1
|
Simões JLB, de Carvalho Braga G, Eichler SW, da Silva GB, Bagatini MD. Implications of COVID-19 in Parkinson's disease: the purinergic system in a therapeutic-target perspective to diminish neurodegeneration. Purinergic Signal 2024; 20:487-507. [PMID: 38460075 PMCID: PMC11377384 DOI: 10.1007/s11302-024-09998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/21/2024] [Indexed: 03/11/2024] Open
Abstract
The pathophysiology of Parkinson's disease (PD) is marked by degeneration of dopaminergic neurons in the substantia nigra. With advent of COVID-19, which is closely associated with generalized inflammation and multiple organ dysfunctions, the PD patients may develop severe conditions of disease leading to exacerbated degeneration. This condition is caused by the excessive release of pro-inflammatory markers, called cytokine storm, that is capable of triggering neurodegenerative conditions by affecting the blood-brain barrier (BBB). A possible SARS-CoV-2 infection, in serious cases, may compromise the immune system by triggering a hyperstimulation of the neuroimmune response, similar to the pathological processes found in PD. From this perspective, the inflammatory scenario triggers oxidative stress and, consequently, cellular dysfunction in the nervous tissue. The P2X7R seems to be the key mediator of the neuroinflammatory process, as it acts by increasing the concentration of ATP, allowing the influx of Ca2+ and the occurrence of mutations in the α-synuclein protein, causing activation of this receptor. Thus, modulation of the purinergic system may have therapeutic potential on the effects of PD, as well as on the damage caused by inflammation of the BBB, which may be able to mitigate the neurodegeneration caused by diseases. Considering all the processes of neuroinflammation, oxidative stress, and mitochondrial dysfunction that PD propose, we can conclude that the P2X7 antagonist acts in the prevention of viral diseases, and it also controls purinergic receptors formed by multi-target compounds directed to self-amplification circuits and, therefore, may be a viable strategy to obtain the desired disease-modifying effect. Thus, purinergic system receptor modulations have a high therapeutic potential for neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
| | | | | | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
2
|
Hernandez-Morfa M, Reinoso-Vizcaino NM, Zappia VE, Olivero NB, Cortes PR, Stempin CC, Perez DR, Echenique J. Intracellular Streptococcus pneumoniae develops enhanced fluoroquinolone persistence during influenza A coinfection. Front Microbiol 2024; 15:1423995. [PMID: 39035445 PMCID: PMC11258013 DOI: 10.3389/fmicb.2024.1423995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Streptococcus pneumoniae is a major pathogen responsible for severe complications in patients with prior influenza A virus (IAV) infection. We have previously demonstrated that S. pneumoniae exhibits increased intracellular survival within IAV-infected cells. Fluoroquinolones (FQs) are widely used to treat pneumococcal infections. However, our prior work has shown that S. pneumoniae can develop intracellular FQ persistence, a phenomenon triggered by oxidative stress within host cells. This persistence allows the bacteria to withstand high FQ concentrations. In this study, we show that IAV infection enhances pneumococcal FQ persistence during intracellular survival within pneumocytes, macrophages, and neutrophils. This enhancement is partly due to increased oxidative stress induced by the viral infection. We find that this phenotype is particularly pronounced in autophagy-proficient host cells, potentially resulting from IAV-induced blockage of autophagosome-lysosome fusion. Moreover, we identified several S. pneumoniae genes involved in oxidative stress response that contribute to FQ persistence, including sodA (superoxide dismutase), clpL (chaperone), nrdH (glutaredoxin), and psaB (Mn+2 transporter component). Our findings reveal a novel mechanism of antibiotic persistence promoted by viral infection within host cells. This underscores the importance of considering this phenomenon when using FQs to treat pneumococcal infections, especially in patients with concurrent influenza A infection.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas M. Reinoso-Vizcaino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cinthia C. Stempin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jose Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Yang C, Tan Y, Li Z, Hu L, Chen Y, Zhu S, Hu J, Huai T, Li M, Zhang G, Rao D, Fei G, Shao M, Ding Z. Pulmonary redox imbalance drives early fibroproliferative response in moderate/severe coronavirus disease-19 acute respiratory distress syndrome and impacts long-term lung abnormalities. Ann Intensive Care 2024; 14:72. [PMID: 38735020 PMCID: PMC11089033 DOI: 10.1186/s13613-024-01293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND COVID-19-associated pulmonary fibrosis remains frequent. This study aimed to investigate pulmonary redox balance in COVID-19 ARDS patients and possible relationship with pulmonary fibrosis and long-term lung abnormalities. METHODS Baseline data, chest CT fibrosis scores, N-terminal peptide of alveolar collagen III (NT-PCP-III), transforming growth factor (TGF)-β1, superoxide dismutase (SOD), reduced glutathione (GSH), oxidized glutathione (GSSG) and malondialdehyde (MDA) in bronchoalveolar lavage fluid (BALF) were first collected and compared between SARS-CoV-2 RNA positive patients with moderate to severe ARDS (n = 65, COVID-19 ARDS) and SARS-CoV-2 RNA negative non-ARDS patients requiring mechanical ventilation (n = 63, non-ARDS). Then, correlations between fibroproliferative (NT-PCP-III and TGF-β1) and redox markers were analyzed within COVID-19 ARDS group, and comparisons between survivor and non-survivor subgroups were performed. Finally, follow-up of COVID-19 ARDS survivors was performed to analyze the relationship between pulmonary abnormalities, fibroproliferative and redox markers 3 months after discharge. RESULTS Compared with non-ARDS group, COVID-19 ARDS group had significantly elevated chest CT fibrosis scores (p < 0.001) and NT-PCP-III (p < 0.001), TGF-β1 (p < 0.001), GSSG (p < 0.001), and MDA (p < 0.001) concentrations on admission, while decreased SOD (p < 0.001) and GSH (p < 0.001) levels were observed in BALF. Both NT-PCP-III and TGF-β1 in BALF from COVID-19 ARDS group were directly correlated with GSSG (p < 0.001) and MDA (p < 0.001) and were inversely correlated with SOD (p < 0.001) and GSH (p < 0.001). Within COVID-19 ARDS group, non-survivors (n = 28) showed significant pulmonary fibroproliferation (p < 0.001) with more severe redox imbalance (p < 0.001) than survivors (n = 37). Furthermore, according to data from COVID-19 ARDS survivor follow-up (n = 37), radiographic residual pulmonary fibrosis and lung function impairment improved 3 months after discharge compared with discharge (p < 0.001) and were associated with early pulmonary fibroproliferation and redox imbalance (p < 0.01). CONCLUSIONS Pulmonary redox imbalance occurring early in COVID-19 ARDS patients drives fibroproliferative response and increases the risk of death. Long-term lung abnormalities post-COVID-19 are associated with early pulmonary fibroproliferation and redox imbalance.
Collapse
Affiliation(s)
- Chun Yang
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China
| | - Yuanyuan Tan
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China
| | - Zihao Li
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China
| | - Lei Hu
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China
| | - Yuanyuan Chen
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China
| | - Shouliang Zhu
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China
| | - Jiawei Hu
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China
| | - Tingting Huai
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China
| | - Mingqing Li
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China
| | - Guobin Zhang
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China
| | - Dewang Rao
- Anhui Medical University, #81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guanghe Fei
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Min Shao
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Zhenxing Ding
- The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
4
|
Bastin A, Abbasi F, Roustaei N, Abdesheikhi J, Karami H, Gholamnezhad M, Eftekhari M, Doustimotlagh A. Severity of oxidative stress as a hallmark in COVID-19 patients. Eur J Med Res 2023; 28:558. [PMID: 38049886 PMCID: PMC10696844 DOI: 10.1186/s40001-023-01401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/27/2023] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Understanding the mechanisms and identifying effective treatments for the COVID-19 outbreak are imperative. Therefore, this study aimed to assess the antioxidant status and oxidative stress parameters as potential pivotal mechanisms in asymptomatic, non-severe, and severe COVID-19 patients. METHODS This study is a case-control study that was performed on patients referred to the Persian Gulf Martyrs Hospital of Bushehr University of Medical Sciences, Bushehr, Iran, from May 2021 to September 2021. A total of 600 COVID-19 patients (non-severe and severe group) and 150 healthy volunteers of the same age and sex were selected during the same period. On the first day of hospitalization, 10 ml of venous blood was taken from subjects. Then, hematological, biochemical, serological, antioxidant and oxidative stress parameters were determined. RESULTS Our results indicated that ESR, CRP, AST, ALT, and LDH significantly augmented in the severe group as compared to the non-severe and normal groups (P ≤ 0.05). It was observed that the levels of FRAP, G6PD activity, and SOD activity significantly reduced in the non-severe patients in comparison with the severe and normal groups (P ≤ 0.05). We found that MDA content and NO metabolite markedly increased in severe patients as compared to the non-severe group. CONCLUSIONS Taken together, it seems that the balance between antioxidants and oxidants was disturbed in COVID-19 patients in favor of oxidant markers. In addition, this situation caused more aggravation in severe patients as compared to the non-severe group.
Collapse
Affiliation(s)
- Alireza Bastin
- Clinical Research Development Center, "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Abbasi
- Department of Infectious Disease, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Roustaei
- Department of Biostatistics and Epidemiology, School of Health, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Jahangir Abdesheikhi
- Department of Clinical Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Karami
- Clinical Research Development Center, "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Gholamnezhad
- Department of Infectious Disease, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdieh Eftekhari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Amirhossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
5
|
Shoraka S, Samarasinghe AE, Ghaemi A, Mohebbi SR. Host mitochondria: more than an organelle in SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1228275. [PMID: 37692170 PMCID: PMC10485703 DOI: 10.3389/fcimb.2023.1228275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Since December 2019, the world has been facing viral pandemic called COVID-19 (Coronavirus disease 2019) caused by a new beta-coronavirus named severe acute respiratory syndrome coronavirus-2, or SARS-CoV-2. COVID-19 patients may present with a wide range of symptoms, from asymptomatic to requiring intensive care support. The severe form of COVID-19 is often marked by an altered immune response and cytokine storm. Advanced age, age-related and underlying diseases, including metabolic syndromes, appear to contribute to increased COVID-19 severity and mortality suggesting a role for mitochondria in disease pathogenesis. Furthermore, since the immune system is associated with mitochondria and its damage-related molecular patterns (mtDAMPs), the host mitochondrial system may play an important role during viral infections. Viruses have evolved to modulate the immune system and mitochondrial function for survival and proliferation, which in turn could lead to cellular stress and contribute to disease progression. Recent studies have focused on the possible roles of mitochondria in SARS-CoV-2 infection. It has been suggested that mitochondrial hijacking by SARS-CoV-2 could be a key factor in COVID-19 pathogenesis. In this review, we discuss the roles of mitochondria in viral infections including SARS-CoV-2 infection based on past and present knowledge. Paying attention to the role of mitochondria in SARS-CoV-2 infection will help to better understand the pathophysiology of COVID-19 and to achieve effective methods of prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children’s Foundation Research Institute, Memphis, TN, United States
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Qaraaty M, Bahrami M, Azimi SA, Hashem-Dabaghian F, Saberi S, Abbas Zaidi SM, Sahebkar A, Enayati A. Lavender ( Lavandula angustifolia) syrup as an adjunct to standard care in patients with mild to moderate COVID-19: An open-label, randomized, controlled clinical trial. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:400-411. [PMID: 37663382 PMCID: PMC10474914 DOI: 10.22038/ajp.2022.21606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 09/05/2023]
Abstract
Objective ongoing COVID-19 pandemic has been associated with clinical signs characterized by fever, fatigue and cough. Our study aimed to assess the efficacy of a Persian medicine formulation, lavender syrup, as an add-on to standard care in patients with mild to moderate COVID-19. Materials and Methods In this clinical trial which was conducted in Gorgan (Iran), 84 male and female COVID-19 outpatients were randomly allocated to either lavender syrup receiving 9 ml/twice/day for 21 days with standard conventional care or control groups. The primary objectives were to assess the improvement of clinical symptoms, while the secondary objectives were treatment satisfaction and anxiety levels which were evaluated once a week for 3 weeks. Results Out of 84 participants, 81 were analyzed (41 in the add-on group). The comparison between groups for cough severity and anosmia showed a higher reduction in the lavender group. The effect size was 0.6 for cough relief. Other symptoms and the Hamilton total score decreased in both groups with no statistically significant differences between the groups. The lavender group showed greater patients' satisfaction score. Conclusion Adjunctive therapy with lavender syrup could reduce cough and improve the quality of life in patients with COVID-19 patients.
Collapse
Affiliation(s)
- Marzieh Qaraaty
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Department of Persian Medicine, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Persian Medicine, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Bahrami
- Academic Center for Education Culture and Research, Tehran, Iran
| | - Sadegh-Ali Azimi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fataneh Hashem-Dabaghian
- Department of Traditional Medicine, Institute for Studies in Medical History, Persian and Complementary Medicine, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safoora Saberi
- Gonbad-E-Kavoos Health Center, Golestan University of Medical Sciences, Gonbad-E-Kavoos, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
7
|
Qu Y, Haas de Mello A, Morris DR, Jones-Hall YL, Ivanciuc T, Sattler RA, Paessler S, Menachery VD, Garofalo RP, Casola A. SARS-CoV-2 Inhibits NRF2-Mediated Antioxidant Responses in Airway Epithelial Cells and in the Lung of a Murine Model of Infection. Microbiol Spectr 2023; 11:e0037823. [PMID: 37022178 PMCID: PMC10269779 DOI: 10.1128/spectrum.00378-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Several viruses have been shown to modulate the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), the master regulator of redox homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, also seems to disrupt the balance between oxidants and antioxidants, which likely contributes to lung damage. Using in vitro and in vivo models of infection, we investigated how SARS-CoV-2 modulates the transcription factor NRF2 and its dependent genes, as well as the role of NRF2 during SARS-CoV-2 infection. We found that SARS-CoV-2 infection downregulates NRF2 protein levels and NRF2-dependent gene expression in human airway epithelial cells and in lungs of BALB/c mice. Reductions in cellular levels of NRF2 seem to be independent of proteasomal degradation and the interferon/promyelocytic leukemia (IFN/PML) pathway. Furthermore, lack of the Nrf2 gene in SARS-CoV-2-infected mice exacerbates clinical disease, increases lung inflammation, and is associated with a trend toward increased lung viral titers, indicating that NRF2 has a protective role during this viral infection. In summary, our results suggest that SARS-CoV-2 infection alters the cellular redox balance by downregulating NRF2 and its dependent genes, which exacerbates lung inflammation and disease, therefore, suggesting that the activation of NRF2 could be explored as therapeutic approach during SARS-CoV-2 infection. IMPORTANCE The antioxidant defense system plays a major function in protecting the organism against oxidative damage caused by free radicals. COVID-19 patients often present with biochemical characteristics of uncontrolled pro-oxidative responses in the respiratory tract. We show herein that SARS-CoV-2 variants, including Omicron, are potent inhibitors of cellular and lung nuclear factor erythroid 2-related factor 2 (NRF2), the master transcription factor that controls the expression of antioxidant and cytoprotective enzymes. Moreover, we show that mice lacking the Nrf2 gene show increased clinical signs of disease and lung pathology when infected with a mouse-adapted strain of SARS-CoV-2. Overall, this study provides a mechanistic explanation for the observed unbalanced pro-oxidative response in SARS-CoV-2 infections and suggests that therapeutic strategies for COVID-19 may consider the use of pharmacologic agents that are known to boost the expression levels of cellular NRF2.
Collapse
Affiliation(s)
- Yue Qu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Dorothea R. Morris
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Yava L. Jones-Hall
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Teodora Ivanciuc
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Rachel A. Sattler
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Slobodan Paessler
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
8
|
Gain C, Song S, Angtuaco T, Satta S, Kelesidis T. The role of oxidative stress in the pathogenesis of infections with coronaviruses. Front Microbiol 2023; 13:1111930. [PMID: 36713204 PMCID: PMC9880066 DOI: 10.3389/fmicb.2022.1111930] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Coronaviruses can cause serious respiratory tract infections and may also impact other end organs such as the central nervous system, the lung and the heart. The coronavirus disease 2019 (COVID-19) has had a devastating impact on humanity. Understanding the mechanisms that contribute to the pathogenesis of coronavirus infections, will set the foundation for development of new treatments to attenuate the impact of infections with coronaviruses on host cells and tissues. During infection of host cells, coronaviruses trigger an imbalance between increased production of reactive oxygen species (ROS) and reduced antioxidant host responses that leads to increased redox stress. Subsequently, increased redox stress contributes to reduced antiviral host responses and increased virus-induced inflammation and apoptosis that ultimately drive cell and tissue damage and end organ disease. However, there is limited understanding how different coronaviruses including SARS-CoV-2, manipulate cellular machinery that drives redox responses. This review aims to elucidate the redox mechanisms involved in the replication of coronaviruses and associated inflammation, apoptotic pathways, autoimmunity, vascular dysfunction and tissue damage that collectively contribute to multiorgan damage.
Collapse
Affiliation(s)
| | | | | | | | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Khongthaw B, Dulta K, Chauhan PK, Kumar V, Ighalo JO. Lycopene: a therapeutic strategy against coronavirus disease 19 (COVID- 19). Inflammopharmacology 2022; 30:1955-1976. [PMID: 36050507 PMCID: PMC9436159 DOI: 10.1007/s10787-022-01061-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Lycopene is a group of phytochemicals found in nature, primarily in fruits and vegetables. Lycopene is thought to protect against a variety of diseases attributed to its antioxidant capabilities. Lycopene has anti-inflammatory, anti-cancer, and immunity-boosting qualities, among other biological and pharmacological benefits. COVID-19 (coronavirus disease 19) is an infectious disease caused by the SARS-CoV-2 virus, which has recently emerged as one of the world's leading causes of death. Patients may be asymptomatic or show signs of respiratory, cytokine release syndrome, gastrointestinal, or even multiple organ failure, all of which can lead to death. In COVID-19, inflammation, and cytokine storm are the key pathogenic mechanisms, according to SARS-CoV-2 infection symptoms. ARDS develops in some vulnerable hosts, which is accompanied by an inflammatory "cytokine syndrome" that causes lung damage. Immunological and inflammatory markers were linked to disease severity in mild and severe COVID-19 cases, implying that inflammatory markers, including IL-6, CRP, ESR, and PCT were significantly linked with COVID-19 severity. Patients with severe illness have reduced levels of several immune subsets, including CD4 + T, NK, and CD8 + cells. As a result, lycopene can be commended for bolstering physiological defenses against COVID-19 infections.
Collapse
Affiliation(s)
- Banlambhabok Khongthaw
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Kumar Chauhan
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India.
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
10
|
Rajak P, Roy S, Podder S, Dutta M, Sarkar S, Ganguly A, Mandi M, Dutta A, Nanda S, Khatun S. Synergistic action of organophosphates and COVID-19 on inflammation, oxidative stress, and renin-angiotensin system can amplify the risk of cardiovascular maladies. Toxicol Appl Pharmacol 2022; 456:116267. [PMID: 36240863 PMCID: PMC9554205 DOI: 10.1016/j.taap.2022.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
Abstract
Organophosphates (OPs) are ubiquitous environmental contaminants, widely used as pesticides in agricultural fields. In addition, they serve as flame-retardants, plasticizers, antifoaming or antiwear agents in lacquers, hydraulic fluids, and floor polishing agents. Therefore, world-wide and massive application of these compounds have increased the risk of unintentional exposure to non-targets including the human beings. OPs are neurotoxic agents as they inhibit the activity of acetylcholinesterase at synaptic cleft. Moreover, they can fuel cardiovascular issues in the form of myocardities, cardiac oedema, arrhythmia, systolic malfunction, infarction, and altered electrophysiology. Such pathological outcomes might increase the severity of cardiovascular diseases which are the leading cause of mortality in the developing world. Coronavirus disease-19 (COVID-19) is the ongoing global health emergency caused by SARS-CoV-2 infection. Similar to OPs, SARS-CoV-2 disrupts cytokine homeostasis, redox-balance, and angiotensin-II/AT1R axis to promote cardiovascular injuries. Therefore, during the current pandemic milieu, unintentional exposure to OPs through several environmental sources could escalate cardiac maladies in patients with COVID-19.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India,Corresponding author
| | - Sumedha Roy
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | | | - Moumita Dutta
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Saurabh Sarkar
- Department of Zoology, Gushkara Mahavidyalaya; Gushkara, Purba Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Anik Dutta
- Post Graduate Department of Zoology, Darjeeling Govt. College, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Salma Khatun
- Department of Zoology, Krishna Chandra College, Hetampur, West Bengal, India
| |
Collapse
|
11
|
Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol 2022; 13:979719. [PMID: 36274722 PMCID: PMC9582773 DOI: 10.3389/fmicb.2022.979719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 19 (COVID-19) has numerous risk factors leading to severe disease with high mortality rate. Oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels seems to be a common pathway associated with the high COVID-19 mortality. GSH is a unique small but powerful molecule paramount for life. It sustains adequate redox cell signaling since a physiologic level of oxidative stress is fundamental for controlling life processes via redox signaling, but excessive oxidation causes cell and tissue damage. The water-soluble GSH tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) is present in the cytoplasm of all cells. GSH is at 1-10 mM concentrations in all mammalian tissues (highest concentration in liver) as the most abundant non-protein thiol that protects against excessive oxidative stress. Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 to regulate the expression of genes that control antioxidant, inflammatory and immune system responses, facilitating GSH activity. GSH exists in the thiol-reduced and disulfide-oxidized (GSSG) forms. Reduced GSH is the prevailing form accounting for >98% of total GSH. The concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell and its alteration is related to various human pathological processes including COVID-19. Oxidative stress plays a prominent role in SARS-CoV-2 infection following recognition of the viral S-protein by angiotensin converting enzyme-2 receptor and pattern recognition receptors like toll-like receptors 2 and 4, and activation of transcription factors like nuclear factor kappa B, that subsequently activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) expression succeeded by ROS production. GSH depletion may have a fundamental role in COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of COVID-19 disease and increasing GSH levels may prevent and subdue the disease. The life value of GSH makes for a paramount research field in biology and medicine and may be key against SARS-CoV-2 infection and COVID-19 disease.
Collapse
|
12
|
Diversified Effects of COVID-19 as a Consequence of the Differential Metabolism of Phospholipids and Lipid Peroxidation Evaluated in the Plasma of Survivors and Deceased Patients upon Admission to the Hospital. Int J Mol Sci 2022; 23:ijms231911810. [PMID: 36233111 PMCID: PMC9570244 DOI: 10.3390/ijms231911810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
As a result of SARS-CoV-2 infection, inflammation develops, which promotes oxidative stress, leading to modification of phospholipid metabolism. Therefore, the aim of this study is to compare the effects of COVID-19 on the levels of phospholipid and free polyunsaturated fatty acids (PUFAs) and their metabolites produced in response to reactions with reactive oxygen species (ROS) and enzymes (cyclooxygenases-(COXs) and lipoxygenase-(LOX)) in the plasma of patients who either recovered or passed away within a week of hospitalization. In the plasma of COVID-19 patients, especially of the survivors, the actions of ROS and phospholipase A2 (PLA2) cause a decrease in phospholipid fatty acids level and an increase in free fatty acids (especially arachidonic acid) despite increased COXs and LOX activity. This is accompanied by an increased level in lipid peroxidation products (malondialdehyde and 8-isoprostaglandin F2α) and lipid mediators generated by enzymes. There is also an increase in eicosanoids, both pro-inflammatory as follows: thromboxane B2 and prostaglandin E2, and anti-inflammatory as follows: 15-deoxy-Δ-12,14-prostaglandin J2 and 12-hydroxyeicosatetraenoic acid, as well as endocannabinoids (anandamide-(AEA) and 2-arachidonylglycerol-(2-AG)) observed in the plasma of patients who recovered. Moreover, the expression of tumor necrosis factor α and interleukins (IL-6 and IL-10) is increased in patients who recovered. However, in the group of patients who died, elevated levels of N-oleoylethanolamine and N-palmitoylethanolamine are found. Since lipid mediators may have different functions depending on the onset of pathophysiological processes, a stronger pro-inflammatory response in patients who have recovered may be the result of the defensive response to SARS-CoV-2 in survivors associated with specific changes in the phospholipid metabolism, which could also be considered a prognostic factor.
Collapse
|
13
|
Contreras-Briceño F, Espinosa-Ramírez M, Rozenberg D, Reid WD. Eccentric Training in Pulmonary Rehabilitation of Post-COVID-19 Patients: An Alternative for Improving the Functional Capacity, Inflammation, and Oxidative Stress. BIOLOGY 2022; 11:biology11101446. [PMID: 36290350 PMCID: PMC9598133 DOI: 10.3390/biology11101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 01/08/2023]
Abstract
The purpose of this narrative review is to highlight the oxidative stress induced in COVID-19 patients (SARS-CoV-2 infection), describe longstanding functional impairments, and provide the pathophysiologic rationale that supports aerobic eccentric (ECC) exercise as a novel alternative to conventional concentric (CONC) exercise for post-COVID-19 patients. Patients who recovered from moderate-to-severe COVID-19 respiratory distress demonstrate long-term functional impairment. During the acute phase, SARS-CoV-2 induces the generation of reactive oxygen species that can be amplified to a "cytokine storm". The resultant inflammatory and oxidative stress process causes organ damage, particularly in the respiratory system, with the lungs as the tissues most susceptible to injury. The acute illness often requires a long-term hospital stay and consequent sarcopenia. Upon discharge, muscle weakness compounded by limited lung and cardiac function is often accompanied by dyspnea, myalgia, anxiety, depression, and sleep disturbance. Consequently, these patients could benefit from pulmonary rehabilitation (PR), with exercise as a critical intervention (including sessions of strength and endurance or aerobic exercises). Unfortunately, conventional CONC exercises induce significant cardiopulmonary stress and increase inflammatory and oxidative stress (OS) when performed at moderate/high intensity, which can exacerbate debilitating dyspnoea and muscle fatigue post-COVID-19. Eccentric training (ECC) is a well-tolerated alternative that improves muscle mass while mitigating cardiopulmonary stress in patients with COPD and other chronic diseases. Similar benefits could be realized in post-COVID-19 patients. Consequently, these patients could benefit from PR with exercise as a critical intervention.
Collapse
Affiliation(s)
- Felipe Contreras-Briceño
- Laboratory of Exercise Physiology, Department of Health Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna #4860, Santiago 7820436, Chile
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Advanced Center for Chronic Diseases (ACCDiS), Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta #367, Santiago 8380000, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Av. Vicuña Mackenna #4860, Santiago 7820436, Chile
- Correspondence: ; Tel.: +56-9-82288153
| | - Maximiliano Espinosa-Ramírez
- Laboratory of Exercise Physiology, Department of Health Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna #4860, Santiago 7820436, Chile
| | - Dmitry Rozenberg
- Department of Medicine, Respirology, University of Toronto, Toronto, ON M5G 2C4, Canada
- Toronto General Hospital, Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - W. Darlene Reid
- Department of Physical Therapy and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON M5G 2C4, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| |
Collapse
|
14
|
Žarković N, Jastrząb A, Jarocka-Karpowicz I, Orehovec B, Baršić B, Tarle M, Kmet M, Lukšić I, Łuczaj W, Skrzydlewska E. The Impact of Severe COVID-19 on Plasma Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165323. [PMID: 36014561 PMCID: PMC9416063 DOI: 10.3390/molecules27165323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Several studies suggested the association of COVID-19 with systemic oxidative stress, in particular with lipid peroxidation and vascular stress. Therefore, this study aimed to evaluate the antioxidant signaling in the plasma of eighty-eight patients upon admission to the Clinical Hospital Dubrava in Zagreb, of which twenty-two died within a week, while the other recovered. The differences between the deceased and the survivors were found, especially in the reduction of superoxide dismutases (SOD-1 and SOD-2) activity, which was accompanied by the alteration in glutathione-dependent system and the intensification of the thioredoxin-dependent system. Reduced levels of non-enzymatic antioxidants, especially tocopherol, were also observed, which correlated with enhanced lipid peroxidation (determined by 4-hydroxynonenal (4-HNE) and neuroprostane levels) and oxidative modifications of proteins assessed as 4-HNE-protein adducts and carbonyl groups. These findings confirm the onset of systemic oxidative stress in patients with severe SARS-CoV-2, especially those who died from COVID-19, as manifested by strongly reduced tocopherol level and SOD activity associated with lipid peroxidation. Therefore, we propose that preventive and/or supplementary use of antioxidants, especially of lipophilic nature, could be beneficial for the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Biserka Orehovec
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Bruno Baršić
- Department of Internal Medicine, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marko Tarle
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marta Kmet
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Ivica Lukšić
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
15
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Jamaluddin M, Haas de Mello A, Tapryal N, Hazra TK, Garofalo RP, Casola A. NRF2 Regulates Cystathionine Gamma-Lyase Expression and Activity in Primary Airway Epithelial Cells Infected with Respiratory Syncytial Virus. Antioxidants (Basel) 2022; 11:1582. [PMID: 36009301 PMCID: PMC9405023 DOI: 10.3390/antiox11081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cystathionine-y-lyase (CSE) is a critical enzyme for hydrogen sulfide (H2S) biosynthesis and plays a key role in respiratory syncytial virus (RSV) pathogenesis. The transcription factor NRF2 is the master regulator of cytoprotective and antioxidant gene expression, and is degraded during RSV infection. While some evidence supports the role of NRF2 in CSE gene transcription, its role in CSE expression in airway epithelial cells is not known. Here, we show that RSV infection decreased CSE expression and activity in primary small airway epithelial (SAE) cells, while treatment with tert-butylhydroquinone (tBHQ), an NRF2 inducer, led to an increase of both. Using reporter gene assays, we identified an NRF2 response element required for the NRF2 inducible expression of the CSE promoter. Electrophoretic mobility shift assays demonstrated inducible specific NRF2 binding to the DNA probe corresponding to the putative CSE promoter NRF2 binding sequence. Using chromatin immunoprecipitation assays, we found a 50% reduction in NRF2 binding to the endogenous CSE proximal promoter in SAE cells infected with RSV, and increased binding in cells stimulated with tBHQ. Our results support the hypothesis that NRF2 regulates CSE gene transcription in airway epithelial cells, and that RSV-induced NRF2 degradation likely accounts for the observed reduced CSE expression and activity.
Collapse
Affiliation(s)
- Mohammad Jamaluddin
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nisha Tapryal
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
17
|
Groth M, Skrzydlewska E, Dobrzyńska M, Pancewicz S, Moniuszko-Malinowska A. Redox Imbalance and Its Metabolic Consequences in Tick-Borne Diseases. Front Cell Infect Microbiol 2022; 12:870398. [PMID: 35937690 PMCID: PMC9353526 DOI: 10.3389/fcimb.2022.870398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
One of the growing global health problems are vector-borne diseases, including tick-borne diseases. The most common tick-borne diseases include Lyme disease, tick-borne encephalitis, human granulocytic anaplasmosis, and babesiosis. Taking into account the metabolic effects in the patient's body, tick-borne diseases are a significant problem from an epidemiological and clinical point of view. Inflammation and oxidative stress are key elements in the pathogenesis of infectious diseases, including tick-borne diseases. In consequence, this leads to oxidative modifications of the structure and function of phospholipids and proteins and results in qualitative and quantitative changes at the level of lipid mediators arising in both reactive oxygen species (ROS) and ROS enzyme-dependent reactions. These types of metabolic modifications affect the functioning of the cells and the host organism. Therefore, links between the severity of the disease state and redox imbalance and the level of phospholipid metabolites are being searched, hoping to find unambiguous diagnostic biomarkers. Assessment of molecular effects of oxidative stress may also enable the monitoring of the disease process and treatment efficacy.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Marta Dobrzyńska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
18
|
de Mello AH, Liu T, Garofalo RP, Casola A. Hydrogen Sulfide Donor GYY4137 Rescues NRF2 Activation in Respiratory Syncytial Virus Infection. Antioxidants (Basel) 2022; 11:1410. [PMID: 35883901 PMCID: PMC9311616 DOI: 10.3390/antiox11071410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) can cause severe respiratory illness in infants, immunocompromised, and older adults. Despite its burden, no vaccine or specific treatment is available. RSV infection is associated with increased reactive oxygen species (ROS) production, degradation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), and decreased antioxidant enzymes (AOEs), leading to oxidative damage and lung injury. Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays a physiological role in numerous cellular processes and a protective role in multiple pathological conditions, displaying vasoactive, cytoprotective, anti-inflammatory, and antioxidant activities. H2S can promote NRF2 activation through the sulfhydration of Kelch-like ECH-associated protein 1, the cytoplasmic repressor of NRF2. Here we investigated whether increasing cellular H2S levels could rescue NRF2 and NRF2-dependent gene expression in RSV-infected primary airway epithelial cells. We found that treatment with the H2S donor GYY4137 significantly increased NRF2 levels and AOEs gene expression by decreasing KEAP1 levels, and by modulating pathways involved in RSV-induced NRF2 degradation, such as NRF2 ubiquitination, and promyelocytic leukemia (PML) protein levels. These results suggest that the administration of exogenous H2S can positively impact the altered redox balance associated with RSV infection, which represents an important determinant of RSV-induced lung disease.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
19
|
Moslemi M, Hejazian SM, Shaddelan M, Javanali F, Mirghaffari A, Sadeghi A, Valizadeh H, Sharifi A, Haramshahi M, Ardalan M, Zununi Vahed S. Evaluating the effect of Edaravone on clinical outcome of patients with severe COVID-19 admitted to ICU: a randomized clinical trial. Inflammopharmacology 2022; 30:1277-1282. [PMID: 35723849 PMCID: PMC9207828 DOI: 10.1007/s10787-022-01001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Cytokine storm is the most prominent hallmark in patients with coronavirus disease 2019 (COVID-19) that stimulates the free radical storm, both of which induce an overactive immune response during viral infection. We hypothesized that owning to its radical-scavenging and anti-inflammatory properties, Edaravone could reduce multi-organ injury, clinical complications, and mortality in severe COVID-19 cases. This single-center randomized clinical trial was accompanied in the intensive care units (ICUs) of the teaching hospital of Tabriz University of Medical Sciences to evaluate the effect of Edaravone on the outcome of patients with severe COVID-19. Thirty-eight patients admitted to ICU were included and randomized into two control and intervention arms. Patients in the intervention group received 30 mg Edaravone by slow intravenous infusion for three days in addition to receiving national therapy. The primary outcome was the need for intubation, the intubation length, and mortality rate. Secondary endpoints were clinical improvement. Edaravone administration improved the primary outcomes; it decreased the need for endotracheal intubation and mechanical ventilation [10.52% (n = 2) versus 42.1% (n = 8); p = 0.03] and intubation length [3 (1–7) versus 28 (4–28), p = 0.04] compared to control group. Baseline characteristics and laboratory tests were similar between the studied groups. No marked differences were observed in secondary endpoints (p > 0.05). Administration of Edaravone could decrease the need for mechanical ventilation and length of intubation in severe COVID-19 patients admitted to ICU.
Collapse
Affiliation(s)
- Mohammadreza Moslemi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyedeh Mina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Molod Shaddelan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Javanali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Mirghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Sadeghi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Sharifi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Haramshahi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
20
|
Labarrere CA, Kassab GS. Response: Commentary: Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2022; 13:853015. [PMID: 35493507 PMCID: PMC9039250 DOI: 10.3389/fimmu.2022.853015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
21
|
Niedźwiedzka-Rystwej P, Majchrzak A, Kurkowska S, Małkowska P, Sierawska O, Hrynkiewicz R, Parczewski M. Immune Signature of COVID-19: In-Depth Reasons and Consequences of the Cytokine Storm. Int J Mol Sci 2022; 23:4545. [PMID: 35562935 PMCID: PMC9105989 DOI: 10.3390/ijms23094545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
In the beginning of the third year of the fight against COVID-19, the virus remains at least still one step ahead in the pandemic "war". The key reasons are evolving lineages and mutations, resulting in an increase of transmissibility and ability to evade immune system. However, from the immunologic point of view, the cytokine storm (CS) remains a poorly understood and difficult to combat culprit of the extended number of in-hospital admissions and deaths. It is not fully clear whether the cytokine release is a harmful result of suppression of the immune system or a positive reaction necessary to clear the virus. To develop methods of appropriate treatment and therefore decrease the mortality of the so-called COVID-19-CS, we need to look deeply inside its pathogenesis, which is the purpose of this review.
Collapse
Affiliation(s)
| | - Adam Majchrzak
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; (A.M.); (M.P.)
| | - Sara Kurkowska
- Department of Nuclear Medicine, Pomeranian Medical University, 71-252 Szczecin, Poland;
| | - Paulina Małkowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | - Olga Sierawska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; (A.M.); (M.P.)
| |
Collapse
|
22
|
Neutrophil Functional Heterogeneity and Implications for Viral Infections and Treatments. Cells 2022; 11:cells11081322. [PMID: 35456003 PMCID: PMC9025666 DOI: 10.3390/cells11081322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that neutrophils exert specialized effector functions during infection and inflammation, and that these cells can affect the duration, severity, and outcome of the infection. These functions are related to variations in phenotypes that have implications in immunoregulation during viral infections. Although the complexity of the heterogeneity of neutrophils is still in the process of being uncovered, evidence indicates that they display phenotypes and functions that can assist in viral clearance or augment and amplify the immunopathology of viruses. Therefore, deciphering and understanding neutrophil subsets and their polarization in viral infections is of importance. In this review, the different phenotypes of neutrophils and the roles they play in viral infections are discussed. We also examine the possible ways to target neutrophil subsets during viral infections as potential anti-viral treatments.
Collapse
|
23
|
Metabolic Response to Tick-Borne Encephalitis Virus Infection and Bacterial Co-Infections. Pathogens 2022; 11:pathogens11040384. [PMID: 35456059 PMCID: PMC9030592 DOI: 10.3390/pathogens11040384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Ticks are vectors of various pathogens, including tick-borne encephalitis virus and bacteria such as B. burgdorferi and A. phagocytophilum, causing infections/co-infections, which are still a diagnostic and therapeutic problem. Therefore, the aim of this study was to compare the effects of TBEV infection/bacterial co-infection on metabolic changes in the blood of patients before and after treatment. It was found that those infections promote plasma ROS enhanced generation and antioxidant defence reduction, especially in relation to glutathione and thioredoxin systems, despite the increased effectiveness of Nrf2 transcription factor in granulocytes. Observed oxidative stress promotes the oxidative modifications of phospholipids containing polyunsaturated fatty acids (LA, AA, EPA) with increased lipid peroxidation (estimated as 8-isoPGF2α, 4-HNE). It is accompanied by protein modifications measured as 4-HNE-protein adducts, carbonyl groups, dityrosine increase, and tryptophan level decrease, which promote structural and functional modification of the following transcription factors: Nrf2 and NFkB inhibitors. The lower level of 8-iso-PGF2α in co-infections indicates an impairment of the body’s ability to intensify inflammation and fight co-infections, while an increased level of Trx after therapy may contribute to the intensification of the inflammatory process. The obtained results indicate the potential possibility of using the assessed metabolic parameters to introduce targeted pharmacotherapy in cases of TBEV infections/bacterial co-infections.
Collapse
|
24
|
Wan Afifudeen CL, Teh KY, Cha TS. Bioprospecting of microalgae metabolites against cytokine storm syndrome during COVID-19. Mol Biol Rep 2022; 49:1475-1490. [PMID: 34751914 PMCID: PMC8576090 DOI: 10.1007/s11033-021-06903-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
In viral respiratory infections, disrupted pathophysiological outcomes have been attributed to hyper-activated and unresolved inflammation responses of the immune system. Integration between available drugs and natural therapeutics have reported benefits in relieving inflammation-related physiological outcomes and microalgae may be a feasible source from which to draw from against future coronavirus-infections. Microalgae represent a large and diverse source of chemically functional compounds such as carotenoids and lipids that possess various bioactivities, including anti-inflammatory properties. Therefore in this paper, some implicated pathways causing inflammation in viral respiratory infections are discussed and juxtaposed along with available research done on several microalgal metabolites. Additionally, the therapeutic properties of some known anti-inflammatory, antioxidant and immunomodulating compounds sourced from microalgae are reported for added clarity.
Collapse
Affiliation(s)
- Che Lah Wan Afifudeen
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Kit Yinn Teh
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Thye San Cha
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
- Satreps-Cosmos Laboratory, Central Laboratory Complex, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| |
Collapse
|
25
|
Daskaya H, Yilmaz S, Uysal H, Calim M, Sümbül B, Yurtsever I, Karaaslan K. Usefulness of oxidative stress marker evaluation at admission to the intensive care unit in patients with COVID-19. J Int Med Res 2021; 49:3000605211027733. [PMID: 34310245 PMCID: PMC8320569 DOI: 10.1177/03000605211027733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Two critical processes in the coronavirus disease 2019 (COVID-19) pandemic involve assessing patients' intensive care needs and predicting disease progression during patients' intensive care unit (ICU) stay. We aimed to evaluate oxidative stress marker status at ICU admission and ICU discharge status in patients with COVID-19. METHODS We included patients in a tertiary referral center ICU during June-December 2020. Scores of Acute Physiology and Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA), and clinical severity, radiologic scores, and healthy discharge status were noted. We collected peripheral blood samples at ICU admission to evaluate total antioxidants, total oxidants, catalase, and myeloperoxidase levels. RESULTS Thirty-one (24 male, 7 female) patients were included. At ICU admission, patients' mean APACHE II score at ICU admission was 17.61 ± 8.9; the mean SOFA score was 6.29 ± 3.16. There was no significant relationship between clinical severity and oxidative stress (OS) markers nor between radiological imaging and COVID-19 data classification and OS levels. Differences in OS levels between patients with healthy and exitus discharge status were not significant. CONCLUSIONS We found no significant relationship between oxidative stress marker status in patients with COVID-19 at ICU admission and patients' ICU discharge status.
Collapse
Affiliation(s)
- Hayrettin Daskaya
- Department of Anesthesiology and Reanimation, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Sinan Yilmaz
- Department of Anesthesiology and Reanimation, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Harun Uysal
- Department of Anesthesiology and Reanimation, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Muhittin Calim
- Department of Anesthesiology and Reanimation, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Bilge Sümbül
- Department of Medical Microbiology, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Ismail Yurtsever
- Department of Radiology, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Kazım Karaaslan
- Department of Anesthesiology and Reanimation, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| |
Collapse
|
26
|
Ducastel M, Chenevier-Gobeaux C, Ballaa Y, Meritet JF, Brack M, Chapuis N, Pene F, Carlier N, Szwebel TA, Roche N, Terrier B, Borderie D. Oxidative Stress and Inflammatory Biomarkers for the Prediction of Severity and ICU Admission in Unselected Patients Hospitalized with COVID-19. Int J Mol Sci 2021; 22:ijms22147462. [PMID: 34299080 PMCID: PMC8306526 DOI: 10.3390/ijms22147462] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Objective: We aimed to investigate the prognostic performances of oxidative stress (OS), inflammatory and cell activation biomarkers measured at admission in COVID-19 patients. Design: retrospective monocentric study. Setting: patients with suspected SARS-CoV-2 infection (COVID-19) admitted to the hospital. Patients: One hundred and sixty documented and unselected COVID-19-patients. Disease severity (from mild to critical) was scored according to NIH’s classification. Interventions: none. Measurements and main results: We measured OS biomarkers (thiol, advanced oxidation protein products (AOPP), ischemia-modified albumin (IMA)), inflammation biomarkers (interleukin-6 (IL-6), presepsin) and cellular activation biomarkers (calprotectin) in plasma at admission. Thiol concentrations decreased while IMA, IL-6, calprotectin and PSEP increased with disease severity in COVID-19 patients and were associated with increased O2 needs and ICU admission. The best area under the receiver-operating-characteristics curve (AUC) for the prediction of ICU admission was for thiol (AUC = 0.762). A thiol concentration <154 µmol/L was predictive for ICU admission (79.7% sensitivity, 64.6% specificity, 58.8% positive predictive value, 78.9% negative predictive value). In a stepwise logistic regression, we found that being overweight, having dyspnoea, and thiol and IL-6 plasmatic concentrations were independently associated with ICU admission. In contrast, calprotectin was the best biomarker to predict mortality (AUC = 0.792), with an optimal threshold at 24.1 mg/L (94.1% sensitivity, 64.9% specificity, 97.1% positive predictive value and 98.9% negative predictive value), and survival curves indicated that high IL-6 and calprotectin concentrations were associated with a significantly increased risk of mortality. Conclusions: Thiol measurement at admission is a promising tool to predict ICU admission in COVID-19-patients, whereas IL-6 and calprotectin measurements effectively predict mortality.
Collapse
Affiliation(s)
- Morgane Ducastel
- Department of Automated Biological Diagnostic, Cochin Hospital, APHP-Centre Université de Paris, 75014 Paris, France; (M.D.); (Y.B.); (D.B.)
| | - Camille Chenevier-Gobeaux
- Department of Automated Biological Diagnostic, Cochin Hospital, APHP-Centre Université de Paris, 75014 Paris, France; (M.D.); (Y.B.); (D.B.)
- Correspondence:
| | - Yassine Ballaa
- Department of Automated Biological Diagnostic, Cochin Hospital, APHP-Centre Université de Paris, 75014 Paris, France; (M.D.); (Y.B.); (D.B.)
| | - Jean-François Meritet
- Department of Virology, Cochin Hospital, APHP-Centre Université de Paris, 75014 Paris, France;
| | - Michel Brack
- The Oxidative Stress College Paris, 75007 Paris, France;
| | - Nicolas Chapuis
- Department of Haematology, Cochin Hospital, APHP-Centre Université de Paris, 75014 Paris, France;
| | - Frédéric Pene
- Medical Intensive Care Unit, Cochin Hospital, APHP-Centre Université de Paris, 75014 Paris, France;
- INSERM U1016, CNRS UMR 8104, Université de Paris, 75014 Paris, France
| | - Nicolas Carlier
- Department of Pulmonology, Cochin Hospital, APHP-Centre Université de Paris, 75014 Paris, France; (N.C.); (N.R.)
- Institut Cochin, UMR 1016, Université de Paris, 75014 Paris, France
| | - Tali-Anne Szwebel
- Department of Internal Medicine, Cochin Hospital, APHP-Centre Université de Paris, 75014 Paris, France; (T.-A.S.); (B.T.)
| | - Nicolas Roche
- Department of Pulmonology, Cochin Hospital, APHP-Centre Université de Paris, 75014 Paris, France; (N.C.); (N.R.)
- Institut Cochin, UMR 1016, Université de Paris, 75014 Paris, France
| | - Benjamin Terrier
- Department of Internal Medicine, Cochin Hospital, APHP-Centre Université de Paris, 75014 Paris, France; (T.-A.S.); (B.T.)
- Centre de Référence Maladies Auto-Immunes et Maladies Systémiques Rares d’Ile-de-France, Université de Paris, 75014 Paris, France
- PARCC, INSERM U970, Université de Paris, 75006 Paris, France
| | - Didier Borderie
- Department of Automated Biological Diagnostic, Cochin Hospital, APHP-Centre Université de Paris, 75014 Paris, France; (M.D.); (Y.B.); (D.B.)
- INSERM UMRs 1124, Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, Université de Paris, 75006 Paris, France
| |
Collapse
|
27
|
Xu B, Lei Y, Ren X, Yin F, Wu W, Sun Y, Wang X, Sun Q, Yang X, Wang X, Zhang R, Li Z, Fang S, Liu J. SOD1 is a Possible Predictor of COVID-19 Progression as Revealed by Plasma Proteomics. ACS OMEGA 2021; 6:16826-16836. [PMID: 34250342 PMCID: PMC8247781 DOI: 10.1021/acsomega.1c01375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/10/2021] [Indexed: 05/12/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a worldwide health emergency. Patients infected with SARS-CoV-2 present with diverse symptoms related to the severity of the disease. Determining the proteomic changes associated with these diverse symptoms and in different stages of infection is beneficial for clinical diagnosis and management. Here, we performed a tandem mass tag-labeling proteomic study on the plasma of healthy controls and COVID-19 patients, including those with asymptomatic infection (NS), mild syndrome, and severe syndrome in the early phase and the later phase. Although the number of patients included in each group is low, our comparative proteomic analysis revealed that complement and coagulation cascades, cholesterol metabolism, and glycolysis-related proteins were affected after infection with SARS-CoV-2. Compared to healthy controls, ELISA analysis confirmed that SOD1, PRDX2, and LDHA levels were increased in the patients with severe symptoms. Both gene set enrichment analysis and receiver operator characteristic analysis indicated that SOD1 could be a pivotal indicator for the severity of COVID-19. Our results indicated that plasma proteome changes differed based on the symptoms and disease stages and SOD1 could be a predictor protein for indicating COVID-19 progression. These results may also provide a new understanding for COVID-19 diagnosis and treatment.
Collapse
Affiliation(s)
- Benhong Xu
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuxuan Lei
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
- School
of Public Health (Shenzhen), Sun Yat-sen
University, Guangzhou 510275, China
| | - Xiaohu Ren
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Feng Yin
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518101, China
| | - Weihua Wu
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ying Sun
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaohui Wang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qian Sun
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xifei Yang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xin Wang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Renli Zhang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zigang Li
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518101, China
| | - Shisong Fang
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianjun Liu
- Shenzhen
Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
28
|
Cárdenas-Rodríguez N, Bandala C, Vanoye-Carlo A, Ignacio-Mejía I, Gómez-Manzo S, Hernández-Cruz EY, Pedraza-Chaverri J, Carmona-Aparicio L, Hernández-Ochoa B. Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants (Basel) 2021; 10:971. [PMID: 34204362 PMCID: PMC8235474 DOI: 10.3390/antiox10060971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is an emergent infectious disease that has caused millions of deaths throughout the world. COVID-19 infection's main symptoms are fever, cough, fatigue, and neurological manifestations such as headache, myalgias, anosmia, ageusia, impaired consciousness, seizures, and even neuromuscular junctions' disorders. In addition, it is known that this disease causes a series of systemic complications such as adverse respiratory distress syndrome, cardiac injury, acute kidney injury, and liver dysfunction. Due to the neurological symptoms associated with COVID-19, damage in the central nervous system has been suggested as well as the neuroinvasive potential of SARS-CoV-2. It is known that CoV infections are associated with an inflammation process related to the imbalance of the antioxidant system; cellular changes caused by oxidative stress contribute to brain tissue damage. Although anti-COVID-19 vaccines are under development, there is no specific treatment for COVID-19 and its clinical manifestations and complications; only supportive treatments with immunomodulators, anti-vascular endothelial growth factors, modulating drugs, statins, or nutritional supplements have been used. In the present work, we analyzed the potential of antioxidants as adjuvants for the treatment of COVID-19 and specifically their possible role in preventing or decreasing the neurological manifestations and neurological complications present in the disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - América Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, SEDENA, Ciudad de México 11200, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | | | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, UNAM, Ciudad de México 04150, Mexico; (E.Y.H.-C.); (J.P.-C.)
| | - Liliana Carmona-Aparicio
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| |
Collapse
|
29
|
Mehri F, Rahbar AH, Ghane ET, Souri B, Esfahani M. The comparison of oxidative markers between Covid-19 patients and healthy subjects. Arch Med Res 2021; 52:843-849. [PMID: 34154831 PMCID: PMC8180845 DOI: 10.1016/j.arcmed.2021.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Aim and Background Covid-19 has been as an important human infectious disease that has affected several countries. Cytokine storm has major role is Covid-19 pathogenesis. The association between inflammation and oxidative stress is well stablished. In this article, we aim to assess oxidative stress markers in Covid-19 patients compare to the healthy subjects. Method A total of 48 persons (24 with Covid-19 and 24 controls) were evaluated in this research. Serum oxidative stress markers including Malondialdehyde (MDA), total oxidant status (TOS), activity of catalase (CAT) and super oxide dismutase (SOD) were measured alongside routine laboratory tests. Results Patients group were divided into ICU and Non-ICU groups. ESR, CRP and serum level of ferritin were significantly higher in case group. Serum level of albumin was significantly lower in Covid-19 patients. Serum MDA and TOS was significantly increased in Covid-19 patients. Also, Covid-19 patients had higher serum activity of CAT and GPX. Conclusion Oxidative stress markers are significantly elevated in Covid-19 patients. This may have significant role in mechanism of disease development. In the fight against Covid-19, as a global struggle, all possible treatments demand more attention. So, Covid-19 patients may benefit from strategies for reducing or preventing oxidative stress.
Collapse
Affiliation(s)
- Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | | | | - Bahram Souri
- Department of Infectious Disease, Ayatollah Bahari Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Maryam Esfahani
- Nutrition Health Research Center, Hamadan University of Medical Sciences. Hamadan, Iran.
| |
Collapse
|
30
|
DE FLORA SILVIO, BALANSKY ROUMEN, LA MAESTRA SEBASTIANO. Antioxidants and COVID-19. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E34-E45. [PMID: 34622082 PMCID: PMC8452284 DOI: 10.15167/2421-4248/jpmh2021.62.1s3.1895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022]
Abstract
Oxidative mechanisms are not only involved in chronic degenerative diseases but also in infectious diseases, among which viral respiratory diseases. Antioxidants have the capability to counteract the action of oxidants by scavenging reactive oxygen species (ROS) and by inhibiting oxidant generating enzymes. Overproduction of ROS and deprivation of antioxidant systems play a major role in COVID-19 occurrence, progression, and severity. Interconnected pathways account for the relationships between oxidative damage and inflammation resulting from an interplay between transcription factors having opposite effects. For instance, Nrf2 downregulates inflammation by inhibiting endogenous antioxidant enzymes such as NQO-1 and HO-1. On the other hand, NF-κB upregulates pro-inflammatory cytokines and chemokines, such as IL-1β, IL-6, IL-8, PGE-2, COX-2, TNF-α, MMP-3, and MMP-4. A central protective role against oxidants is played by reduced glutathione (GSH), which is depleted in SARS-CoV-2 infection. N-acetylcysteine (NAC), a precursor of GSH, is of particular interest as an anti-COVID-19 agent. GSH and NAC hamper binding of the S1 subunit of SARS-CoV-2 spike proteins to the angiotensin-converting enzyme 2 (ACE2) receptor. In addition, NAC and its derivatives possess a broad array of antioxidant and antiinflammatory mechanisms that could be exploited for COVID-19 prevention and adjuvant therapy. In particular, as demonstrated in a previous clinical trial evaluating influenza and influenza-like illnesses, the oral administration of NAC may be expected to decrease the risk of developing COVID-19. Furthermore, at the very high doses used worldwide as an antidote against paracetamol intoxication, intravenous NAC is likely to attenuate the pulmonary and systemic symptoms of COVID-19.
Collapse
Affiliation(s)
| | | | - SEBASTIANO LA MAESTRA
- Department of Health Sciences, University of Genoa, Italy
- Correspondence: Sebastiano La Maestra, Department of Health Sciences, University of Genoa, via A. Pastore 1, 16132 Genoa, Italy – E-mail:
| |
Collapse
|
31
|
Darenskaya M, Kolesnikova L, Kolesnikov S. The Association of Respiratory Viruses with Oxidative Stress and Antioxidants. Implications for the COVID-19 Pandemic. Curr Pharm Des 2021; 27:1618-1627. [PMID: 33618639 DOI: 10.2174/1381612827666210222113351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
The spread of a new strain of coronavirus, SARS-CoV-2, a pandemic, poses a serious health problem for all humanity. Compared with the previous outbreaks of coronavirus infection in 2002 and 2012, COVID-19 infection has high rates of lethality, contagiousness, and comorbidity. The effective methods of prevention and treatment are extremely limited. Oxidative stress is actively involved in the mechanisms of initiation and maintenance of violations of homeostatic reactions in respiratory viral infections. It is important to stop systemic inflammation aimed at "extinguishing" the cytokine "storm", caused by the production of reactive oxygen species. Antioxidant defense medications, such as vitamin C, N-acetylcysteine, melatonin, quercetin, glutathione, astaxanthin, polyphenols, fat-soluble vitamins, and polyunsaturated fatty acids have proven well in experimental and clinical studies of influenza, pneumonia, and other respiratory disorders. The use of medications with antioxidant activity could be justified and most probably would increase the effectiveness of the fight against new coronavirus.
Collapse
Affiliation(s)
- Marina Darenskaya
- Department of Pathophysiology, Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russian Federation
| | - Liubov Kolesnikova
- Department of Pathophysiology, Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russian Federation
| | - Sergei Kolesnikov
- Department of Pathophysiology, Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russian Federation
| |
Collapse
|
32
|
Karkhanei B, Talebi Ghane E, Mehri F. Evaluation of oxidative stress level: total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect 2021; 42:100897. [PMID: 34026228 PMCID: PMC8127525 DOI: 10.1016/j.nmni.2021.100897] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), as a dangerous global pandemic, has led to high morbidity and mortality in all countries. There is a lot of evidence for the possible role of oxidative stress in COVID-19. In the present study, we aimed to measure the levels of glutathione (GSH), total antioxidant capacity (TAC) and total oxidant status (TOS) in the serum of patients with COVID-19. A total of 96 individuals with and without COVID-19 were enrolled and divided into four groups, including hospitalised group in non–intensive care units (non-ICU) (n = 35), hospitalised group in intensive care units with endotracheal intubation (EI) (ICU with EI) (n = 19), hospitalised group in intensive care units without endotracheal intubation (ICU without EI) (n = 24) and healthy people without COVID-19 disease as our control group (n = 18). The present study revealed that the TOS level was significantly lower in the group of control (p = 0.001), and level of GSH remarkably increased in the patients' groups (p < 0.001). TAC activity in non-ICU group of patients had no significant difference in comparison with the control group. However, in hospitalised patients' groups in the ICU with and without EI this activity was significantly different from the control group (p < 0.001). Moreover, there was a significant relationship between the levels of TOS, GSH and TAC with blood oxygen saturation (SpO2), fever, duration of hospitalisation and the prognosis of this disease (p < 0.001). Area under the curve (CI, 95%) of TOS, TAC and GSH-C to predict death among patients were, respectively, 0.907 (0.841, 0.973), 0.735 (0.626, 0.843) and 0.820 (0.725, 0.914). Receiver operating characteristic curve analysis showed that TOS, TAC and GSH-C have the potential specificity and sensitivity to distinguish between alive and dead patients. We found that elevated levels of oxidative stress and reduction of antioxidant indices can aggravate disease's severity in hospitalised patients with COVID-19. Therefore, it can be suggested to apply antioxidant agents as one of the effective therapeutic strategies in these groups.
Collapse
Affiliation(s)
- B Karkhanei
- Department of Anesthesiology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - E Talebi Ghane
- Modeling of Noncommunicable Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - F Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
33
|
Fakhri S, Nouri Z, Moradi SZ, Akkol EK, Piri S, Sobarzo-Sánchez E, Farzaei MH, Echeverría J. Targeting Multiple Signal Transduction Pathways of SARS-CoV-2: Approaches to COVID-19 Therapeutic Candidates. Molecules 2021; 26:2917. [PMID: 34068970 PMCID: PMC8156180 DOI: 10.3390/molecules26102917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Due to the complicated pathogenic pathways of coronavirus disease 2019 (COVID-19), related medicinal therapies have remained a clinical challenge. COVID-19 highlights the urgent need to develop mechanistic pathogenic pathways and effective agents for preventing/treating future epidemics. As a result, the destructive pathways of COVID-19 are in the line with clinical symptoms induced by severe acute coronary syndrome (SARS), including lung failure and pneumonia. Accordingly, revealing the exact signaling pathways, including inflammation, oxidative stress, apoptosis, and autophagy, as well as relative representative mediators such as tumor necrosis factor-α (TNF-α), nuclear factor erythroid 2-related factor 2 (Nrf2), Bax/caspases, and Beclin/LC3, respectively, will pave the road for combating COVID-19. Prevailing host factors and multiple steps of SARS-CoV-2 attachment/entry, replication, and assembly/release would be hopeful strategies against COVID-19. This is a comprehensive review of the destructive signaling pathways and host-pathogen interaction of SARS-CoV-2, as well as related therapeutic targets and treatment strategies, including potential natural products-based candidates.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey;
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
34
|
Cao Q, Lei H, Yang M, Wei L, Dong Y, Xu J, Nasser M, Liu M, Zhu P, Xu L, Zhao M. Impact of Cardiovascular Diseases on COVID-19: A Systematic Review. Med Sci Monit 2021; 27:e930032. [PMID: 33820904 PMCID: PMC8035813 DOI: 10.12659/msm.930032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In December 2019, pneumonia of unknown cause broke out, and currently more than 150 countries around the world have been affected. Globally, as of 5: 46 pm CET, 6 November 2020, the World Health Organization (WHO) had reported 48 534 508 confirmed cases of COVID-19, including 1 231 017 deaths. The novel coronavirus disease (COVID-19) outbreak, caused by the SARS-CoV-2 virus, is the most important medical challenge in decades. Previous research mainly focused on the exploration of lung changes. However, with development of the disease and deepening research, more and more patients showed cardiovascular diseases, even in those without respiratory symptoms, and some researchers have found that underlying cardiovascular diseases increase the risk of infection. Although the related mechanism is not thoroughly studied, based on existing research, we speculate that the interaction between the virus and its receptor, inflammatory factors, various forms of the stress response, hypoxic environment, and drug administration could all induce the development of cardiac adverse events. Interventions to control these pathogenic factors may effectively reduce the occurrence of cardiovascular complications. This review summarizes the latest research on the relationship between COVID-19 and its associated cardiovascular complications, and we also explore possible mechanisms and treatments.
Collapse
Affiliation(s)
- Qingtai Cao
- Hunan Normal University School of Medicine, Changsha, Hunan, China (mainland)
| | - HanYu Lei
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland).,Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - MengLing Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland).,Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Le Wei
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland).,Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - YinMiao Dong
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - JiaHao Xu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland).,Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Mi Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China (mainland)
| | - MengQi Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland).,Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China (mainland)
| | - LinYong Xu
- School of Life Science, Central South University, Changsha, Hunan, China (mainland)
| | - MingYi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
35
|
Intracellular Redox-Modulated Pathways as Targets for Effective Approaches in the Treatment of Viral Infection. Int J Mol Sci 2021; 22:ijms22073603. [PMID: 33808471 PMCID: PMC8036776 DOI: 10.3390/ijms22073603] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Host-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses. It is known that excessive production of reactive oxygen species (ROS) induced by viral infection activates nuclear factor (NF)-kB, which orchestrates the expression of viral and host genes involved in the viral replication and inflammatory response. Moreover, redox-regulated protein disulfide isomerase (PDI) chaperones have an essential role in catalyzing formation of disulfide bonds in viral proteins. This review aims at describing the role of GSH in modulating redox sensitive pathways, in particular that mediated by NF-kB, and PDI activity. The second part of the review discusses the effectiveness of GSH-boosting molecules as broad-spectrum antivirals acting in a multifaceted way that includes the modulation of immune and inflammatory responses.
Collapse
|
36
|
Fratta Pasini AM, Stranieri C, Cominacini L, Mozzini C. Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Antioxidants (Basel) 2021; 10:272. [PMID: 33578849 PMCID: PMC7916604 DOI: 10.3390/antiox10020272] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Here, we review the molecular pathogenesis of SARS-CoV-2 and its relationship with oxidative stress (OS) and inflammation. Furthermore, we analyze the potential role of antioxidant and anti-inflammatory therapies to prevent severe complications. OS has a potential key role in the COVID-19 pathogenesis by triggering the NOD-like receptor family pyrin domain containing 3 inflammasome and nuclear factor-kB (NF-kB). While exposure to many pro-oxidants usually induces nuclear factor erythroid 2 p45-related factor2 (NRF2) activation and upregulation of antioxidant related elements expression, respiratory viral infections often inhibit NRF2 and/or activate NF-kB pathways, resulting in inflammation and oxidative injury. Hence, the use of radical scavengers like N-acetylcysteine and vitamin C, as well as of steroids and inflammasome inhibitors, has been proposed. The NRF2 pathway has been shown to be suppressed in severe SARS-CoV-2 patients. Pharmacological NRF2 inducers have been reported to inhibit SARS-CoV-2 replication, the inflammatory response, and transmembrane protease serine 2 activation, which for the entry of SARS-CoV-2 into the host cells through the angiotensin converting enzyme 2 receptor. Thus, NRF2 activation may represent a potential path out of the woods in COVID-19 pandemic.
Collapse
Affiliation(s)
- Anna M. Fratta Pasini
- Section of General Medicine and Atherothrombotic and Degenerative Diseases, Department of Medicine, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (L.C.); (C.M.)
| | | | | | | |
Collapse
|
37
|
Damiano S, Sozio C, La Rosa G, Santillo M. NOX-Dependent Signaling Dysregulation in Severe COVID-19: Clues to Effective Treatments. Front Cell Infect Microbiol 2020; 10:608435. [PMID: 33384971 PMCID: PMC7769936 DOI: 10.3389/fcimb.2020.608435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
| | | | | | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Napoli, Italy
| |
Collapse
|
38
|
Akki R, Fath N, Mohti H. COVID-19: Oxidative Preconditioning as a Potential Therapeutic Approach. ACS Chem Neurosci 2020; 11:3732-3740. [PMID: 33147964 PMCID: PMC7670822 DOI: 10.1021/acschemneuro.0c00453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
This Article summarizes the likely benefits of central nervous system oxidative preconditioning in the reduction of COVID-19 based on its putative pathogenesis. The current COVID-19 outbreak caused a pandemic with millions of infected patients and death cases worldwide. The clinical features of severe acute respiratory syndrome coronavirus (SARS-CoV) was initially linked with respiratory disorders, but recent studies have reported alterations of neurological and cerebrovascular functions in COVID-19 patients. The main viral infection features are related to cell death, inflammation, and cytokine generation, which can be associated with the dysregulation of redox systems or oxidative stress. However, until now, there is no available and effective therapeutic approach. Thus, it is necessary to search for care and adequate protection against the disease, especially for susceptible and vulnerable groups. Preconditioning, a well-known antioxidative stress and anti-inflammatory approach, is protective against many neurological age-related disorders. COVID-19 severity and morbidity have been observed in elderly patients. The aim of the present study is to elucidate the possible protective role of oxidative preconditioning in aged patients at high risk of developing severe COVID-19 complications.
Collapse
Affiliation(s)
- Rachid Akki
- Department
of Plant Protection, National School of
Agriculture-Meknes/ENA, BP S/40, Meknès 50001, Morocco
| | - Nada Fath
- Compared
Anatomy Unit, School of Veterinary Medicine, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10000, Morocco
- Physiology
and Pathophysiology Laboratory, Department of Biology, Faculty of
Sciences, Mohamed V University, Rabat BP 8007.NU, Morocco
| | - Hicham Mohti
- Management
and Valorization of Natural Resources, Faculty of Sciences, Moulay Ismail University of Meknes, Meknes BP 11201, Morocco
| |
Collapse
|
39
|
Citi V, Martelli A, Brancaleone V, Brogi S, Gojon G, Montanaro R, Morales G, Testai L, Calderone V. Anti-inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H 2 S donors in COVID-19 therapy. Br J Pharmacol 2020; 177:4931-4941. [PMID: 32783196 PMCID: PMC7436626 DOI: 10.1111/bph.15230] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-Cov-2 demands rapid, safe and effective therapeutic options. In the last decades, the endogenous gasotransmitter hydrogen sulfide (H2 S) has emerged as modulator of several biological functions and its deficiency has been associated with different disorders. Therefore, many H2 S-releasing agents have been developed as potential therapeutic tools for diseases related with impaired H2 S production and/or activity. Some of these compounds are in advanced clinical trials. Presently, the pivotal role of H2 S in modulating the inflammatory response and pro-inflammatory cytokine cascade is well recognized, and the usefulness of some H2 S-donors for the treatment of acute lung inflammation has been reported. Recent data is elucidating several mechanisms of action, which may account for antiviral effects of H2 S. Noteworthy, some preliminary clinical results suggest an inverse relationship between endogenous H2 S levels and severity of COVID-19. Therefore, repurposing of H2 S-releasing drugs may be a potential therapeutic opportunity for treatment of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
| | | | | | - Simone Brogi
- Department of PharmacyUniversity of PisaPisaItaly
| | | | | | | | - Lara Testai
- Department of PharmacyUniversity of PisaPisaItaly
| | | |
Collapse
|
40
|
Roberts KA, Colley L, Agbaedeng TA, Ellison-Hughes GM, Ross MD. Vascular Manifestations of COVID-19 - Thromboembolism and Microvascular Dysfunction. Front Cardiovasc Med 2020; 7:598400. [PMID: 33195487 PMCID: PMC7649150 DOI: 10.3389/fcvm.2020.598400,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic has reportedly infected over 31.5 million individuals and caused over 970,000 deaths worldwide (as of 22nd Sept 2020). This novel coronavirus, officially named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), although primarily causes significant respiratory distress, can have significant deleterious effects on the cardiovascular system. Severe cases of the virus frequently result in respiratory distress requiring mechanical ventilation, often seen, but not confined to, individuals with pre-existing hypertension and cardiovascular disease, potentially due to the fact that the virus can enter the circulation via the lung alveoli. Here the virus can directly infect vascular tissues, via TMPRSS2 spike glycoprotein priming, thereby facilitating ACE-2-mediated viral entry. Clinical manifestations, such as vasculitis, have been detected in a number of vascular beds (e.g., lungs, heart, and kidneys), with thromboembolism being observed in patients suffering from severe coronavirus disease (COVID-19), suggesting the virus perturbs the vasculature, leading to vascular dysfunction. Activation of endothelial cells via the immune-mediated inflammatory response and viral infection of either endothelial cells or cells involved in endothelial homeostasis, are some of the multifaceted mechanisms potentially involved in the pathogenesis of vascular dysfunction within COVID-19 patients. In this review, we examine the evidence of vascular manifestations of SARS-CoV-2, the potential mechanism(s) of entry into vascular tissue and the contribution of endothelial cell dysfunction and cellular crosstalk in this vascular tropism of SARS-CoV-2. Moreover, we discuss the current evidence on hypercoagulability and how it relates to increased microvascular thromboembolic complications in COVID-19.
Collapse
Affiliation(s)
- Kirsty A. Roberts
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Liam Colley
- School of Sport, Health & Exercise Science, Bangor University, Bangor, United Kingdom
| | - Thomas A. Agbaedeng
- Centre for Heart Rhythm Disorders, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Georgina M. Ellison-Hughes
- Centre for Human and Physiological Sciences, Faculty of Life Sciences & Medicine, School of Basic and Medical Biosciences, King's College London, London, United Kingdom,*Correspondence: Georgina M. Ellison-Hughes
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom,Mark D. Ross
| |
Collapse
|
41
|
Roberts KA, Colley L, Agbaedeng TA, Ellison-Hughes GM, Ross MD. Vascular Manifestations of COVID-19 - Thromboembolism and Microvascular Dysfunction. Front Cardiovasc Med 2020; 7:598400. [PMID: 33195487 PMCID: PMC7649150 DOI: 10.3389/fcvm.2020.598400] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic has reportedly infected over 31.5 million individuals and caused over 970,000 deaths worldwide (as of 22nd Sept 2020). This novel coronavirus, officially named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), although primarily causes significant respiratory distress, can have significant deleterious effects on the cardiovascular system. Severe cases of the virus frequently result in respiratory distress requiring mechanical ventilation, often seen, but not confined to, individuals with pre-existing hypertension and cardiovascular disease, potentially due to the fact that the virus can enter the circulation via the lung alveoli. Here the virus can directly infect vascular tissues, via TMPRSS2 spike glycoprotein priming, thereby facilitating ACE-2-mediated viral entry. Clinical manifestations, such as vasculitis, have been detected in a number of vascular beds (e.g., lungs, heart, and kidneys), with thromboembolism being observed in patients suffering from severe coronavirus disease (COVID-19), suggesting the virus perturbs the vasculature, leading to vascular dysfunction. Activation of endothelial cells via the immune-mediated inflammatory response and viral infection of either endothelial cells or cells involved in endothelial homeostasis, are some of the multifaceted mechanisms potentially involved in the pathogenesis of vascular dysfunction within COVID-19 patients. In this review, we examine the evidence of vascular manifestations of SARS-CoV-2, the potential mechanism(s) of entry into vascular tissue and the contribution of endothelial cell dysfunction and cellular crosstalk in this vascular tropism of SARS-CoV-2. Moreover, we discuss the current evidence on hypercoagulability and how it relates to increased microvascular thromboembolic complications in COVID-19.
Collapse
Affiliation(s)
- Kirsty A. Roberts
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Liam Colley
- School of Sport, Health & Exercise Science, Bangor University, Bangor, United Kingdom
| | - Thomas A. Agbaedeng
- Centre for Heart Rhythm Disorders, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Georgina M. Ellison-Hughes
- Centre for Human and Physiological Sciences, Faculty of Life Sciences & Medicine, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
42
|
Hanidziar D, Robson SC. Hyperoxia and modulation of pulmonary vascular and immune responses in COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 320:L12-L16. [PMID: 33050737 PMCID: PMC7816427 DOI: 10.1152/ajplung.00304.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oxygen is the most commonly used therapy in hospitalized patients with COVID-19. In those patients who develop worsening pneumonia and acute respiratory distress syndrome (ARDS), high concentrations of oxygen may need to be administered for prolonged time periods, often together with mechanical ventilation. Hyperoxia, although lifesaving and essential for maintaining adequate oxygenation in the short term, may have adverse long-term consequences upon lung parenchymal structure and function. How hyperoxia per se impacts lung disease in COVID-19 has remained largely unexplored. Numbers of experimental studies have previously established that hyperoxia is associated with deleterious outcomes inclusive of perturbations in immunologic responses, abnormal metabolic function, and alterations in hemodynamics and alveolar barrier function. Such changes may ultimately progress into clinically evident lung injury and adverse remodeling and result in parenchymal fibrosis when exposure is prolonged. Given that significant exposure to hyperoxia in patients with severe COVID-19 may be unavoidable to preserve life, these sequelae of hyperoxia, superimposed on the cytopathic effects of SARS-CoV-2 virus, may well impact pathogenesis of COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Dusan Hanidziar
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Simon C Robson
- Department of Anesthesia, Critical Care and Pain Medicine, Center for Inflammation Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
43
|
Darenskaya MA, Kolesnikova LI, Kolesnikov SI. COVID-19: oxidative stress and the relevance of antioxidant therapy. ACTA ACUST UNITED AC 2020. [DOI: 10.15690/vramn1360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The emergence of viral respiratory pathogens with high pandemic potential, such as the SARS-CoV-2, poses a serious public health problem, with a very limited arsenal of effective tools and techniques to prevent and treat a new pandemic infection. The literature on the involvement of reactive oxygen species in the pathogenesis of coronavirus infections and the potential for antioxidant therapy was reviewed. Because of available evidence on the involvement of oxidative stress in the mechanisms of initiation and maintenance of homeostasis disorders in SARS-CoV-2, approaches combining reduction of ROS synthesis, inhibition of virus replication, anti-inflammatory action, reduction of hypoxia, and reduction of the toxic effects of drug therapy may be very effective. The hypothesis of the expediency of treating systemic inflammation aimed at "quenching" the cytokine "storm", caused largely by the production of reactive oxygen species, seems essential. In this connection, it is pathophysiologically justified to use for prophylactic and therapeutic purposes antioxidant drugs, which have proven themselves on the example of other viral respiratory infections. Thus, the high activity of preparations of vitamin C, N-acetylcysteine, melatonin, quercetin, glutathione, astaxanthin, polyphenols, polyunsaturated fatty acids, etc. was noted. In addition, these drugs effectively protect the vascular wall, which has been proven for a number of cardiovascular diseases and that can be effective in developing with COVID-19 vasculitis. There is a more pronounced combined effect of these drugs, which is already used in treatment protocols for patients with SARS-CoV-2. Special attention should also be paid to the use of antioxidant drugs as a means to reduce the toxic manifestations of antiviral therapy. Thus, the use of drugs with antioxidant activity can be justified and will certainly improve the effectiveness of the fight against the pandemic of new coronavirus infection.
Collapse
|
44
|
Laforge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, Benoliel JJ, Becker C. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol 2020; 20:515-516. [PMID: 32728221 PMCID: PMC7388427 DOI: 10.1038/s41577-020-0407-1] [Citation(s) in RCA: 403] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this Comment article, Becker and colleagues consider how the excessive release of reactive oxygen species by neutrophils may perpetuate red blood cell dysfunction, thrombosis and tissue damage in severe cases of COVID-19.
Collapse
Affiliation(s)
- Mireille Laforge
- CNRS, INSERM UMRS 1124, Faculté des sciences fondamentales et biomédicales, Université de Paris, Paris, France
| | - Carole Elbim
- Centre de Recherche Saint-Antoine, INSERM UMRS 938, Sorbonne Université, Paris, France
| | - Corinne Frère
- Institute of Cardiometabolism and Nutrition (ICAN), GRC 27 GRECO, INSERM 1166, Sorbonne Université, Paris, France
| | - Miryana Hémadi
- Université de Paris, CNRS-UMR 7086, Interfaces, Traitements, Organisation et DYnamique des Systèmes (ITODYS), Paris, France
| | - Charbel Massaad
- CNRS, INSERM UMRS 1124, Faculté des sciences fondamentales et biomédicales, Université de Paris, Paris, France
| | - Philippe Nuss
- Centre de Recherche Saint-Antoine, INSERM UMRS 938, Sorbonne Université, Paris, France.,Service de psychiatrie et de psychologie médicale, Sorbonne Université, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jean-Jacques Benoliel
- CNRS, INSERM UMRS 1124, Faculté des sciences fondamentales et biomédicales, Université de Paris, Paris, France.,Service de biochimie endocrinienne et oncologie, Hôpital Pitié-Salpêtrière AP-HP, Sorbonne Université, Paris, France
| | - Chrystel Becker
- CNRS, INSERM UMRS 1124, Faculté des sciences fondamentales et biomédicales, Université de Paris, Paris, France.
| |
Collapse
|
45
|
Cuadrado A, Pajares M, Benito C, Jiménez-Villegas J, Escoll M, Fernández-Ginés R, Garcia Yagüe AJ, Lastra D, Manda G, Rojo AI, Dinkova-Kostova AT. Can Activation of NRF2 Be a Strategy against COVID-19? Trends Pharmacol Sci 2020; 41:598-610. [PMID: 32711925 PMCID: PMC7359808 DOI: 10.1016/j.tips.2020.07.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 is largely the result of a dysregulated host response, followed by damage to alveolar cells and lung fibrosis. Exacerbated proinflammatory cytokines release (cytokine storm) and loss of T lymphocytes (leukopenia) characterize the most aggressive presentation. We propose that a multifaceted anti-inflammatory strategy based on pharmacological activation of nuclear factor erythroid 2 p45-related factor 2 (NRF2) can be deployed against the virus. The strategy provides robust cytoprotection by restoring redox and protein homeostasis, promoting resolution of inflammation, and facilitating repair. NRF2 activators such as sulforaphane and bardoxolone methyl are already in clinical trials. The safety and efficacy information of these modulators in humans, together with their well-documented cytoprotective and anti-inflammatory effects in preclinical models, highlight the potential of this armamentarium for deployment to the battlefield against COVID-19.
Collapse
Affiliation(s)
- Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain; Department of Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.
| | - Marta Pajares
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Cristina Benito
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - José Jiménez-Villegas
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Maribel Escoll
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Raquel Fernández-Ginés
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Angel J Garcia Yagüe
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Diego Lastra
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Gina Manda
- Department of Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid (UAM), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), UAM, Madrid, Spain
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
46
|
The pneumococcal two-component system SirRH is linked to enhanced intracellular survival of Streptococcus pneumoniae in influenza-infected pulmonary cells. PLoS Pathog 2020; 16:e1008761. [PMID: 32790758 PMCID: PMC7447016 DOI: 10.1371/journal.ppat.1008761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 08/25/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
The virus-bacterial synergism implicated in secondary bacterial infections caused by Streptococcus pneumoniae following infection with epidemic or pandemic influenza A virus (IAV) is well documented. However, the molecular mechanisms behind such synergism remain largely ill-defined. In pneumocytes infected with influenza A virus, subsequent infection with S. pneumoniae leads to enhanced pneumococcal intracellular survival. The pneumococcal two-component system SirRH appears essential for such enhanced survival. Through comparative transcriptomic analysis between the ΔsirR and wt strains, a list of 179 differentially expressed genes was defined. Among those, the clpL protein chaperone gene and the psaB Mn+2 transporter gene, which are involved in the stress response, are important in enhancing S. pneumoniae survival in influenza-infected cells. The ΔsirR, ΔclpL and ΔpsaB deletion mutants display increased susceptibility to acidic and oxidative stress and no enhancement of intracellular survival in IAV-infected pneumocyte cells. These results suggest that the SirRH two-component system senses IAV-induced stress conditions and controls adaptive responses that allow survival of S. pneumoniae in IAV-infected pneumocytes.
Collapse
|
47
|
Mendonca P, Soliman KFA. Flavonoids Activation of the Transcription Factor Nrf2 as a Hypothesis Approach for the Prevention and Modulation of SARS-CoV-2 Infection Severity. Antioxidants (Basel) 2020; 9:E659. [PMID: 32722164 PMCID: PMC7463602 DOI: 10.3390/antiox9080659] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The Nrf2-Keap1-ARE pathway is the principal regulator of antioxidant and phase II detoxification genes. Its activation increases the expression of antioxidant and cytoprotective proteins, protecting cells against infections. Nrf2 modulates virus-induced oxidative stress, ROS generation, and disease pathogenesis, which are vital in the viral life cycle. During respiratory viral infections, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an inflammatory process, and oxidative stress of the epithelium lining cells activate the transcription factor Nrf2, which protects cells from oxidative stress and inflammation. Nrf2 reduces angiotensin-converting enzyme 2 (ACE2) receptors expression in respiratory epithelial cells. SARS-CoV2 has a high affinity for ACE2 that works as receptors for coronavirus surface spike glycoprotein, facilitating viral entry. Disease severity may also be modulated by pre-existing conditions, such as impaired immune response, obesity, and age, where decreased level of Nrf2 is a common feature. Consequently, Nrf2 activators may increase Nrf2 levels and enhance antiviral mediators' expression, which could initiate an "antiviral state", priming cells against viral infection. Therefore, this hypothesis paper describes the use of flavonoid supplements combined with vitamin D3 to activate Nrf2, which may be a potential target to prevent and/or decrease SARS-CoV-2 infection severity, reducing oxidative stress and inflammation, enhancing innate immunity, and downregulating ACE2 receptors.
Collapse
Affiliation(s)
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
48
|
Mild SARS-CoV-2 infections in children might be based on evolutionary biology and linked with host reactive oxidative stress and antioxidant capabilities. New Microbes New Infect 2020; 36:100723. [PMID: 32670592 PMCID: PMC7313508 DOI: 10.1016/j.nmni.2020.100723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to significant morbidity and mortality in elderly individuals. Children typically have mild illness with rare mortalities. Age and co-morbid medical conditions are the most important determinant of the infection outcome. Currently there is no clear explanation for the difference in disease severity and outcome in different age groups. Based on evolutionary biology and translational research this review suggests that the high antioxidant capacity of children leading to a balanced redox state is the key factor for mild SARS-CoV-2 infections in this age group. On the other hand, elderly individuals with low antioxidant capacity and low angiotensin-converting enzyme 2 expression are prone to severe infections by redox-sensitive immune modulation.
Collapse
|
49
|
McCord JM, Hybertson BM, Cota-Gomez A, Geraci KP, Gao B. Nrf2 Activator PB125 ® as a Potential Therapeutic Agent against COVID-19. Antioxidants (Basel) 2020; 9:E518. [PMID: 32545518 PMCID: PMC7346195 DOI: 10.3390/antiox9060518] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Nrf2 is a transcription factor that regulates cellular redox balance and the expression of a wide array of genes involved in immunity and inflammation, including antiviral actions. Nrf2 activity declines with age, making the elderly more susceptible to oxidative stress-mediated diseases, which include type 2 diabetes, chronic inflammation, and viral infections. Published evidence suggests that Nrf2 activity may regulate important mechanisms affecting viral susceptibility and replication. We examined gene expression levels by GeneChip microarray and by RNA-seq assays. We found that the potent Nrf2-activating composition PB125® downregulates ACE2 and TMPRSS2 mRNA expression in human liver-derived HepG2 cells. ACE2 is a surface receptor and TMPRSS2 activates the spike protein for SARS-CoV-2 entry into host cells. Furthermore, in endotoxin-stimulated primary human pulmonary artery endothelial cells, we report the marked downregulation by PB125 of 36 genes encoding cytokines. These include IL-1-beta, IL-6, TNF-α, the cell adhesion molecules ICAM-1, VCAM-1, and E-selectin, and a group of IFN-γ-induced genes. Many of these cytokines have been specifically identified in the "cytokine storm" observed in fatal cases of COVID-19, suggesting that Nrf2 activation may significantly decrease the intensity of the storm.
Collapse
Affiliation(s)
- Joe M. McCord
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Adela Cota-Gomez
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Kara P. Geraci
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| |
Collapse
|
50
|
Csukasi F, Rico G, Becerra J, Duran I. Should we unstress SARS-CoV-2 infected cells? Cytokine Growth Factor Rev 2020; 54:3-5. [PMID: 32563554 PMCID: PMC7286832 DOI: 10.1016/j.cytogfr.2020.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Fabiana Csukasi
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Gustavo Rico
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29071, Málaga, Spain
| | - Jose Becerra
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29071, Málaga, Spain
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA; Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29071, Málaga, Spain.
| |
Collapse
|