1
|
Rasool AT, Li E, Nazir A. Recent advances in natural products and derivatives with antiviral activity against respiratory syncytial virus (RSV). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-24. [PMID: 39425923 DOI: 10.1080/10286020.2024.2417211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Respiratory syncytial virus (RSV) is a widespread viral infection that causes millions of high-risk illnesses annually. Medicinal herbs such as ginseng root, echinacea purpurea, and radix astragali have a positive effect on antiviral activity by preventing viral adhesion, syncytial development, inhibiting viral internalization, relieving respiratory inflammation, strengthening the immune system, and stimulating the release of interferons. The potential benefits of natural products in terms of lower costs, better patient outcomes, and fewer adverse effects are discussed. This review examines the current evidence on the prevention and control of RSV with natural ingredients and the challenges and opportunities in clinical practice.
Collapse
Affiliation(s)
- Ameena Tur Rasool
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu210093, China
| | - Erguang Li
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu210093, China
| | - Ahsan Nazir
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| |
Collapse
|
2
|
Yassen ASA, Abdel-Wahab SM, Darwish KM, Nafie MS, Abdelhameed RFA, El-Sayyad GS, El-Batal AI, Attia KM, Elshihawy HA, Elrayess R. Novel curcumin-based analogues as potential VEGFR2 inhibitors with promising metallic loading nanoparticles: synthesis, biological evaluation, and molecular modelling investigation. RSC Med Chem 2024:d4md00574k. [PMID: 39345715 PMCID: PMC11428034 DOI: 10.1039/d4md00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
VEGFR2 inhibition has been established as a therapeutic approach for managing cancer. A series of curcumin-based analogues were designed, synthesized, and screened for their anticancer activity against MCF-7 and HepG-2 cell lines and WISH normal cells. Compounds 4b, 4d, 4e, and 4f showed potent cytotoxicity against MCF-7 with IC50 values of 0.49, 0.14, 0.01, and 0.32 μM, respectively, compared to curcumin (IC50 = 13.8 μM) and sorafenib (IC50 = 2.13 μM). Interestingly, compound 4e, the most active compound, exhibited potent VEGFR2 inhibition with an IC50 value of 11.6 nM (96.5% inhibition) compared to sorafenib with an IC50 value of 30 nM (94.8% inhibition). Additionally, compound 4e significantly induced apoptotic cell death in MCF-7 cells by 41.1% compared to a control group (0.8%), halting cell division during the G2/M phase by 39.8% compared to the control (21.7%). Molecular docking-coupled dynamics simulations highlighted the bias of the VEGFR2 pocket towards compound 4e compared to other synthesized compounds. Predicting superior binding affinities and relevant interactions with the pocket's key residues recapitulated in vitro findings towards higher inhibition activity for compound 4e. Furthermore, compound 4e with adequate pharmacokinetic and drug-likeness profiles in terms of ADME and safety characteristics can serve as a promising clinical candidate for future lead optimization and development. Notably, 4e-Fe2O3-humic acid NPs exhibited potent cytotoxicity with IC50 values of 2.41 and 13.4 ng mL-1 against MCF-7 and HepG-2 cell lines, respectively. Hence, compound 4e and its Fe2O3-humic acid-NPs could be further developed as promising anti-breast cancer agents.
Collapse
Affiliation(s)
- Asmaa S A Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
| | - Sherief M Abdel-Wahab
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC) Cairo Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Khadiga M Attia
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Hosam A Elshihawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Al-Ayen University, College of Pharmacy Dhi Qar Iraq
| |
Collapse
|
3
|
Ni J, Yang M, Zheng X, Wang M, Xiao Q, Han H, Dong P. Synthesis, Antioxidant Activity, and Molecular Docking of Novel Paeoniflorin Derivatives. Chem Biol Drug Des 2024; 104:e14629. [PMID: 39327238 DOI: 10.1111/cbdd.14629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Paeoniflorin (PF) is one of the active constituents of the traditional Chinese medicine Paeoniae Radix Rubra and has been actively explored in the pharmaceutical area due to its numerous pharmacological effects. However, severe difficulties such as limited bioavailability and low permeability limit its utilization. Therefore, this study developed and synthesized 25 derivatives of PF, characterized them by 1H NMR, 13C NMR, and HR-MS, and evaluated their antioxidant activity. Firstly, the antioxidant capacity of PF derivatives was investigated through DPPH radical scavenging experiment, ABTS radical scavenging experiment, reducing ability experiment, and O2 .- radical scavenging experiment. PC12 cells are routinely used to evaluate the antioxidant activity of medicines, therefore we utilize it to establish a cellular model of oxidative stress. Among all derivatives, compound 22 demonstrates high DPPH radical scavenging capacity, ABTS radical scavenging ability, reduction ability, and O2 .- radical scavenging ability. The results of cell tests reveal that compound 22 has a non-toxic effect on PC12 cells and a protective effect on H2O2-induced oxidative stress models. This might be due to the introduction of 2, 5-difluorobenzene sulfonate group in PF, which helps in scavenging free radicals under oxidative stress. Western blot and molecular docking indicated that compound 22 may exert antioxidant activity by activating Nrf2 protein expression. As noted in the study, compound 22 has the potential to be a novel antioxidant.
Collapse
Affiliation(s)
- Jiating Ni
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Yang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Zheng
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingtao Wang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qian Xiao
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Singh A, Singh J, Parween G, Khator R, Monga V. A comprehensive review of apigenin a dietary flavonoid: biological sources, nutraceutical prospects, chemistry and pharmacological insights and health benefits. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 39154213 DOI: 10.1080/10408398.2024.2390550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
A multitude of plant-derived bioactive compounds have shown significant promise in preventing chronic illnesses, with flavonoids constituting a substantial class of naturally occurring polyphenolic compounds. Apigenin, a flavone identified as 4',5,7-trihydroxyflavone, holds immense promise as a preventative agent against chronic illnesses. Despite its extensive research and recognized nutraceutical value, its therapeutic application remains underexplored, necessitating further clinical investigations. This review delves into the biological sources, nutraceutical prospects, chemistry, pharmacological insights, and health benefits of apigenin. Through multifaceted analytical studies, we explore its diverse pharmacological profile and potential therapeutic applications across various health domains. The manuscript comprehensively examines apigenin's role as a neuroprotective , anti-inflammatory compound, and a potent antioxidant agent. Additionally, its efficacy in combating cardiovascular diseases, anti-diabetic properties, and anticancer potential has been discussed. Furthermore, the antimicrobial attributes and the challenges surrounding its bioavailability, particularly from herbal supplements have been addressed. Available in diverse forms including tablets, capsules, solid dispersions, co-crystals, inclusion complexes and nano formulations. Additionally, it is prevalent as a nutraceutical supplement in herbal formulations. While strides have been made in overcoming pharmacokinetic hurdles, further research into apigenin's clinical effectiveness and bioavailability from herbal supplements remains imperative for its widespread utilization in preventive medicine.
Collapse
Affiliation(s)
- Abhinav Singh
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Jagjit Singh
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Gulistan Parween
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Rakesh Khator
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| |
Collapse
|
5
|
Alrumaihi F. Identification of novel chemical scaffolds against kinase domain of cancer causing human epidermal growth factor receptor 2: a systemic chemoinformatic approach. J Biomol Struct Dyn 2024; 42:6269-6279. [PMID: 37424103 DOI: 10.1080/07391102.2023.2233618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The Human epidermal growth factor receptor 2 (HER2) is expressed in high magnitude in several cancers. Designing new drug molecules that target kinase domain of the HER2 enzyme might provide an appealing platform. Considering this, herein, a multi-phase bioinformatic approach is applied to screen diverse natural and chemical scaffolds to identify compounds that fit best at the kinase domain of HER2. By doing so, three compounds; LAS_51187157, LAC_51217113, LAC_51390233 were pointed with docking score of -11.4 kcal/mol, -11.3 kcal/mol and -11.2 kcal/mol, respectively. In molecular dynamic simulation, the complexes behaved in a stable dynamic with no major local/global structural variations. The intermolecular binding free energies were further estimated that concluded LAC_51390233 complex was the most stable and has less entropy energy. The good docked affinity of LAC_51390233 with HER2 was confirmed by WaterSwap absolute binding free energy. The entropy energy demonstrated that LAC_51390233 has less freedom energy compared to others. Similarly, all three compounds revealed very favorable druglike properties and pharmacokinetics. All the selected three compounds were also non-carcinogenic, non-immunotoxicity, non-mutagenicity, and non-cytotoxic. In a nutshell, the compounds are interesting scaffolds and might be subjected to extensive experimental testing to reveal their real biological potency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
6
|
Shakeel I, Haider S, Khan S, Ahmed S, Hussain A, Alajmi MF, Chakrabarty A, Afzal M, Imtaiyaz Hassan M. Thymoquinone, artemisinin, and thymol attenuate proliferation of lung cancer cells as Sphingosine kinase 1 inhibitors. Biomed Pharmacother 2024; 177:117123. [PMID: 39004062 DOI: 10.1016/j.biopha.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) formed via catalytic actions of sphingosine kinase 1 (SphK1) behaves as a pro-survival substance and activates downstream target molecules associated with various pathologies, including initiation, inflammation, and progression of cancer. Here, we aimed to investigate the SphK1 inhibitory potentials of thymoquinone (TQ), Artemisinin (AR), and Thymol (TM) for the therapeutic management of lung cancer. We implemented docking, molecular dynamics (MD) simulations, enzyme inhibition assay, and fluorescence measurement studies to estimate binding affinity and SphK1 inhibitory potential of TQ, AR, and TM. We further investigated the anti-cancer potential of these compounds on non-small cell lung cancer (NSCLC) cell lines (H1299 and A549), followed by estimation of mitochondrial ROS, mitochondrial membrane potential depolarization, and cleavage of DNA by comet assay. Enzyme activity and fluorescence binding studies suggest that TQ, AR, and TM significantly inhibit the activity of SphK1 with IC50 values of 35.52 µM, 42.81 µM, and 53.68 µM, respectively, and have an excellent binding affinity. TQ shows cytotoxic effect and anti-proliferative potentials on H1299 and A549 with an IC50 value of 27.96 µM and 54.43 µM, respectively. Detection of mitochondrial ROS and mitochondrial membrane potential depolarization shows promising TQ-induced oxidative stress on H1299 and A549 cell lines. Comet assay shows promising TQ-induced oxidative DNA damage. In conclusion, TQ, AR, and TM act as potential inhibitors for SphK1, with a strong binding affinity. In addition, the cytotoxicity of TQ is linked to oxidative stress due to mitochondrial ROS generation. Overall, our study suggests that TQ is a promising inhibitor of SphK1 targeting lung cancer therapy.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shaista Haider
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shahbaz Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
7
|
Sahebi K, Shahsavani F, Mehravar F, Hatam G, Alimi R, Radfar A, Bahreini MS, Pouryousef A, Teimouri A. In vitro and in vivo anti-parasitic activity of curcumin nanoemulsion on Leishmania major (MRHO/IR/75/ER). BMC Complement Med Ther 2024; 24:238. [PMID: 38890586 PMCID: PMC11184741 DOI: 10.1186/s12906-024-04522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
The present study aimed to assess the anti-leishmanial effects of curcumin nanoemulsion (CUR-NE) against Leishmania major (MRHO/IR/75/ER) in both in vitro and in vivo experiments. CUR-NE was successfully prepared via the spontaneous emulsification method. The in vitro effect of various concentrations of CUR-NE against L. major promastigotes was assessed using the flow cytometry method. In vivo experiments were carried out in BALB/c mice inoculated subcutaneously with 2 × 106 L. major promastigotes. Mice were treated with topical CUR-NE (2.5 mg/ml), intra-lesion injection of CUR-NE (2.5 mg/ml), topical CUR suspension (CUR-S, 2.5 mg/ml), topical NE without CUR (NE-no CUR), amphotericin B as the positive control group, and infected untreated mice as the negative control group. In vitro exposure of promastigotes to CUR-NE showed a dose-dependent anti-leishmanial effect, with a 67.52 ± 0.35% mortality rate at a concentration of 1250 µg/ml and an IC50 of 643.56 µg/ml. In vivo experiments showed that topical CUR-NE and CUR-S significantly decreased the mean lesion size in mice after four weeks from 4.73 ± 1.28 to 2.78 ± 1.28 mm and 4.45 ± 0.88 to 3.23 ± 0.59 mm, respectively (p = 0.001). Furthermore, CUR-NE significantly decreased the parasite load in treated mice compared with the negative control group (p = 0.001). Results from the current study demonstrated the promising activity of CUR-NE against L. major in both in vitro and in vivo experiments. Moreover, CUR-NE was more efficient than CUR-S in healing and reducing parasite burden in mouse models. Future studies should aim to identify molecular mechanisms as well as the pharmacologic and pharmacokinetic aspects of CUR-NE.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shahsavani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mehravar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Alimi
- Department of Epidemiology and Biostatistics, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amirhossein Radfar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Pouryousef
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aref Teimouri
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Worku KM, Araya D, Tesfa H, Birru EM, Hailu A, Aemero M. In vitro antileishmanial activities of hydro-methanolic crude extracts and solvent fractions of Clematis simensis fresen leaf, and Euphorbia abyssinica latex. Medicine (Baltimore) 2024; 103:e38039. [PMID: 38701291 PMCID: PMC11062719 DOI: 10.1097/md.0000000000038039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
As a result of increasing drug resistance, crossover resistance development, prolonged therapy, and the absence of different agents with innovative methods for implementation, the efficacy of recent antileishmanial medications is severely declining. So, it is vital to look for other medications from botanical remedies that have antileishmanial activity. The latex of Euphorbia abyssinica (E abyssinica) and the leaves of Clematis simensis fresen (C simensis) were macerated in methanol (80%). In vitro antileishmanial activity of the preparation was tried on promastigotes of Leishmania aethiopica (L aethiopica) and Leishmania donovani (L donovani) using resazurin assay, and fluorescence intensity was measured. One percent of dimethyl sulfoxide (DMSO) and media as negative control and amphotericin B as positive control were used. Additionally, hemolytic & phytochemical tests of the preparation were done. The mean and standard errors of each extract were evaluated and interpreted for statistical significance using one-way analysis of variance. From sigmoidal dose-response curves of % inhibition, half maximal inhibitory concentration (IC50) values were determined by GraphPad Prism and Microsoft Excel; outcomes were presented as mean ± standard error of mean of triplicate trials. P < .05 was statistical significance. The phytochemical screening of C simensis and E abyssinica confirmed the existence of steroids, phenols, tannins, saponins, alkaloids, terpenoids, flavonoids and glycosides. C simensis possesses antileishmanial activity with IC50 outcomes of 46.12 ± 0.03 and 8.18 ± 0.10 µg/mL on the promastigotes of L aethiopica and L donovani, respectively. However, E abyssinica showed stronger activity with IC50 outcomes of 16.07 ± 0.05 µg/mL and 4.82 ± 0.07 µg/mL on L aethiopica and L donovani, respectively. C simensis and E abyssinica have a less hemolytic effect on human red blood cells at low concentrations. The outcomes from this investigation demonstrated that the preparation of C simensis and E abyssinica indicated significant antileishmanial activity. Therefore, further in vivo assessment of antileishmanial, cytotoxicity activity and quantitative identification of secondary metabolites are highly recommended.
Collapse
Affiliation(s)
- Kassahun Misgana Worku
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Dawit Araya
- Department of Microbiology, Immunology and Parasitology, Faculty of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Habtie Tesfa
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Eshetie Melese Birru
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, Faculty of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mulugeta Aemero
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Gamboa J, Lourenço P, Cruz C, Gallardo E. Aptamers for the Delivery of Plant-Based Compounds: A Review. Pharmaceutics 2024; 16:541. [PMID: 38675202 PMCID: PMC11053555 DOI: 10.3390/pharmaceutics16040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier and a targeting ligand, can enhance natural product selectivity and effectiveness. Notably, aptamers-short RNA or single-stranded DNA molecules-have gained attention as promising ligands in targeted drug delivery since they are simple to synthesize and modify, and they present high tissue permeability, stability, and a wide array of available targets. The combination of natural products, namely plant-based compounds, with a drug delivery system utilizing aptamers as targeting agents represents an emerging strategy that has the potential to broaden its applications. This review discusses the potential of aptamers as targeting agents in the delivery of natural compounds, as well as new trends and developments in their utilization in the field of medicine.
Collapse
Affiliation(s)
- Joana Gamboa
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Pedro Lourenço
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Carla Cruz
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| |
Collapse
|
10
|
Ghanimatdan M, Sadjjadi SM, Mikaeili F, Teimouri A, Jafari SH, Derakhshanfar A, Hashemi-Hafshejani S. Therapeutic effect of curcumin nanoemulsion on cystic echinococcosis in BALB/c mice: a computerized tomography (CT) scan and histopathologic study evaluation. BMC Complement Med Ther 2024; 24:143. [PMID: 38575891 PMCID: PMC10993536 DOI: 10.1186/s12906-024-04451-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND This study aimed to determine the therapeutic efficacy of curcumin nanoemulsion (CUR-NE) in mice infected with Echinococcus granulosus sensu stricto protoscoleces. METHODS Forty-two inbred BALB/c mice were divided into seven groups of six animals each. Six groups were inoculated intra-peritoneally with 1500 viable E. granulosus protoscoleces, followed for six months and used as infected groups. The infected groups were named as: CEI1 to CEI6 accordingly. The 7th group was not inoculated and was named cystic echinococcosis noninfected group (CENI7). CEI1 and CEI2 groups received 40 mg/kg/day and 20 mg/kg/day curcumin nanoemulsion (CUR-NE), respectively. CEI3 received nanoemulsion without curcumin (NE-no CUR), CEI4 received curcumin suspension (CUR-S) 40 mg/kg/day, CEI5 received albendazole 150 mg/kg/day and CEI6 received sterile phosphate-buffered saline (PBS). CENI7 group received CUR-NE 40 mg/kg/day. Drugs administration was started after six months post-inoculations of protoscoleces and continued for 60 days in all groups. The secondary CE cyst area was evaluated by computed tomography (CT) scan for each mouse before treatment and on the days 30 and 60 post-treatment. The CT scan measurement results were compared before and after treatment. After the euthanasia of the mice on the 60th day, the cyst area was also measured after autopsy and, the histopathological changes of the secondary cysts for each group were observed. The therapeutic efficacy of CUR-NE in infected groups was evaluated by two methods: CT scan and autopsied cyst measurements. RESULTS Septal calcification in three groups of infected mice (CEI1, CEI2, and CEI4) was revealed by CT scan. The therapeutic efficacy of CUR-NE 40 mg/kg/day (CEI1 group) was 24.6 ± 26.89% by CT scan measurement and 55.16 ± 32.37% by autopsied cysts measurements. The extensive destructive effects of CUR-NE 40 mg/kg/day (CEI1 group) on the wall layers of secondary CE cysts were confirmed by histopathology. CONCLUSION The current study demonstrated a significant therapeutic effect of CUR-NE (40 mg/kg/day) on secondary CE cysts in BALB/c mice. An apparent septal calcification of several cysts revealed by CT scan and the destructive effect on CE cysts observed in histopathology are two critical key factors that suggest curcumin nanoemulsion could be a potential treatment for cystic echinococcosis.
Collapse
Affiliation(s)
- Mohamad Ghanimatdan
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fattaneh Mikaeili
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aref Teimouri
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hamed Jafari
- Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeideh Hashemi-Hafshejani
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Amen Y, Selim MA, Suef RA, Sayed AM, Othman A. Unveiling the Antiviral Efficacy of Forskolin: A Multifaceted In Vitro and In Silico Approach. Molecules 2024; 29:704. [PMID: 38338448 PMCID: PMC10856047 DOI: 10.3390/molecules29030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 μg/mL, respectively. Furthermore, we explored the Forskolin's potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin's modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin's binding mode within Cathepsin L's active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin's potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent.
Collapse
Affiliation(s)
- Yhiya Amen
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A Selim
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (M.A.S.); (R.A.S.)
| | - Reda A. Suef
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (M.A.S.); (R.A.S.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, Basrah 61014, Iraq;
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Ahmed Othman
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
12
|
Nazeam JA, El-Emam SZ. Middle Eastern Plants with Potent Cytotoxic Effect Against Lung Cancer Cells. J Med Food 2024; 27:198-207. [PMID: 38381516 DOI: 10.1089/jmf.2022.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Cancer is one of the leading causes of increasing global mortality with uprising health concerns and threats. Unfortunately, conventional chemotherapy has substantial side effects, limiting its relevance and prompting a quest for safe and efficient alternatives. For thousands of years, plants have provided a rich reservoir for curing a variety of ailments, including cancer. According to the World Health Organization, medicinal plants would be the best source of medications. However, only 25% of drugs in the present pharmacopoeia are derived from plants. Hence, further research into different plants is required to better understand their efficacy. Twenty extracts of widely distributed Middle Eastern plants were screened for the cytotoxic effect against lung cancer cell lines (A549). Eleven plants showed IC50 below 25 μg/mL, consequently, the bioactive extracts were further fractionated by graded precipitation using absolute ethanol. All fraction A (FA; crude polysaccharides precipitate) showed potent IC50, 0.2-5.5 μg/mL except the FA of Brassica juncea, Silybum marianum, and Phaseolus vulgaris, whereas FB fractions (filtrate) of Anastatica hierochuntica, Plantago ovate, Tussilago farfara, and Cucurbita moschata had lower efficacy than other fractions with IC50 values in the range of 0.1-7.7 μg/mL. The fractions of FA Taraxacum officinale and FB Ziziphus spina possess the most potent cytotoxic activity with IC50, 0.2 and 0.1 μg/mL, respectively. Moreover, cell cycle analysis of both fractions revealed an arrest at G1/S-phase and activation of apoptosis rather than necrosis as the mode of cell death. Therefore, T. officinale and Z. spina fractions may pave the way to manage lung carcinoma as an alternative and complementary food regimen.
Collapse
Affiliation(s)
- Jilan A Nazeam
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Soad Z El-Emam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
13
|
Lee HJ, Ortiz DM, Sayson LV, Kim M, Cheong JH, Kim HJ. Ameliorating effects of Acanthopanax koreanum extract and components on nicotine dependence and withdrawal symptoms. Addict Biol 2024; 29:e13360. [PMID: 38380695 PMCID: PMC10898842 DOI: 10.1111/adb.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/22/2023] [Accepted: 11/17/2023] [Indexed: 02/22/2024]
Abstract
Tobacco smoking is a serious health problem in society. While smoking rates are declining, smoking remains a serious risk to national health. Currently, there are several medications available to aid in smoking cessation. However, these medications have the disadvantages of low success rates in smoking cessation and various side effects. Therefore, natural-based smoking cessation aids are being suggested as a good alternative due to their accessibility and minimal side effects. The roots and stems of Acanthopanax koreanum (AK) Nakai, a plant that is native to Jeju Island, South Korea, have traditionally been used as tonic and sedatives. Moreover, eleutheroside B and chlorogenic acid are the main components of AK stem extract. In the present study, we investigated the effect of 70% ethanol AK extract and its components on ameliorating nicotine dependence and withdrawal symptoms by using behavioural tests in mice. In addition, alterations in the dopaminergic and DRD1-EPAC-ERK-CREB pathways were observed using dopamine ELISA and western blotting using mouse brains. Our findings demonstrate that the AK extract and its components effectively mitigated the effects of nicotine treatment in behavioural tests. Furthermore, it normalized the dopamine concentration and the expression level of nicotine acetylcholine receptor α7. Additionally, it was observed that AK extract and its components led to the normalization of DRD1, ERK and CREB expression levels. These results indicate that AK extract exhibits effects in ameliorating nicotine dependence behaviour and alleviating withdrawal symptoms. Moreover, EB and CGA are considered potential marker components of AK extract.
Collapse
Affiliation(s)
- Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of PharmacySahmyook UniversitySeoulRepublic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of PharmacySahmyook UniversitySeoulRepublic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of PharmacySahmyook UniversitySeoulRepublic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of PharmacySahmyook UniversitySeoulRepublic of Korea
- Department of Chemistry & Life ScienceSahmyook UniversitySeoulRepublic of Korea
| | - Jae Hoon Cheong
- School of PharmacyJeonbuk National UniversityJeonjuRepublic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of PharmacySahmyook UniversitySeoulRepublic of Korea
| |
Collapse
|
14
|
Chagas Monteiro KL, dos Santos Alcântara MG, de Aquino TM, Ferreira da Silva-Júnior E. Insights on Natural Products Against Amyotrophic Lateral Sclerosis (ALS). Curr Neuropharmacol 2024; 22:1169-1188. [PMID: 38708921 PMCID: PMC10964095 DOI: 10.2174/1570159x22666231016153606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 05/07/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that causes the death of motor neurons and consequent muscle paralysis. Despite many efforts to address it, current therapy targeting ALS remains limited, increasing the interest in complementary therapies. Over the years, several herbal preparations and medicinal plants have been studied to prevent and treat this disease, which has received remarkable attention due to their blood-brain barrier penetration properties and low toxicity. Thus, this review presents the therapeutic potential of a variety of medicinal herbs and their relationship with ALS and their physiopathological pathways.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Marcone Gomes dos Santos Alcântara
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | | |
Collapse
|
15
|
Myo H, Liana D, Phanumartwiwath A. Unlocking Therapeutic Potential: Comprehensive Extraction, Profiling, and Pharmacological Evaluation of Bioactive Compounds from Eclipta alba (L.) Hassk. for Dermatological Applications. PLANTS (BASEL, SWITZERLAND) 2023; 13:33. [PMID: 38202343 PMCID: PMC10781016 DOI: 10.3390/plants13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Herbal medicine has been studied as an alternate approach to modern medicine as it is more cost-effective and accessible via natural sources. Eclipta alba (E. alba, L.) Hassk. is a weed plant abundantly distributed throughout different regions of the world and contains abundant bioactive compounds used for various skin conditions. In this review, we aimed to gather information from the literature about the extraction, separation, and identification of these bioactive compounds and their potential in skin diseases. Relevant studies published before August 2023 were identified and selected from electronic databases, including Scopus, SciFinder, ScienceDirect, Google Scholar, and Wiley Library, using the following keywords: Eclipta alba, Eclipta prostrata, phytochemicals, extraction, separation, isolation, identification, characterization, pharmacological activity, and skin conditions. Up-to-date extraction, separation, and identification methods of bioactive compounds from E. alba and their skin-related pharmacological activities are discussed in this review. As there are limitations regarding extraction, separation, and identification methods, and in-depth mechanistic and human studies of the skin-related pharmacological activities of bioactive compounds, these gaps are areas for future research to expand our understanding and broaden the potential applications of this medicinal weed plant, including the development of cosmeceutical and skincare products, anti-inflammatory agents, and formulations for dermatological treatments.
Collapse
Affiliation(s)
| | | | - Anuchit Phanumartwiwath
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (H.M.); (D.L.)
| |
Collapse
|
16
|
Ahmad SS, Ahmad K, Hwang YC, Lee EJ, Choi I. Therapeutic Applications of Ginseng Natural Compounds for Health Management. Int J Mol Sci 2023; 24:17290. [PMID: 38139116 PMCID: PMC10744087 DOI: 10.3390/ijms242417290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Ginseng is usually consumed as a daily food supplement to improve health and has been shown to benefit skeletal muscle, improve glucose metabolism, and ameliorate muscle-wasting conditions, cardiovascular diseases, stroke, and the effects of aging and cancers. Ginseng has also been reported to help maintain bone strength and liver (digestion, metabolism, detoxification, and protein synthesis) and kidney functions. In addition, ginseng is often used to treat age-associated neurodegenerative disorders, and ginseng and ginseng-derived natural products are popular natural remedies for diseases such as diabetes, obesity, oxidative stress, and inflammation, as well as fungal, bacterial, and viral infections. Ginseng is a well-known herbal medication, known to alleviate the actions of several cytokines. The article concludes with future directions and significant application of ginseng compounds for researchers in understanding the promising role of ginseng in the treatment of several diseases. Overall, this study was undertaken to highlight the broad-spectrum therapeutic applications of ginseng compounds for health management.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.S.A.); (K.A.); (Y.C.H.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
17
|
Singh S, Singh L, Kumar V, Ali W, Ramamurthy PC, Singh Dhanjal D, Sivaram N, Angurana R, Singh J, Chandra Pandey V, Khan NA. Algae-based approaches for Holistic wastewater management: A low-cost paradigm. CHEMOSPHERE 2023; 345:140470. [PMID: 37858768 DOI: 10.1016/j.chemosphere.2023.140470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Aquatic algal communities demonstrated their appeal for diverse industrial applications due to their vast availability, ease of harvest, lower production costs, and ability to biosynthesize valuable molecules. Algal biomass is promising because it can multiply in water and on land. Integrated algal systems have a significant advantage in wastewater treatment due to their ability to use phosphorus and nitrogen, simultaneously accumulating heavy metals and toxic substances. Several species of microalgae have adapted to thrive in these harsh environmental circumstances. The potential of algal communities contributes to achieving the United Nations' sustainable development goals in improving aquaculture, combating climate change, reducing carbon dioxide (CO2) emissions, and providing biomass as a biofuel feedstock. Algal-based biomass processing technology facilitates the development of a circular bio-economy that is both commercially and ecologically viable. An integrated bio-refinery process featuring zero waste discharge could be a sustainable solution. In the current review, we will highlight wastewater management by algal species. In addition, designing and optimizing algal bioreactors for wastewater treatment have also been incorporated.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Lav Singh
- Department of Botany, University of Lucknow, Uttar Pradesh, India
| | - Vijay Kumar
- Department of Chemistry, CCRAS-CARI, Jhansi, U.P., 284003, India
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Nikhita Sivaram
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, USA
| | - Ruby Angurana
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India; Department of Botany, Nagaland University, Lumami, Nagaland 798627, India
| | - Vimal Chandra Pandey
- CSIR-National Botanical Research Institute Lucknow, 226001, Uttar Pradesh, India.
| | - Nadeem A Khan
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
18
|
Kim HJ, Jung DW, Williams DR. Age Is Just a Number: Progress and Obstacles in the Discovery of New Candidate Drugs for Sarcopenia. Cells 2023; 12:2608. [PMID: 37998343 PMCID: PMC10670210 DOI: 10.3390/cells12222608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Sarcopenia is a disease characterized by the progressive loss of skeletal muscle mass and function that occurs with aging. The progression of sarcopenia is correlated with the onset of physical disability, the inability to live independently, and increased mortality. Due to global increases in lifespan and demographic aging in developed countries, sarcopenia has become a major socioeconomic burden. Clinical therapies for sarcopenia are based on physical therapy and nutritional support, although these may suffer from low adherence and variable outcomes. There are currently no clinically approved drugs for sarcopenia. Consequently, there is a large amount of pre-clinical research focusing on discovering new candidate drugs and novel targets. In this review, recent progress in this research will be discussed, along with the challenges that may preclude successful translational research in the clinic. The types of drugs examined include mitochondria-targeting compounds, anti-diabetes agents, small molecules that target non-coding RNAs, protein therapeutics, natural products, and repositioning candidates. In light of the large number of drugs and targets being reported, it can be envisioned that clinically approved pharmaceuticals to prevent the progression or even mitigate sarcopenia may be within reach.
Collapse
Affiliation(s)
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| |
Collapse
|
19
|
Bouzidi A, Azizi A, Messaoudi O, Abderrezzak K, Vidari G, Hellal AN, Patel CN. Phytochemical analysis, biological activities of methanolic extracts and an isolated flavonoid from Tunisian Limoniastrum monopetalum (L.) Boiss: an in vitro and in silico investigations. Sci Rep 2023; 13:19144. [PMID: 37932358 PMCID: PMC10628221 DOI: 10.1038/s41598-023-46457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
In recent years, due to the dramatic increase of the bacteria resistance to antibiotics and chemotherapeutic drugs, an increasing importance is given to the discovery of novel bioactive molecules, more potent than those in use. In this contest, methanol extracts of different parts of the medicinal plant Limoniastrum monopetalum (L.) Boiss. (Plumbaginaceae), widely occurring in Tunisia, were prepared to evaluate the antimicrobial and antiproliferative activities. The methanol extract of the roots showed the highest antibacterial activity against E. coli, S. aureus and E. faecalis, whereas the stem extract exhibited the highest antiproliferative effects towards a Hela cell line. Analysis of volatile fractions, using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID) techniques, led to the identification of camphor as the most abundant constituent, which represented from 84.85 to 99.48% of the methanol extracts. Multiple chromatographic separation of the methanol leaf extract afforded the flavonoid maeopsin-6-O-glucoside (S1) and a few fractions that were subjected to biological activity assays. One fraction exhibited interesting antibacterial activity against E. coli and E. faecalis (MIC values of 62.5 and 78.12 µg/mL, respectively), and antiproliferative effects against Hela and A549 cells (IC50 = 226 and 242.52 μg/mL, respectively). In addition, in silico studies indicated that maesopsin-6-O-glucoside, which was moderately active against Staphylococcus aureus, strongly interacted with the active site of the accessory gene regulator protein A (AgrA) of Staphylococcus aureus.
Collapse
Affiliation(s)
- Amel Bouzidi
- BTP Laboratory, Department of Biology, Faculty of Sciences, University of Medea, Médéa, Algeria
| | - Ahmed Azizi
- Faculty of Technology, University Amar Telidji, Highway Ghardaia, Post Box G37 (M'kam), 03000, Laghouat, Algeria
| | - Omar Messaoudi
- Laboratory of Applied Microbiology in Food, Biomedical and Environment, Abou Bekr Belkaïd University, 13000, Tlemcen, Algeria
- Department of Biology, Faculty of Science, University of Amar Telidji, 03000, Laghouat, Algeria
| | - Kirouani Abderrezzak
- BTP Laboratory, Department of Biology, Faculty of Sciences, University of Medea, Médéa, Algeria
| | - Giovanni Vidari
- Department of Medical Analysis, Faculty of Applied Science, Ishk International University, Erbil, 44001, Iraq
| | - Ahmed Noureddine Hellal
- Laboratory of Bioressources, Biology Integrative and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Chirag N Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India.
- Biotechnology Research Center, Technology Innovation Institute, 9639, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
20
|
Zizzo MG, Cicio A, Bruno M, Serio R. Inhibitory effect and underlying mechanism of essential oil of Prangos ferulacea Lindl (L.) on spontaneous and induced uterine contractions in non-pregnant rats. Biomed Pharmacother 2023; 167:115570. [PMID: 37757498 DOI: 10.1016/j.biopha.2023.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Evidence suggests the use of natural compounds as support in the management of uterine contractility disorders. We recently demonstrated that the essential oil of Apiacea Prangos ferulacea (L.) (Prangoil) modulates intestinal smooth muscle contractility. Thus, we aimed to evaluate if Prangoil could also affect the contractility of uterine muscle in non-pregnant rat and to investigate the related action mechanism/s. The effects of the aromatic monoterpenes, β-ocimene and carvacrol, constituents of Prangoil, were also evaluated. Spontaneous contractions and contraction-induced by K+-depolarization and oxytocin in rat uterus were recorded in vitro, using organ bath technique. Prangoil reduced the amplitude of spontaneous contractions as well as responses to KCl and oxytocin. β-ocimene and carvacrol matched oil inhibitory effects. Prangoil effects were not affected by nitrergic and adenylyl cyclase inhibitors or non-specific potassium channel blocker, but they were reduced by nifedipine, L-type calcium channel inhibitor, or 2-aminoethoxydiphenylborate (2-APB), membrane-permeant inositol 1,4,5-triphosphate receptor inhibitor. The response to β-ocimene was reduced by nifedipine and by 2-APB (20 μM), whilst carvacrol inhibitory effect was attenuated only by nifedipine. In conclusion, Prangoil, and its components, β-ocimene and carvacrol, reduced spontaneous and KCl or oxytocin-induced contractions of rat myometrium, mainly modulating extracellular Ca2+ influx through L-Type channels and Ca2+ release from the intracellular store. Further studies could contribute to evaluate the potential use of Prangoil against disorders characterized by abnormal uterine contractions.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; ATeN (Advanced Technologies Network) Center, Viale delle Scienze, University of Palermo, 90128 Palermo, Italy.
| | - Adele Cicio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
21
|
Han JH, Lee EJ, Park W, Ha KT, Chung HS. Natural compounds as lactate dehydrogenase inhibitors: potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol 2023; 14:1275000. [PMID: 37915411 PMCID: PMC10616500 DOI: 10.3389/fphar.2023.1275000] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a crucial enzyme involved in energy metabolism and present in various cells throughout the body. Its diverse physiological functions encompass glycolysis, and its abnormal activity is associated with numerous diseases. Targeting LDH has emerged as a vital approach in drug discovery, leading to the identification of LDH inhibitors among natural compounds, such as polyphenols, alkaloids, and terpenoids. These compounds demonstrate therapeutic potential against LDH-related diseases, including anti-cancer effects. However, challenges concerning limited bioavailability, poor solubility, and potential toxicity must be addressed. Combining natural compounds with LDH inhibitors has led to promising outcomes in preclinical studies. This review highlights the promise of natural compounds as LDH inhibitors for treating cancer, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Wonyoung Park
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Ki-Tae Ha
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
22
|
Rahman MO, Ahmed SS, Alqahtani AS, Cakilcioğlu U, Akbar MA. Insight into novel inhibitors from Sterculia urens against Cholera via pharmacoinformatics and molecular dynamics simulation approaches. J Biomol Struct Dyn 2023:1-22. [PMID: 37668010 DOI: 10.1080/07391102.2023.2254841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
The underdeveloped countries with large populations are facing a grave global threat in the form of cholera. Vibrio cholerae, the etiologic agent of Cholera has drawn attention recently due to antimicrobial resistance and resulting outbreaks that necessitates establishment of novel medications to counteract virulence and viability of the pathogen. Sterculia urens Roxb. (Malvaceae) is an ethnomedicinally important tree, which harbors a good number of bioactive phytocompounds. In the present study, 53 phytocompounds of S. urens were screened against the promising target ToxT of V. cholerae employing structure-based drug design approach that revealed three lead compounds, viz., 4,4,5,8-Tetramethylchroman-2-ol (-8.2 kcal/mol), Beta-Bisabolol (-8.2 kcal/mol) and Ledol (-8.7 kcal/mol) with satisfactory ADMET properties. Molecular dynamics simulation for 150 ns unveiled notable compactness and structural stability for the lead compounds considering RMSD, RMSF, Rg, MolSA, PSA and protein-ligand contacts parameters. Molecular mechanics-based MM/GBSA binding energy calculation revealed Beta-Bisabolol (-66.74 kcal/mol) to have better scores than 4,4,5,8-Tetramethylchroman-2-ol (-47.42 kcal/mol) and Ledol (-65.79 kcal/mol). Enzymes were mostly found as drug target class, and Nabilone was found as a structurally similar analog for 4,4,5,8-Tetramethylchroman-2-ol. These discoveries could aid in revealing new antibacterial medications targeting ToxT to combat Cholera.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Oliur Rahman
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Sheikh Sunzid Ahmed
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Uğur Cakilcioğlu
- Department of Botany, Pertek Sakine Genç Vocational School, Munzur University, Tunceli, Pertek, Turkey
| | - Mohammad Ahsanul Akbar
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV, USA
| |
Collapse
|
23
|
Kibungu Kembelo P, Tuenter E, Vanhove W, Belesi Katula H, Van Damme P, Pieters L. Phytochemical Profiling by UPLC-ESI-QTOF-MS of Kalaharia uncinata (Schinz) Moldenke, Widely Used in Traditional Medicine in DR Congo. Chem Biodivers 2023; 20:e202300826. [PMID: 37593932 DOI: 10.1002/cbdv.202300826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Kalaharia uncinata (Schinz) Moldenke, is a tropical erect bushy shrub or subshrub of the Lamiaceae family. It is an endemic plant species of Southern Africa, widely used in the pharmacopoeia against upper respiratory tract infections. A previously conducted ethnobotanical survey revealed that it is believed to contain bioactive substances. However, no relevant phytochemical information was available. This study aimed to perform a phytochemical characterization of K. uncinata and also to discuss the potential bioactivity of the identified phytochemical constituents based on documented data. Ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) was used for profiling and identification of the main phytochemical constituents from leaf extracts (MeOH 90 %, DCM, AcOEt, BuOH, hexane and residue) of K.uncinata. Twenty-four constituents, representing mainly flavonoids (14), followed by phenylethanoid glycosides (7), phenolic acids (2), and an iridoid glycoside (1) were tentatively identified. Most of the identified compounds are documented to have antiviral and anti-inflammatory properties, which could possibly be the rationale behind the use of K. uncinata against upper respiratory tract infections.
Collapse
Affiliation(s)
- Pathy Kibungu Kembelo
- Department of Environmental Sciences, Kinshasa University (UNIKIN), Kinshasa XI, BP 127, Kinshasa, Democratic Republic of Congo
- Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerp, Belgium
- Faculty of Agronomic Sciences, Kongo University, 23-Avenue Kolo, BP 202, Mbanza-Ngungu, Kongo-Central Province, Democratic Republic of Congo
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerp, Belgium
| | - Wouter Vanhove
- Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Honoré Belesi Katula
- Department of Environmental Sciences, Kinshasa University (UNIKIN), Kinshasa XI, BP 127, Kinshasa, Democratic Republic of Congo
| | - Patrick Van Damme
- Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Kamycka 129, 165 00, Praha - Suchdol, Czech Republic
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerp, Belgium
| |
Collapse
|
24
|
Amarasiri SS, Attanayake AP, Arawwawala LD, Mudduwa LK, Jayatilaka KA. Barleria prionitis L. extracts ameliorate doxorubicin-induced acute kidney injury via modulation of oxidative stress, inflammation, and apoptosis. J Tradit Complement Med 2023; 13:500-510. [PMID: 37693098 PMCID: PMC10491988 DOI: 10.1016/j.jtcme.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 09/12/2023] Open
Abstract
Background and aim Doxorubicin (DOX) is a chemotherapeutic drug with potential nephrotoxic effects on patients who are on cancer chemotherapy. An interest has been observed in using natural products to ameliorate the potential side effects of DOX. The present study is to investigate the cellular mechanisms underlying the protective effects of Barleria prionitis L. (BP) (Acanthaceae) extracts, DOX-induced acute kidney injury (AKI). Experimental procedure Hexane (25 mg/kg/day), ethyl acetate (80 mg/kg/day), n-butanol (70 mg/kg/day), and water (120 mg/kg/day) extracts of BP, were administered to DOX-induced (5 mg/kg (2500 μL/kg), ip) Wistar rats for four consecutive weeks. At the end of the study, investigations were carried out for the assessment of biomarkers of nephrotoxicity, oxidative stress, inflammation, and apoptosis. Results Treatments with BP extracts significantly reversed DOX-induced elevations in serum and urine biochemical markers of nephrotoxicity (serum creatinine; 21-33%, blood urea nitrogen; 26-58%, β2-microglobulin; 19-22% and urine total protein; 47-67%). There was a reduction in the levels of tumor necrosis factor-α, interleukin-1β, and malondialdehyde in kidney homogenates of rats treated with the n-butanol extract (by 43, 62, and 24%) and water extract (by 57%, 85%, and 26%) (p < 0.05). Immunohistochemical expression of the pro-apoptotic B-cell associated X protein was reduced while the anti-apoptotic B-cell lymphoma gene product 2 protein was increased in kidney tissues after the treatments with BP extracts. Conclusions The selected BP extracts significantly ameliorated DOX-induced AKI. The findings would open new vistas for the development of a drug using the BP extracts to minimize DOX-induced AKI in cancer patients.
Collapse
Affiliation(s)
- Sachinthi S. Amarasiri
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
| | - Anoja P. Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | | - Lakmini K.B. Mudduwa
- Department of Pathology, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | |
Collapse
|
25
|
Riley CM, Elwood JML, Henry MC, Hunter I, Daniel Lopez-Fernandez J, McEwan IJ, Jamieson C. Current and emerging approaches to noncompetitive AR inhibition. Med Res Rev 2023; 43:1701-1747. [PMID: 37062876 DOI: 10.1002/med.21961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
The androgen receptor (AR) has been shown to be a key determinant in the pathogenesis of castration-resistant prostate cancer (CRPC). The current standard of care therapies targets the ligand-binding domain of the receptor and can afford improvements to life expectancy often only in the order of months before resistance occurs. Emerging preclinical and clinical compounds that inhibit receptor activity via differentiated mechanisms of action which are orthogonal to current antiandrogens show promise for overcoming treatment resistance. In this review, we present an authoritative summary of molecules that noncompetitively target the AR. Emerging small molecule strategies for targeting alternative domains of the AR represent a promising area of research that shows significant potential for future therapies. The overall quality of lead candidates in the area of noncompetitive AR inhibition is discussed, and it identifies the key chemotypes and associated properties which are likely to be, or are currently, positioned to be first in human applications.
Collapse
Affiliation(s)
- Christopher M Riley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Jessica M L Elwood
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Martyn C Henry
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Irene Hunter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Iain J McEwan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| |
Collapse
|
26
|
Baber MA, Crist CM, Devolve NL, Patrone JD. Tyrosinase Inhibitors: A Perspective. Molecules 2023; 28:5762. [PMID: 37570734 PMCID: PMC10420840 DOI: 10.3390/molecules28155762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Due to its integral role in the biosynthesis of melanin in all kingdoms of life, tyrosinase has become an extremely important target for inhibition in several sectors of research including agricultural and cosmetic research. Inhibitors of tyrosinase have made it to the market in the cosmetics industry, but their use has been limited due to conflicting efficacy and potential toxicity, which has led to several small molecules being removed from the market. Undaunted, researchers have continued to pursue tyrosinase inhibitors with varying degrees of success. These pursuits have built an impressive and rich library of research. This review is intended to provide a perspective of the past twenty years (2003-2023) of research on tyrosinase inhibitors by highlighting exemplar molecules and developments.
Collapse
Affiliation(s)
- Mason A. Baber
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48209, USA;
| | - Cole M. Crist
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
| | - Noah L. Devolve
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| | - James D. Patrone
- Program in Biochemistry & Molecular Biology, Rollins College, Winter Park, FL 32789, USA;
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA;
| |
Collapse
|
27
|
Ponphaiboon J, Krongrawa W, Aung WW, Chinatangkul N, Limmatvapirat S, Limmatvapirat C. Advances in Natural Product Extraction Techniques, Electrospun Fiber Fabrication, and the Integration of Experimental Design: A Comprehensive Review. Molecules 2023; 28:5163. [PMID: 37446825 DOI: 10.3390/molecules28135163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The present review explores the growing interest in the techniques employed for extracting natural products. It emphasizes the limitations of conventional extraction methods and introduces superior non-conventional alternatives, particularly ultrasound-assisted extraction. Characterization and quantification of bioactive constituents through chromatography coupled with spectroscopy are recommended, while the importance of method development and validation for biomarker quantification is underscored. At present, electrospun fibers provide a versatile platform for incorporating bioactive extracts and have extensive potential in diverse fields due to their unique structural and functional characteristics. Thus, the review also highlights the fabrication of electrospun fibers containing bioactive extracts. The preparation of biologically active extracts under optimal conditions, including the selection of safe solvents and cost-effective equipment, holds promising potential in the pharmaceutical, food, and cosmetic industries. Integration of experimental design into extraction procedures and formulation development is essential for the efficient production of health products. The review explores potential applications of encapsulating natural product extracts in electrospun fibers, such as wound healing, antibacterial activity, and antioxidant properties, while acknowledging the need for further exploration and optimization in this field. The findings discussed in this review are anticipated to serve as a valuable resource for the processing industry, enabling the utilization of affordable and environmentally friendly, natural, and raw materials.
Collapse
Affiliation(s)
- Juthaporn Ponphaiboon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wantanwa Krongrawa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wah Wah Aung
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nawinda Chinatangkul
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Faculty of Pharmacy, Siam University, Bangkok 10160, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
28
|
Bhushan A, Rani D, Tabassum M, Kumar S, Gupta PN, Gairola S, Gupta AP, Gupta P. HPLC-PDA Method for Quantification of Bioactive Compounds in Crude Extract and Fractions of Aucklandia costus Falc. and Cytotoxicity Studies against Cancer Cells. Molecules 2023; 28:4815. [PMID: 37375368 DOI: 10.3390/molecules28124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/29/2023] Open
Abstract
Aucklandia costus Falc. (Synonym: Saussurea costus (Falc.) Lipsch.) is a perennial herb of the family Asteraceae. The dried rhizome is an essential herb in the traditional systems of medicine in India, China and Tibet. The important pharmacological activities reported for Aucklandia costus are anticancer, hepatoprotective, antiulcer, antimicrobial, antiparasitic, antioxidant, anti-inflammatory and anti-fatigue activities. The objective of this study was the isolation and quantification of four marker compounds in the crude extract and different fractions of A. costus and the evaluation of the anticancer activity of the crude extract and its different fractions. The four marker compounds isolated from A. costus include dehydrocostus lactone, costunolide, syringin and 5-hydroxymethyl-2-furaldehyde. These four compounds were used as standard compounds for quantification. The chromatographic data showed good resolution and excellent linearity (r2 ˃ 0.993). The validation parameters, such as inter- and intraday precision (RSD < 1.96%) and analyte recovery (97.52-110.20%; RSD < 2.00%),revealed the high sensitivity and reliability of the developed HPLC method. The compounds dehydrocostus lactone and costunolide were concentrated in the hexane fraction (222.08 and 65.07 µg/mg, respectively) and chloroform fraction (99.02 and 30.21 µg/mg, respectively), while the n-butanol fraction is a rich source of syringin (37.91 µg/mg) and 5-hydroxymethyl-2-furaldehyde (7.94 µg/mg). Further, the SRB assay was performed for the evaluation of anticancer activity using lung, colon, breast and prostate cancer cell lines. The hexane and chloroform fractions show excellent IC50 values of 3.37 ± 0.14 and 7.527 ± 0.18 µg/mL, respectively, against the prostate cancer cell line (PC-3).
Collapse
Affiliation(s)
- Anil Bhushan
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dixhya Rani
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Misbah Tabassum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Saajan Kumar
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prem N Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sumeet Gairola
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajai P Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
29
|
Ahmad T, Khan T, Kirabo A, Shah AJ. Antioxidant Flavonoid Diosmetin Is Cardioprotective in a Rat Model of Myocardial Infarction Induced by Beta 1-Adrenergic Receptors Activation. Curr Issues Mol Biol 2023; 45:4675-4686. [PMID: 37367046 PMCID: PMC10297416 DOI: 10.3390/cimb45060297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Myocardial infarction (MI) is a common and life-threatening manifestation of ischemic heart diseases (IHD). The most important risk factor for MI is hypertension. Natural products from medicinal plants have gained considerable attention globally due to their preventive and therapeutic effects. Flavonoids have been found to be efficacious in ischemic heart diseases (IHD) by alleviating oxidative stress and beta-1 adrenergic activation, but the mechanistic link is not clear. We hypothesized that antioxidant flavonoid diosmetin is cardioprotective in a rat model of MI induced by beta 1-adrenergic receptor activation. To test this hypothesis, we evaluated the cardioprotective potential of diosmetin on isoproterenol-induced MI in rats by performing lead II electrocardiography (ECG), cardiac biomarkers including troponin I (cTnI) and creatinine phosphokinase (CPK), CK-myocardial band, (CK-MB), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotranferase (AST) by using biolyzer 100, as well as histopathological analysis. We found that diosmetin (1 and 3 mg/kg) attenuated isoproterenol-induced elevation in the T-wave and deep Q-wave on the ECG, as well as heart-to-body weight ratio and infarction size. In addition, pretreatment with diosmetin attenuated the isoproterenol-induced increase in serum troponin I. These results demonstrate that flavonoid diosmetin may provide therapeutic benefit in myocardial infarction.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, University Road, Abbottabad 22060, Pakistan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taous Khan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Abdul Jabbar Shah
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
| |
Collapse
|
30
|
Lavanya P, Davis G DJ. Chemo-structural diversity of anti-obesity compound database. J Mol Graph Model 2023; 120:108414. [PMID: 36702059 DOI: 10.1016/j.jmgm.2023.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Nature plays a major role in the development of new drugs which helps in preventing and treating human diseases. Anti-obesity compound database (AOCD) contains comprehensive information on all published small molecules from natural sources with anti-obesity potential targeting pancreatic lipase (PL), appetite suppressant (AS) and adipogenesis (AD). Presently the database contains 349 compounds isolated from 307 plants, 26 marine and 16 microbial sources. Users can query the AOCD database (https://aocd.swmd.co.in/) in several ways. The database was divided into three datasets (PL, AS and AD) to perform chemoinformatic analysis using Platform for Unified Molecular Analysis (PUMA), which were analyzed based on molecular descriptors, scaffold diversity and structural fingerprint diversity. Chemoinformatics study inferred the PL dataset has the highest diversity of compounds based on the Euclidean distance on molecular properties, scaffold diversity and pairwise similarity on fingerprint diversity. This study would hasten the process of anti-obesity drug discovery.
Collapse
Affiliation(s)
- Prabhakar Lavanya
- Department of Bioinformatics, Faculty of Engineering and Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Dicky John Davis G
- Department of Bioinformatics, Faculty of Engineering and Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India.
| |
Collapse
|
31
|
Teimouri A, Jafarpour Azami S, Hashemi Hafshejani S, Ghanimatdan M, Bahreini MS, Alimi R, Sadjjadi SM. Protoscolicidal effects of curcumin nanoemulsion against protoscoleces of Echinococcus granulosus. BMC Complement Med Ther 2023; 23:124. [PMID: 37072845 PMCID: PMC10111725 DOI: 10.1186/s12906-023-03927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The aim of the present study was to assess in vitro protoscolicidal effects of curcumin nanoemulsion (CUR-NE) against protoscoleces of cystic echinococcosis (CE)/hydatid cysts. METHODS The CUR-NE was prepared via spontaneous emulsification of soybean as the oil phase, a mixture of Tween 80 and Tween 85 as the surfactant, ethanol as the co-surfactant and distilled water. Various concentrations of CUR-NE (156, 312, 625 and 1250 µg/ml) were exposed to collected protoscoleces of infected sheep liver hydatid cysts for 10, 20, 30, 60 and 120 min. Viability of the protoscoleces were assessed using eosin exclusion test. Morphological changes of the protoscoleces were observed using differential interference contrast (DIC) microscopy. RESULTS The mean particle size and zeta potential of CUR-NE included 60.4 ± 14.8 nm and - 16.1 ± 1.1 mV, respectively. Results showed that the viability of the protoscoleces decreased significantly with increases in CUR-NE concentrations (p < 0.001). The mortality rates of protoscoleces with exposure to concentrations of 1250 and 625 µg/ml of CUR-NE for 60 min were 94 and 73.33%, respectively. Mortality of the protoscoleces was 100% after 120 min of exposure to 1250 and 625 µg/ml concentrations of CUR-NE. Using NIC microscopy, extensively altered tegumental surface protoscoleces was observed after protoscoleces exposure to CUR-NE. CONCLUSION The findings of the present study revealed the in vitro protoscolicidal potential of CUR-NE. Therefore, CUR-NEs are addressed as novel protoscolicidal agents, which can be used as an alternative natural medicine to kill the protoscoleces, owing to their low toxicity and significant inhibition potency. However, further studies are necessary to investigate pharmacologic and pharmacokinetics of CUR-NEs.
Collapse
Affiliation(s)
- Aref Teimouri
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Jafarpour Azami
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Hashemi Hafshejani
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghanimatdan
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Alimi
- Department of Epidemiology and Biostatistics, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
32
|
Fayez N, Khalil W, Abdel-Sattar E, Abdel-Fattah AFM. In vitro and in vivo assessment of the anti-inflammatory activity of olive leaf extract in rats. Inflammopharmacology 2023; 31:1529-1538. [PMID: 37029328 DOI: 10.1007/s10787-023-01208-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Inflammation is a complex and crucial process that protects the body against pathogens. Here in our study, we propose to scientifically justify the anti-inflammatory activity of olive leaf (OL). Initially, we ensured the safety of olive leaf extract (OLE) through acute oral administration of graded doses up to 4 g\kg in Wistar rats. Thus, the extract was considered generally safe. We also evaluated the ability of the extract to reduce carrageenan-induced rat paw edema. Compared to diclofenac sodium (10 mg/kg PO), OLE showed significant (P < 0.05) anti-inflammatory activity, showing the maximum inhibition percentage at the fifth hour of measurement at 42.31% and 46.99%, at doses of 200 and 400 m/kg, respectively, compared to 63.81% for the standard drug. To elucidate the potential mechanism, we measured TNF, IL-1, COX-2 and NO inside the paw tissue. Interestingly, OLE at all tested doses reduced the concentration of TNF and IL-1 to a level that was lower than that obtained by the standard drug. Additionally, OLE at the dose of 400 mg/kg reduced the levels of COX-2 and NO inside the paw tissue to a level that was statistically equivalent to the level observed in the normal control group. Finally, olive leaf extract at doses of 100, 200 and 400 mg/kg doses significantly (P < 0.05) inhibited the heat-induced hemolysis of RBCs membrane by 25.62, 57.40 and 73.88%, respectively, compared to 83.89% produced by aspirin. Consequently, we concluded that olive leaf extract has a significant anti-inflammatory activity through the reduction of TNF, IL-1, COX-2 and NO.
Collapse
Affiliation(s)
- Nada Fayez
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Waleed Khalil
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
| | | |
Collapse
|
33
|
Thymus vulgaris Essential Oil in Beta-Cyclodextrin for Solid-State Pharmaceutical Applications. Pharmaceutics 2023; 15:pharmaceutics15030914. [PMID: 36986775 PMCID: PMC10051612 DOI: 10.3390/pharmaceutics15030914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Antimicrobial resistance related to the misuse of antibiotics is a well-known current topic. Their excessive use in several fields has led to enormous selective pressure on pathogenic and commensal bacteria, driving the evolution of antimicrobial resistance genes with severe impacts on human health. Among all the possible strategies, a viable one could be the development of medical features that employ essential oils (EOs), complex natural mixtures extracted from different plant organs, rich in organic compounds showing, among others, antiseptic properties. In this work, green extracted essential oil of Thymus vulgaris was included in cyclic oligosaccharides cyclodextrins (CD) and prepared in the form of tablets. This essential oil has been shown to have a strong transversal efficacy both as an antifungal and as an antibacterial agent. Its inclusion allows its effective use because an extension of the exposure time to the active compounds is obtained and, therefore, a more marked efficacy, especially against biofilm-producing microorganisms such as P. aeruginosa and S. aureus, was registered. The efficacy of the tablet against candidiasis opens their possible use as a chewable tablet against oral candidiasis and as a vaginal tablet against vaginal candidiasis. Moreover, the registered wide efficacy is even more positive since the proposed approach can be defined as effective, safe, and green. In fact, the natural mixture of the essential oil is produced by the steam current method; therefore, the manufacturer employs substances that are not harmful, with very low production and management costs.
Collapse
|
34
|
Umer SM, Shamim S, Khan KM, Saleem RSZ. Perplexing Polyphenolics: The Isolations, Syntheses, Reappraisals, and Bioactivities of Flavonoids, Isoflavonoids, and Neoflavonoids from 2016 to 2022. Life (Basel) 2023; 13:life13030736. [PMID: 36983891 PMCID: PMC10058313 DOI: 10.3390/life13030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Flavonoids, isoflavonoids, neoflavonoids, and their various subcategories are polyphenolics-an extensive class of natural products. These compounds are bioactive and display multiple activities, including anticancer, antibacterial, antiviral, antioxidant, and neuroprotective activities. Thus, these compounds can serve as leads for therapeutic agents or targets for complex synthesis; they are coveted and routinely isolated, characterized, biologically evaluated, and synthesized. However, data regarding the compounds' sources, isolation procedures, structural novelties, bioactivities, and synthetic schemes are often dispersed and complex, a dilemma this review aims to address. To serve as an easily accessible guide for researchers wanting to apprise themselves of the latest advancements in this subfield, this review summarizes seventy-six (76) articles published between 2016 and 2022 that detail the isolation and characterization of two hundred and forty-nine (249) novel compounds, the total and semisyntheses of thirteen (13) compounds, and reappraisals of the structures of twenty (20) previously reported compounds and their bioactivities. This article also discusses new synthetic methods and enzymes capable of producing or modifying flavonoids, isoflavonoids, or neoflavonoids.
Collapse
Affiliation(s)
- Syed Muhammad Umer
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| | - Shahbaz Shamim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 31441, Saudi Arabia
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| |
Collapse
|
35
|
Monika S, Thirumal M, Kumar PR. Phytochemical and biological review of Aegle marmelos Linn. Future Sci OA 2023; 9:FSO849. [PMID: 37026028 PMCID: PMC10072075 DOI: 10.2144/fsoa-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
India has one of the most expanded plant-origin medical traditions in the world. Researchers have evaluated molecules obtained from plants to treat a variety of ailments. Literature review shows that fundamental parts of the plant are used to treat different diseases. The related data is retrieved from Google scholar, PubMed, Science Direct and Scopus. The keywords include Bael, A. marmelos, Vilvam, and Marmelosin. Extensive studies show that A. marmelos has antidiarrhoeal, antimicrobial, antiviral, anticancer, chemopreventive, antipyretic, ulcer healing, antigenotoxic, diuretic, antifertility, and anti-inflammatory properties. In this work, an updated literature review is presented to clarify the current state of research on A. marmelos elucidating its constituents and their most relevant biological activities.
Collapse
|
36
|
Garg A, Goel N, Abhinav N, Varma T, Achari A, Bhattacharjee P, Kamal IM, Chakrabarti S, Ravichandiran V, Reddy AM, Gupta S, Jaisankar P. Virtual screening of natural products inspired in-house library to discover potential lead molecules against the SARS-CoV-2 main protease. J Biomol Struct Dyn 2023; 41:2033-2045. [PMID: 35043750 DOI: 10.1080/07391102.2022.2027271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2, a new coronavirus emerged in 2019, causing a global healthcare epidemic. Although a variety of drug targets have been identified as potential antiviral therapies, and effective candidate against SARS-CoV-2 remains elusive. One of the most promising targets for combating COVID-19 is SARS-CoV-2 Main protease (Mpro, a protein responsible for viral replication. In this work, an in-house curated library was thoroughly evaluated for druggability against Mpro. We identified four ligands (FG, Q5, P5, and PJ4) as potential inhibitors based on docking scores, predicted binding energies (MMGBSA), in silico ADME, and RMSD trajectory analysis. Among the selected ligands, FG, a natural product from Andrographis nallamalayana, exhibited the highest binding energy of -10.31 kcal/mol close to the docking score of clinical candidates Boceprevir and GC376. Other ligands (P5, natural product from cardiospermum halicacabum and two synthetic molecules Q5 and PJ4) have shown comparable docking scores ranging -7.65 kcal/mol to -7.18 kcal/mol. Interestingly, we found all four top ligands had Pi bond interaction with the main amino acid residues HIS41 and CYS145 (catalytic dyad), H-bonding interactions with GLU166, ARG188, and GLN189, and hydrophobic interactions with MET49 and MET165 in the binding site of Mpro. According to the ADME analysis, Q5 and P5 are within the acceptable range of drug likeliness, compared to FG and PJ4. The interaction stability of the lead molecules with viral protease was verified using replicated MD simulations. Thus, the present study opens up the opportunity of developing drug candidates targeting SARS-CoV-2 main protease (Mpro) to mitigate the disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aakriti Garg
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Narender Goel
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nipun Abhinav
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India.,Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tanmay Varma
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | - Anushree Achari
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pinaki Bhattacharjee
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Izaz Monir Kamal
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Chakrabarti
- Department of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | | | - Sreya Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, Kolkata, India
| | - Parasuraman Jaisankar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
37
|
A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. Int J Mol Sci 2023; 24:ijms24043266. [PMID: 36834673 PMCID: PMC9959544 DOI: 10.3390/ijms24043266] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Natural products are compounds produced by living organisms and can be divided into two main categories: primary (PMs) and secondary metabolites (SMs). Plant PMs are crucial for plant growth and reproduction since they are directly involved in living cell processes, whereas plant SMs are organic substances directly involved in plant defense and resistance. SMs are divided into three main groups: terpenoids, phenolics and nitrogen-containing compounds. The SMs contain a variety of biological capabilities that can be used as flavoring agents, food additives, plant-disease control, strengthen plant defenses against herbivores and, additionally, it can help plant cells to be better adapted to the physiological stress response. The current review is mainly focusing on certain key elements related to the significance, biosynthesis, classification, biochemical characterization and medical/pharmaceutical uses of the major categories of plant SMs. In addition, the usefulness of SMs in controlling plant diseases, boosting plant resistance and as potential natural, safe, eco-friendly substitutes for chemosynthetic pesticides were also reported in this review.
Collapse
|
38
|
Mohammed AE, Alghamdi SS, Shami A, Suliman RS, Aabed K, Alotaibi MO, Rahman I. In silico Prediction of Malvaviscus arboreus Metabolites and Green Synthesis of Silver Nanoparticles - Opportunities for Safer Anti-Bacterial and Anti-Cancer Precision Medicine. Int J Nanomedicine 2023; 18:2141-2162. [PMID: 37131545 PMCID: PMC10149080 DOI: 10.2147/ijn.s400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 05/04/2023] Open
Abstract
Introduction Biogenic silver nanoparticles (AgNPs) may be a feasible therapeutic option in the research and development towards selectively targeting specific cancers and microbial infections, lending a role in precision medicine. In-silico methods are a viable strategy to aid in drug discovery by identifying lead plant bioactive molecules for further wet lab and animal experiments. Methods Green synthesis of M-AgNPs was performed using the aqueous extract from the Malvaviscus arboreus leaves, characterized using UV spectroscopy, FTIR, TEM, DLS, and EDS. In addition, Ampicillin conjugated M-AgNPs were also synthesized. The cytotoxic potential of the M-AgNPs was evaluated using the MTT assay on MDA-MB 231, MCF10A, and HCT116 cancer cell lines. The antimicrobial effects were determined using the agar well diffusion assay on methicillin-resistant S. aureus (MRSA) and S. mutans, E. coli, and Klebsiella pneumoniae. Additionally, LC-MS was used to identify the phytometabolites, and in silico techniques were applied to determine the pharmacodynamic and pharmacokinetic profiles of the identified metabolites. Results Spherical M-AgNPs were successfully biosynthesized with a mean diameter of 21.8 nm and were active on all tested bacteria. Conjugation with ampicillin increased the susceptibility of the bacteria. These antibacterial effects were most predominant in Staphylococcus aureus (p < 0.0001). M-AgNPs had potent cytotoxic activity against the colon cancer cell line (IC50=29.5 μg/mL). In addition, four secondary metabolites were identified, Astragalin, 4-hydroxyphenyl acetic acid, Caffeic acid, and Vernolic acid. In silico studies identified Astragalin as the most active antibacterial and anti-cancer metabolite, binding strongly to the carbonic anhydrase IX enzyme with a comparatively higher number of residual interactions. Discussion Synthesis of green AgNPs presents a new opportunity in the field of precision medicine, the concept centered on the biochemical properties and biological effects of the functional groups present in the plant metabolites used for reduction and capping. M-AgNPs may be useful in treating colon carcinoma and MRSA infections. Astragalin appears to be the optimal and safe lead for further anti-cancer and anti-microbial drug development.
Collapse
Affiliation(s)
- Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Sahar S Alghamdi
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Rasha Saad Suliman
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi, 3798, United Arab Emirates
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
- Correspondence: Ishrat Rahman, Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia, Email
| |
Collapse
|
39
|
Gupta SK, Tripathi PK. CADD Studies in the Discovery of Potential ARI (Aldose Reductase Inhibitors) Agents for the Treatment of Diabetic Complications. Curr Diabetes Rev 2023; 19:e180822207672. [PMID: 35993470 DOI: 10.2174/1573399819666220818163758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022]
Abstract
The lack of currently available drugs for treating diabetes complications has stimulated our interest in finding new Aldose Reductase inhibitors (ARIs) with more beneficial biological properties. One metabolic method uses aldose reductase inhibitors in the first step of the polyol pathway to control excess glucose flux in diabetic tissues. Computer-aided drug discovery (CADD) is key in finding and optimizing potential lead substances. AR inhibitors (ARI) have been widely discussed in the literature. For example, Epalrestat is currently the only ARI used to treat patients with diabetic neuropathy in Japan, India, and China. Inhibiting R in patients with severe to moderate diabetic autonomic neuropathy benefits heart rate variability. AT-001, an AR inhibitor, is now being tested in COVID-19 to see how safe and effective it reduces inflammation and cardiac damage. In summary, these results from animal and human studies strongly indicate that AR can cause cardiovascular complications in diabetes. The current multi-center, large-scale randomized human study of the newly developed powerful ARI may prove its role in diabetic cardiovascular disease to establish therapeutic potential. During the recent coronavirus disease (COVID-19) outbreak in 2019, diabetes and cardiovascular disease were risk factors for severely negative clinical outcomes in patients with COVID19. New data shows that diabetes and obesity are among the strongest predictors of COVID-19 hospitalization. Patients and risk factors for severe morbidity and mortality of COVID- 19.
Collapse
Affiliation(s)
- Saurabh Kumar Gupta
- Rameshwaram Institute of Technology and Management Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
40
|
de Menezes Dantas D, Pereira-de Morais L, de Alencar Silva A, da Silva RER, Dias FJ, de Sousa Amorim T, Cruz-Martins N, Melo Coutinho HDD, Barbosa R. Pharmacological Screening of Species from the Lippia genus, Content in Terpenes and Phenylpropanoids, and their Vasorelaxing Effects on Human Umbilical Artery. Curr Pharm Des 2023; 29:535-542. [PMID: 36424792 DOI: 10.2174/1381612829666221124101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Naturally occurring bioactive compounds have a plethora of biological effects. OBJECTIVE In this study, we examined a pharmacological screening of natural products on the human umbilical artery (HUA). METHODS HUA preparations were used to follow contractions by KCl (60 mM) and tested at different concentrations (1-5000 μg/mL and μM) of the Lippia alba (EOLa) and Lippia origanoides (EOLo) essential oils, terpenes (citral, limonene perilic alcohol) and phenylpropanoids (eugenol, methyl eugenol). Discussion/Results: The reduction corresponded to approximately 100%, except for limonene (80±1.2 %). When evaluating the concentration of the natural product that promotes 50 % relaxation of the HUA contracted by KCL, EC50 values were: 424.3 μg/mL (EOLa); 468.7±6.7 μg/mL (EOLo); 264.2 ± 8.2 μM (citral); 677.8±5.4 μM (limonene); 186.3±6.4 μM (peryl alcohol); 986.4±7.9 μM (eugenol); and 279.1±4.4 μM (methyl-eugenol). Perillyl alcohol had a lower EC50 (consequently it has a higher pharmacological potency). CONCLUSION The plant extracts have a promising vasorelaxing effect in HUAs, paving the way for future investigations: as applications in diseases related to these vessels, such as preeclampsia.
Collapse
Affiliation(s)
- Debora de Menezes Dantas
- Biological Chemistry Department, Postgraduate Program in Biological Chemistry, Regional University of Cariri, Pimenta Campus, 63105-010, Crato, CE, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Regional University of Cariri, Campus of Pimenta, 63105-010, Crato, CE, Brazil
| | - Luis Pereira-de Morais
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Regional University of Cariri, Campus of Pimenta, 63105-010, Crato, CE, Brazil
| | - Andressa de Alencar Silva
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Regional University of Cariri, Campus of Pimenta, 63105-010, Crato, CE, Brazil
| | - Renata Evaristo Rodrigues da Silva
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Regional University of Cariri, Campus of Pimenta, 63105-010, Crato, CE, Brazil
| | - Francisco Junio Dias
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Regional University of Cariri, Campus of Pimenta, 63105-010, Crato, CE, Brazil
| | - Thais de Sousa Amorim
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Regional University of Cariri, Campus of Pimenta, 63105-010, 63105, CE, Brazil
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Henrique Douglas Douglas Melo Coutinho
- Biological Chemistry Department, Postgraduate Program in Biological Chemistry, Regional University of Cariri, Pimenta Campus, 63105-010, Crato, CE, Brazil
| | - Roseli Barbosa
- Biological Chemistry Department, Postgraduate Program in Biological Chemistry, Regional University of Cariri, Pimenta Campus, 63105-010, Crato, CE, Brazil
- Biological Sciences Department, Physiopharmacology of Excitable Cells Laboratory, Regional University of Cariri, Campus of Pimenta, 63105-010, Crato, CE, Brazil
| |
Collapse
|
41
|
Roy A, Roy M, Gacem A, Datta S, Zeyaullah M, Muzammil K, Farghaly TA, Abdellattif MH, Yadav KK, Simal-Gandara J. Role of bioactive compounds in the treatment of hepatitis: A review. Front Pharmacol 2022; 13:1051751. [PMID: 36618936 PMCID: PMC9810990 DOI: 10.3389/fphar.2022.1051751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatitis causes liver infection leading to inflammation that is swelling of the liver. They are of various types and detrimental to human beings. Natural products have recently been used to develop antiviral drugs against severe viral infections like viral hepatitis. They are usually extracted from herbs or plants and animals. The naturally derived compounds have demonstrated significant antiviral effects against the hepatitis virus and they interfere with different stages of the life cycle of the virus, viral release, replication, and its host-specific interactions. Antiviral activities have been demonstrated by natural products such as phenylpropanoids, flavonoids, xanthones, anthraquinones, terpenoids, alkaloids, aromatics, etc., against hepatitis B and hepatitis C viruses. The recent studies conducted to understand the viral hepatitis life cycle, more effective naturally derived drugs are being produced with a promising future for the treatment of the infection. This review emphasizes the current strategies for treating hepatitis, their shortcomings, the properties of natural products and their numerous types, clinical trials, and future prospects as potential drugs.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India,*Correspondence: Arpita Roy, ; Jesus Simal-Gandara,
| | - Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Shreeja Datta
- Biotechnology Department, Delhi Technological University, Rohini, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al‐Qura University, Makkah, Saudi Arabia
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Science, Universidade de Vigo, Ourense, Spain,*Correspondence: Arpita Roy, ; Jesus Simal-Gandara,
| |
Collapse
|
42
|
Bioassay-Guided Fractionation Leads to the Detection of Cholic Acid Generated by the Rare Thalassomonas sp. Mar Drugs 2022; 21:md21010002. [PMID: 36662175 PMCID: PMC9860883 DOI: 10.3390/md21010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial symbionts of marine invertebrates are rich sources of novel, pharmaceutically relevant natural products that could become leads in combatting multidrug-resistant pathogens and treating disease. In this study, the bioactive potential of the marine invertebrate symbiont Thalassomonas actiniarum was investigated. Bioactivity screening of the strain revealed Gram-positive specific antibacterial activity as well as cytotoxic activity against a human melanoma cell line (A2058). The dereplication of the active fraction using HPLC-MS led to the isolation and structural elucidation of cholic acid and 3-oxo cholic acid. T. actiniarum is one of three type species belonging to the genus Thalassomonas. The ability to generate cholic acid was assessed for all three species using thin-layer chromatography and was confirmed by LC-MS. The re-sequencing of all three Thalassomonas type species using long-read Oxford Nanopore Technology (ONT) and Illumina data produced complete genomes, enabling the bioinformatic assessment of the ability of the strains to produce cholic acid. Although a complete biosynthetic pathway for cholic acid synthesis in this genus could not be determined based on sequence-based homology searches, the identification of putative penicillin or homoserine lactone acylases in all three species suggests a mechanism for the hydrolysis of conjugated bile acids present in the growth medium, resulting in the generation of cholic acid and 3-oxo cholic acid. With little known currently about the bioactivities of this genus, this study serves as the foundation for future investigations into their bioactive potential as well as the potential ecological role of bile acid transformation, sterol modification and quorum quenching by Thalassomonas sp. in the marine environment.
Collapse
|
43
|
Katiyar D, Bansal P, Kumar A, Prakash S, Rao NGR. Mechanistic elucidations of sesquiterpenes ameliorating viral infections: A review. J Food Biochem 2022; 46:e14452. [PMID: 36165437 DOI: 10.1111/jfbc.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Sesquiterpenes are important in human health because they can treat viral infection, cardiovascular disease, and cancer. Sesquiterpenes have also been shown to increase the sensitivity of tumor cells to conventional pharmacological therapies, in addition to their antiviral effects. The present review article was drafted with an intention to gather information regarding sesquiterpenes and its medicinal importance. The role of sesquiterpenes in the endogenous production of sesquiterpenes by plants and fungi, as well as the mechanisms by which they are effective against viral infection, are discussed in this review. Different online libraries such as PUBMED, Sciencedirect, MEDLINE were assessed to gather information, additionally, books, magzagines, journals, and scientific newspapaers were also studied to make this article more informative. This review examines novel synthesis mechanisms, their cyclization, purification techniques, and the diverse ecological roles sesquiterpenes play in the plant producer, which varies according to the plant and the chemical under consideration. In this article, we have discussed the consequences of sesquiterpenes and their properties for future crop productivity. We have addressed the many forms of sesquiterpenes that have been shown to have antiviral activity in various diseases. The consequences of sesquiterpenes and their properties are very useful for future crop productivity. We have addressed the many forms of sesquiterpenes that have been shown to have antiviral activity in the treatment of various diseases. PRACTICAL APPLICATIONS: Novel synthesis mechanisms, their cyclization, purification techniques, and the diverse ecological roles of sesquiterpenes will be very helfpul in drug development process. Sesquiterpene lactones are shown in this review to have qualities that warrant further scientific investigation in order to stimulate preclinical and clinical trials leading to the creation of novel medications. For antiviral drug development, the sesquiterpenes are a good prospective lead molecule because they can suppress viral replication by disrupting vRNA production and viral protein production.
Collapse
Affiliation(s)
- Deepti Katiyar
- Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| | - Priya Bansal
- Department of Pharmacology, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| | - Abhishek Kumar
- Department of Pharmacology, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| | - Surya Prakash
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| | - N G Raghavendra Rao
- Department of Pharmaceutics, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| |
Collapse
|
44
|
Qureshi MS, Jamil QA, Akhtar N, Akhtar N. Formulation and characterization of Anacyclus Pyrethrum Emulgels and its in vitro and in vivo evaluation as cosmeceutical product. J Cosmet Dermatol 2022; 21:7116-7130. [PMID: 36136047 DOI: 10.1111/jocd.15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Plants containing high phenolic and flavonoids contents used widely as antioxidant agent by reducing skin photo damaging effects and play important role in skin rejuvenating. AIMS This study was performed to explore the cosmetic effects of Anacyclus Pyrethrum extract and to develop stable oil in water (O/W) emulsion base gel loaded with Anacyclus Pyrethrum 10% extract. OBJECTIVE To explore and quantify phenols and flavonoids present in Anacyclus Pyrethrum extract and determine its cosmetic effects on human skin. METHOD Emulgel formulation were developed by mixing o/w emulsion with carbopol gelling agent loaded with Anacyclus Pyrethrum (AP) extract and base gel without AP extract. In vitro study was done for the evaluation of color change, liquefaction, hardness, and pH change at different storage condition for the duration of 12 weeks. For in vivo study, emulgel applied on 13 healthy human volunteer's cheeks to evaluate its cosmetics effects and compared with placebo (base). Facial parameters including skin melanin, redness, sebum, moisture content, and skin elasticity were determined by using mexameter, sebumeter, corneometer, elastometer for the study duration of 12 weeks. RESULTS Total phenolic content in Anacyclus Pyrethrum extract was 80.04 ± 0.0043 mg GAE/g, and flavonoids were 54.64 ± 0.0076 mg QE/g. Anacyclus Pyrethrum extract found significantly effective in reducing skin photo-damage effects (p ≤ 0.05) as compared base gel. CONCLUSION Anacyclus Pyrethrum extract being rich source of flavonoid and phenolic content, acts as strong antioxidant to protect skin against photo-damaging effect and improve skin conditions.
Collapse
Affiliation(s)
| | - Qazi Adnan Jamil
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naveed Akhtar
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Akhtar
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
45
|
Anifowose SO, Alqahtani WSN, Al-Dahmash BA, Sasse F, Jalouli M, Aboul-Soud MAM, Badjah-Hadj-Ahmed AY, Elnakady YA. Efforts in Bioprospecting Research: A Survey of Novel Anticancer Phytochemicals Reported in the Last Decade. Molecules 2022; 27:molecules27238307. [PMID: 36500400 PMCID: PMC9738008 DOI: 10.3390/molecules27238307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Bioprospecting natural products to find prominent agents for medical application is an area of scientific endeavor that has produced many clinically used bioactive compounds, including anticancer agents. These compounds come from plants, microorganisms, and marine life. They are so-called secondary metabolites that are important for a species to survive in the hostile environment of its respective ecosystem. The kingdom of Plantae has been an important source of traditional medicine in the past and is also enormously used today as an exquisite reservoir for detecting novel bioactive compounds that are potent against hard-to-treat maladies such as cancer. Cancer therapies, especially chemotherapies, are fraught with many factors that are difficult to manage, such as drug resistance, adverse side effects, less selectivity, complexity, etc. Here, we report the results of an exploration of the databases of PubMed, Science Direct, and Google Scholar for bioactive anticancer phytochemicals published between 2010 and 2020. Our report is restricted to new compounds with strong-to-moderate bioactivity potential for which mass spectroscopic structural data are available. Each of the phytochemicals reported in this review was assigned to chemical classes with peculiar anticancer properties. In our survey, we found anticancer phytochemicals that are reported to have selective toxicity against cancer cells, to sensitize MDR cancer cells, and to have multitarget effects in several signaling pathways. Surprisingly, many of these compounds have limited follow-up studies. Detailed investigations into the synthesis of more functional derivatives, chemical genetics, and the clinical relevance of these compounds are required to achieve safer chemotherapy.
Collapse
Affiliation(s)
- Saheed O. Anifowose
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Wejdan S. N. Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Badr A. Al-Dahmash
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
| | - Florenz Sasse
- Institute for Pharmaceutical Biology, Technical University of Braunschweig, 38124 Braunschweig, Germany
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mourad A. M. Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | | | - Yasser A. Elnakady
- Department of Zoology, College of Science, King Saud University, Riyadh 11415, Saudi Arabia
- Correspondence:
| |
Collapse
|
46
|
Mechanistic Insights into the Neuroprotective Potential of Sacred Ficus Trees. Nutrients 2022; 14:nu14224731. [PMID: 36432418 PMCID: PMC9695857 DOI: 10.3390/nu14224731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Ficus religiosa (Bo tree or sacred fig) and Ficus benghalensis (Indian banyan) are of immense spiritual and therapeutic importance. Various parts of these trees have been investigated for their antioxidant, antimicrobial, anticonvulsant, antidiabetic, anti-inflammatory, analgesic, hepatoprotective, dermoprotective, and nephroprotective properties. Previous reviews of Ficus mostly discussed traditional usages, photochemistry, and pharmacological activities, though comprehensive reviews of the neuroprotective potential of these Ficus species extracts and/or their important phytocompounds are lacking. The interesting phytocompounds from these trees include many bengalenosides, carotenoids, flavonoids (leucopelargonidin-3-O-β-d-glucopyranoside, leucopelargonidin-3-O-α-l-rhamnopyranoside, lupeol, cetyl behenate, and α-amyrin acetate), flavonols (kaempferol, quercetin, myricetin), leucocyanidin, phytosterols (bergapten, bergaptol, lanosterol, β-sitosterol, stigmasterol), terpenes (α-thujene, α-pinene, β-pinene, α-terpinene, limonene, β-ocimene, β-bourbonene, β-caryophyllene, α-trans-bergamotene, α-copaene, aromadendrene, α-humulene, alloaromadendrene, germacrene, γ-cadinene, and δ-cadinene), and diverse polyphenols (tannin, wax, saponin, leucoanthocyanin), contributing significantly to their pharmacological effects, ranging from antimicrobial action to neuroprotection. This review presents extensive mechanistic insights into the neuroprotective potential, especially important phytochemicals from F. religiosa and F. benghalensis. Owing to the complex pathophysiology of neurodegenerative disorders (NDDs), the currently existing drugs merely alleviate the symptoms. Hence, bioactive compounds with potent neuroprotective effects through a multitarget approach would be of great interest in developing pharmacophores for the treatment of NDDs.
Collapse
|
47
|
Umer SM, Solangi M, Khan KM, Saleem RSZ. Indole-Containing Natural Products 2019-2022: Isolations, Reappraisals, Syntheses, and Biological Activities. Molecules 2022; 27:7586. [PMID: 36364413 PMCID: PMC9655573 DOI: 10.3390/molecules27217586] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Indole alkaloids represent a large subset of natural products, with more than 4100 known compounds. The majority of these alkaloids are biologically active, with some exhibiting excellent antitumor, antibacterial, antiviral, antifungal, and antiplasmodial activities. Consequently, the natural products of this class have attracted considerable attention as potential leads for novel therapeutics and are routinely isolated, characterized, and profiled to gauge their biological potential. However, data on indole alkaloids, their various structures, and bioactivities are complex due to their diverse sources, such as plants, fungi, bacteria, sponges, tunicates, and bryozoans; thus, isolation methods produce an incredible trove of information. The situation is exacerbated when synthetic derivatives, as well as their structures, bioactivities, and synthetic schemes, are considered. Thus, to make such data comprehensive and inform researchers about the current field's state, this review summarizes recent reports on novel indole alkaloids. It deals with the isolation and characterization of 250 novel indole alkaloids, a reappraisal of previously reported compounds, and total syntheses of indole alkaloids. In addition, several syntheses and semi-syntheses of indole-containing derivatives and their bioactivities are reported between January 2019 and July 2022.
Collapse
Affiliation(s)
- Syed Muhammad Umer
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| | - Mehwish Solangi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam 31441, Saudi Arabia
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| |
Collapse
|
48
|
Alshameri AW, Owais M. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
49
|
A comprehensive in vitro exploration into the interaction mechanism of coumarin derivatives with bovine hemoglobin: Spectroscopic and computational methods. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
El Mahdi O, Ouakil A, Lachkar M. Non-volatile constituents from Monimiaceae, Siparunaceae and Atherospermataceae plant species and their bioactivities: An up-date covering 2000-2021. PHYTOCHEMISTRY 2022; 202:113291. [PMID: 35787353 DOI: 10.1016/j.phytochem.2022.113291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The Monimiaceae, Siparunaceae, and Atherospermataceae, formerly included in the broad ''old'' Monimiaceae family, have long been known for their uses in traditional medicine and have proven to be rich sources of chemically diverse specialized metabolites with numerous potent biological and therapeutical properties. The progress made recently has expanded their phytochemistry and pharmacology albeit to different extents. This review focuses on the non-volatile constituents isolated from the three plant families during the last two decades and their emerging therapeutic potential. Based on the data collected from multiple databases without statistical analysis, approximately 93 components, of which 35 undescribed compounds including γ-lactones, alkaloids, terpenoids, flavonoids, and homogentisic acid derivatives, have been reported. Moreover, diverse biological activities of pure isolated compounds such as anticancer, antioxidant, antiparasitic, antiviral, and antibacterial activities have been evidenced. Besides offering new important perspectives for different diseases' management, the chemical and biological diversities among the isolated compounds, open promising avenues of research and contribute to renewed interest in these families needing further studies. This review provides an updated overview of their potential as sources of leads for drug discovery, while also highlighting ongoing challenges and future research opportunities.
Collapse
Affiliation(s)
- Ouafâa El Mahdi
- Laboratory of Natural Ressources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B.P. 1223, Taza Gare, Morocco.
| | - Abdelmoughite Ouakil
- Faculty of Sciences Dhar Lmehraz, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| | - Mohammed Lachkar
- Faculty of Sciences Dhar Lmehraz, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| |
Collapse
|