1
|
Alam MJ, Uppulapu SK, Tiwari V, Varghese B, Mohammed SA, Adela R, Arava SK, Banerjee SK. Pregestational diabetes alters cardiac structure and function of neonatal rats through developmental plasticity. Front Cardiovasc Med 2022; 9:919293. [PMID: 36176990 PMCID: PMC9514058 DOI: 10.3389/fcvm.2022.919293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Pregestational diabetes (PGDM) leads to developmental impairment, especially cardiac dysfunction, in their offspring. The hyperglycemic microenvironment inside the uterus alters the cardiac plasticity characterized by electrical and structural remodeling of the heart. The altered expression of several transcription factors due to hyperglycemia during fetal development might be responsible for molecular defects and phenotypic changes in the heart. The molecular mechanism of the developmental defects in the heart due to PGDM remains unclear. To understand the molecular defects in the 2-days old neonatal rats, streptozotocin-induced diabetic female rats were bred with healthy male rats. We collected 2-day-old hearts from the neonates and identified the molecular basis for phenotypic changes. Neonates from diabetic mothers showed altered electrocardiography and echocardiography parameters. Transcriptomic profiling of the RNA-seq data revealed that several altered genes were associated with heart development, myocardial fibrosis, cardiac conduction, and cell proliferation. Histopathology data showed the presence of focal cardiac fibrosis and increased cell proliferation in neonates from diabetic mothers. Thus, our results provide a comprehensive map of the cellular events and molecular pathways perturbed in the neonatal heart during PGDM. All of the molecular and structural changes lead to developmental plasticity in neonatal rat hearts and develop cardiac anomalies in their early life.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Shravan Kumar Uppulapu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Soheb Anwar Mohammed
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sudheer Kumar Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay K. Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
- Non-communicable Diseases Group, Translational Health Science and Technology Institute (THSTI), Faridabad, India
- *Correspondence: Sanjay K. Banerjee,
| |
Collapse
|
2
|
Kahl VFS, da Silva J. Inorganic elements in occupational settings: A review on the effects on telomere length and biology. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503418. [PMID: 34798938 DOI: 10.1016/j.mrgentox.2021.503418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The past decades have shown that telomere crisis is highly affected by external factors. Effects of human exposure to xenobiotics on telomere length (TL), particularly in their workplace, have been largely studied. TL has been shown to be an efficient biomarker in occupational risk assessment. This is the first review focusing on studies about the effects on TL from occupational exposures to metals (lead [Pb] and mixtures), and particulate matter (PM) related to inorganic elements. Data from 15 studies were evaluated regarding occupational exposure to metals and PM-associated inorganic elements and impact on TL. Potential complementary analyses and subjects' background (age, length of employment and gender) were also assessed. There was limited information on the correlations between work length and TL dynamics, and that was also true for the correlation between age and TL. Results indicated that TL is affected differently across the types of occupational exposure investigated in this review, and even within the same exposure, a variety of effects can be observed. Fifty-three percent of the studies observed decreased TL in occupational exposure among welding fumes, open-cast coal mine, Pb and PM industries workers. Two studies focused particularly on the levels of metals and association with TL, and both linear and non-linear associations were found. Interestingly, TL modifications were accompanied by increase in DNA damage in 7 out of 8 studies that investigated it, measured either by Cytokinesis-block Micronucleus Assay or Comet assay. Five studies also investigated oxidative stress parameters, and 4 of them found increased levels of oxidative damage along with TL impairment. Oxidative stress is one of the main mechanisms by which telomeres are affected due to their high guanine content. Our review highlights the need of further studies accessing TL in simultaneous occupational exposure to mixtures of xenobiotics.
Collapse
Affiliation(s)
- Vivian F Silva Kahl
- The University of Queensland Diamantina Institute, The University of Queensland, Faculty of Medicine, 37 Kent Street, Woolloongabba, Queensland 4102, Australia; Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia.
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Post Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil, Av Farroupilha 8001, Canoas, Rio Grande do Sul, 92425-900, Brazil; LaSalle University (UniLaSalle), Av Victor Barreto 2288, Canoas, Rio Grande do Sul, 92010-000, Brazil.
| |
Collapse
|
3
|
Bhar S, Bose T, Dutta A, Mande SS. A perspective on the benefits of consumption of parboiled rice over brown rice for glycaemic control. Eur J Nutr 2021; 61:615-624. [PMID: 34613432 DOI: 10.1007/s00394-021-02694-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Rice is a staple food for over 3.5 billion people worldwide. The nutritional content of rice varies with different post-harvest processing techniques. Major varieties include brown rice (BR), white rice (WR) and parboiled rice (PBR). While consumption of BR is advocated due to its higher nutritional content compared to other varieties, some studies have indicated lower post-prandial blood glucose (PPBG) levels when PBR is consumed. This apparent benefit of PBR consumption is not well publicised and no commentaries on underlying mechanisms are available in literature. METHODS In this review, we looked into differential nutrient content of PBR, as compared to BR and WR, and tried to understand how their consumption could be associated with glycaemic control. Various roles played by these nutrients in mechanisms of insulin secretion, insulin resistance, nutrient absorption and T2DM-associated inflammation were reviewed from literature-based evidence. RESULTS We report differential nutritional factors in PBR, with respect to BR (and WR), such as higher calcium and selenium content, lower phytic acids, and enriched vitamin B6 which might aid PBR's ability to provide better glycaemic control than BR. CONCLUSION Our interpretation of reviewed literature leads us to suggest the possible benefits of PBR consumption in glycaemic control and its inclusion as the preferred rice variant in diets of T2DM patients and at-risk individuals.
Collapse
Affiliation(s)
- Subhrajit Bhar
- TCS Research, Tata Consultancy Services Ltd, 54-B Hadapsar Industrial Estate, Pune, 411 013, India
| | - Tungadri Bose
- TCS Research, Tata Consultancy Services Ltd, 54-B Hadapsar Industrial Estate, Pune, 411 013, India
| | - Anirban Dutta
- TCS Research, Tata Consultancy Services Ltd, 54-B Hadapsar Industrial Estate, Pune, 411 013, India.
| | - Sharmila S Mande
- TCS Research, Tata Consultancy Services Ltd, 54-B Hadapsar Industrial Estate, Pune, 411 013, India.
| |
Collapse
|
4
|
Tian JH, Wu Q, He YX, Shen QY, Rekep M, Zhang GP, Luo JD, Xue Q, Liu YH. Zonisamide, an antiepileptic drug, alleviates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress. Acta Pharmacol Sin 2021; 42:393-403. [PMID: 32647341 PMCID: PMC8026994 DOI: 10.1038/s41401-020-0461-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum stress (ER stress) plays a key role in the development of cardiac hypertrophy and diabetic cardiomyopathy (DCM). Zonisamide (ZNS) was originally developed as an antiepileptic drug. Studies have shown that ZNS suppresses ER stress-induced neuronal cell damage in the experimental models of Parkinson's disease. Herein, we investigated whether ZNS improved DCM by attenuating ER stress-induced apoptosis. C57BL/6J mice were fed with high-fat diet (HFD) and intraperitoneally injected with low-dose streptozotocin (STZ) to induce type 2 diabetes mellitus (T2DM), and then treated with ZNS (40 mg·kg-1·d-1, i.g.) for 16 weeks. We showed that ZNS administration slightly ameliorated the blood glucose levels, but significantly alleviated diabetes-induced cardiac dysfunction and hypertrophy. Furthermore, ZNS administration significantly inhibited the Bax and caspase-3 activity, upregulated Bcl-2 activity, and decreased the proportion of TUNEL-positive cells in heart tissues. We analyzed the hallmarks of ER stress in heart tissues, and revealed that ZNS administration significantly decreased the protein levels of GRP78, XBP-1s, ATF6, PERK, ATF4, and CHOP, and elevated Hrd1 protein. In high glucose (HG)-treated primary cardiomyocytes, application of ZNS (3 μM) significantly alleviated HG-induced cardiomyocyte hypertrophy and apoptosis. ZNS application also suppressed activated ER stress in HG-treated cardiomyocytes. Moreover, preapplication of the specific ER stress inducer tunicamycin (10 ng/mL) eliminated the protective effects of ZNS against HG-induced cardiac hypertrophy and ER stress-mediated apoptosis. Our findings suggest that ZNS improves the cardiac diastolic function in diabetic mice and prevents T2DM-induced cardiac hypertrophy by attenuating ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Jia-Hui Tian
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qian Wu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yong-Xiang He
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi-Ying Shen
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mubarak Rekep
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Gui-Ping Zhang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jian-Dong Luo
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qin Xue
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ying-Hua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Ozturk N, Uslu S, Ozdemir S. Diabetes-induced changes in cardiac voltage-gated ion channels. World J Diabetes 2021; 12:1-18. [PMID: 33520105 PMCID: PMC7807254 DOI: 10.4239/wjd.v12.i1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus affects the heart through various mechanisms such as microvascular defects, metabolic abnormalities, autonomic dysfunction and incompatible immune response. Furthermore, it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopathy (DCM) in the absence of coronary artery disease. As DCM progresses it causes electrical remodeling of the heart, left ventricular dysfunction and heart failure. Electrophysiological changes in the diabetic heart contribute significantly to the incidence of arrhythmias and sudden cardiac death in diabetes mellitus patients. In recent studies, significant changes in repolarizing K+ currents, Na+ currents and L-type Ca2+ currents along with impaired Ca2+ homeostasis and defective contractile function have been identified in the diabetic heart. In addition, insulin levels and other trophic factors change significantly to maintain the ionic channel expression in diabetic patients. There are many diagnostic tools and management options for DCM, but it is difficult to detect its development and to effectively prevent its progress. In this review, diabetes-associated alterations in voltage-sensitive cardiac ion channels are comprehensively assessed to understand their potential role in the pathophysiology and pathogenesis of DCM.
Collapse
Affiliation(s)
- Nihal Ozturk
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Serkan Uslu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| |
Collapse
|
6
|
Li Q, Yao Y, Shi S, Zhou M, Zhou Y, Wang M, Chiu JJ, Huang Z, Zhang W, Liu M, Wang Q, Tu X. Inhibition of miR-21 alleviated cardiac perivascular fibrosis via repressing EndMT in T1DM. J Cell Mol Med 2019; 24:910-920. [PMID: 31680453 PMCID: PMC6933373 DOI: 10.1111/jcmm.14800] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
In type 1 and type 2 diabetes mellitus, increased cardiac fibrosis, stiffness and associated diastolic dysfunction may be the earliest pathological phenomena in diabetic cardiomyopathy. Endothelial-mesenchymal transition (EndMT) in endothelia cells (ECs) is a critical cellular phenomenon that increases cardiac fibroblasts (CFs) and cardiac fibrosis in diabetic hearts. The purpose of this paper is to explore the molecular mechanism of miR-21 regulating EndMT and cardiac perivascular fibrosis in diabetic cardiomyopathy. In vivo, hyperglycaemia up-regulated the mRNA level of miR-21, aggravated cardiac dysfunction and collagen deposition. The condition was recovered by inhibition of miR-21 following with improving cardiac function and decreasing collagen deposition. miR-21 inhibition decreased cardiac perivascular fibrosis by suppressing EndMT and up-regulating SMAD7 whereas activating p-SMAD2 and p-SMAD3. In vitro, high glucose (HG) up-regulated miR-21 and induced EndMT in ECs, which was decreased by inhibition of miR-21. A highly conserved binding site of NF-κB located in miR-21 5'-UTR was identified. In ECs, SMAD7 is directly regulated by miR-21. In conclusion, the pathway of NF-κB/miR-21/SMAD7 regulated the process of EndMT in T1DM, in diabetic cardiomyopathy, which may be regarded as a potential clinical therapeutic target for cardiac perivascular fibrosis.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shumei Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Mengchen Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Mengru Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Zhengrong Huang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Min Liu
- Hypertension Department of Henan Provincial People's Hospital, Henan, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.,Center for Cardiovascular Genetics, Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Meng S, Yang F, Wang Y, Qin Y, Xian H, Che H, Wang L. Silymarin ameliorates diabetic cardiomyopathy via inhibiting TGF-β1/Smad signaling. Cell Biol Int 2019; 43:65-72. [PMID: 30489003 DOI: 10.1002/cbin.11079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/24/2018] [Indexed: 12/21/2022]
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of morbidity and mortality in diabetes mellitus (DM) patients. Previous studies have shown that the transforming growth factor-beta 1 (TGF-β1)/Smad signaling pathway plays a key role in the development of myocardial fibrosis in DCM. Silymarin (SMN) is used clinically to treat liver disorders and acts by influencing TGF-β1. However, the possible effects of silymarin on DCM remain to be elucidated. In our study, the DM animal model was induced by streptozotocin (STZ) injection. Fasting blood glucose level was measured, and the structure and function of the heart were measured by hematoxylin and eosin (H&E) and Masson staining, echocardiography, and transmission electron microscopy (TEM). Western blot was used to detect the expression of TGF-β1, Smad2/3, phosphorylation Smad2/3(p-Smad2/3), and Smad7. Our results showed that silymarin downregulated blood glucose level and significantly improved cardiac fibrosis and collagen deposition in DM rats detected by H&E, Masson staining, and TEM assays. The echocardiography results showed that silymarin administration attenuated cardiac dysfunction in DM rats. Additionally, compared with untreated DM rats, levels of TGF-β1 and p-Smad2/3 were decreased, whereas Smad7 was increased following silymarin administration. These data demonstrate that silymarin ameliorates DCM through the inhibition of TGF-β1/Smad signaling, suggesting that silymarin may be a potential target for DCM treatment.
Collapse
Affiliation(s)
- Songyan Meng
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China.,Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Fan Yang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Yueqiu Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Ying Qin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, 150081, China
| | - Huimin Xian
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Hui Che
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, 150081, China
| | - Lihong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, 150081, China
| |
Collapse
|
8
|
Abstract
Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.
Collapse
Affiliation(s)
| | - Veena Mani
- National Dairy Research Institute, Karnal, Haryana, India
| | | |
Collapse
|
9
|
Samira M, Mounira T, Kamel K, Yacoubi MT, Ben Rhouma K, Sakly M, Tebourbi O. Hepatotoxicity of vanadyl sulfate in nondiabetic and streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2018; 96:1076-1083. [PMID: 30075092 DOI: 10.1139/cjpp-2018-0255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study examined the effects of vanadyl sulfate (VOSO4) on the livers of nondiabetic and streptozotocin-induced diabetic rats. Rats were divided into 6 groups. Groups 1, 2, and 3 consisted of nondiabetic rats that were, respectively, control animals or those receiving an intraperitoneal (i.p.) injection of either 5 or 10 mg·kg-1 (i.p.) VOSO4 for 30 days. Groups 4, 5, and 6 consisted of diabetic animals that were, respectively, control animals or those treated with 5 or 10 mg·kg-1 (i.p.) VOSO4 for 30 days. Results showed that VOSO4 reduced body mass in nondiabetic rats, whereas it increased body mass in diabetic groups. Plasma transaminases (aspartate aminotransferase, alanine aminotransferase), lactate dehydrogenase, and alkaline phosphatase activities and malondialdehyde levels were increased, while liver catalase and superoxide dismutase activities were profoundly decreased in diabetic animals in comparison with enzyme activities in the nondiabetic group. Rats in the diabetic group also showed notable oxidative damage to the liver. Treatment of diabetic rats with VOSO4 decreased the hepatotoxic markers, significantly restored the activities of antioxidant enzymes, and attenuated histopathological changes in liver tissue. In nondiabetic rats, VOSO4 treatment increased most of the hepatotoxic markers, reduced antioxidant enzyme activities, and induced pronounced oxidative damage in liver tissue. These data suggest that treatment with VOSO4 exerts toxic effects in healthy animals and significantly prevents liver oxidative damage in streptozotocin-induced diabetic rats, but without total safety. Further studies are needed to clarify its mechanism of action.
Collapse
Affiliation(s)
- Missaoui Samira
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Tlili Mounira
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Kacem Kamel
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Mohamed Tahar Yacoubi
- b Department of Pathological Anatomy, Farhat Hached University Hospital, 4002 Sousse, Tunisia
| | - Khemais Ben Rhouma
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Mohsen Sakly
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Olfa Tebourbi
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| |
Collapse
|
10
|
Chen XY, Lv RJ, Zhang W, Yan YG, Li P, Dong WQ, Liu X, Liang ES, Tian HL, Lu QH, Zhang MX. Inhibition of myocyte-specific enhancer factor 2A improved diabetic cardiac fibrosis partially by regulating endothelial-to-mesenchymal transition. Oncotarget 2018; 7:31053-66. [PMID: 27105518 PMCID: PMC5058738 DOI: 10.18632/oncotarget.8842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/31/2016] [Indexed: 12/19/2022] Open
Abstract
Cardiac fibrosis is an important pathological process of diabetic cardiomyopathy, the underlying mechanism remains elusive. This study sought to identify whether inhibition of Myocyte enhancer factor 2A (MEF2A) alleviates cardiac fibrosis by partially regulating Endothelial-to-mesenchymal transition (EndMT). We induced type 1 diabetes mellitus using the toxin streptozotocin (STZ) in mice and injected with lentivirus-mediated short-hairpin RNA (shRNA) in myocardium to inhibit MEF2A expression. Protein expression, histological and functional parameters were examined twenty-one weeks post-STZ injection. We found that Diabetes mellitus increased cardiac MEF2A expression, aggravated cardiac dysfunction and myocardial fibrosis through the accumulation of fibroblasts via EndMT. All of these features were abolished by MEF2A inhibition. MEF2A gene silencing by shRNA in cultured human umbilical vein endothelial cells (HUVECs) ameliorated high glucose-induced phenotypic transition and acquisition of mesenchymal markers through interaction with p38MAPK and Smad2. We conclude that inhibition of endothelial cell-derived MEF2A might be beneficial in the prevention of diabetes mellitus-induced cardiac fibrosis by partially inhibiting EndMT through interaction with p38MAPK and Smad2.
Collapse
Affiliation(s)
- Xue-Ying Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Rui-Juan Lv
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Gang Yan
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wen-Qian Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Er-Shun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hong-Liang Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qing-Hua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Rodgers JL, Samal E, Mohapatra S, Panguluri SK. Hyperoxia-induced cardiotoxicity and ventricular remodeling in type-II diabetes mice. Heart Vessels 2017; 33:561-572. [PMID: 29209776 DOI: 10.1007/s00380-017-1100-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
Hyperoxia, or supplemental oxygen, is regularly used in the clinical setting for critically ill patients in ICU. However, several recent studies have demonstrated the negative impact of this treatment in patients in critical care, including increased rates of lung and cardiac injury, as well as increased mortality. The purpose of this study was to determine the predisposition for arrhythmias and electrical remodeling in a type 2 diabetic mouse model (db/db), as a result of hyperoxia treatment. For this, db/db and their heterozygous controls were treated with hyperoxia (> 90% oxygen) or normoxia (normal air) for 72-h. Immediately following hyperoxia or normoxia treatments, mice underwent surface ECG. Excised left ventricles were used to assess ion channel expression, including for Kv1.4, Kv1.5, Kv4.2, and KChIP2. Serum cardiac markers were also measured, including cardiac troponin I and lactate dehydrogenase. Our results showed that db/db mice have increased sensitivity to arrhythmia. Normoxia-treated db/db mice displayed features of arrhythmia, including QTc and JT prolongation, as well as QRS prolongation. A significant increase in QRS prolongation was also observed in hyperoxia-treated db/db mice, when compared to hyperoxia-treated heterozygous control mice. Db/db mice were also shown to exhibit ion channel dysregulation, as demonstrated by down-regulation in Kv1.5, Kv4.2, and KChIP2 under hyperoxia conditions. From these results, we conclude that: (1) diabetic mice showed distinct pathophysiology, when compared to heterozygous controls, both in normoxia and hyperoxia conditions. (2) Diabetic mice were more susceptible to arrhythmia at normal air conditions; this effect was exacerbated at hyperoxia conditions. (3) Unlike in heterozygous controls, diabetic mice did not demonstrate cardiac hypertrophy as a result of hyperoxia. (4) Ion channel remodeling was also observed in db/db mice under hyperoxia condition similar to its heterozygous controls.
Collapse
Affiliation(s)
- Jennifer Leigh Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC-30, Tampa, FL, 33612, USA
| | - Eva Samal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC-30, Tampa, FL, 33612, USA.
| |
Collapse
|
12
|
Cong XQ, Piao MH, Li Y, Xie L, Liu Y. Bis(maltolato)oxovanadium(IV) (BMOV) Attenuates Apoptosis in High Glucose-Treated Cardiac Cells and Diabetic Rat Hearts by Regulating the Unfolded Protein Responses (UPRs). Biol Trace Elem Res 2016; 173:390-8. [PMID: 26983714 DOI: 10.1007/s12011-016-0668-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/06/2016] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) and the subsequent cell deaths are essential steps in the pathogenesis of diabetic cardiomyopathy (DCM), a main cause of diabetics' morbidity and mortalities. The bis(maltolato)oxovanadium(IV) (BMOV), a potent oral vanadium complex with anti-diabetic properties and insulin-mimicking effects, was shown to improve cardiac dysfunctions in diabetic models. Here, we examined the effects of BMOV on UPR pathway protein expression and apoptotic cell deaths in both high glucose-treated cardiac H9C2 cells and in the hearts of diabetic rats. We show that in both the high glucose-treated cardiac cells and in the hearts of streptozotocin (STZ) diabetic rats, there was an overall activation of the UPR signaling, including both apoptotic (e.g., the cascades of PERK/EIf2α/ATF4/CHOP and of IRE1/caspase 12/caspase 3) and pro-survival (GRP78 and XBP1) signaling. A high amount of apoptotic cell deaths was also detected in both diabetic conditions. The administration of BMOV suppressed both the apoptotic and pro-survival UPR signaling and significantly attenuated apoptotic cell deaths in both conditions. The overall suppression of UPR signaling by BMOV suggests that the drug protects diabetic cardiomyopathy by counteracting reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. Our findings lend support to promote the use of BMOV in the treatment of diabetic heart diseases.
Collapse
Affiliation(s)
- Xiao-Qiang Cong
- Department of Cardiology, Bethune First Hospital of Jilin University, 71 Xinmin St., Chaoyang District, ChangChun, 130021, China.
| | - Mei-Hua Piao
- Department of Anesthesiology, Bethune First Hospital of Jilin University, 71 Xinmin St., Chaoyang District, Changchun, Jilin, 130021, China
| | - Ying Li
- The People's Hospital of Jilin Province, Changchun, 130021, China
| | - Lin Xie
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Ya Liu
- School of Public Health, Jilin University, Changchun, 130021, China
| |
Collapse
|
13
|
Korkmaz-Icöz S, Al Said S, Radovits T, Li S, Brune M, Hegedűs P, Atmanli A, Ruppert M, Brlecic P, Lehmann LH, Lahrmann B, Grabe N, Yoshikawa Y, Yasui H, Most P, Karck M, Szabó G. Oral treatment with a zinc complex of acetylsalicylic acid prevents diabetic cardiomyopathy in a rat model of type-2 diabetes: activation of the Akt pathway. Cardiovasc Diabetol 2016; 15:75. [PMID: 27153943 PMCID: PMC4858866 DOI: 10.1186/s12933-016-0383-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type-2 diabetics have an increased risk of cardiomyopathy, and heart failure is a major cause of death among these patients. Growing evidence indicates that proinflammatory cytokines may induce the development of insulin resistance, and that anti-inflammatory medications may reverse this process. We investigated the effects of the oral administration of zinc and acetylsalicylic acid, in the form of bis(aspirinato)zinc(II)-complex Zn(ASA)2, on different aspects of cardiac damage in Zucker diabetic fatty (ZDF) rats, an experimental model of type-2 diabetic cardiomyopathy. METHODS Nondiabetic control (ZL) and ZDF rats were treated orally with vehicle or Zn(ASA)2 for 24 days. At the age of 29-30 weeks, the electrical activities, left-ventricular functional parameters and left-ventricular wall thicknesses were assessed. Nitrotyrosine immunohistochemistry, TUNEL-assay, and hematoxylin-eosin staining were performed. The protein expression of the insulin-receptor and PI3K/AKT pathway were quantified by Western blot. RESULTS Zn(ASA)2-treatment significantly decreased plasma glucose concentration in ZDF rats (39.0 ± 3.6 vs 49.4 ± 2.8 mM, P < 0.05) while serum insulin-levels were similar among the groups. Data from cardiac catheterization showed that Zn(ASA)2 normalized the increased left-ventricular diastolic stiffness (end-diastolic pressure-volume relationship: 0.064 ± 0.008 vs 0.084 ± 0.014 mmHg/µl; end-diastolic pressure: 6.5 ± 0.6 vs 7.9 ± 0.7 mmHg, P < 0.05). Furthermore, ECG-recordings revealed a restoration of prolonged QT-intervals (63 ± 3 vs 83 ± 4 ms, P < 0.05) with Zn(ASA)2. Left-ventricular wall thickness, assessed by echocardiography, did not differ among the groups. However histological examination revealed an increase in the cardiomyocytes' transverse cross-section area in ZDF compared to the ZL rats, which was significantly decreased after Zn(ASA)2-treatment. Additionally, a significant fibrotic remodeling was observed in the diabetic rats compared to ZL rats, and Zn(ASA)2-administered ZDF rats showed a similar collagen content as ZL animals. In diabetic hearts Zn(ASA)2 significantly decreased DNA-fragmentation, and nitro-oxidative stress, and up-regulated myocardial phosphorylated-AKT/AKT protein expression. Zn(ASA)2 reduced cardiomyocyte death in a cellular model of oxidative stress. Zn(ASA)2 had no effects on altered myocardial CD36, GLUT-4, and PI3K protein expression. CONCLUSIONS We demonstrated that treatment of type-2 diabetic rats with Zn(ASA)2 reduced plasma glucose-levels and prevented diabetic cardiomyopathy. The increased myocardial AKT activation could, in part, help to explain the cardioprotective effects of Zn(ASA)2. The oral administration of Zn(ASA)2 may have therapeutic potential, aiming to prevent/treat cardiac complications in type-2 diabetic patients.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Samer Al Said
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Tamás Radovits
- />Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Shiliang Li
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Maik Brune
- />Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 671, 69120 Heidelberg, Germany
| | - Péter Hegedűs
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Ayhan Atmanli
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Mihály Ruppert
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
- />Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122 Hungary
| | - Paige Brlecic
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Lorenz Heyne Lehmann
- />Department of Cardiology, Angiology and Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Bernd Lahrmann
- />Hamamatsu Tissue Imaging and Analysis Center (TIGA), Bioquant, University of Heidelberg, 69120 Heidelberg, Germany
- />Steinbeis Transfer Center for Medical Systems Biology, 69124 Heidelberg, Germany
| | - Niels Grabe
- />Hamamatsu Tissue Imaging and Analysis Center (TIGA), Bioquant, University of Heidelberg, 69120 Heidelberg, Germany
- />Steinbeis Transfer Center for Medical Systems Biology, 69124 Heidelberg, Germany
- />Department of Medical Oncology, National Center for Tumor Diseases, University of Heidelberg, 69120 Heidelberg, Germany
| | - Yutaka Yoshikawa
- />Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414 Japan
| | - Hiroyuki Yasui
- />Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414 Japan
| | - Patrick Most
- />Molecular and Translational Cardiology, Department of Internal Medicine III, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg Germany
| | - Matthias Karck
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Gábor Szabó
- />Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Olgar Y, Ozturk N, Usta C, Puddu PE, Ozdemir S. Ellagic acid reduces L-type Ca2+ current and contractility through modulation of NO-GC-cGMP pathways in rat ventricular myocytes. J Cardiovasc Pharmacol 2015; 64:567-73. [PMID: 25165997 DOI: 10.1097/fjc.0000000000000153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is evidence that phenolic structure may have biological functions. Ellagic acid (EA), a phenolic compound, has been suggested to have cardioprotective effects. EA effects were investigated on cardiac Ca currents and contractility in rat ventricular myocytes to elucidate the underlying mechanisms. Freshly isolated ventricular myocytes from rat hearts were used. EA dose-dependently reduced Ca currents (ICaL) with EC50 = 23 nM, whereas it did not affect the inactivation and reactivation parameters. Inhibition of adenylate cyclase by SQ-22536 (10 μM) and probucol (5 μM) had no effect on EA modulation of ICaL. Nitric oxide synthase block by L-NAME (500 μM) and of guanylate cyclase by ODQ (1 μM) abolished EA inhibitory effects on ICaL. Moreover, EA blunted ventricular myocytes' fractional shortening in a concentration-dependent manner. In conclusion, EA affects ionic and mechanical properties of rat ventricular myocytes starting at nanomolar concentrations. EA suppresses ICaL and exerts negative inotropic effects through activation of NOS-GC-cGMP pathways. Thus, EA may be useful in pathophysiological conditions such as hypertension and ischemic heart diseases.
Collapse
Affiliation(s)
- Yusuf Olgar
- Departments of *Biophysics; and †Pharmacology, Faculty of Medicine, Akdeniz University, Antalya, Turkey; and ‡Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
15
|
Shaikh Z, Ashiq U, Jamal RA, Mahroof-Tahir M, Shamshad B, Sultan S. Chemistry and antioxidant properties of titanium(IV) complexes. TRANSIT METAL CHEM 2015. [DOI: 10.1007/s11243-015-9960-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Ghasemi H, Karimi J, Goodarzi MT, Khodadadi I, Tavilani H, Moridi H, Kheiripour N. Seminal plasma zinc and magnesium levels and their relation to spermatozoa parameters in semen of diabetic men. Int J Diabetes Dev Ctries 2015. [DOI: 10.1007/s13410-015-0408-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
Lu Y, Liu Y, Li H, Wang X, Wu W, Gao L. Effect and mechanisms of zinc supplementation in protecting against diabetic cardiomyopathy in a rat model of type 2 diabetes. Bosn J Basic Med Sci 2015; 15:14-20. [PMID: 25725139 DOI: 10.17305/bjbms.2015.63] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/23/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022] Open
Abstract
Diabetic cardiomyopathy is a prominent cause of heart failure in patients with diabetes mellitus. Currently, there is no specific treatment for diabetic cardiomyopathy. This study aimed to investigate the effect and underlying mechanisms of Zinc (Zn) supplementation in the protection against diabetic cardiomyopathy in a rat model of type 2 diabetes mellitus (T2DM). T2DM-like lesions in male Wistar rats were induced by introducing the high-fat diet and by administration of streptozocin (STZ). After STZ induction, animals with fasting plasma glucose level ≥16.7 mM were considered as diabetic, and randomly assigned to the group receiving physiological saline (control) or ZnSO4 for 56 days. On days 0, 7, 28 and 56 of treatment, animals were weighed, and their blood samples were analyzed. On day 56, hemodynamic assessment was performed right before the sacrifice of animals. Cardiac tissue specimens were collected and subjected to pathologic assessment, metallothionein (MT) concentration measurement and Western blot analysis of microtubule-associated protein light chain 3 (LC3), the marker of autophagy, and glucose-regulated protein-78 (GRP78), an oxidative stress marker. High-fat diet feeding followed by STZ administration resulted in weight loss, hyperglycemia, polydipsia, polyphagia, hemodynamic anomalies and a significant increase in the myocardial content of LC3 and GRP78 proteins, but not in MT protein. Zn supplementation effectively attenuated all these aberrations induced by high-fat diet and STZ. These findings suggest that Zn might be a protective factor in diabetic cardiomyopathy, acting in two ways: at least partially, through inhibiting autophagy and by endoplasmic reticulum stress.
Collapse
|
18
|
Bertinat R, Nualart F, Li X, Yáñez AJ, Gomis R. Preclinical and Clinical Studies for Sodium Tungstate: Application in Humans. ACTA ACUST UNITED AC 2015; 6. [PMID: 25995968 PMCID: PMC4435618 DOI: 10.4172/2155-9899.1000285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes is a complex metabolic disorder triggered by the deficient secretion of insulin by the pancreatic β-cell or the resistance of peripheral tissues to the action of the hormone. Chronic hyperglycemia is the major consequence of this failure, and also the main cause of diabetic problems. Indeed, several clinical trials have agreed in that tight glycemic control is the best way to stop progression of the disease. Many anti-diabetic drugs for treatment of type 2 diabetes are commercially available, but no ideal normoglycemic agent has been developed yet. Moreover, weight gain is the most common side effect of many oral anti-diabetic agents and insulin, and increased weight has been shown to worsen glycemic control and increase the risk of diabetes progression. In this sense, the inorganic salt sodium tungstate (NaW) has been studied in different animal models of metabolic syndrome and diabetes, proving to have a potent effect on normalizing blood glucose levels and reducing body weight, without any hypoglycemic action. Although the liver has been studied as the main site of NaW action, positive effects have been also addressed in muscle, pancreas, brain, adipose tissue and intestine, explaining the effective anti-diabetic action of this salt. Here, we review NaW research to date in these different target organs. We believe that NaW deserves more attention, since all available anti-diabetic treatments remain suboptimal and new therapeutics are urgently needed.
Collapse
Affiliation(s)
- Romina Bertinat
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile ; Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Xuhang Li
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Alejandro J Yáñez
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile ; Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Ramón Gomis
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain ; Diabetes and Obesity Research Laboratory, IDIBAPS, Barcelona, Spain ; Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain ; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Modulation of glucose metabolism by balanced deep-sea water ameliorates hyperglycemia and pancreatic function in streptozotocin-induced diabetic mice. PLoS One 2014; 9:e102095. [PMID: 25013896 PMCID: PMC4094501 DOI: 10.1371/journal.pone.0102095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to determine the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in streptozotocin (STZ)-induced diabetic mice. BDSW was prepared by mixing DSW mineral extracts and desalinated water to yield a final hardness of 1000–4000 ppm. Male ICR mice were assigned to 6 groups; mice in each group were given tap water (normal and STZ diabetic groups) or STZ with BDSW of varying hardness (0, 1000, 2000, and 4000 ppm) for 4 weeks. The STZ with BDSW group exhibited lowered fasting plasma glucose levels than the STZ-induced diabetic group. Oral glucose tolerance tests showed that BDSW improves impaired glucose tolerance in STZ-induced diabetic mice. Histopathological evaluation of the pancreas showed that BDSW restores the morphology of the pancreatic islets of Langerhans and increases the secretion of insulin in STZ-induced diabetic mice. Quantitative real-time PCR assay revealed that the expression of hepatic genes involved in gluconeogenesis, glucose oxidation, and glycogenolysis was suppressed, while the expression of the genes involved in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in the STZ with BDSW group. BDSW stimulated PI3-K, AMPK, and mTOR pathway-mediated glucose uptake in C2C12 myotubes. BDSW increased AMPK phosphorylation in C2C12 myotubes and improved impaired AMPK phosphorylation in the muscles of STZ-induced diabetic mice. Taken together, these results suggest that BDSW is a potential anti-diabetic agent, owing to its ability to suppress hyperglycemia and improve glucose intolerance by modulating glucose metabolism, recovering pancreatic islets of Langerhans and increasing glucose uptake.
Collapse
|