. Synergistic or additive effects of these compounds were commonly observed in C. parapsilosis and L. elongisporus isolates. No killer activity was observed in the studied isolates, as determined phenotypically. No significant difference in virulence was seen for the four species in a Galleria mellonella model (P > 0.05). In conclusion, our results demonstrated phenotypic switching of C. metapsilosis CBS 2315 and that FLC and FK506 represent a promising drug combination against C. parapsilosis and L. elongisporus. The findings of the present study contribute to our understanding of the biology, diagnosis, and new possible treatments of the C. parapsilosis species group and L. elongisporus.
Collapse
Affiliation(s)
- Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine University of Çukurova, Adana, Turkey
- * E-mail:
| | - G. Sybren de Hoog
- Westerdijk Fungal Biodiversity Centre, Utrecht, the Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
47
|
Ames L, Duxbury S, Pawlowska B, Ho HL, Haynes K, Bates S. Galleria mellonella as a host model to study Candida glabrata virulence and antifungal efficacy. Virulence 2017; 8:1909-1917. [PMID: 28658597 PMCID: PMC5750810 DOI: 10.1080/21505594.2017.1347744] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Lauren Ames
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| | - Sarah Duxbury
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| | - Bogna Pawlowska
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| | - Hsueh-Lui Ho
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| | - Ken Haynes
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| | - Steven Bates
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| |
Collapse
|
48
|
Ortega-Riveros M, De-la-Pinta I, Marcos-Arias C, Ezpeleta G, Quindós G, Eraso E. Usefulness of the Non-conventional Caenorhabditis elegans Model to Assess Candida Virulence. Mycopathologia 2017; 182:785-795. [PMID: 28523422 DOI: 10.1007/s11046-017-0142-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/08/2017] [Indexed: 12/20/2022]
Abstract
Invasive candidiasis is caused mainly by Candida albicans, but other Candida species have increasing etiologies. These species show different virulence and susceptibility levels to antifungal drugs. The aims of this study were to evaluate the usefulness of the non-conventional model Caenorhabditis elegans to assess the in vivo virulence of seven different Candida species and to compare the virulence in vivo with the in vitro production of proteinases and phospholipases, hemolytic activity and biofilm development capacity. One culture collection strain of each of seven Candida species (C. albicans, Candida dubliniensis, Candida glabrata, Candida krusei, Candida metapsilosis, Candida orthopsilosis and Candida parapsilosis) was studied. A double mutant C. elegans AU37 strain (glp-4;sek-1) was infected with Candida by ingestion, and the analysis of nematode survival was performed in liquid medium every 24 h until 120 h. Candida establishes a persistent lethal infection in the C. elegans intestinal tract. C. albicans and C. krusei were the most pathogenic species, whereas C. dubliniensis infection showed the lowest mortality. C. albicans was the only species with phospholipase activity, was the greatest producer of aspartyl proteinase and had a higher hemolytic activity. C. albicans and C. krusei caused higher mortality than the rest of the Candida species studied in the C. elegans model of candidiasis.
Collapse
Affiliation(s)
- Marcelo Ortega-Riveros
- Departamento de Inmunología, Microbiología y Parasitología, Unidad de formación e investigación multidisciplinar 'Microbios y Salud' (UFI 11/25), Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Iker De-la-Pinta
- Departamento de Inmunología, Microbiología y Parasitología, Unidad de formación e investigación multidisciplinar 'Microbios y Salud' (UFI 11/25), Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Cristina Marcos-Arias
- Departamento de Inmunología, Microbiología y Parasitología, Unidad de formación e investigación multidisciplinar 'Microbios y Salud' (UFI 11/25), Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Guillermo Ezpeleta
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain.,Servicio de Medicina Preventiva e Higiene Hospitalaria, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Guillermo Quindós
- Departamento de Inmunología, Microbiología y Parasitología, Unidad de formación e investigación multidisciplinar 'Microbios y Salud' (UFI 11/25), Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Elena Eraso
- Departamento de Inmunología, Microbiología y Parasitología, Unidad de formación e investigación multidisciplinar 'Microbios y Salud' (UFI 11/25), Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
49
|
Abastabar M, Hosseinpoor S, Hedayati MT, Shokohi T, Valadan R, Mirhendi H, Mohammadi R, Aghili SR, Rahimi N, Aslani N, Haghani I, Gholami S. Hyphal wall protein 1 gene: A potential marker for the identification of different Candida species and phylogenetic analysis. Curr Med Mycol 2016; 2:1-8. [PMID: 28959789 PMCID: PMC5611690 DOI: 10.18869/acadpub.cmm.2.4.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Hyphal wall protein 1 (HWP1) is an important adhesin which usually is expressed on the germ tube and hyphal surface produced by different Candida species. The hyphal wall protein-coding gene (HWP1) was evaluated as a novel identification and phylogenetic marker in Candida tropicalis, C. orthopsilosis, C. parapsilosis and C. glabrata. MATERIALS AND METHODS Initially, four specific primer pairs were designed, and the target was amplified and finally sequenced. A total of 77 Candida isolates from four different species were included in the study. Consensus sequences were used for the evaluation of phylogenetic tree using the CLC Genome Workbench, GENEIOUS, and MEGA softwares and the levels of nucleotide and amino acid polymorphism were assessed. RESULTS According to the results, the specific amplified fragments of HWP1 gene were useful for the differentiation of four species. Intra-species variation was observed only in C. tropicalis with two DNA types. The phylogenetic tree of Candida species based on the HWP1 gene showed consistency in topology with those inferred from other gene sequences. CONCLUSION We found that HWP1 gene was an excellent marker for the identification of non-albicansCandida species as well as the phylogenetic analysis of the most clinically significant Candida species.
Collapse
Affiliation(s)
- M Abastabar
- Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - S Hosseinpoor
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - M T Hedayati
- Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - T Shokohi
- Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - R Valadan
- Molecular and Cell Biology Research Center (MCBRC), Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran.,Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - H Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S R Aghili
- Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - N Rahimi
- Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - N Aslani
- Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - I Haghani
- Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - S Gholami
- Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
50
|
Identification of cryptic Candida species by MALDI-TOF mass spectrometry, not all MALDI-TOF systems are the same: focus on the C. parapsilosis species complex. Diagn Microbiol Infect Dis 2016; 86:385-386. [DOI: 10.1016/j.diagmicrobio.2016.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/25/2016] [Accepted: 08/31/2016] [Indexed: 11/19/2022]
|