1
|
Rasheed PA, Rasool K, Younes N, Nasrallah GK, Mahmoud KA. Ecotoxicity and environmental safety assessment of two-dimensional niobium carbides (MXenes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174563. [PMID: 38981534 DOI: 10.1016/j.scitotenv.2024.174563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Two-dimensional (2D) MXenes have gained great interest in water treatment, biomedical, and environmental applications. The antimicrobial activity and cell toxicity of several MXenes including Nb4C3Tx and Nb2CTx have already been explored. However, potential side effects related to Nb-MXene toxicity, especially on aquatic pneuma, have rarely been studied. Using zebrafish embryos, we investigated and compared the potential acute toxicity between two forms of Nb-MXene: the multilayer (ML-Nb4C3Tx, ML-Nb2CTx) and the delaminated (DL-Nb2CTx, and DL-Nb4C3Tx) Nb-MXene. The LC50 of ML-Nb4C3Tx, ML-Nb2CTx, DL-Nb2CTx, and DL-Nb4C3Tx were estimated to be 220, 215, 225, and 128 mg/L, respectively. Although DL-Nb2CTx, and DL-Nb4C3Tx derivatives have similar sizes, DL-Nb4C3Tx not only shows the higher mortality (LC50 = 128 mg/L Vs 225 mg/L), but also the highest teratogenic effect (NOEC = 100 mg/L Vs 200 mg/L). LDH release assay suggested more cell membrane damage and a higher superoxide anion production in DL-Nb4C3Tx than DL-Nb2CTx,. Interestingly, both DL-Nb-MXene nanosheets showed insignificant cardiac, hepatic, or behavioral toxic effects compared to the negative control. Embryos treated with the NOEC of DL-Nb2CTx presented hyperlocomotion, while embryos treated with the NOEC of DL-Nb4C3Tx presented hyperlocomotion, suggesting developmental neurotoxic effect and muscle impairment induced by both DL-Nb-MXene. According to the Fish and Wildlife Service (FSW) Acute Toxicity Rating Scale, all tested Nb-MXene nanosheets were classified as "Practically not toxic". However, DL-Nb4C3Tx should be treated with caution as it might cause a neurotoxic effect on fauna when it ends up in wastewater in high concentrations.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar
| | - Nadine Younes
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Zhao W, Zhao S, Wei R, Wang Z, Zhang F, Zong F, Zhang HT. cGAS/STING signaling pathway-mediated microglial activation in the PFC underlies chronic ethanol exposure-induced anxiety-like behaviors in mice. Int Immunopharmacol 2024; 134:112185. [PMID: 38701540 DOI: 10.1016/j.intimp.2024.112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Chronic ethanol consumption is a prevalent condition in contemporary society and exacerbates anxiety symptoms in healthy individuals. The activation of microglia, leading to neuroinflammatory responses, may serve as a significant precipitating factor; however, the precise molecular mechanisms underlying this phenomenon remain elusive. In this study, we initially confirmed that chronic ethanol exposure (CEE) induces anxiety-like behaviors in mice through open field test and elevated plus maze test. The cGAS/STING signaling pathway has been confirmed to exhibits a significant association with inflammatory signaling responses in both peripheral and central systems. Western blot analysis confirmed alterations in the cGAS/STING signaling pathway during CEE, including the upregulation of p-TBK1 and p-IRF3 proteins. Moreover, we observed microglial activation in the prefrontal cortex (PFC) of CEE mice, characterized by significant alterations in branching morphology and an increase in cell body size. Additionally, we observed that administration of CEE resulted in mitochondrial dysfunction within the PFC of mice, accompanied by a significant elevation in cytosolic mitochondrial DNA (mtDNA) levels. Furthermore, our findings revealed that the inhibition of STING by H-151 effectively alleviated anxiety-like behavior and suppressed microglial activation induced by CEE. Our study unveiled a significant association between anxiety-like behavior, microglial activation, inflammation, and mitochondria dysfunction during CEE.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China
| | - Shuang Zhao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China
| | - Ran Wei
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China
| | - Ziqi Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China
| | - Fang Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China
| | - Fangjiao Zong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China.
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266073, China.
| |
Collapse
|
3
|
Choi JS, Yoon H, Heo Y, Kim TH, Park JW. Comparison of gut toxicity and microbiome effects in zebrafish exposed to polypropylene microplastics: Interesting effects of UV-weathering on microbiome. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134209. [PMID: 38581880 DOI: 10.1016/j.jhazmat.2024.134209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Weathered microplastics (MPs) exhibit different physicochemical properties compared to pristine MPs, thus, their effects on the environment and living organisms may also differ. In the present study, we investigated the gut-toxic effects of virgin polypropylene MPs (PP) and UV-weathered PP MPs (UV-PP) on zebrafish. The zebrafish were exposed to the two types of PP MPs at a concentration of 50 mg/L each for 14 days. After exposure, MPs accumulated primarily within the gastrointestinal tract, with UV-PP exhibiting a higher accumulation than PP. The ingestion of PP and UV-PP induced gut damage in zebrafish and increased the gene expression and levels of enzymes related to oxidative stress and inflammation, with no significant differences between the two MPs. Analysis of the microbial community confirmed alterations in the abundance and diversity of zebrafish gut microorganisms in the PP and UV-PP groups, with more pronounced changes in the PP-exposed group. Moreover, the Kyoto Encyclopedia of Genes and Genomes pathway analysis confirmed the association between changes in the gut microorganisms at the phylum and genus levels with cellular responses, such as oxidative stress, inflammation, and tissue damage. This study provides valuable insights regarding the environmental impact of MPs on organisms.
Collapse
Affiliation(s)
- Jin Soo Choi
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Hakwon Yoon
- Department of Biological Enivronment, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yunwi Heo
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Tae Hee Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 426-171, Republic of Korea
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), 217, Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|
4
|
Sudhakaran G, Priya PS, Haridevamuthu B, Murugan R, Kannan J, Almutairi MH, Almutairi BO, Guru A, Arockiaraj J. Mechanistic interplay of dual environmental stressors: Bisphenol-A and cadmium-induced ovarian follicular damage and hepatocyte dysfunction in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171706. [PMID: 38490420 DOI: 10.1016/j.scitotenv.2024.171706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
This study investigates the individual and combined toxic effects of Bisphenol A (BPA) and Cadmium (Cd) in zebrafish, recognizing the complex mixture of pollutants organisms encounter in their natural environment. Examining developmental, neurobehavioral, reproductive, and physiological aspects, the study reveals significant adverse effects, particularly in combined exposures. Zebrafish embryos exposed to BPA + Cd exhibit synergistically increased mortality, delayed hatching, and morphological abnormalities, emphasizing the heightened toxicity of the combination. Prolonged exposure until 10 days post-fertilization underscores enduring effects on embryonic development. BPA and Cd induce oxidative stress, as evidenced by increased production of reactive oxygen species and lipid peroxidation. This oxidative stress disrupts cellular functions, affecting lipid metabolism and immune response. Adult zebrafish exposed to BPA and Cd for 40 days display compromised neurobehavioral functions, altered antioxidant defenses, and increased oxidative stress, suggesting potential neurotoxicity. Additionally, disruptions in ovarian follicle maturation and skeletal abnormalities indicate reproductive and skeletal impacts. Histological analysis reveals significant liver damage, emphasizing the synergistic hepatotoxicity of BPA and Cd. Molecular assessments further demonstrate compromised cellular defense mechanisms, synaptic function, and elevated cellular stress and inflammation-related gene expression in response to combined exposures. Bioaccumulation analysis highlights differential tissue accumulation patterns. In conclusion, this study provides comprehensive insights into the multifaceted toxicological effects of BPA and Cd in zebrafish, raising concerns about potential adverse impacts on environmental ecosystems and human health.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Jagan Kannan
- Department of Biotechnology, SRM Arts and Science College, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cardiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
5
|
Mastrogiovanni M, Martínez-Navarro FJ, Bowman TV, Cayuela ML. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int J Mol Sci 2024; 25:2145. [PMID: 38396822 PMCID: PMC10889087 DOI: 10.3390/ijms25042145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are an emergent animal model to study human diseases due to their significant genetic similarity to humans, swift development, and genetic manipulability. Their utility extends to the exploration of the involvement of inflammation in host defense, immune responses, and tissue regeneration. Additionally, the zebrafish model system facilitates prompt screening of chemical compounds that affect inflammation. This study explored the diverse roles of inflammatory pathways in zebrafish development and aging. Serving as a crucial model, zebrafish provides insights into the intricate interplay of inflammation in both developmental and aging contexts. The evidence presented suggests that the same inflammatory signaling pathways often play instructive or beneficial roles during embryogenesis and are associated with malignancies in adults.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Francisco Juan Martínez-Navarro
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María L. Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
6
|
Karolczak S, Deshwar AR, Aristegui E, Kamath BM, Lawlor MW, Andreoletti G, Volpatti J, Ellis JL, Yin C, Dowling JJ. Loss of Mtm1 causes cholestatic liver disease in a model of X-linked myotubular myopathy. J Clin Invest 2023; 133:e166275. [PMID: 37490339 PMCID: PMC10503795 DOI: 10.1172/jci166275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a fatal congenital disorder caused by mutations in the MTM1 gene. Currently, there are no approved treatments, although AAV8-mediated gene transfer therapy has shown promise in animal models and preliminarily in patients. However, 4 patients with XLMTM treated with gene therapy have died from progressive liver failure, and hepatobiliary disease has now been recognized more broadly in association with XLMTM. In an attempt to understand whether loss of MTM1 itself is associated with liver pathology, we have characterized what we believe to be a novel liver phenotype in a zebrafish model of this disease. Specifically, we found that loss-of-function mutations in mtm1 led to severe liver abnormalities including impaired bile flux, structural abnormalities of the bile canaliculus, and improper endosome-mediated trafficking of canalicular transporters. Using a reporter-tagged Mtm1 zebrafish line, we established localization of Mtm1 in the liver in association with Rab11, a marker of recycling endosomes, and canalicular transport proteins and demonstrated that hepatocyte-specific reexpression of Mtm1 could rescue the cholestatic phenotype. Last, we completed a targeted chemical screen and found that Dynasore, a dynamin-2 inhibitor, was able to partially restore bile flow and transporter localization to the canalicular membrane. In summary, we demonstrate, for the first time to our knowledge, liver abnormalities that were directly caused by MTM1 mutation in a preclinical model, thus establishing the critical framework for better understanding and comprehensive treatment of the human disease.
Collapse
Affiliation(s)
- Sophie Karolczak
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Ashish R. Deshwar
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics and
| | - Evangelina Aristegui
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael W. Lawlor
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Translational Science Laboratory, Milwaukee, Wisconsin, USA
| | | | - Jonathan Volpatti
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jillian L. Ellis
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology and
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology and
- Center for Undiagnosed and Rare Liver Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James J. Dowling
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Martinez-Castillo M, Altamirano-Mendoza I, Sánchez-Valle S, García-Islas L, Sánchez-Barragán M, Hernández-Santillán M, Hernández-Barragán A, Pérez-Hernández J, Higuera-de la Tijera F, Gutierrez-Reyes G. Immune dysregulation and pathophysiology of alcohol consumption and alcoholic liver disease. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2023; 88:136-154. [PMID: 36973122 DOI: 10.1016/j.rgmxen.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/13/2023] [Indexed: 03/28/2023] Open
Abstract
Alcoholic liver disease (ALD) is a clinical-pathologic entity caused by the chronic excessive consumption of alcohol. The disease includes a broad spectrum of anomalies at the cellular and tissual level that can cause acute-on-chronic (alcoholic hepatitis) or chronic (fibrosis, cirrhosis, hepatocellular cancer) injury, having a great impact on morbidity and mortality worldwide. Alcohol is metabolized mainly in the liver. During alcohol metabolism, toxic metabolites, such as acetaldehyde and oxygen reactive species, are produced. At the intestinal level, alcohol consumption can cause dysbiosis and alter intestinal permeability, promoting the translocation of bacterial products and causing the production of inflammatory cytokines in the liver, perpetuating local inflammation during the progression of ALD. Different study groups have reported systemic inflammatory response disturbances, but reports containing a compendium of the cytokines and cells involved in the pathophysiology of the disease, from the early stages, are difficult to find. In the present review article, the role of the inflammatory mediators involved in ALD progression are described, from risky patterns of alcohol consumption to advanced stages of the disease, with the aim of understanding the involvement of immune dysregulation in the pathophysiology of ALD.
Collapse
|
8
|
Han Y, Zee S, Cho KH. Beeswax Alcohol and Fermented Black Rice Bran Synergistically Ameliorated Hepatic Injury and Dyslipidemia to Exert Antioxidant and Anti-Inflammatory Activity in Ethanol-Supplemented Zebrafish. Biomolecules 2023; 13:136. [PMID: 36671520 PMCID: PMC9855622 DOI: 10.3390/biom13010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Alcohol abuse, a global health problem, is closely associated with many pathological processes, such as dyslipidemia and cardiovascular disease. In particular, excessive alcohol consumption promotes dyslipidemia and liver damage, such as hepatic steatosis, fibrosis, and cirrhosis. Beeswax alcohol (BWA) is a natural product used for its antioxidant properties that has not been evaluated for its efficacy in alcohol-induced liver injury. In the present study, zebrafish were exposed to 1% ethanol with supplementation of 10% fermented black rice bran (BRB-F), 10% BWA, or 10% mixtures of BWA+BRB-F (MIX). The BRB-F, BWA, and MIX supplementation increased the survival rate dramatically without affecting the body weight changes. In histology of hepatic tissue, alcoholic foamy degeneration was ameliorated by the BWA or MIX supplements. Moreover, dihydroethidium (DHE) and immunohistochemistry staining suggested that the MIX supplement decreased the hepatic ROS production and interleukin-6 expression significantly owing to the enhanced antioxidant properties, such as paraoxonase. Furthermore, the MIX supplement improved alcohol-induced dyslipidemia and oxidative stress. The BWA and MIX groups showed lower blood total cholesterol (TC) and triglyceride (TG) levels with higher high-density lipoprotein-cholesterol (HDL-C) than the alcohol-alone group. The MIX group showed the highest HDL-C/TC ratio and HDL-C/TG ratio with the lowest low-density lipoprotein (LDL)-C/HDL-C ratio. In conclusion, BWA and BRB-F showed efficacy to treat alcohol-related metabolic disorders, but the MIX supplement was more effective in ameliorating the liver damage and dyslipidemia, which agrees with an enhanced antioxidant and anti-inflammatory activity exhibited by BWA/BRB-F in a synergistic manner.
Collapse
Affiliation(s)
- Youngji Han
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Seonggeun Zee
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
- LipoLab, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
9
|
Zuo Z, Wang Q, Zhang C, Zou J. Single and combined effects of microplastics and cadmium on juvenile grass carp (Ctenopharyngodon idellus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109424. [PMID: 35918021 DOI: 10.1016/j.cbpc.2022.109424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Microplastics (MPs) have received extensive attention as a new type of environmental pollutants with potential ecological risks. However, there are still few studies on the physiological stress response of aquatic organisms under the interaction of MPs and heavy metals. In this study, grass carp (Ctenopharyngodon idellus) were chosen as experimental fish and were exposed to 5 μm polystyrene microplastics (PS - MPs, 700 μg/L) and cadmium (Cd, 100 μg/L) individually or in combination. The results indicated that the presence of Cd didn't affect the accumulation of MPs in the intestines of grass carp. On the contrary, the concentration of Cd in the intestines of grass carp was higher in the MPs - Cd combined exposure group than in the Cd alone exposure group. Histological analysis revealed multiple abnormalities in the intestines after acute exposure, and the damage in the MPs - Cd combined exposure group was particularly severe. After 24 h of exposure, the expression of pro-inflammatory cytokines was significantly up-regulated in all exposed groups. However, after 48 h of exposure, the expression of inflammatory cytokines was significantly down-regulated, which may be related to intestinal damage. Our results deepen the significance of toxicological studies of MPs exposure, highlight their interaction with heavy metal toxicants, and provide important data for assessing the risk of MPs and heavy metals to grass carp.
Collapse
Affiliation(s)
- Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chaonan Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310000, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Reverse pharmacology of Nimbin-N2 attenuates alcoholic liver injury and promotes the hepatoprotective dual role of improving lipid metabolism and downregulating the levels of inflammatory cytokines in zebrafish larval model. Mol Cell Biochem 2022; 477:2387-2401. [DOI: 10.1007/s11010-022-04448-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
11
|
Abdelghafour MM, Orbán Á, Deák Á, Lamch Ł, Frank É, Nagy R, Ziegenheim S, Sipos P, Farkas E, Bari F, Janovák L. Biocompatible poly(ethylene succinate) polyester with molecular weight dependent drug release properties. Int J Pharm 2022; 618:121653. [PMID: 35278604 DOI: 10.1016/j.ijpharm.2022.121653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023]
Abstract
In the present study, we demonstrate that well-known molecular weight-dependent solubility properties of a polymer can also be used in the field of controlled drug delivery. To prove this, poly(ethylene succinate) (PES) polyesters with polycondensation time regulated molecular weights were synthesized via catalyst-free direct polymerization in an equimolar ratio of ethylene glycol and succinic acid monomers at 185 °C. DSC and contact angle measurements revealed that increasing the molecular weight (Mw, 4.3-5.05 kDa) through the polymerization time (40-80 min) increased the thermal stability (Tm= ∼61-80 °C) and slightly the hydrophobicity (Θw= ∼27-41°) of the obtained aliphatic polyester. Next, this biodegradable polymer was used for the encapsulation of Ca2+ channel blocker Nimodipine (NIMO) to overcome the poor water solubility and enhance the bioavailability of the drug. The drug/ polymer compatibility was proved by the means of solubility (δ) and Flory-Huggins interaction (miscibility) parameters (χ). The nanoprecipitation encapsulation of NIMO into PES with increasing Mw resulted in the formation of spherical 270 ± 103 nm NIMO-loaded PES nanoparticles (NPs). Furthermore, based on the XRD measurements, the encapsulated form of NIMO-loaded PES NPs showed lower drug crystallinity, which enhanced not only the water solubility but even the water stability of the NIMO in an aqueous medium. The in-vitro drug release experiments demonstrated that the release of NIMO drug could be accelerated or even prolonged by the molecular weights of PES as well. Due to the low crystallinity of PES polyester and low particle size of the encapsulated NIMO drug led to enhance solubility and releasing process of NIMO from PES with lower Mw (4.3 kDa and 4.5 kDa) compared to pure crystalline NIMO. However, further increasing the molecular weight (5.05 kDa) was already reduced the amount of drug release that provides the prolonged therapeutic effect and enhances the bioavailability of the NIMO drug.
Collapse
Affiliation(s)
- Mohamed M Abdelghafour
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary; Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ágoston Orbán
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Roland Nagy
- Department of MOL Department of Hydrocarbon and Coal Processing, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, H-8200 Veszprém, Hungary
| | - Szilveszter Ziegenheim
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Pál Sipos
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary; HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, University of Szeged, Dugonics Square 13, H-6720 Szeged, Hungary; Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics & Faculty of Medicine, University of Szeged, Somogyi Str. 4, H-6720 Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary.
| |
Collapse
|
12
|
Mak KM, Kee D, Shin DW. Alcohol-associated capillarization of sinusoids: A critique since the discovery by Schaffner and Popper in 1963. Anat Rec (Hoboken) 2021; 305:1592-1610. [PMID: 34766732 DOI: 10.1002/ar.24829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022]
Abstract
This article reviews the literature on capillarization of hepatic sinusoids since its discovery in 1963. Liver sinusoidal endothelial cells are uniquely fenestrated and lack an underlying basement membrane. In chronic liver disease, the sinusoids capillarize and transform into systemic capillaries, a process termed capillarization of sinusoids. The histopathology is marked by defenestration, basement membrane formation, and space of Disse fibrogenesis. Capillarized sinusoids compromise the bidirectional exchange of materials between sinusoids and hepatocytes, leading to hepatocellular dysfunction. Sinusoidal capillarization was first described in active cirrhosis of alcoholics in 1963. Since then, it has been found in early and progressive stages of alcoholic hepatic fibrosis before the onset of cirrhosis. The sinusoidal structure is not altered in alcoholic steatosis without fibrosis. Defenestration impairs the ability of the endothelium to filter chylomicron remnants from sinusoids into the Disse's space, contributing to alcohol-induced postprandial hyperlipidemia and possibly atherosclerosis. Ethanol also modulates the fenestration dynamics in animals. In baboons, chronic alcohol consumption diminishes endothelial porosity in concomitance with hepatic fibrogenesis and in rats defenestrates the endothelium in the absence of fibrosis, and sometimes capillarizes the sinusoids. Acute ethanol ingestion enlarges fenestrations in rats and contracts fenestrations in rabbits. In sinusoidal endothelial cell culture, ethanol elicits fenestration dilation, which is likely related to its interaction with fenestration-associated cytoskeleton. Ethanol potentiates sinusoidal injury caused by cocaine, acetaminophen or lipopolysaccharide in mice and rats. Understanding ethanol's mechanisms on pathogenesis of sinusoidal capillarization and fenestration dynamics will lead to development of methods to prevent risks for atherosclerosis in alcoholism.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education, Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dustin Kee
- Department of Medical Education, Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Da Wi Shin
- Department of Medical Education, Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Köktürk M, Çomaklı S, Özkaraca M, Alak G, Atamanalp M. Teratogenic and Neurotoxic Effects of n-Butanol on Zebrafish Development. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:94-106. [PMID: 33780052 DOI: 10.1002/aah.10123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
In recent years, n-butanol, a type of alcohol, has been widely used from the chemical industry to the food industry. In this study, toxic effects of n-butanol's different concentrations (10, 50, 250, 500, 750, 1,000, and 1,250 mg/L) in Zebrafish Danio rerio embryos and larvae were investigated. For this purpose, Zebrafish embryos were exposed to n-butanol in acute semistatic applications. Teratogenic effects such as cardiac edema, scoliosis, lordosis, head development abnormality, yolk sac edema, and tail abnormality were determined at different time intervals (24, 48, 72, 96, and 120 h). Additionally, histopathological abnormalities such as vacuole formation in brain tissue and necrosis in liver tissue were observed at high doses (500, 750, and 1,000 mg/L) in all treatment groups at 96 h. It was determined that heart rate decreased at 48, 72, and 96 h due to an increase in concentration. In addition, alcohol-induced eye size reduction (microphthalmia) and single eye formation (cyclopia) are also among the effects observed in our research findings. In conclusion, n-butanol has been observed to cause intense neurotoxic, teratogenic, and cardiotoxic effects in Zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Farming, School of Applied Science, Igdır University, 76000, Igdır, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25030, Erzurum, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary Medicine, Cumhuriyet University, 58140, Sivas, Turkey
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, 25030, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, 25030, Erzurum, Turkey
| |
Collapse
|
14
|
Schneider ACR, de Moura AC, Carvalho FB, Alves T, Meurer F, Porawski M, da Silveira TR. Effect of Melatonin on the Reduction of Hepatic Steatosis and Intestinal Leptin Expression in Zebrafish Exposed to Fructose. Zebrafish 2021; 18:184-189. [PMID: 33983041 DOI: 10.1089/zeb.2020.1910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melatonin is a hormone related to circadian rhythms and has potential clinical applications. Our objectives were to verify the effect of melatonin on the liver of zebrafish exposed to fructose and evaluate the expression of appetite-related genes (leptin, ghrelin, and melanocortin receptor 4 [MC4R]). Animals were divided into three groups: control (CG, n = 25), fructose (FG, n = 25), and fructose+melatonin (FMG, n = 25). The study was carried out in 8 weeks. FG and FMG were exposed to 2% fructose and FMG treated with 1 μM of melatonin. Histological liver studies and gene expression analyses of Leptin, Ghrelin, and MC4R (liver and intestines) were performed. FG developed hepatic steatosis, which did not occur with CG and FMG. Genetic expression of hepatic leptin and MC4R did not show significant difference among the groups. Animals exposed to fructose (FG) presented an increased expression of intestinal leptin compared to those administered with melatonin. Animals exposed to fructose gained weight and developed an important hepatic steatosis, but melatonin reduced significantly the hepatic damage. Intestinal leptin showed increased expression in the group exposed to fructose.
Collapse
Affiliation(s)
- Ana Claudia Reis Schneider
- Programa de Pós-Graduação em Pediatria, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Carolina de Moura
- Laboratório de Fisiologia Comportamental e Metabólica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiano Barbosa Carvalho
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Alves
- Grupo de Pesquisa Experimental em Zebrafish/Biotério, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabio Meurer
- Campus Avançado de Jandaia do Sul, Universidade Federal do Paraná, Jandaia do Sul, Rio Grande do Sul, Brazil
| | - Marilene Porawski
- Programa de Pós-graduação em Hepatologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Themis Reverbel da Silveira
- Programa de Pós-Graduação em Pediatria, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Pasqualotto A, Ayres R, Longo L, Del Duca Lima D, Losch de Oliveira D, Alvares-da-Silva MR, Reverbel da Silveira T, Uribe-Cruz C. Chronic exposure to ethanol alters the expression of miR-155, miR-122 and miR-217 in alcoholic liver disease in an adult zebrafish model. Biomarkers 2021; 26:146-151. [PMID: 33435755 DOI: 10.1080/1354750x.2021.1874051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM The aim of this study was to evaluate the hepatic and circulating expression of miR-155, miR-122 and miR-217 in a model of chronic exposure to ethanol in adult zebrafish. METHODS Wild-type adult zebrafish were divided into two groups (n = 281): an EG (exposed to 0.5% v/v Ethanol in aquarium water) and a CG (without ethanol). After 28 days the animals were euthanized, followed by histopathological analysis, quantification of lipids, triglycerides and inflammatory cytokines in liver tissue. miR-155, miR-122 and miR-217 gene expression was quantified in liver tissue and serum. RESULTS We observed hepatic lesions and increased accumulation of hepatic lipids in the EG. The expression of il-1β was higher in the EG, but there were no differences in il-10 and tnf-α between groups. In the liver, expression of miR-122 and miR-155 was higher in the EG. The circulating expression of miR-155 and miR-217 was significantly higher in the EG. CONCLUSION Chronic exposure to ethanol in zebrafish leads to altered hepatic and circulating expression of miR-155, miR-122 and miR-217. This confirms its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Amanda Pasqualotto
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raquel Ayres
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Larisse Longo
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Del Duca Lima
- Graduate Program in Biological Sciences-Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo Losch de Oliveira
- Graduate Program in Biological Sciences-Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Alvares-da-Silva
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Themis Reverbel da Silveira
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carolina Uribe-Cruz
- Experimental Hepatology and Gastroenterology Laboratory, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
16
|
Choi Y, Seo H, Cho M, Kim J, Chung HS, Lee I, Kim MJ. Rutin inhibits DRP1-mediated mitochondrial fission and prevents ethanol-induced hepatotoxicity in HepG2 cells and zebrafish. Anim Cells Syst (Seoul) 2021; 25:74-81. [PMID: 33717419 PMCID: PMC7935124 DOI: 10.1080/19768354.2021.1882565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Excessive alcohol consumption causes the cellular and tissue damage. The toxic metabolites of ethanol are harmful to multiple organ systems, such as the central nervous system, skeletal muscles, and liver, and cause alcohol-induced diseases like cancer, as well as induce hepatotoxicity, and alcoholic myopathy. Alcohol exposure leads to a surge in hepatic alcohol metabolism and oxygen consumption, a decrease in hepatic ATP, and the rapid accumulation of lipid within hepatocytes. Several pathologies are closely linked to defective mitochondrial dynamics triggered by abnormal mitochondrial function and cellular homeostasis, raising the possibility that novel drugs targeting mitochondrial dynamics may have therapeutic potential in restoring cellular homeostasis in ethanol-induced hepatotoxicity. Rutin is a phytochemical polyphenol known to protect cells from cytotoxic chemicals. We investigated the effects of rutin on mitochondrial dynamics induced by ethanol. We found that rutin enhances mitochondrial dynamics by suppressing mitochondrial fission and restoring the balance of the mitochondrial dynamics. Mitochondrial elongation following rutin treatment of ethanol exposed cells was accompanied by reduced DRP1 expression. These data suggest that rutin plays an important role in remodeling of mitochondrial dynamics to alleviate hepatic steatosis and enhance mitochondrial function and cell viability.
Collapse
Affiliation(s)
- Youngsook Choi
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Heymin Seo
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Mina Cho
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea
| | - Joohee Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea
| | - Hak Suk Chung
- Center for Teragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan, Korea
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
17
|
Barbuti RC, Schiavon LL, Oliveira CP, Alvares-DA-Silva MR, Sassaki LY, Passos MDCF, Farias AQ, Barros LL, Barreto BP, Albuquerque GBDMLD, Alves AM, Navarro-Rodriguez T, Bittencourt PL. GUT MICROBIOTA, PREBIOTICS, PROBIOTICS, AND SYNBIOTICS IN GASTROINTESTINAL AND LIVER DISEASES: PROCEEDINGS OF A JOINT MEETING OF THE BRAZILIAN SOCIETY OF HEPATOLOGY (SBH), BRAZILIAN NUCLEUS FOR THE STUDY OF HELICOBACTER PYLORI AND MICROBIOTA (NBEHPM), AND BRAZILIAN FEDERATION OF GASTROENTEROLOGY (FBG). ARQUIVOS DE GASTROENTEROLOGIA 2021; 57:381-398. [PMID: 33331485 DOI: 10.1590/s0004-2803.202000000-72] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Over the last years, there is growing evidence that microorganisms are involved in the maintenance of our health and are related to various diseases, both intestinal and extraintestinal. Changes in the gut microbiota appears to be a key element in the pathogenesis of hepatic and gastrointestinal disorders, including non-alcoholic fatty liver disease, alcoholic liver disease, liver cirrhosis, inflammatory bowel disease, irritable bowel syndrome, and Clostridium difficile - associated diarrhea. In 2019, the Brazilian Society of Hepatology (SBH) in cooperation with the Brazilian Nucleus for the Study of Helicobacter Pylori and Microbiota (NBEHPM), and Brazilian Federation of Gastroenterology (FBG) sponsored a joint meeting on gut microbiota and the use of prebiotics, probiotics, and synbiotics in gastrointestinal and liver diseases. This paper summarizes the proceedings of the aforementioned meeting. It is intended to provide practical information about this topic, addressing the latest discoveries and indicating areas for future studies.
Collapse
Affiliation(s)
- Ricardo Correa Barbuti
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | - Leonardo Lucca Schiavon
- Universidade Federal de Santa Catarina, Faculdade de Medicina, Departamento de Clínica Médica, Florianópolis, SC, Brasil
| | - Cláudia P Oliveira
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | - Mário Reis Alvares-DA-Silva
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Porto Alegre, RS, Brasil
| | | | | | - Alberto Queiroz Farias
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | - Luisa Leite Barros
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | - Bruno Paes Barreto
- Universidade do Estado do Pará, Centro de Ciências Biológicas e da Saúde, Belém, PA, Brasil.,Centro Universitário do Estado do Pará (CESUPA), Belém, PA, Brasil
| | | | - Amanda Mandarino Alves
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | - Tomás Navarro-Rodriguez
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, SP, Brasil
| | | |
Collapse
|
18
|
Park KH, Kim SH. Adult zebrafish as an in vivo drug testing model for ethanol induced acute hepatic injury. Biomed Pharmacother 2020; 132:110836. [PMID: 33035832 DOI: 10.1016/j.biopha.2020.110836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
Chronic alcohol abuse is common and a leading cause of alcoholic liver disease (ALD). However, a safe and effective therapy for ALD is still elusive. In this study, we evaluated the utility of adult zebrafish as an in vivo model for rapid assessment of drug efficacy in ethanol-induced acute hepatic injury. We exposed adult zebrafish to 0.5 % ethanol for 24, 48, and 72 hours and measured serum alanine aminotransferase (ALT) activities. This treatment resulted in a significant increase in ALT levels at 48 and 72 h of ethanol treatment, compared to untreated control groups. Accompanying this, significant increases in mRNA expression of genes associated with inflammation was observed in the liver during ethanol exposure. To evaluate the effectiveness of drug testing using our zebrafish model for ethanol-induced acute hepatic injury, we investigated the protective function of nicotinamide riboside, a substrate for NAD+, previously shown to be protective in a rodent model of alcoholic liver disease and TES-1025, an inhibitor of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), that increases NAD+. We found that both nicotinamide riboside and TES-1025 treatment suppressed ethanol-induced serum ALT levels, post 48 h of ethanol exposure. In a similar manner, riboflavin supplementation also suppressed ethanol-induced serum ALT increase during ethanol exposure. Additionally, both nicotinamide riboside and riboflavin supplementation inhibited the upregulation of mRNA expression of genes associated with inflammation and de novo lipogenesis. In conclusion, we established an adult zebrafish model of ethanol-induced acute hepatic injury that will be valuable for cost-effective in vivo drug screening, which may in the future offer identification of novel therapeutics to mitigate hepatic injury, associated with excessive alcohol consumption.
Collapse
Affiliation(s)
- Ki-Hoon Park
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Seok-Hyung Kim
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
19
|
Huang JN, Wen B, Zhu JG, Zhang YS, Gao JZ, Chen ZZ. Exposure to microplastics impairs digestive performance, stimulates immune response and induces microbiota dysbiosis in the gut of juvenile guppy (Poecilia reticulata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:138929. [PMID: 32466972 DOI: 10.1016/j.scitotenv.2020.138929] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) are widely distributing in aquatic environment. They are easily ingested by aquatic organisms and accumulate in digestive tract especially of intestine. To explore the potential effects of MPs on intestine, here we, using juvenile guppy (Poecilia reticulata) as experimental animal, investigated the response characteristics of digestion, immunity and gut microbiota. After exposure to 100 and 1000 μg/L concentrations of MPs (polystyrene; 32-40 μm diameters) for 28 days, we observed that MPs could exist in guppy gut and induce enlargement of goblet cells. Activities of digestive enzymes (trypsin, chymotrypsin, amylase and lipase) in guppy gut generally reduced. MPs stimulated the expression of immune cytokines (TNF-α, IFN-γ, TLR4 and IL-6). Through high throughput sequencing of 16S rRNA gene, decreases in diversity and evenness and changed composition of microbiota were found in guppy gut. PICRUSt analysis revealed that MPs might have effects on intestinal microbiota functions, such as inhibition of metabolism and repair pathway. Our findings suggested that MPs could retain in the gut of juvenile guppy, impair digestive performance, stimulate immune response and induce microbiota dysbiosis in guppy gut. The results obtained here provide new insights into the potential risks of MPs to aquatic animals.
Collapse
Affiliation(s)
- Jun-Nan Huang
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian-Guo Zhu
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Shen Zhang
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
20
|
The hepatoprotective effects of squid gonad phospholipids on fatty liver disease in zebrafish. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Huang S, Huang Z, Fu Z, Shi Y, Dai Q, Tang S, Gu Y, Xu Y, Chen J, Wu X, Ren F. A Novel Drug Delivery Carrier Comprised of Nimodipine Drug Solution and a Nanoemulsion: Preparation, Characterization, in vitro, and in vivo Studies. Int J Nanomedicine 2020; 15:1161-1172. [PMID: 32110014 PMCID: PMC7036601 DOI: 10.2147/ijn.s226591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Nimodipine (NIMO) is used clinically to treat ischemic damage resulting from subarachnoid hemorrhage. However, clinical application of NIMO is limited by poor aqueous solubility and low safety. To overcome these limitations, a novel two-vial NIMO-loaded nanoemulsion (NIMO-TNE) was designed in this study. Methods NIMO-TNE was prepared by mixing a nimodipine-polyethylene glycol 400 (NIMO-PEG400) solution and a commercially available 20% injectable blank nanoemulsion (BNE). Drug distribution in NIMO-TNE, physical stability, and dilution stability were evaluated in vitro, and pharmacokinetics and pharmacodynamics were evaluated in vivo. Safety was assessed using the hemolysis test and the intravenous irritation test, and acute toxicity of NIMO-TNE was compared with that of commercial Nimotop injection. Results Drug loading (DL) in NIMO-TNE was enhanced 5-fold compared with that in Nimotop injection. The mean particle size of NIMO-TNE was 241.53 ± 1.48 nm. NIMO-TNE and NIMO-TNE diluted in 5% glucose injection and 0.9% sodium chloride was stable for a sufficient duration to allow for clinical use. In addition, NIMO-TNE exhibited a similar pharmacokinetic profile and similar brain ischemia reduction in a rat middle cerebral artery occlusion (MCAO) model compared to Nimotop injection. Furthermore, NIMO-TNE did not induce hemolysis at 37°C, and NIMO-TNE induced less intravenous irritation than Nimotop injection. Moreover, NIMO-TNE could be injected at a 23-fold higher dose than the LD50 of Nimotop injection with no obvious toxicity or side effects. Conclusion NIMO-TNE is a promising formulation suitable for intravenous injection, is easy to prepare, and exhibits excellent safety.
Collapse
Affiliation(s)
- Saixu Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.,Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Zhiyong Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.,Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Zhiqin Fu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Yamin Shi
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China.,Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China
| | - Qi Dai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shuyan Tang
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Yongwei Gu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Youfa Xu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Jianming Chen
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China.,Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China
| | - Xin Wu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Fuzheng Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Shwartz A, Goessling W, Yin C. Macrophages in Zebrafish Models of Liver Diseases. Front Immunol 2019; 10:2840. [PMID: 31867007 PMCID: PMC6904306 DOI: 10.3389/fimmu.2019.02840] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatic macrophages are key components of the liver immunity and consist of two main populations. Liver resident macrophages, known as Kupffer cells in mammals, are crucial for maintaining normal liver homeostasis. Upon injury, they become activated to release proinflammatory cytokines and chemokines and recruit a large population of inflammatory monocyte-derived macrophages to the liver. During the progression of liver diseases, macrophages are highly plastic and have opposing functions depending on the signaling cues that they receive from the microenvironment. A comprehensive understanding of liver macrophages is essential for developing therapeutic interventions that target these cells in acute and chronic liver diseases. Mouse studies have provided the bulk of our current knowledge of liver macrophages. The emergence of various liver disease models and availability of transgenic tools to visualize and manipulate macrophages have made the teleost zebrafish (Danio rerio) an attractive new vertebrate model to study liver macrophages. In this review, we summarize the origin and behaviors of macrophages in healthy and injured livers in zebrafish. We highlight the roles of macrophages in zebrafish models of alcoholic and non-alcoholic liver diseases, hepatocellular carcinoma, and liver regeneration, and how they compare with the roles that have been described in mammals. We also discuss the advantages and challenges of using zebrafish to study liver macrophages.
Collapse
Affiliation(s)
- Arkadi Shwartz
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
- Division of Health Sciences and Technology, Harvard and Massachusetts Institute of Technology, Boston, MA, United States
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
23
|
Zhang D, Tang J, Zhang J, Zhang DL, Hu CX. Responses of pro- and anti-inflammatory cytokines in zebrafish liver exposed to sublethal doses of Aphanizomenon flosaquae DC-1 aphantoxins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105269. [PMID: 31408752 DOI: 10.1016/j.aquatox.2019.105269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Blooms of the dominant cyanobacterium Aphanizomenon flosaquae are frequently encountered in natural waters, and their secretion of neurotoxic paralytic shellfish toxins called aphantoxins threatens environmental safety and human health worldwide. The liver is the primary detoxification organ in animals, and its pro- and anti-inflammatory responses are important functions in the detoxification of toxins. Therefore, we investigated the response of these inflammatory factors to aphantoxins in the liver of zebrafish (Danio rerio). A. flosaquae DC-1 was sampled during blooms in Dianchi Lake, China and cultured, and the toxin was extracted and analyzed using high performance liquid chromatography. The primary constituents were gonyautoxins 1 (34.04%) and 5 (21.28%) and neosaxitoxin (12.77%). Zebrafish were injected intraperitoneally with 5.3 μg (low dose) or 7.61 μg (high dose) of saxitoxin equivalents [equivalents (eq.)]/kg body weight of A. flosaquae DC-1 aphantoxins. Hyperemia, the hepatosomatic index (HSI), and physiological and molecular responses of pro- and anti-inflammatory cytokines in the zebrafish liver were investigated at different time points 1-24 h post-exposure. Aphantoxins significantly enhanced hepatic hyperemia and altered the HSI 3-24 h post-exposure, suggesting that inflammation caused morphological changes. Subsequent investigations using the enzyme-linked immunosorbent assay showed that the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and IL-8 and anti-inflammatory cytokines IL-10 and transforming growth factor β were higher in the liver of zebrafish exposed to aphantoxins, which indicated physiological inflammatory responses. Further analysis by real-time fluorescence quantitative polymerase chain reaction demonstrated upregulated mRNA expression of these cytokines, suggesting molecular inflammatory responses in the zebrafish liver. These changes showed dose- and time-dependent patterns. These results indicated that aphantoxins induced hyperemia and altered the HSI, and subsequently increased the levels of proinflammatory cytokines TNF-α, IL-1β, IL-6 and IL-8 to induce physiological inflammatory responses. These changes activated the anti-inflammatory cytokines IL-10 and TGF-β to suppress inflammatory damage. The induced changes were the result of upregulated mRNA expression of these inflammatory cytokines caused by aphantoxins. Aphantoxins resulted in hepatic immunotoxicity and response by inducing pro-inflammatory cytokines. Zebrafish liver in turn suppressed the inflammatory damage by upregulating the activities of anti-inflammatory cytokines. In the future, these pro- and anti-inflammatory cytokines in the zebrafish liver may be prove to be useful biomarkers of aphantoxins and blooms in nature.
Collapse
Affiliation(s)
- Di Zhang
- Department of Bioscience and Technology, College of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing Tang
- Department of Rehabilitation Medicine, People's Hospital of Dongxihu District, Wuhan, 430040, PR China
| | - Jing Zhang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - De Lu Zhang
- Department of Bioscience and Technology, College of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Chun Xiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
24
|
Park KH, Kim SH. Low dose of chronic ethanol exposure in adult zebrafish induces hepatic steatosis and injury. Biomed Pharmacother 2019; 117:109179. [PMID: 31387182 DOI: 10.1016/j.biopha.2019.109179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic alcohol consumption is a major cause of chronic liver disease worldwide. Adult zebrafish have emerged as a new vertebrate model of alcoholic liver disease. In previous research, a high dose of chronic ethanol treatment induced characteristic features of steatosis and hepatic injury in adult zebrafish, yet the ethanol concentration in that study was significantly higher than the lethal dose in humans. In the current study, we examined whether a low dose of chronic ethanol exposure in adult zebrafish induced the metabolic and pathological features seen in alcoholic liver disease. We found that chronic ethanol treatment at 0.2% ethanol (v/v) concentration for 4 weeks induced a significant elevation of serum glucose and triacylglycerol in adult zebrafish. In addition, serum alanine aminotransferase activity was significantly elevated after ethanol treatment. Histological analysis revealed steatosis and hepatocyte ballooning phenotype. Gene expression analysis using quantitative real-time PCR suggested that ethanol treatment induced inflammation, apoptosis, and fibrosis. In addition, we found significant increases in gene expression involved in glucose and lipid metabolism as well as mitochondrial biogenesis and function. Importantly, expression of genes involved in oxidative and endoplasmic reticulum stress, two major stress signaling pathways underlying hepatic injury in alcoholic liver disease, were highly upregulated in the livers of adult zebrafish after chronic ethanol treatment. In conclusion, we found that 4 weeks of low dose ethanol exposure leads to typical ethanol-induced liver disease, with pathological and gene expression patterns.
Collapse
Affiliation(s)
- Ki-Hoon Park
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Seok-Hyung Kim
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
25
|
Bruch-Bertani JP, Uribe-Cruz C, Pasqualotto A, Longo L, Ayres R, Beskow CB, Barth AL, Lima-Morales D, Meurer F, Tayguara Silveira Guerreiro G, da Silveira TR, Álvares-da-Silva MR, Dall'Alba V. Hepatoprotective Effect of Probiotic Lactobacillus rhamnosus GG Through the Modulation of Gut Permeability and Inflammasomes in a Model of Alcoholic Liver Disease in Zebrafish. J Am Coll Nutr 2019; 39:163-170. [PMID: 31241423 DOI: 10.1080/07315724.2019.1627955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Alcoholic liver disease (ALD) is among the leading causes of death from liver disease. Among the factors involved in its pathogenesis are inflammation and increased intestinal permeability. The aim of this study was to assess the effect of Lactobacillus rhamnosus GG (LGG) on hepatic lipid accumulation, activation of inflammasomes, and gut permeability markers in experimental model of ALD with zebrafish.Methods: An experiment was conducted to assess the effective LGG dose capable of promoting intestinal colonization. Animals were divided into three groups (n = 64/group): ethanol group (E), ethanol + probiotic group (EP), and control group (C). Groups E and EP were exposed to 0.5% ethanol concentration for 28 days. At the end of this period, animals were euthanized, and livers were collected for Oil Red staining and assessment of the inflammasome system. Intestines were collected for evaluation of gut permeability markers.Results: The dose of 1.55 × 106 UFC LGG/fish/d promoted intestinal colonization. Group EP presented lower hepatic lipid accumulation, lower il-1β expression, and higher cldn15a expression when compared to group E.Conclusions: Supplementation with LGG was protective for hepatic steatosis in ALD model. In addition, LGG influenced the modulation of the inflammatory response and markers of gut permeability, improving the gut barrier structure.
Collapse
Affiliation(s)
- Juliana Paula Bruch-Bertani
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carolina Uribe-Cruz
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Amanda Pasqualotto
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Larisse Longo
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Raquel Ayres
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Carolina Bortolin Beskow
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Afonso Luis Barth
- Research Laboratory on Bacterial Resistance (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Daiana Lima-Morales
- Research Laboratory on Bacterial Resistance (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fábio Meurer
- Post Graduate Program in Sustainable Development of Aquaculture, Universidade Federal do Paraná, Campus de Palotina, Paraná, Brazil
| | | | - Themis Reverbel da Silveira
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Internal Medicine, Gastroenterology and Hepatology Unit. School of Medicine, UFRGS. Gastroenterology and Hepatology Division, HCPA, Porto Alegre, Brazil
| | - Valesca Dall'Alba
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Nutrition. School of Medicine, UFRGS. Nutrition Division. Hospital de Clínicas de Porto Alegre, UFRGS. Porto Alegre, Brazil
| |
Collapse
|
26
|
Fujisawa K, Takami T, Nagatomo T, Fukui Y, Hoshida H, Saeki I, Matsumoto T, Hidaka I, Yamamoto N, Sakaida I. Usefulness of adult medaka fish as a model for the evaluation of alcoholic fatty liver. Alcohol 2019; 77:147-154. [PMID: 30660600 DOI: 10.1016/j.alcohol.2019.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
Abstract
Alcohol has long been acknowledged to be one of the main causes of hepatic disorders. In recent years, with the advancements in antiviral therapies, the relative proportion that alcoholic liver disease contributes among liver diseases has increased, necessitating the establishment of a useful model for the elucidation of the mechanism of its development. In this study, we developed a model of alcoholic liver disease using medaka, a small-sized fish known for its usefulness as a model organism. After rearing medaka in water containing ethanol for 2 months, fat deposition was observed in their livers. In addition, on the basis of the metabolomic analysis of the liver to evaluate metabolic changes resulting from ethanol administration, the increases in ethanol metabolites and changes in lipid metabolism were assessed. As minimally invasive evaluation methods, transparent medaka enabled the macroscopic evaluation of the progression of alcoholic fatty liver, while ultrasonography enabled the quantification of the fatty deposition of the liver. Furthermore, intestinal microbiota, the composition of which is important for the development of alcoholic liver disease, was evaluated. Microbiota changes similar to those of humans with alcoholic liver disease were observed. This study demonstrates that the development of liver disease and its amelioration through drugs can be easily evaluated using the present model or modifications thereof. Thus, this study is expected to be useful in the elucidation of liver disease development.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan; Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| | - Takahiro Nagatomo
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Yumi Fukui
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Hisashi Hoshida
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi, 755-8611, Japan
| | - Issei Saeki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Isao Hidaka
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Isao Sakaida
- Center for Regenerative Medicine, Yamaguchi University School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan; Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
27
|
Qian H, Zhang M, Liu G, Lu T, Sun L, Pan X. Effects of different concentrations of Microcystis aeruginosa on the intestinal microbiota and immunity of zebrafish (Danio rerio). CHEMOSPHERE 2019; 214:579-586. [PMID: 30286424 DOI: 10.1016/j.chemosphere.2018.09.156] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Microcystis aeruginosa is a primary species of toxin-producing cyanobacteria. This study explored the effects of short-term exposure (96 h) to M. aeruginosa on the intestinal microflora variation and immune function of zebrafish. After exposure to different cell concentrations of M. aeruginosa, marked histological variation was observed in the intestine, such as goblet cells proliferation and intestinal desquamation. In addition high-concentration M. aeruginosa treatment (initial concentration: 1.59 × 105 cells mL-1) induced a significant increase in cytokine levels compared with other groups. Low-concentration M. aeruginosa treatment (initial concentration: 0.88 × 105 cells mL-1) promoted the transcription of inflammatory genes, while high-concentration treatment restrained the transcription of these genes. Moreover, M. aeruginosa exposure also changed the intestinal microbial diversity. At the phylum level, bacteria belonging to Proteobacteria were the most abundant in all groups, and Gammaproteobacteria were the dominant bacteria with major changes. Pathogenic microorganisms such as Shewanella, Plesiomonas, Halomonas, Pseudomonas, and Lactobacillus increased greatly after treatment with different cell concentrations of M. aeruginosa. This study indicates that M. aeruginosa induces an increase in zebrafish goblet cells and enhances the inflammatory response, which may produce detrimental effects in zebrafish, resulting in a greater proportion of pathogenic bacteria and intestinal injury. The results of this study will help improve the understanding of the effects of M. aeruginosa on the intestines of aquatic organisms.
Collapse
Affiliation(s)
- Haifeng Qian
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| | - Meng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Guangfu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
28
|
de Abreu MS, Giacomini ACVV, Zanandrea R, Dos Santos BE, Genario R, de Oliveira GG, Friend AJ, Amstislavskaya TG, Kalueff AV. Psychoneuroimmunology and immunopsychiatry of zebrafish. Psychoneuroendocrinology 2018; 92:1-12. [PMID: 29609110 DOI: 10.1016/j.psyneuen.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
Despite the high prevalence of neural and immune disorders, their etiology and molecular mechanisms remain poorly understood. As the zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in biomedical research, mounting evidence suggests these fish as a useful tool to study neural and immune mechanisms and their interplay. Here, we discuss zebrafish neuro-immune mechanisms and their pharmacological and genetic modulation, the effect of stress on cytokines, as well as relevant models of microbiota-brain interplay. As many human brain diseases are based on complex interplay between the neural and the immune system, here we discuss zebrafish models, as well as recent successes and challenges, in this rapidly expanding field. We particularly emphasize the growing utility of zebrafish models in translational immunopsychiatry research, as they improve our understanding of pathogenetic neuro-immune interactions, thereby fostering future discovery of potential therapeutic agents.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rodrigo Zanandrea
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Bruna E Dos Santos
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | | | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Research Institute of Physiology and Basic Medicine SB RAS, and Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Russian Research Center for Radiology and Surgical Technologies, Pesochny, Russia; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine SB RAS, Novosibirsk, Russia.
| |
Collapse
|
29
|
Bucher S, Tête A, Podechard N, Liamin M, Le Guillou D, Chevanne M, Coulouarn C, Imran M, Gallais I, Fernier M, Hamdaoui Q, Robin MA, Sergent O, Fromenty B, Lagadic-Gossmann D. Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Sci Rep 2018; 8:5963. [PMID: 29654281 PMCID: PMC5899096 DOI: 10.1038/s41598-018-24403-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatic steatosis (i.e. lipid accumulation) and steatohepatitis have been related to diverse etiologic factors, including alcohol, obesity, environmental pollutants. However, no study has so far analyzed how these different factors might interplay regarding the progression of liver diseases. The impact of the co-exposure to the environmental carcinogen benzo[a]pyrene (B[a]P) and the lifestyle-related hepatotoxicant ethanol, was thus tested on in vitro models of steatosis (human HepaRG cell line; hybrid human/rat WIF-B9 cell line), and on an in vivo model (obese zebrafish larvae). Steatosis was induced prior to chronic treatments (14, 5 or 7 days for HepaRG, WIF-B9 or zebrafish, respectively). Toxicity and inflammation were analyzed in all models; the impact of steatosis and ethanol towards B[a]P metabolism was studied in HepaRG cells. Cytotoxicity and expression of inflammation markers upon co-exposure were increased in all steatotic models, compared to non steatotic counterparts. A change of B[a]P metabolism with a decrease in detoxification was detected in HepaRG cells under these conditions. A prior steatosis therefore enhanced the toxicity of B[a]P/ethanol co-exposure in vitro and in vivo; such a co-exposure might favor the appearance of a steatohepatitis-like state, with the development of inflammation. These deleterious effects could be partly explained by B[a]P metabolism alterations.
Collapse
Affiliation(s)
- Simon Bucher
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Arnaud Tête
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marie Liamin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dounia Le Guillou
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cédric Coulouarn
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Morgane Fernier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Quentin Hamdaoui
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Marie-Anne Robin
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
30
|
Jin Y, Xia J, Pan Z, Yang J, Wang W, Fu Z. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:322-329. [PMID: 29304465 DOI: 10.1016/j.envpol.2017.12.088] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 05/18/2023]
Abstract
Microplastic (MP) are environmental pollutants and have the potential to cause varying degrees of aquatic toxicity. In this study, the effects on gut microbiota of adult male zebrafish exposed for 14 days to 100 and 1000 μg/L of two sizes of polystyrene MP were evaluated. Both 0.5 and 50 μm-diameter spherical polystyrene MP increased the volume of mucus in the gut at a concentration of 1000 μg/L (about 1.456 × 1010 particles/L for 0.5 μm and 1.456 × 104 particles/L for 50 μm). At the phylum level, the abundance of Bacteroidetes and Proteobacteria decreased significantly and the abundance of Firmicutes increased significantly in the gut after 14-day exposure to 1000 μg/L of both sizes of polystyrene MP. In addition, high throughput sequencing of the 16S rRNA gene V3-V4 region revealed a significant change in the richness and diversity of microbiota in the gut of polystyrene MP-exposed zebrafish. A more in depth analysis, at the genus level, revealed that a total of 29 gut microbes identified by operational taxonomic unit (OTU) analysis were significantly changed in both 0.5 and 50 μm-diameter polystyrene MP-treated groups. Moreover, it was observed that 0.5 μm polystyrene MP not only increased mRNA levels of IL1α, IL1β and IFN but also their protein levels in the gut, indicating that inflammation occurred after polystyrene MP exposure. Our findings suggest that polystyrene MP could induce microbiota dysbiosis and inflammation in the gut of adult zebrafish.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jizhou Xia
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiajing Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenchao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|