1
|
Pla-Tenorio J, Roig AM, García-Cesaní PA, Santiago LA, Sepulveda-Orengo MT, Noel RJ. Astrocytes: Role in pathogenesis and effect of commonly misused drugs in the HIV infected brain. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100108. [PMID: 38020814 PMCID: PMC10663134 DOI: 10.1016/j.crneur.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/05/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
The roles of astrocytes as reservoirs and producers of a subset of viral proteins in the HIV infected brain have been studied extensively as a key to understanding HIV-associated neurocognitive disorders (HAND). However, their comprehensive role in the context of intersecting substance use and neurocircuitry of the reward pathway and HAND has yet to be fully explained. Use of methamphetamines, cocaine, or opioids in the context of HIV infection have been shown to lead to a faster progression of HAND. Glutamatergic, dopaminergic, and GABAergic systems are implicated in the development of HAND-induced cognitive impairments. A thorough review of scientific literature exploring the variety of mechanisms in which these drugs exert their effects on the HIV brain and astrocytes has revealed marked areas of convergence in overexcitation leading to increased drug-seeking behavior, inflammation, apoptosis, and irreversible neurotoxicity. The present review investigates astrocytes, the neural pathways, and mechanisms of drug disruption that ultimately play a larger holistic role in terms of HIV progression and drug use. There are opportunities for future research, therapeutic intervention, and preventive strategies to diminish HAND in the subset population of patients with HIV and substance use disorder.
Collapse
Affiliation(s)
- Jessalyn Pla-Tenorio
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Angela M. Roig
- Seattle Children's Hospital, MS OC.7.830, 4800 Sand Point Way NE, Seattle, WA, 98105-0371, United States
| | - Paulina A. García-Cesaní
- Bella Vista Hospital, Family Medicine Residency, Carr. 349 Km 2.7, Cerro Las Mesas, Mayaguez, PR, 00681, Puerto Rico
| | - Luis A. Santiago
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Marian T. Sepulveda-Orengo
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Richard J. Noel
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| |
Collapse
|
2
|
Extracellular vesicles released from macrophages modulates interleukin-1β in astrocytic and neuronal cells. Sci Rep 2023; 13:3005. [PMID: 36810605 PMCID: PMC9944928 DOI: 10.1038/s41598-023-29746-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
We have recently demonstrated that long-term exposure of cigarette smoke condensate (CSC) to HIV-uninfected (U937) and -infected (U1) macrophages induce packaging of pro-inflammatory molecules, particularly IL-1β, in extracellular vesicles (EVs). Therefore, we hypothesize that exposure of EVs derived from CSC-treated macrophages to CNS cells can increase their IL-1β levels contributing to neuroinflammation. To test this hypothesis, we treated the U937 and U1 differentiated macrophages once daily with CSC (10 µg/ml) for 7 days. Then, we isolated EVs from these macrophages and treated these EVs with human astrocytic (SVGA) and neuronal (SH-SY5Y) cells in the absence and presence of CSC. We then examined the protein expression of IL-1β and oxidative stress related proteins, cytochrome P450 2A6 (CYP2A6), superoxide dismutase-1 (SOD1), catalase (CAT). We observed that the U937 cells have lower expression of IL-1β compared to their respective EVs, confirming that most of the produced IL-1β are packaged into EVs. Further, EVs isolated from HIV-infected and uninfected cells, both in the absence and presence of CSC, were treated to SVGA and SH-SY5Y cells. These treatments showed a significant increase in the levels of IL-1β in both SVGA and SH-SY5Y cells. However, under the same conditions, the levels of CYP2A6, SOD1, and catalase were only markedly altered. These findings suggest that the macrophages communicate with astrocytes and neuronal cells via EVs-containing IL-1β in both HIV and non-HIV setting and could contribute to neuroinflammation.
Collapse
|
3
|
Kandel SR, Luo X, He JJ. Nef inhibits HIV transcription and gene expression in astrocytes and HIV transmission from astrocytes to CD4 + T cells. J Neurovirol 2022; 28:552-565. [PMID: 36001227 DOI: 10.1007/s13365-022-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
HIV infects astrocytes in a restricted manner but leads to abundant expression of Nef, a major viral factor for HIV replication and disease progression. However, the roles of Nef in HIV gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells remain largely unclear. In this study, we attempted to address these issues by transfecting human primary astrocytes with HIV molecular clones with intact Nef and without Nef (a nonsense Nef mutant) and comparing gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells MT4. First, we found that lack of Nef expression led to increased extracellular virus production from astrocytes and intracellular viral protein and RNA expression in astrocytes. Using a HIV LTR-driven luciferase reporter gene assay, we showed that ectopic Nef expression alone inhibited the HIV LTR promoter activity in astrocytes. Consistent with the previously established function of Nef, we showed that the infectivity of HIV derived from astrocytes with Nef expression was significantly higher than that with no Nef expression. Next, we performed the co-culture assay to determine HIV transfer from astrocytes transfected to MT4. We showed that lack of Nef expression led to significant increase in HIV transfer from astrocytes to MT4 using two HIV clones. We also used Nef-null HIV complemented with Nef in trans in the co-culture assay and demonstrated that Nef expression led to significantly decreased HIV transfer from astrocytes to MT4. Taken together, these findings support a negative role of Nef in HIV replication and pathogenesis in astrocytes.
Collapse
Affiliation(s)
- Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Xiaoyu Luo
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA. .,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA. .,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
4
|
Characterization of Macrophage-Tropic HIV-1 Infection of Central Nervous System Cells and the Influence of Inflammation. J Virol 2022; 96:e0095722. [PMID: 35975998 PMCID: PMC9472603 DOI: 10.1128/jvi.00957-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
HIV-1 infection within the central nervous system (CNS) includes evolution of the virus, damaging inflammatory cascades, and the involvement of multiple cell types; however, our understanding of how Env tropism and inflammation can influence CNS infectivity is incomplete. In this study, we utilize macrophage-tropic and T cell-tropic HIV-1 Env proteins to establish accurate infection profiles for multiple CNS cells under basal and interferon alpha (IFN-α) or lipopolysaccharide (LPS)-induced inflammatory states. We found that macrophage-tropic viruses confer entry advantages in primary myeloid cells, including monocyte-derived macrophage, microglia, and induced pluripotent stem cell (iPSC)-derived microglia. However, neither macrophage-tropic or T cell-tropic HIV-1 Env proteins could mediate infection of astrocytes or neurons, and infection was not potentiated by induction of an inflammatory state in these cells. Additionally, we found that IFN-α and LPS restricted replication in myeloid cells, and IFN-α treatment prior to infection with vesicular stomatitis virus G protein (VSV G) Envs resulted in a conserved antiviral response across all CNS cell types. Further, using RNA sequencing (RNA-seq), we found that only myeloid cells express HIV-1 entry receptor/coreceptor transcripts at a significant level and that these transcripts in select cell types responded only modestly to inflammatory signals. We profiled the transcriptional response of multiple CNS cells to inflammation and found 57 IFN-induced genes that were differentially expressed across all cell types. Taken together, these data focus attention on the cells in the CNS that are truly permissive to HIV-1, further highlight the role of HIV-1 Env evolution in mediating infection in the CNS, and point to limitations in using model cell types versus primary cells to explore features of virus-host interaction. IMPORTANCE The major feature of HIV-1 pathogenesis is the induction of an immunodeficient state in the face of an enhanced state of inflammation. However, for many of those infected, there can be an impact on the central nervous system (CNS) resulting in a wide range of neurocognitive defects. Here, we use a highly sensitive and quantitative assay for viral infectivity to explore primary and model cell types of the brain for their susceptibility to infection using viral entry proteins derived from the CNS. In addition, we examine the ability of an inflammatory state to alter infectivity of these cells. We find that myeloid cells are the only cell types in the CNS that can be infected and that induction of an inflammatory state negatively impacts viral infection across all cell types.
Collapse
|
5
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
6
|
DeMarino C, Cowen M, Khatkar P, Cotto B, Branscome H, Kim Y, Sharif SA, Agbottah ET, Zhou W, Costiniuk CT, Jenabian MA, Gelber C, Liotta LA, Langford D, Kashanchi F. Cannabinoids Reduce Extracellular Vesicle Release from HIV-1 Infected Myeloid Cells and Inhibit Viral Transcription. Cells 2022; 11:723. [PMID: 35203372 PMCID: PMC8869966 DOI: 10.3390/cells11040723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Of the 37.9 million individuals infected with human immunodeficiency virus type 1 (HIV-1), approximately 50% exhibit HIV-associated neurocognitive disorders (HAND). We and others previously showed that HIV-1 viral RNAs, such as trans-activating response (TAR) RNA, are incorporated into extracellular vesicles (EVs) and elicit an inflammatory response in recipient naïve cells. Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), the primary cannabinoids present in cannabis, are effective in reducing inflammation. Studies show that cannabis use in people living with HIV-1 is associated with lower viral load, lower circulating CD16+ monocytes and high CD4+ T-cell counts, suggesting a potentially therapeutic application. Here, HIV-1 infected U1 monocytes and primary macrophages were used to assess the effects of CBD. Post-CBD treatment, EV concentrations were analyzed using nanoparticle tracking analysis. Changes in intracellular and EV-associated viral RNA were quantified using RT-qPCR, and changes in viral proteins, EV markers, and autophagy proteins were assessed by Western blot. Our data suggest that CBD significantly reduces the number of EVs released from infected cells and that this may be mediated by reducing viral transcription and autophagy activation. Therefore, CBD may exert a protective effect by alleviating the pathogenic effects of EVs in HIV-1 and CNS-related infections.
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| | - Bianca Cotto
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (B.C.); (D.L.)
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| | - Sarah Al Sharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz, University for Health Sciences, Jeddah 22384, Saudi Arabia;
| | | | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (W.Z.); (L.A.L.)
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada;
| | | | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA; (W.Z.); (L.A.L.)
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (B.C.); (D.L.)
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 22030, USA; (C.D.); (M.C.); (P.K.); (H.B.); (Y.K.)
| |
Collapse
|
7
|
Haddad A, Voth B, Brooks J, Swang M, Carryl H, Algarzae N, Taylor S, Parker C, Van Rompay KKA, De Paris K, Burke MW. Reduced neuronal population in the dorsolateral prefrontal cortex in infant macaques infected with simian immunodeficiency virus (SIV). J Neurovirol 2021; 27:923-935. [PMID: 34554407 PMCID: PMC8901521 DOI: 10.1007/s13365-021-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Pediatric HIV infection remains a global health crisis with an estimated 150,000 new mother-to-child (MTCT) infections each year. Antiretroviral therapy (ART) has improved childhood survival, but only an estimated 53% of children worldwide have access to treatment. Adding to the health crisis is the neurological impact of HIV on the developing brain, in particular cognitive and executive function, which persists even when ART is available. Imaging studies suggest structural, connectivity, and functional alterations in perinatally HIV-infected youth. However, the paucity of histological data limits our ability to identify specific cortical regions that may underlie the clinical manifestations. Utilizing the pediatric simian immunodeficiency virus (SIV) infection model in infant macaques, we have previously shown that early-life SIV infection depletes the neuronal population in the hippocampus. Here, we expand on these previous studies to investigate the dorsolateral prefrontal cortex (dlPFC). A total of 11 ART-naïve infant rhesus macaques (Macaca mulatta) from previous studies were retrospectively analyzed. Infant macaques were either intravenously (IV) inoculated with highly virulent SIVmac251 at ~1 week of age and monitored for 6-10 weeks or orally challenged with SIVmac251 from week 9 of age onwards with a monitoring period of 10-23 weeks post-infection (19-34 weeks of age), and SIV-uninfected controls were euthanized at 16-17 weeks of age. Both SIV-infected groups show a significant loss of neurons along with evidence of ongoing neuronal death. Oral- and IV-infected animals showed a similar neuronal loss which was negatively correlated to chronic viremia levels as assessed by an area under the curve (AUC) analysis. The loss of dlPFC neurons may contribute to the rapid neurocognitive decline associated with pediatric HIV infection.
Collapse
Affiliation(s)
- Alexandra Haddad
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Brittany Voth
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Janiya Brooks
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Melanie Swang
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Heather Carryl
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Norah Algarzae
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
- King Saudi University, Riyadh, Riyadh, Kingdom of Saudi Arabia
| | - Shane Taylor
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Camryn Parker
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
8
|
Latronico T, Rizzi F, Panniello A, Laquintana V, Arduino I, Denora N, Fanizza E, Milella S, Mastroianni CM, Striccoli M, Curri ML, Liuzzi GM, Depalo N. Luminescent PLGA Nanoparticles for Delivery of Darunavir to the Brain and Inhibition of Matrix Metalloproteinase-9, a Relevant Therapeutic Target of HIV-Associated Neurological Disorders. ACS Chem Neurosci 2021; 12:4286-4301. [PMID: 34726377 PMCID: PMC9297288 DOI: 10.1021/acschemneuro.1c00436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Human
immunodeficiency virus (HIV) can independently replicate
in the central nervous system (CNS) causing neurocognitive impairment
even in subjects with suppressed plasma viral load. The antiretroviral
drug darunavir (DRV) has been approved for therapy of HIV-infected
patients, but its efficacy in the treatment of HIV-associated neurological
disorders (HAND) is limited due to the low penetration through the
blood–brain barrier (BBB). Therefore, innovations in DRV formulations,
based on its encapsulation in optically traceable nanoparticles (NPs),
may improve its transport through the BBB, providing, at the same
time, optical monitoring of drug delivery within the CNS. The aim
of this study was to synthesize biodegradable polymeric NPs loaded
with DRV and luminescent, nontoxic carbon dots (C-Dots) and investigate
their ability to permeate through an artificial BBB and to inhibit in vitro matrix metalloproteinase-9 (MMP-9) that represents
a factor responsible for the development of HIV-related neurological
disorders. Biodegradable poly(lactic-co-glycolic)
acid (PLGA)-based nanoformulations resulted characterized by an average
hydrodynamic size less than 150 nm, relevant colloidal stability in
aqueous medium, satisfactory drug encapsulation efficiency, and retained
emitting optical properties in the visible region of the electromagnetic
spectrum. The assay on the BBB artificial model showed that a larger
amount of DRV was able to cross BBB when incorporated in the PLGA
NPs and to exert an enhanced inhibition of matrix metalloproteinase-9
(MMP-9) expression levels with respect to free DRV. The overall results
reveal the great potential of this class of nanovectors of DRV for
an efficacious treatment of HANDs.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Annamaria Panniello
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Elisabetta Fanizza
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Serafina Milella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Claudio M. Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University, AOU Policlinico Umberto 1, 00185 Rome, Italy
| | - Marinella Striccoli
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Grazia M. Liuzzi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
9
|
Surnar B, Shah AS, Park M, Kalathil AA, Kamran MZ, Ramirez Jaime R, Toborek M, Nair M, Kolishetti N, Dhar S. Brain-Accumulating Nanoparticles for Assisting Astrocytes to Reduce Human Immunodeficiency Virus and Drug Abuse-Induced Neuroinflammation and Oxidative Stress. ACS NANO 2021; 15:15741-15753. [PMID: 34355558 PMCID: PMC10134441 DOI: 10.1021/acsnano.0c09553] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human neurotropic immunodeficiency virus (HIV) ingress into the brain and its subsequent replication after infection results in viral reservoirs in the brain. The infected cells include microglia, perivascular macrophages, and astrocytes. HIV-associated neurocognitive disorders (HAND) affect glial cells by activating microglia and macrophages through neuroinflammation, as well as astrocytes through mitochondrial dysfunctions and the onset of oxidative stress, impairing the ability of these cells to engage in neuroprotection. Furthermore, the risk of neuroinflammation associated with HAND is magnified by recreational drug use in HIV-positive individuals. Most of the therapeutic options for HIV cannot be used to tackle the virus in the brain and treat HAND due to the inability of currently available combination antiretroviral therapies (ARTs) and neuroprotectants to cross the blood-brain barrier, even if the barrier is partially compromised by infection. Here, we report a strategy to deliver an optimized antiretroviral therapy combined with antioxidant and anti-inflammatory neuroprotectants using biodegradable brain-targeted polymeric nanoparticles to reduce the burden caused by viral reservoirs in the brain and tackle the oxidative stress and inflammation in astrocytes and microglia. Through in vitro coculture studies in human microglia and astrocytes as well as an in vivo efficacy study in an EcoHIV-infected, methamphetamine-exposed animal model, we established a nanoparticle-based therapeutic strategy with the ability to treat HIV infection in the central nervous system in conditions simulating drug use while providing enhanced protection to astrocytes, microglia, and neurons.
Collapse
Affiliation(s)
- Bapurao Surnar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Anuj S Shah
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Akil A Kalathil
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Mohammad Z Kamran
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Royden Ramirez Jaime
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Miami, Florida 33199, United States
| | - Shanta Dhar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
10
|
HIV-Associated Neurotoxicity: The Interplay of Host and Viral Proteins. Mediators Inflamm 2021; 2021:1267041. [PMID: 34483726 PMCID: PMC8410439 DOI: 10.1155/2021/1267041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
HIV-1 can incite activation of chemokine receptors, inflammatory mediators, and glutamate receptor-mediated excitotoxicity. The mechanisms associated with such immune activation can disrupt neuronal and glial functions. HIV-associated neurocognitive disorder (HAND) is being observed since the beginning of the AIDS epidemic due to a change in the functional integrity of cells from the central nervous system (CNS). Even with the presence of antiretroviral therapy, there is a decline in the functioning of the brain especially movement skills, noticeable swings in mood, and routine performance activities. Under the umbrella of HAND, various symptomatic and asymptomatic conditions are categorized and are on a rise despite the use of newer antiretroviral agents. Due to the use of long-lasting antiretroviral agents, this deadly disease is becoming a manageable chronic condition with the occurrence of asymptomatic neurocognitive impairment (ANI), symptomatic mild neurocognitive disorder, or HIV-associated dementia. In-depth research in the pathogenesis of HIV has focused on various mechanisms involved in neuronal dysfunction and associated toxicities ultimately showcasing the involvement of various pathways. Increasing evidence-based studies have emphasized a need to focus and explore the specific pathways in inflammation-associated neurodegenerative disorders. In the current review, we have highlighted the association of various HIV proteins and neuronal cells with their involvement in various pathways responsible for the development of neurotoxicity.
Collapse
|
11
|
Sil S, Periyasamy P, Thangaraj A, Niu F, Chemparathy DT, Buch S. Advances in the Experimental Models of HIV-Associated Neurological Disorders. Curr HIV/AIDS Rep 2021; 18:459-474. [PMID: 34427869 DOI: 10.1007/s11904-021-00570-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Involvement of the central nervous system (CNS) in HIV-1 infection is commonly associated with neurological disorders and cognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Severe and progressive neurocognitive impairment is rarely observed in the post-cART era; however, asymptomatic and mild neurocognitive disorders still exist, despite viral suppression. Additionally, comorbid conditions can also contribute to the pathogenesis of HAND. RECENT FINDINGS In this review, we summarize the characterization of HAND, factors contributing, and the functional impairments in both preclinical and clinical models. Specifically, we also discuss recent advances in the animal models of HAND and in in vitro cultures and the potential role of drugs of abuse in this model system of HAND. Potential peripheral biomarkers associated with HAND are also discussed. Overall, this review identifies some of the recent advances in the field of HAND in cell culture studies, animal models, clinical findings, and the limitations of each model system, which can play a key role in developing novel therapeutics in the field.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Divya T Chemparathy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
12
|
Alzheimer's-Like Pathology at the Crossroads of HIV-Associated Neurological Disorders. Vaccines (Basel) 2021; 9:vaccines9080930. [PMID: 34452054 PMCID: PMC8402792 DOI: 10.3390/vaccines9080930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the widespread success of combined antiretroviral therapy (cART) in suppressing viremia, the prevalence of human immunodeficiency virus (HIV)-associated neurological disorders (HAND) and associated comorbidities such as Alzheimer’s disease (AD)-like symptomatology is higher among people living with HIV. The pathophysiology of observed deficits in HAND is well understood. However, it has been suggested that it is exacerbated by aging. Epidemiological studies have suggested comparable concentrations of the toxic amyloid protein, amyloid-β42 (Aβ42), in the cerebrospinal fluid (CSF) of HAND patients and in the brains of patients with dementia of the Alzheimer’s type. Apart from abnormal amyloid-β (Aβ) metabolism in AD, a better understanding of the role of similar pathophysiologic processes in HAND could be of substantial value. The pathogenesis of HAND involves either the direct effects of the virus or the effect of viral proteins, such as Tat, Gp120, or Nef, as well as the effects of antiretrovirals on amyloid metabolism and tauopathy, leading, in turn, to synaptodendritic alterations and neuroinflammatory milieu in the brain. Additionally, there is a lack of knowledge regarding the causative or bystander role of Alzheimer’s-like pathology in HAND, which is a barrier to the development of therapeutics for HAND. This review attempts to highlight the cause–effect relationship of Alzheimer’s-like pathology with HAND, attempting to dissect the role of HIV-1, HIV viral proteins, and antiretrovirals in patient samples, animal models, and cell culture model systems. Biomarkers associated with Alzheimer’s-like pathology can serve as a tool to assess the neuronal injury in the brain and the associated cognitive deficits. Understanding the factors contributing to the AD-like pathology associated with HAND could set the stage for the future development of therapeutics aimed at abrogating the disease process.
Collapse
|
13
|
Nigro SE, Wu M, C Juliano A, Flynn B, Lu LH, Landay AL, French AL, Yang S. Effects of cocaine and HIV on decision-making abilities. J Neurovirol 2021; 27:422-433. [PMID: 33978905 PMCID: PMC8380473 DOI: 10.1007/s13365-021-00965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/24/2021] [Accepted: 02/28/2021] [Indexed: 11/27/2022]
Abstract
Our study aimed to understand the impact of cocaine dependence on high-risk decision-making abilities in individuals with the human immunodeficiency virus (HIV) and individuals with cocaine dependence. We recruited 99 participants (27 HIV/Cocaine, 20 HIV Only, 26 Cocaine Only, and 26 Healthy Controls). The Iowa Gambling Task (IGT) was applied to assess decision-making abilities. Independent and interactive effects of HIV status and cocaine dependence were examined using 2 × 2 factorial ANCOVA with premorbid IQ (WRAT-4: WR) as the covariate. We found cocaine dependence had a significant adverse effect on overall IGT performance (p = 0.015). We also found individuals who were HIV-positive tended to have less total money at the end of the game than individuals who were HIV-negative (p = 0.032), suggesting individuals living with HIV had less focus on long-term gains and more focus on short-term gains. Our findings highlight the significant impact of cocaine dependence on decision-making abilities and the difficulty individuals with HIV have in adequately weighing the cost and benefits of their decisions and making appropriate changes for the future.
Collapse
Affiliation(s)
- Sarah E Nigro
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony C Juliano
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Brendan Flynn
- Department of Neuropsychology, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Lisa H Lu
- General Dynamics Information Technology, San Antonio, TX, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Audrey L French
- Department of Medicine, CORE Center, Stroger Hospital of Cook County, Chicago, IL, USA
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Rizzo MD, Henriquez JE, Blevins LK, Bach A, Crawford RB, Kaminski NE. Targeting Cannabinoid Receptor 2 on Peripheral Leukocytes to Attenuate Inflammatory Mechanisms Implicated in HIV-Associated Neurocognitive Disorder. J Neuroimmune Pharmacol 2020; 15:780-793. [PMID: 32409991 PMCID: PMC7666101 DOI: 10.1007/s11481-020-09918-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
HIV infection affects an estimated 38 million people. Approximately 50% of HIV patients exhibit neurocognitive dysfunction termed HIV-Associated Neurocognitive Disorder (HAND). HAND is a consequence of chronic low-level neuroinflammation due to HIV entry into the brain. Initially, monocytes become activated in circulation and traffic to the brain. Monocytes, when activated, become susceptible to infection by HIV and can then carry the virus across the blood brain barrier. Once in the brain, activated monocytes secrete chemokines, which recruit virus-specific CD8+ T cells into the brain to further promote neuroinflammation. HAND is closely linked to systemic inflammation driven, in part, by HIV but is also due to persistent translocation of microorganisms across the GI tract. Persistent anti-viral responses in the GI tract compromise microbial barrier integrity. Indeed, HIV patients can exhibit remarkably high levels of activated (CD16+) monocytes in circulation. Recent studies, including our own, show that HIV patients using medical marijuana exhibit lower levels of circulating CD16+ monocytes than non-cannabis using HIV patients. Cannabis is a known immune modulator, including anti-inflammatory properties, mediated, in part, by ∆9-tetrahydrocannabinol (THC), as well as less characterized minor cannabinoids, such as cannabidiol (CBD), terpenes and presumably other cannabis constituents. The immune modulating activity of THC is largely mediated through cannabinoid receptors (CB) 1 and 2, with CB1 also responsible for the psychotropic properties of cannabis. Here we discuss the anti-inflammatory properties of cannabinoids in the context of HIV and propose CB2 as a putative therapeutic target for the treatment of neuroinflammation. Graphical Abstract HIV-associated neurocognitive disorder is a systemic inflammatory disease leading to activation of plasmacytoid dendritic cells, monocytes and T cells. Monocyte and CD8 T cell migration across the BBB and interaction with astrocytes promotes neurotoxic inflammatory mediators release. CB2 ligands are proposed as therapeutics capable of suppressing systemic and localized inflammation.
Collapse
Affiliation(s)
- Michael D Rizzo
- Michigan State University, East Lansing, MI, USA
- Cell & Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Joseph E Henriquez
- Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| | - Lance K Blevins
- Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anthony Bach
- Michigan State University, East Lansing, MI, USA
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, USA
| | - Robert B Crawford
- Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Norbert E Kaminski
- Michigan State University, East Lansing, MI, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA.
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
15
|
Dos Reis RS, Sant S, Keeney H, Wagner MCE, Ayyavoo V. Modeling HIV-1 neuropathogenesis using three-dimensional human brain organoids (hBORGs) with HIV-1 infected microglia. Sci Rep 2020; 10:15209. [PMID: 32938988 PMCID: PMC7494890 DOI: 10.1038/s41598-020-72214-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
HIV-1 associated neurocognitive disorder (HAND) is characterized by neuroinflammation and glial activation that, together with the release of viral proteins, trigger a pathogenic cascade resulting in synaptodendritic damage and neurodegeneration that lead to cognitive impairment. However, the molecular events underlying HIV neuropathogenesis remain elusive, mainly due to lack of brain-representative experimental systems to study HIV-CNS pathology. To fill this gap, we developed a three-dimensional (3D) human brain organoid (hBORG) model containing major cell types important for HIV-1 neuropathogenesis; neurons and astrocytes along with incorporation of HIV-infected microglia. Both infected and uninfected microglia infiltrated into hBORGs resulting in a triculture system (MG-hBORG) that mirrors the multicellular network observed in HIV-infected human brain. Moreover, the MG-hBORG model supported productive viral infection and exhibited increased inflammatory response by HIV-infected MG-hBORGs, releasing tumor necrosis factor (TNF-α) and interleukin-1 (IL-1β) and thereby mimicking the chronic neuroinflammatory environment observed in HIV-infected individuals. This model offers great promise for basic understanding of how HIV-1 infection alters the CNS compartment and induces pathological changes, paving the way for discovery of biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, McGowan Institute for Regenerative Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, 15261, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Hannah Keeney
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Marc C E Wagner
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
16
|
Omeragic A, Kayode O, Hoque MT, Bendayan R. Potential pharmacological approaches for the treatment of HIV-1 associated neurocognitive disorders. Fluids Barriers CNS 2020; 17:42. [PMID: 32650790 PMCID: PMC7350632 DOI: 10.1186/s12987-020-00204-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
HIV associated neurocognitive disorders (HAND) are the spectrum of cognitive impairments present in patients infected with human immunodeficiency virus type 1 (HIV-1). The number of patients affected with HAND ranges from 30 to 50% of HIV infected individuals and although the development of combinational antiretroviral therapy (cART) has improved longevity, HAND continues to pose a significant clinical problem as the current standard of care does not alleviate or prevent HAND symptoms. At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that it stems from neuronal injury due to chronic release of neurotoxins, chemokines, viral proteins, and proinflammatory cytokines secreted by HIV-1 activated microglia, macrophages and astrocytes in the central nervous system (CNS). Furthermore, the blood-brain barrier (BBB) not only serves as a route for HIV-1 entry into the brain but also prevents cART therapy from reaching HIV-1 brain reservoirs, and therefore could play an important role in HAND. The goal of this review is to discuss the current data on the epidemiology, pathology and research models of HAND as well as address the potential pharmacological treatment approaches that are being investigated.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Olanre Kayode
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
17
|
Chompre G, Martinez-Orengo N, Cruz M, Porter JT, Noel RJ. TGFβRI antagonist inhibits HIV-1 Nef-induced CC chemokine family ligand 2 (CCL2) in the brain and prevents spatial learning impairment. J Neuroinflammation 2019; 16:262. [PMID: 31829243 PMCID: PMC6905066 DOI: 10.1186/s12974-019-1664-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND HIV-1-associated neurocognitive disorders (HAND) progression is related to continued inflammation despite undetectable viral loads and may be caused by early viral proteins expressed by latently infected cells. Astrocytes represent an HIV reservoir in the brain where the early viral neurotoxin negative factor (Nef) is produced. We previously demonstrated that astrocytic expression of Nef in the hippocampus of rats causes inflammation, macrophage infiltration, and memory impairment. Since these processes are affected by TGFβ signaling pathways, and TGFβ-1 is found at higher levels in the central nervous system of HIV-1+ individuals and is released by astrocytes, we hypothesized a role for TGFβ-1 in our model of Nef neurotoxicity. METHODS To test this hypothesis, we compared cytokine gene expression by cultured astrocytes expressing Nef or green fluorescent protein. To determine the role of Nef and a TGFβRI inhibitor on memory and learning, we infused astrocytes expressing Nef into the hippocampus of rats and then treated them daily with an oral dose of SD208 (10 mg/kg) or placebo for 7 days. During this time, locomotor activity was recorded in an open field and spatial learning tested in the novel location recognition paradigm. Postmortem tissue analyses of inflammatory and signaling molecules were conducted using immunohistochemistry and immunofluorescence. RESULTS TGFβ-1 was induced in cultures expressing Nef at 24 h followed by CCL2 induction which was prevented by blocking TGFβRI with SD208 (competitive inhibitor). Interestingly, Nef seems to change the TGFβRI localization as suggested by the distribution of the immunoreactivity. Nef caused a deficit in spatial learning that was recovered upon co-administration of SD208. Brain tissue from Nef-treated rats given SD208 showed reduced CCL2, phospho-SMAD2, cluster of differentiation 163 (CD163), and GFAP immunoreactivity compared to the placebo group. CONCLUSIONS Consistent with our previous findings, rats treated with Nef showed deficits in spatial learning and memory in the novel location recognition task. In contrast, rats treated with Nef + SD208 showed better spatial learning suggesting that Nef disrupts memory formation in a TGFβ-1-dependent manner. The TGFβRI inhibitor further reduced the induction of inflammation by Nef which was concomitant with decreased TGFβ signaling. Our findings suggest that TGFβ-1 signaling is an intriguing target to reduce neuroHIV.
Collapse
Affiliation(s)
- Gladys Chompre
- Biology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Neysha Martinez-Orengo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - Myrella Cruz
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - James T Porter
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - Richard J Noel
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA.
| |
Collapse
|
18
|
Rivera J, Isidro RA, Loucil-Alicea RY, Cruz ML, Appleyard CB, Isidro AA, Chompre G, Colon-Rivera K, Noel RJ. Infusion of HIV-1 Nef-expressing astrocytes into the rat hippocampus induces enteropathy and interstitial pneumonitis and increases blood-brain-barrier permeability. PLoS One 2019; 14:e0225760. [PMID: 31774879 PMCID: PMC6881014 DOI: 10.1371/journal.pone.0225760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
Even though HIV-1 replication can be suppressed by combination antiretroviral therapy (cART) inflammatory processes still occur, contributing to comorbidities. Comorbidities are attributed to variety of factors, including HIV-1 mediated inflammation. Several HIV-1 proteins mediate central nervous system (CNS) inflammation, including Nef. Nef is an early HIV-1 protein, toxic to neurons and glia and is sufficient to cause learning impairment similar to some deficits observed in HIV-1 associated neurocognitive disorders. To determine whether hippocampal Nef expression by astrocytes contributes to comorbidities, specifically peripheral inflammation, we infused Sprague Dawley rats with GFP- (control) or Nef-transfected astrocytes into the right hippocampus. Brain, lung, and ileum were collected postmortem for the measurement of inflammatory markers. Increased blood-brain-barrier permeability and serum IL-1β levels were detected in the Nef-treated rats. The lungs of Nef-treated rats demonstrated leukocyte infiltration, macrophage upregulation, and enhanced vascular permeability. Ileal tissue showed reactive follicular lymphoid hyperplasia, increased permeability and macrophage infiltration. The intracerebroventricular application of IL-1 receptor antagonist reduced infiltration of immune cells into ileum and lung, indicating the important role of IL-1β in mediating the spread of inflammation from the brain to other tissues. This suggests that localized expression of a single viral protein, HIV-1 Nef, can contribute to a broader inflammatory response by upregulation of IL-1β. Further, these results suggest that Nef contributes to the chronic inflammation seen in HIV patients, even in those whose viremia is controlled by cART.
Collapse
Affiliation(s)
- Jocelyn Rivera
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Raymond A. Isidro
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Raisa Y. Loucil-Alicea
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Myrella L. Cruz
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Caroline B. Appleyard
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Angel A. Isidro
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Gladys Chompre
- Department of Biology, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, United States of America
| | - Krystal Colon-Rivera
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
19
|
Swinton MK, Carson A, Telese F, Sanchez AB, Soontornniyomkij B, Rad L, Batki I, Quintanilla B, Pérez-Santiago J, Achim CL, Letendre S, Ellis RJ, Grant I, Murphy AN, Fields JA. Mitochondrial biogenesis is altered in HIV+ brains exposed to ART: Implications for therapeutic targeting of astroglia. Neurobiol Dis 2019; 130:104502. [PMID: 31238091 DOI: 10.1016/j.nbd.2019.104502] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/15/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
The neuropathogenesis of HIV associated neurocognitive disorders (HAND) involves disruption of mitochondrial homeostasis and increased neuroinflammation. However, it is unknown if alterations in mitochondrial biogenesis in the brain underlie the neuropathogenesis of HAND. In this study, neuropathological and molecular analyses of mitochondrial biogenesis and inflammatory pathways were performed in brain specimens from a well-characterized cohort of HIV+ cases that were on antiretroviral regimens. In vitro investigations using primary human astroglia and neurons were used to probe the underlying mechanisms of mitochondrial alterations. In frontal cortices from HAND brains compared to cognitive normal brains, total levels of transcription factors that regulate mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and transcription factor A, mitochondrial (TFAM) were decreased. Immunohistochemical analyses revealed that TFAM was decreased in neurons and increased in astroglia. These changes were accompanied by decreased total mitochondrial DNA per cell and increased levels of messenger RNA for the proinflammatory cytokine interleukin (IL)-1β. To determine how IL-1β affects astroglial bioenergetic processes and mitochondrial activity, human astroglial cultures were exposed to recombinant IL-1β. IL-1β induced mitochondrial activity within 30 min of treatment, altered mitochondrial related gene expression, altered mitochondrial morphology, enhanced adenoside triphosphate (ATP) utilization and increased the expression of inflammatory cytokines. WIN55,212-2 (WIN), an aminoalkylindole derivative and cannabinoid receptor agonist, blocked IL-1β-induced bioenergetic fluctuations and inflammatory gene expression in astroglia independent of cannabinoid receptor (CB)1 and peroxisome proliferator-activated receptor (PPAR) γ. A PPARα antagonist reversed the anti-inflammatory effects of WIN in human astroglia. These results show that mitochondrial biogenesis is differentially regulated in neurons and astroglia in HAND brains and that targeting astroglial bioenergetic processes may be a strategy to modulate neuroinflammation.
Collapse
Affiliation(s)
- Mary K Swinton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Aliyah Carson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Francesca Telese
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ana B Sanchez
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Leila Rad
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Isabella Batki
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Brandi Quintanilla
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Cristian L Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ronald J Ellis
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Bozzelli PL, Yin T, Avdoshina V, Mocchetti I, Conant KE, Maguire-Zeiss KA. HIV-1 Tat promotes astrocytic release of CCL2 through MMP/PAR-1 signaling. Glia 2019; 67:1719-1729. [PMID: 31124192 DOI: 10.1002/glia.23642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/29/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
The HIV-1 protein Tat is continually released by HIV-infected cells despite effective combination antiretroviral therapies (cART). Tat promotes neurotoxicity through enhanced expression of proinflammatory molecules from resident and infiltrating immune cells. These molecules include matrix metalloproteinases (MMPs), which are pathologically elevated in HIV, and are known to drive central nervous system (CNS) injury in varied disease settings. A subset of MMPs can activate G-protein coupled protease-activated receptor 1 (PAR-1), a receptor that is highly expressed on astrocytes. Although PAR-1 expression is increased in HIV-associated neurocognitive disorder (HAND), its role in HAND pathogenesis remains understudied. Herein, we explored Tat's ability to induce expression of the PAR-1 agonists MMP-3 and MMP-13. We also investigated MMP/PAR-1-mediated release of CCL2, a chemokine that drives CNS entry of HIV infected monocytes and remains a significant correlate of cognitive dysfunction in the era of cART. Tat exposure significantly increased the expression of MMP-3 and MMP-13. These PAR-1 agonists both stimulated the release of astrocytic CCL2, and both genetic knock-out and pharmacological inhibition of PAR-1 reduced CCL2 release. Moreover, in HIV-infected post-mortem brain tissue, within-sample analyses revealed a correlation between levels of PAR-1-activating MMPs, PAR-1, and CCL2. Collectively, these findings identify MMP/PAR-1 signaling to be involved in the release of CCL2, which may underlie Tat-induced neuroinflammation.
Collapse
Affiliation(s)
- P Lorenzo Bozzelli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Tao Yin
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Italo Mocchetti
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Katherine E Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Kathleen A Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
21
|
Rizzo MD, Crawford RB, Bach A, Sermet S, Amalfitano A, Kaminski NE. Imiquimod and interferon-alpha augment monocyte-mediated astrocyte secretion of MCP-1, IL-6 and IP-10 in a human co-culture system. J Neuroimmunol 2019; 333:576969. [PMID: 31136945 DOI: 10.1016/j.jneuroim.2019.576969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
Toll-like receptor 7 (TLR7)-activation has been implicated as a significant mechanism of neuroinflammation triggered by ssRNA viruses. Infiltration of monocytes into the brain and astrocyte activation occurs during in vivo TLR7-mediated neuroinflammation. The objective here was to determine whether the TLR7 agonist, imiquimod, and interferon-alpha (IFN-α), promote monocyte-mediated astrocyte secretion of pro-inflammatory factors. Using a human primary co-culture system, we demonstrate that monocytes, together with imiquimod and IFN-α, promote astrocyte secretion of MCP-1, IL-6 and IP-10. Furthermore, TLR7-induced monocyte-derived IL-1β is critical for promoting the astrocyte response. Overall, this study provides a potential mechanism for TLR7-mediated neuroinflammation.
Collapse
Affiliation(s)
- Michael D Rizzo
- Michigan State University, 1129 Farm Lane Rm. 165G, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America; Cell & Molecular Biology Program, 1129 Farm Lane Rm. 311, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America; Institute for Integrative Toxicology, 1129 Farm Lane Rm. 165G, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America.
| | - Robert B Crawford
- Michigan State University, 1129 Farm Lane Rm. 165G, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America; Institute for Integrative Toxicology, 1129 Farm Lane Rm. 165G, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America
| | - Anthony Bach
- Michigan State University, 1129 Farm Lane Rm. 165G, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America; Institute for Integrative Toxicology, 1129 Farm Lane Rm. 165G, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America.
| | - Sera Sermet
- Michigan State University, 1129 Farm Lane Rm. 165G, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America.
| | - Andrea Amalfitano
- Michigan State University, 1129 Farm Lane Rm. 165G, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America; Department of Microbiology & Molecular Genetics, 4108 Biomedical Physical Sciences, East Lansing, MI 48824, United States of America; Department of Osteopathic Medicine, 4108 Biomedical Physical Sciences, East Lansing, MI 48824, United States of America.
| | - Norbert E Kaminski
- Michigan State University, 1129 Farm Lane Rm. 165G, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America; Institute for Integrative Toxicology, 1129 Farm Lane Rm. 165G, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America; Department of Pharmacology & Toxicology, 1129 Farm Lane Rm. 165G, Food Safety & Toxicology Bldg, East Lansing, MI 48824, United States of America.
| |
Collapse
|
22
|
Megra BW, Eugenin EA, Berman JW. Inflammatory mediators reduce surface PrP c on human BMVEC resulting in decreased barrier integrity. J Transl Med 2018; 98:1347-1359. [PMID: 29959417 PMCID: PMC6163073 DOI: 10.1038/s41374-018-0090-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Abstract
The cellular prion protein (PrPc) is a surface adhesion molecule expressed at junctions of various cell types including brain microvascular endothelial cells (BMVEC) that are important components of the blood-brain barrier (BBB). PrPc is involved in several physiological processes including regulation of epithelial cell barrier function and monocyte migration across BMVEC. BBB dysfunction and disruption are significant events in central nervous system (CNS) inflammatory processes including HIV neuropathogenesis. Tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) are two inflammatory factors that have been implicated in the processes that affect BBB integrity. To examine the effect of inflammation on PrPc expression in BMVEC, we used these mediators and found that TNF-α and VEGF decrease surface PrPc on primary human BMVEC. We also showed that these factors decrease total PrPc protein as well as mRNA, indicating that they regulate expression of this protein by de novo synthesis. To determine the effect of PrPc loss from the surface of BMVEC on barrier integrity, we used small hairpin RNAs to knockdown PrPc. We found that the absence of PrPc from BMVEC causes increased permeability as determined by a fluorescein isothiocyanate (FITC)-dextran permeability assay. This suggests that cell surface PrPc is essential for endothelial monolayer integrity. To determine the mechanism by which PrPc downregulation leads to increased permeability of an endothelial monolayer, we examined changes in expression and localization of tight junction proteins, occludin and claudin-5, and found that decreased PrPc leads to decreased total and membrane-associated occludin and claudin-5. We propose that an additional mechanism by which inflammatory factors affect endothelial monolayer permeability is by decreasing cell-associated PrPc. This increase in permeability may have subsequent consequences that lead to CNS damage.
Collapse
Affiliation(s)
- Bezawit W. Megra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Eliseo A. Eugenin
- Public Health Research Institute (PHRI), Newark, NJ 07103,Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ 07103
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
23
|
Nookala AR, Schwartz DC, Chaudhari NS, Glazyrin A, Stephens EB, Berman NEJ, Kumar A. Methamphetamine augment HIV-1 Tat mediated memory deficits by altering the expression of synaptic proteins and neurotrophic factors. Brain Behav Immun 2018; 71:37-51. [PMID: 29729322 PMCID: PMC6003882 DOI: 10.1016/j.bbi.2018.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (METH) abuse is common among individuals infected with HIV-1 and has been shown to affect HIV replication and pathogenesis. These HIV-1 infected individuals also exhibit greater neuronal injury and higher cognitive decline. HIV-1 proteins, specifically gp120 and HIV-1 Tat, have been earlier shown to affect neurocognition. HIV-1 Tat, a viral protein released early during HIV-1 replication, contributes to HIV-associated neurotoxicity through various mechanisms including production of pro-inflammatory cytokines, reactive oxygen species and dysregulation of neuroplasticity. However, the combined effect of METH and HIV-1 Tat on neurocognition and its potential effect on neuroplasticity mechanisms remains largely unknown. Therefore, the present study was undertaken to investigate the combined effect of METH and HIV-1 Tat on behavior and on the expression of neuroplasticity markers by utilizing Doxycycline (DOX)-inducible HIV-1 Tat (1-86) transgenic mice. Expression of Tat in various brain regions of these mice was confirmed by RT-PCR. The mice were administered with an escalating dose of METH (0.1 mg/kg to 6 mg/kg, i.p) over a 7-day period, followed by 6 mg/kg, i.p METH twice a day for four weeks. After three weeks of METH administration, Y maze and Morris water maze assays were performed to determine the effect of Tat and METH on working and spatial memory, respectively. Compared with controls, working memory was significantly decreased in Tat mice that were administered METH. Moreover, significant deficits in spatial memory were also observed in Tat-Tg mice that were administered METH. A significant reduction in the protein expressions of synapsin 1, synaptophysin, Arg3.1, PSD-95, and BDNF in different brain regions were also observed. Expression levels of Calmodulin kinase II (CaMKII), a marker of synaptodendritic integrity, were also significantly decreased in HIV-1 Tat mice that were treated with METH. Together, this data suggests that METH enhances HIV-1 Tat-induced memory deficits by reducing the expression of pre- and postsynaptic proteins and neuroplasticity markers, thus providing novel insights into the molecular mechanisms behind neurocognitive impairments in HIV-infected amphetamine users.
Collapse
Affiliation(s)
- Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Daniel C. Schwartz
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Nitish S. Chaudhari
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Alexy Glazyrin
- Department of Pathology, School of Medicine, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Edward B. Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nancy E. J. Berman
- Department of Anatomy and Cell biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
24
|
Nooka S, Ghorpade A. HIV-1-associated inflammation and antiretroviral therapy regulate astrocyte endoplasmic reticulum stress responses. Cell Death Discov 2017; 3:17061. [PMID: 29354290 PMCID: PMC5712632 DOI: 10.1038/cddiscovery.2017.61] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 12/28/2022] Open
Abstract
Antiretroviral (ARV) therapy (ART) has effectively suppressed the incidence of human immunodeficiency virus (HIV)-associated dementia in HIV-1 positive individuals. However, the prevalence of more subtle forms of neurocognitive dysfunction continues to escalate. Recently, endoplasmic reticulum (ER) stress has been linked to many neurological diseases; yet, its role in HIV/neuroAIDS remains largely unexplored. Furthermore, upregulation of astrocyte elevated gene-1 (AEG-1), a novel HIV-1 inducible gene, along with ER stress markers in a Huntington’s disease model, suggests a possible role in HIV-associated ER stress. The current study is focused on unfolded protein responses (UPRs) and AEG-1 regulation in primary human astrocytes exposed to HIV-associated neurocognitive disorders (HAND)-relevant stimuli (HIV-1 virions, inflammation and ARV drugs). Interleukin (IL)-1β and the nucleoside reverse transcriptase inhibitor abacavir upregulated expression of ER stress markers in human astrocytes, including binding immunoglobulin protein (BiP), C/EBP homologous protein (CHOP), and calnexin. In addition, IL-1β activated all three well-known UPR pathways: protein kinase RNA-like ER kinase (PERK); activating transcription factor 6 (ATF-6); and inositol-requiring enzyme 1α (IRE1α). AEG-1 upregulation correlated to ER stress and demonstrated astrocyte AEG-1 interaction with the calcium-binding chaperone, calnexin. IL-1β and abacavir enhanced intracellular calcium signaling in astrocytes in the absence of extracellular calcium, illustrating ER-associated calcium release. Alternatively, calcium evoked in response to HAND-relevant stimuli led to mitochondrial permeability transition pore (mPTP) opening in human astrocytes. Importantly, IL-1β- and abacavir-induced UPR and mPTP opening were inhibited by the intracellular calcium chelation, indicating the critical role of calcium signaling in HAND-relevant ER stress in astrocytes. In summary, our study highlights that ARV drugs and IL-1β induced UPR, AEG-1 expression, intracellular calcium, and mitochondrial depolarization in astrocytes. This study uncovers astrocyte ER stress as a novel therapeutic target in the management of HIV-1-associated neurotoxicity and possibly in the treatment of neuroAIDS.
Collapse
Affiliation(s)
- Shruthi Nooka
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Anuja Ghorpade
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
25
|
Abstract
Human immunodeficiency virus (HIV) infection induces neuronal injuries, with almost 50% of infected individuals developing HIV-associated neurocognitive disorders (HAND). Although highly activate antiretroviral therapy (HAART) has significantly reduced the incidence of severe dementia, the overall prevalence of HAND remains high. Synaptic degeneration is emerging as one of the most relevant neuropathologies associate with HAND. Previous studies have reported critical roles of viral proteins and inflammatory responses in this pathogenesis. Infected cells, including macrophages, microglia and astrocytes, may release viral proteins and other neurotoxins to stimulate neurons and cause excessive calcium influx, overproduction of free radicals and disruption of neurotransmitter hemostasis. The dysregulation of neural circuits likely leads to synaptic damage and loss. Identification of the specific mechanism of the synaptic degeneration may facilitate the development of effective therapeutic approaches to treat HAND.
Collapse
Affiliation(s)
- Wenjuan Ru
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
26
|
López SN, Rodríguez-Valentín M, Rivera M, Rodríguez M, Babu M, Cubano LA, Xiong H, Wang G, Kucheryavykh L, Boukli NM. HIV-1 Gp120 clade B/C induces a GRP78 driven cytoprotective mechanism in astrocytoma. Oncotarget 2017; 8:68415-68438. [PMID: 28978127 PMCID: PMC5620267 DOI: 10.18632/oncotarget.19474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 01/20/2023] Open
Abstract
HIV-1 clades are known to be one of the key factors implicated in modulating HIV-associated neurocognitive disorders. HIV-1 B and C clades account for the majority of HIV-1 infections, clade B being the most neuropathogenic. The mechanisms behind HIV-mediated neuropathogenesis remain the subject of active research. We hypothesized that HIV-1 gp120 clade B and C proteins may exert differential proliferation, cell survival and NeuroAIDS effects in human astrocytoma cells via the Unfolded Protein Response, an endoplasmic reticulum- based cytoprotective mechanism. The differential effect of gp120 clade B and C was evaluated using for the first time a Tandem Mass Tag isobaric labeling quantitative proteomic approach. Flow cytometry analyses were performed for cell cycle and cell death identification. Among the proteins differentiated by HIV-1 gp120 proteins figure cytoskeleton, oxidative stress, UPR markers and numerous glycolytic metabolism enzymes. Our results demonstrate that HIV-1 gp120 B induced migration, proliferative and protective responses granted by the expression of GRP78, while HIV-1 gp120 C induced the expression of key inflammatory and pro-apoptotic markers. These novel findings put forward the first evidence that GRP78 is a key player in HIV-1 clade B and C neuropathogenic discrepancies and can be used as a novel target for immunotherapies.
Collapse
Affiliation(s)
- Sheila N López
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Madeline Rodríguez-Valentín
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Mariela Rivera
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Maridaliz Rodríguez
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Center, University of Regina, Saskatchewan, Canada
| | - Luis A Cubano
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - Lilia Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | - Nawal M Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| |
Collapse
|
27
|
Macrophages and Phospholipases at the Intersection between Inflammation and the Pathogenesis of HIV-1 Infection. Int J Mol Sci 2017; 18:ijms18071390. [PMID: 28661459 PMCID: PMC5535883 DOI: 10.3390/ijms18071390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Persistent low grade immune activation and chronic inflammation are nowadays considered main driving forces of the progressive immunologic failure in effective antiretroviral therapy treated HIV-1 infected individuals. Among the factors contributing to this phenomenon, microbial translocation has emerged as a key driver of persistent immune activation. Indeed, the rapid depletion of gastrointestinal CD4+ T lymphocytes occurring during the early phases of infection leads to a deterioration of the gut epithelium followed by the translocation of microbial products into the systemic circulation and the subsequent activation of innate immunity. In this context, monocytes/macrophages are increasingly recognized as an important source of inflammation, linked to HIV-1 disease progression and to non-AIDS complications, such as cardiovascular disease and neurocognitive decline, which are currently main challenges in treated patients. Lipid signaling plays a central role in modulating monocyte/macrophage activation, immune functions and inflammatory responses. Phospholipase-mediated phospholipid hydrolysis leads to the production of lipid mediators or second messengers that affect signal transduction, thus regulating a variety of physiologic and pathophysiologic processes. In this review, we discuss the contribution of phospholipases to monocyte/macrophage activation in the context of HIV-1 infection, focusing on their involvement in virus-associated chronic inflammation and co-morbidities.
Collapse
|
28
|
Kuhn T, Schonfeld D, Sayegh P, Arentoft A, Jones JD, Hinkin CH, Bookheimer SY, Thames AD. The effects of HIV and aging on subcortical shape alterations: A 3D morphometric study. Hum Brain Mapp 2017; 38:1025-1037. [PMID: 27778407 PMCID: PMC5225033 DOI: 10.1002/hbm.23436] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/28/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022] Open
Abstract
Standard volumetric neuroimaging studies have demonstrated preferential atrophy of subcortical structures among individuals with HIV. However, to our knowledge, no study has investigated subcortical shape alterations secondary to HIV and whether advancing age impacts that relationship. This study employed 3D morphometry to examine the independent and interactive effects of HIV and age on shape differences in nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus in 81 participants ranging in age from 24 to 76 including 59 HIV+ individuals and 22 HIV-seronegative controls. T1-weighted MRI underwent a preprocessing pipeline followed by automated subcortical segmentation. Parametric statistical analyses were used to determine independent effects of HIV infection and age on volume and shape in each region of interest (ROI) and the interaction between age and HIV serostatus in predicting volume/shape in each ROI. Significant main effects for HIV were found in the shape of right caudate and nucleus accumbens, left pallidum, and hippocampus. Age was associated with differences in shape in left pallidum, right nucleus accumbens and putamen, and bilateral caudate, hippocampus, and thalamus. Of greatest interest, an age × HIV interaction effect was found in the shape of bilateral nucleus accumbens, amygdala, caudate, and thalamus as well as right pallidum and putamen such that increasing age in HIV participants was associated with greater shape alterations. Traditional volumemetric analyses revealed main effects for both HIV and age but no age × HIV interaction. These findings may suggest that age and HIV infection conferred additional deleterious effects on subcortical shape abnormalities beyond the independent effects of these factors. Hum Brain Mapp 38:1025-1037, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Taylor Kuhn
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
- Veterans Association Greater Los Angeles Healthcare Center11301 Wilshire BlvdLos AngelesCalifornia
| | - Daniel Schonfeld
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
- Veterans Association Greater Los Angeles Healthcare Center11301 Wilshire BlvdLos AngelesCalifornia
- Imaging Genetics CenterKeck School of Medicine of University of Southern California1975 Zonal AveLos AngelesCalifornia
| | - Philip Sayegh
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
| | - Alyssa Arentoft
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
| | - Jacob D. Jones
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
- Veterans Association Greater Los Angeles Healthcare Center11301 Wilshire BlvdLos AngelesCalifornia
| | - Charles H. Hinkin
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
- Veterans Association Greater Los Angeles Healthcare Center11301 Wilshire BlvdLos AngelesCalifornia
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
- Department of Cognitive PsychologyTennenbaum Center for the Biology of Creativity, University of California Los Angeles635 Charles E Young Dr. S,260‐MLos AngelesCalifornia
| | - April D. Thames
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
| |
Collapse
|
29
|
Cao L, Fu M, Kumar S, Kumar A. Methamphetamine potentiates HIV-1 gp120-mediated autophagy via Beclin-1 and Atg5/7 as a pro-survival response in astrocytes. Cell Death Dis 2016; 7:e2425. [PMID: 27763640 PMCID: PMC5133984 DOI: 10.1038/cddis.2016.317] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
Methamphetamine (METH), a commonly used controlled substance, is known to exacerbate neuropathological dysfunction in HIV-infected individuals. The neuropathological manifestation results from cell death or dysfunction in the central nervous system (CNS) wherein autophagy is expected to have an important role. Autophagy is generally considered protective during deprivation/stress. However, excessive autophagy can be destructive, leading to autophagic cell death. This study was designed to investigate if METH and HIV-1 gp120 interact to induce autophagy in SVGA astrocytes, and whether autophagy is epiphenomenal or it has a role in METH- and gp120-induced cytotoxicity. We found that METH and gp120 IIIb caused an increase in LC3II level in astrocytes in a dose- and time-dependent manner, and the level of LC3II was further increased when the cells were treated with METH and gp120 IIIb in combination. Next, we sought to explore the mechanism by which METH and gp120 induce the autophagic response. We found that METH induces autophagy via opioid and metabotropic glutamate receptor type 5 (mGluR5) receptors. Other than that, signaling proteins Akt, mammalian target of rapamycin (mTOR), Beclin-1, Atg5 and Atg7 were involved in METH and gp120-mediated autophagy. In addition, long-term treatment of METH and gp120 IIIb resulted in cell death, which was exacerbated by inhibition of autophagy. This suggests that autophagy functions as a protective response against apoptosis caused by METH and gp120. This study is novel and clinically relevant because METH abuse among HIV-infected populations is highly prevalent and is known to cause exacerbated neuroAIDS.
Collapse
Affiliation(s)
- Lu Cao
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Mingui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
30
|
Fan Y, He JJ. HIV-1 Tat Induces Unfolded Protein Response and Endoplasmic Reticulum Stress in Astrocytes and Causes Neurotoxicity through Glial Fibrillary Acidic Protein (GFAP) Activation and Aggregation. J Biol Chem 2016; 291:22819-22829. [PMID: 27609520 DOI: 10.1074/jbc.m116.731828] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
HIV-1 Tat is a major culprit for HIV/neuroAIDS. One of the consistent hallmarks of HIV/neuroAIDS is reactive astrocytes or astrocytosis, characterized by increased cytoplasmic accumulation of the intermediate filament glial fibrillary acidic protein (GFAP). We have shown that that Tat induces GFAP expression in astrocytes and that GFAP activation is indispensable for astrocyte-mediated Tat neurotoxicity. However, the underlying molecular mechanisms are not known. In this study, we showed that Tat expression or GFAP expression led to formation of GFAP aggregates and induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in astrocytes. In addition, we demonstrated that GFAP up-regulation and aggregation in astrocytes were necessary but also sufficient for UPR/ER stress induction in Tat-expressing astrocytes and for astrocyte-mediated Tat neurotoxicity. Importantly, we demonstrated that inhibition of Tat- or GFAP-induced UPR/ER stress by the chemical chaperone 4-phenylbutyrate significantly alleviated astrocyte-mediated Tat neurotoxicity in vitro and in the brain of Tat-expressing mice. Taken together, these results show that HIV-1 Tat expression leads to UPR/ER stress in astrocytes, which in turn contributes to astrocyte-mediated Tat neurotoxicity, and raise the possibility of developing HIV/neuroAIDS therapeutics targeted at UPR/ER stress.
Collapse
Affiliation(s)
- Yan Fan
- From the Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Johnny J He
- From the Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
31
|
Reid WC, Ibrahim WG, Kim SJ, Denaro F, Casas R, Lee DE, Maric D, Hammoud DA. Characterization of neuropathology in the HIV-1 transgenic rat at different ages. J Neuroimmunol 2016; 292:116-25. [PMID: 26943969 DOI: 10.1016/j.jneuroim.2016.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/27/2016] [Accepted: 01/31/2016] [Indexed: 02/08/2023]
Abstract
The transgenic HIV-1 rat (Tg) is a commonly used neuroHIV model with documented neurologic/behavioral deficits. Using immunofluorescent staining of the Tg brain, we found astrocytic dysfunction/damage, as well as dopaminergic neuronal loss/dysfunction, both of which worsening significantly in the striatum with age. We saw mild microglial activation in young Tg brains, but this decreased with age. There were no differences in neurogenesis potential suggesting a neurodegenerative rather than a neurodevelopmental process. Gp120 CSF levels exceeded serum gp120 levels in some animals, suggesting local viral protein production in the brain. Further probing of the pathophysiology underlying astrocytic injury in this model is warranted.
Collapse
Affiliation(s)
- William C Reid
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Wael G Ibrahim
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Saejeong J Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Frank Denaro
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Rafael Casas
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dianne E Lee
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Division of Intermural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Gangwani MR, Kumar A. Multiple Protein Kinases via Activation of Transcription Factors NF-κB, AP-1 and C/EBP-δ Regulate the IL-6/IL-8 Production by HIV-1 Vpr in Astrocytes. PLoS One 2015; 10:e0135633. [PMID: 26270987 PMCID: PMC4535882 DOI: 10.1371/journal.pone.0135633] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/24/2015] [Indexed: 11/24/2022] Open
Abstract
Neurocognitive impairments affect a substantial population of HIV-1 infected individuals despite the success of anti-retroviral therapy in controlling viral replication. Astrocytes are emerging as a crucial cell type that might be playing a very important role in the persistence of neuroinflammation seen in patients suffering from HIV-1 associated neurocognitive disorders. HIV-1 viral proteins including Vpr exert neurotoxicity through direct and indirect mechanisms. Induction of IL-8 in microglial cells has been shown as one of the indirect mechanism through which Vpr reduces neuronal survival. We show that HIV-1 Vpr induces IL-6 and IL-8 in astrocytes in a time-dependent manner. Additional experiments utilizing chemical inhibitors and siRNA revealed that HIV-1 Vpr activates transcription factors NF-κB, AP-1 and C/EBP-δ via upstream protein kinases PI3K/Akt, p38-MAPK and Jnk-MAPK leading to the induction of IL-6 and IL-8 in astrocytes. We demonstrate that one of the mechanism for neuroinflammation seen in HIV-1 infected individuals involves induction of IL-6 and IL-8 by Vpr in astrocytes. Understanding the molecular pathways involved in the HIV-1 neuroinflammation would be helpful in the design of adjunct therapy to ameliorate some of the symptoms associated with HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Mohitkumar R. Gangwani
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, Missouri, United States of America
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|