1
|
MacDonald AJ, Hyon D, Sambado S, Ring K, Boser A. Remote sensing of temperature-dependent mosquito and viral traits predicts field surveillance-based disease risk. Ecology 2024; 105:e4420. [PMID: 39319755 PMCID: PMC11534503 DOI: 10.1002/ecy.4420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/24/2024] [Accepted: 06/27/2024] [Indexed: 09/26/2024]
Abstract
Mosquito-borne diseases contribute substantially to the global burden of disease, and are strongly influenced by environmental conditions. Ongoing and rapid environmental change necessitates improved understanding of the response of mosquito-borne diseases to environmental factors like temperature, and novel approaches to mapping and monitoring risk. Recent development of trait-based mechanistic models has improved understanding of the temperature dependence of transmission, but model predictions remain challenging to validate in the field. Using West Nile virus (WNV) as a case study, we illustrate the use of a novel remote sensing-based approach to mapping temperature-dependent mosquito and viral traits at high spatial resolution and across the diurnal cycle. We validate the approach using mosquito and WNV surveillance data controlling for other key factors in the ecology of WNV, finding strong agreement between temperature-dependent traits and field-based metrics of risk. Moreover, we find that WNV infection rate in mosquitos exhibits a unimodal relationship with temperature, peaking at ~24.6-25.2°C, in the middle of the 95% credible interval of optimal temperature for transmission of WNV predicted by trait-based mechanistic models. This study represents one of the highest resolution validations of trait-based model predictions, and illustrates the utility of a novel remote sensing approach to predicting mosquito-borne disease risk.
Collapse
Affiliation(s)
- Andrew J. MacDonald
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
| | - David Hyon
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
| | - Samantha Sambado
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Kacie Ring
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Anna Boser
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
| |
Collapse
|
2
|
Tavares Y, Day J, Giordano BV, Eastmond B, Burkett-Cadena N, Guralnick RP, Martin E, Campbell LP. Regional variation in the landscape ecology of West Nile virus sentinel chicken seroconversion in Florida. PLoS One 2024; 19:e0305510. [PMID: 39453894 PMCID: PMC11508685 DOI: 10.1371/journal.pone.0305510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024] Open
Abstract
How landscape composition and configuration impact the distribution of multi-vector and multi-host mosquito vector-borne disease systems, such as West Nile virus (WNV), remains challenging because of complex habitat and resource requirements by hosts and vectors that affect transmission opportunities. We examined correlations between landscape composition and configuration and 2018 WNV sentinel chicken seroconversion in Florida, USA across the state and within five National Oceanic Atmospheric Administration (NOAA) bioclimatic regions to understand strength and variation of landscape effects during an elevated transmission year. Although few landscape studies have examined WNV in Florida, we expected higher percentages of residential or medium-developed landscapes and more fragmented landscapes would be positively correlated with WNV seroconversion owing to the main mosquito vector habitats and avian host distributions. However, we expected to find variation in the importance of forest, wetland, and agriculture landscapes across bioclimatic regions in the state. WNV seroconversion rates were calculated using Florida 2018 Department of Health WNV sentinel chicken seroconversion data from 187 flocks maintained by mosquito control programs. Percent land cover and edge density metrics were calculated for multiple land cover classes and within multiple buffer distances from chicken coops using 2019 National Land Cover Data. We used binomial generalized linear mixed effects models to calculate the importance of landscape metrics to WNV seroconversion. We found no statewide predictors of seroconversion, but as expected, the importance of landscape varied across regions. In the north-central part of the state, we found higher seroconversion in less populated suburban areas while higher seroconversion in south-central Florida was correlated with fragmented forested areas within 0.5 km of coops and intact woody wetland areas within 2 km of coops. This work corroborates previous findings that consistent landscape predictors of WNV are difficult to identify across broader geographic areas and sets the stage for additional work that incorporates climate and landscapes interactions for a greater understanding of WNV ecology in this geographic region.
Collapse
Affiliation(s)
- Yasmin Tavares
- Department of Ecology, Evolution, and Environmental Biology, Graduate School of Arts and Sciences, Columbia University, New York City, New York, United States of America
| | - Jonathan Day
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
- Department of Entomology & Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Bryan V. Giordano
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
- Department of Entomology & Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Bradley Eastmond
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Nathan Burkett-Cadena
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
- Department of Entomology & Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Robert P. Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - Estelle Martin
- Department of Entomology & Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Lindsay P. Campbell
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
- Department of Entomology & Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
3
|
Kovach TJ, Kilpatrick AM. Irrigation increases and stabilizes mosquito populations and increases West Nile virus incidence. Sci Rep 2024; 14:19913. [PMID: 39198498 PMCID: PMC11358498 DOI: 10.1038/s41598-024-70592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Humans have greatly altered earth's terrestrial water cycle with the majority of fresh water being used for agriculture. Irrigation changes spatial and temporal water availability and alters mosquito abundance and phenology. Previous studies evaluating the effect of irrigation on mosquito abundance and mosquito-borne disease have shown inconsistent results and little is known about the effect of irrigation on variability in mosquito abundance. We examined the effect of irrigation, climate and land cover on mosquito abundance and human West Nile virus (WNV) disease cases across California. Irrigation made up nearly a third of total water inputs, and exceeded precipitation in some regions. Abundance of two key vectors of several arboviruses, including WNV, Culex tarsalis and the Culex pipiens complex, increased 17-21-fold with irrigation. Irrigation reduced seasonal variability in C. tarsalis abundance by 36.1%. Human WNV incidence increased with irrigation, which explained more than a third (34.2%) of the variation in WNV incidence among California counties. These results suggest that irrigation can increase and decouple mosquito populations from natural precipitation variability, resulting in sustained and increased disease burdens. Shifts in precipitation due to climate change are likely to result in increased irrigation in many arid regions which could increase mosquito populations and disease.
Collapse
Affiliation(s)
- Tony J Kovach
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
4
|
Holcomb KM, Staples JE, Nett RJ, Beard CB, Petersen LR, Benjamin SG, Green BW, Jones H, Johansson MA. Multi-Model Prediction of West Nile Virus Neuroinvasive Disease With Machine Learning for Identification of Important Regional Climatic Drivers. GEOHEALTH 2023; 7:e2023GH000906. [PMID: 38023388 PMCID: PMC10654557 DOI: 10.1029/2023gh000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental United States (CONUS). Spatial heterogeneity in historical incidence, environmental factors, and complex ecology make prediction of spatiotemporal variation in WNV transmission challenging. Machine learning provides promising tools for identification of important variables in such situations. To predict annual WNV neuroinvasive disease (WNND) cases in CONUS (2015-2021), we fitted 10 probabilistic models with variation in complexity from naïve to machine learning algorithm and an ensemble. We made predictions in each of nine climate regions on a hexagonal grid and evaluated each model's predictive accuracy. Using the machine learning models (random forest and neural network), we identified the relative importance and variation in ranking of predictors (historical WNND cases, climate anomalies, human demographics, and land use) across regions. We found that historical WNND cases and population density were among the most important factors while anomalies in temperature and precipitation often had relatively low importance. While the relative performance of each model varied across climatic regions, the magnitude of difference between models was small. All models except the naïve model had non-significant differences in performance relative to the baseline model (negative binomial model fit per hexagon). No model, including the ensemble or more complex machine learning models, outperformed models based on historical case counts on the hexagon or region level; these models are good forecasting benchmarks. Further work is needed to assess if predictive capacity can be improved beyond that of these historical baselines.
Collapse
Affiliation(s)
- Karen M. Holcomb
- Global Systems LaboratoryNational Oceanic and Atmospheric AdministrationBoulderCOUSA
- Now at Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - J. Erin Staples
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Randall J. Nett
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Charles B. Beard
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Lyle R. Petersen
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionFort CollinsCOUSA
| | - Stanley G. Benjamin
- Global Systems LaboratoryNational Oceanic and Atmospheric AdministrationBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado BoulderBoulderCOUSA
| | - Benjamin W. Green
- Global Systems LaboratoryNational Oceanic and Atmospheric AdministrationBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado BoulderBoulderCOUSA
| | - Hunter Jones
- Climate Prediction OfficeNational Oceanic and Atmospheric AdministrationSilver SpringMDUSA
| | - Michael A. Johansson
- Division of Vector‐Borne DiseasesCenters for Disease Control and PreventionSan JuanPRUSA
| |
Collapse
|
5
|
Rakotoarinia MR, Seidou O, Lapen DR, Leighton PA, Ogden NH, Ludwig A. Future land-use change predictions using Dyna-Clue to support mosquito-borne disease risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:815. [PMID: 37286856 PMCID: PMC10246872 DOI: 10.1007/s10661-023-11394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
Mosquitoes are known vectors for viral diseases in Canada, and their distribution is driven by climate and land use. Despite that, future land-use changes have not yet been used as a driver in mosquito distribution models in North America. In this paper, we developed land-use change projections designed to address mosquito-borne disease (MBD) prediction in a 38 761 km2 area of Eastern Ontario. The landscape in the study area is marked by urbanization and intensive agriculture and hosts a diverse mosquito community. The Dyna-CLUE model was used to project land-use for three time horizons (2030, 2050, and 2070) based on historical trends (from 2014 to 2020) for water, forest, agriculture, and urban land uses. Five scenarios were generated to reflect urbanization, agricultural expansion, and natural areas. An ensemble of thirty simulations per scenario was run to account for land-use conversion uncertainty. The simulation closest to the average map generated was selected to represent the scenario. A concordance matrix generated using map pair analysis showed a good agreement between the simulated 2020 maps and 2020 observed map. By 2050, the most significant changes are predicted to occur mainly in the southeastern region's rural and forested areas. By 2070, high deforestation is expected in the central west. These results will be integrated into risk models predicting mosquito distribution to study the possibility of humans' increased exposure risk to MBDs.
Collapse
Affiliation(s)
- Miarisoa Rindra Rakotoarinia
- Département de Pathologie Et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Groupe de Recherche en Épidémiologie Des Zoonoses Et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
| | - Ousmane Seidou
- Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Patrick A Leighton
- Département de Pathologie Et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Groupe de Recherche en Épidémiologie Des Zoonoses Et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Nicholas H Ogden
- Groupe de Recherche en Épidémiologie Des Zoonoses Et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3190 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Antoinette Ludwig
- Groupe de Recherche en Épidémiologie Des Zoonoses Et Santé Publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3190 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| |
Collapse
|
6
|
Schwarz ER, Long MT. Comparison of West Nile Virus Disease in Humans and Horses: Exploiting Similarities for Enhancing Syndromic Surveillance. Viruses 2023; 15:1230. [PMID: 37376530 DOI: 10.3390/v15061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
West Nile virus (WNV) neuroinvasive disease threatens the health and well-being of horses and humans worldwide. Disease in horses and humans is remarkably similar. The occurrence of WNV disease in these mammalian hosts has geographic overlap with shared macroscale and microscale drivers of risk. Importantly, intrahost virus dynamics, the evolution of the antibody response, and clinicopathology are similar. The goal of this review is to provide a comparison of WNV infection in humans and horses and to identify similarities that can be exploited to enhance surveillance methods for the early detection of WNV neuroinvasive disease.
Collapse
Affiliation(s)
- Erika R Schwarz
- Montana Veterinary Diagnostic Laboratory, MT Department of Livestock, Bozeman, MT 59718, USA
| | - Maureen T Long
- Department of Comparative, Diagnostic, & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Hort HM, Ibaraki M, Schwartz FW. Temporal and Spatial Synchronicity in West Nile Virus Cases Along the Central Flyway, USA. GEOHEALTH 2023; 7:e2022GH000708. [PMID: 37181010 PMCID: PMC10171186 DOI: 10.1029/2022gh000708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
This study of West Nile virus (WNV) examined the possibility of avian transmission to explain synchronicity in the year-to-year variability of WNV case numbers from Texas northward to the Dakotas, and reasons for the large case numbers on the northern Great Plains. We determined correlation coefficients between annual disease incidence per 100,000 people among states within the Great Plains Region, as well as the Central Flyway. There was spatial and temporal synchronicity, as evidenced by Pearson "r," with values along the core of the Central Flyway (Oklahoma, Kansas, Nebraska, and South Dakota) varying between 0.69 and 0.79. Correlations for North Dakota (r = 0.6), however, were affected by local conditions. The concept of relative amplification is helpful in explaining why northerly states along the Central Flyway have larger annual case numbers per 100,000 than Texas but preserve the temporal signal. States differed in their capacity for amplifying the temporal signal in case numbers. For example, Nebraska, South Dakota, and North Dakota case numbers were commonly amplified relative to Texas, with Oklahoma and Kansas deamplified. Relative amplification factors for all states increased as a function of increasing case numbers in Texas. Thus, increased numbers of initially infected birds in Texas likely led to the rapid intensification of the zoonotic cycle as compared to more typical years. The study also confirmed the importance of winter weather in locally modulating disease cases. North Dakota appeared most impacted by these factors to the extent of reducing WNV case numbers in colder years and years with deep snow.
Collapse
Affiliation(s)
| | - M. Ibaraki
- School of Earth SciencesThe Ohio State UniversityColumbusOHUSA
| | - F. W. Schwartz
- School of Earth SciencesThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
8
|
Gorris ME, Randerson JT, Coffield SR, Treseder KK, Zender CS, Xu C, Manore CA. Assessing the Influence of Climate on the Spatial Pattern of West Nile Virus Incidence in the United States. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47016. [PMID: 37104243 PMCID: PMC10137712 DOI: 10.1289/ehp10986] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND West Nile virus (WNV) is the leading cause of mosquito-borne disease in humans in the United States. Since the introduction of the disease in 1999, incidence levels have stabilized in many regions, allowing for analysis of climate conditions that shape the spatial structure of disease incidence. OBJECTIVES Our goal was to identify the seasonal climate variables that influence the spatial extent and magnitude of WNV incidence in humans. METHODS We developed a predictive model of contemporary mean annual WNV incidence using U.S. county-level case reports from 2005 to 2019 and seasonally averaged climate variables. We used a random forest model that had an out-of-sample model performance of R 2 = 0.61 . RESULTS Our model accurately captured the V-shaped area of higher WNV incidence that extends from states on the Canadian border south through the middle of the Great Plains. It also captured a region of moderate WNV incidence in the southern Mississippi Valley. The highest levels of WNV incidence were in regions with dry and cold winters and wet and mild summers. The random forest model classified counties with average winter precipitation levels < 23.3 mm / month as having incidence levels over 11 times greater than those of counties that are wetter. Among the climate predictors, winter precipitation, fall precipitation, and winter temperature were the three most important predictive variables. DISCUSSION We consider which aspects of the WNV transmission cycle climate conditions may benefit the most and argued that dry and cold winters are climate conditions optimal for the mosquito species key to amplifying WNV transmission. Our statistical model may be useful in projecting shifts in WNV risk in response to climate change. https://doi.org/10.1289/EHP10986.
Collapse
Affiliation(s)
- Morgan E. Gorris
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - James T. Randerson
- Department of Earth System Science, University of California, Irvine, Irvine, California, USA
| | - Shane R. Coffield
- Department of Earth System Science, University of California, Irvine, Irvine, California, USA
| | - Kathleen K. Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| | - Charles S. Zender
- Department of Earth System Science, University of California, Irvine, Irvine, California, USA
| | - Chonggang Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Carrie A. Manore
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| |
Collapse
|
9
|
Adelman JS, Tokarz RE, Euken AE, Field EN, Russell MC, Smith RC. Relative Influence of Land Use, Mosquito Abundance, and Bird Communities in Defining West Nile Virus Infection Rates in Culex Mosquito Populations. INSECTS 2022; 13:758. [PMID: 36135459 PMCID: PMC9502061 DOI: 10.3390/insects13090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Since its introduction to North America in 1999, the West Nile virus (WNV) has resulted in over 50,000 human cases and 2400 deaths. WNV transmission is maintained via mosquito vectors and avian reservoir hosts, yet mosquito and avian infections are not uniform across ecological landscapes. As a result, it remains unclear whether the ecological communities of the vectors or reservoir hosts are more predictive of zoonotic risk at the microhabitat level. We examined this question in central Iowa, representative of the midwestern United States, across a land use gradient consisting of suburban interfaces with natural and agricultural habitats. At eight sites, we captured mosquito abundance data using New Jersey light traps and monitored bird communities using visual and auditory point count surveys. We found that the mosquito minimum infection rate (MIR) was better predicted by metrics of the mosquito community than metrics of the bird community, where sites with higher proportions of Culex pipiens group mosquitoes during late summer (after late July) showed higher MIRs. Bird community metrics did not significantly influence mosquito MIRs across sites. Together, these data suggest that the microhabitat suitability of Culex vector species is of greater importance than avian community composition in driving WNV infection dynamics at the urban and agricultural interface.
Collapse
Affiliation(s)
- James S. Adelman
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38152, USA
| | - Ryan E. Tokarz
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Department of International and Global Health, Mercer University, Macon, GA 31207, USA
| | - Alec E. Euken
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA
| | - Eleanor N. Field
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Marie C. Russell
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Ryan C. Smith
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Spatiotemporal Modeling of Zoonotic Arbovirus Transmission in Northeastern Florida Using Sentinel Chicken Surveillance and Earth Observation Data. REMOTE SENSING 2022. [DOI: 10.3390/rs14143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The irregular timing and spatial variation in the zoonotic arbovirus spillover from vertebrate hosts to humans and livestock present challenges to predicting spillover occurrence over time and across broader geographic areas, compromising effective prevention and control strategies. The objective of this study was to quantify the effects of the landscape composition and configuration and dynamic weather events on the 2018 spatiotemporal distribution of eastern equine encephalitis virus (EEEV) (Togaviridae, Alphavirus) and West Nile virus (WNV) (Flaviviridae, Flavivirus) sentinel chicken seroconversion in northeastern Florida. We used a modeling framework that explicitly accounts for joint spatial and temporal effects and incorporates key EO (Earth Observation) information on the climate and landscape in order to more accurately quantify the environmental effects on the transmission to sentinel chickens. We investigated the environmental effects using Bernoulli generalized linear mixed effects models (GLMMs), including a site-level random effect, and then added spatial random effects and spatiotemporal random effects in subsequent runs. The models were executed using an integrated nested Laplace approximation (INLA) and a stochastic partial differential equation (SPDE) approach in R-INLA. The GLMMs that included a spatiotemporal random effect performed better relative to models that included only spatial random effects and also performed better than non-spatial models. The results indicated a strong spatiotemporal structure in the seroconversion for both viruses, but EEEV exhibited a more punctuated and compact structure at the beginning of the sampling season, while WNV exhibited a more gradual and diffuse structure across the study area toward the end of the sampling season. The percentage of cypress–tupelo wetland land cover within 3500 m of coop sites and the edge density of the forest land cover within 500 m had a strong positive effect on the EEEV seroconversion, while the best fitting model for WNV was the intercept-only model with spatiotemporal random effects. The lagged climatic variables included in our study did not have a strong effect on the seroconversion for either virus when accounting for temporal autocorrelation, demonstrating the utility of capturing this structure to avoid type I errors. The predictive accuracy for out-of-sample data for the EEEV seroconversion demonstrates the potential to develop a framework that incorporates temporal dynamics in order to better predict arbovirus transmission.
Collapse
|
11
|
Mansilla AP, Grande JM, Diaz A. Effect of Agroecosystems on Seroprevalence of St. Louis Encephalitis and West Nile Viruses in Birds, La Pampa, Argentina, 2017-2019. Emerg Infect Dis 2022; 28:1393-1402. [PMID: 35731160 PMCID: PMC9239869 DOI: 10.3201/eid2807.211485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Argentina, the Pampa ecoregion has been almost completely transformed into agroecosystems. To evaluate the environmental (agricultural area, tree coverage, distance to the nearest water body and urban site) and biological (dove, cowbird, and sparrow abundance) effects on free-ranging bird exposure to St. Louis encephalitis virus (SLEV) and West Nile virus (WNV), we used generalized linear mixed models. For 1,019 birds sampled during 2017–2019, neutralizing antibodies were found against SLEV in samples from 60 (5.8%) birds and against WNV for 21 (2.1%). The best variable for explaining SLEV seroprevalence was agricultural area, which had a positive effect; however, for WNV, no model was conclusive. Our results suggest that agroecosystems in the La Pampa ecoregion increase the exposure of avian hosts to SLEV, thus potentially increasing virus activity.
Collapse
|
12
|
Evans MV, Bhatnagar S, Drake JM, Murdock CC, Mukherjee S. Socio‐ecological dynamics in urban systems: An integrative approach to mosquito‐borne disease in Bengaluru, India. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Michelle V. Evans
- MIVEGEC, Univ. Montpellier, CNRS, IRD Montpellier France
- Odum School of Ecology University of Georgia Athens GA USA
- Center for Ecology of Infectious Diseases University of Georgia Athens GA USA
| | - Siddharth Bhatnagar
- Observatoire de Genève Université de Genève Sauverny Switzerland
- School of Arts and Sciences Azim Premji University Bengaluru India
| | - John M. Drake
- Odum School of Ecology University of Georgia Athens GA USA
- Center for Ecology of Infectious Diseases University of Georgia Athens GA USA
| | - Courtney C. Murdock
- Odum School of Ecology University of Georgia Athens GA USA
- Center for Ecology of Infectious Diseases University of Georgia Athens GA USA
- Department of Entomology, College of Agriculture and Life Sciences Cornell University Ithaca NY USA
- Cornell Institute of Host‐Microbe Interactions and Disease Cornell University Ithaca NY USA
- Northeast Regional Center of Excellence in Vector‐borne Diseases Cornell University Ithaca NY USA
| | - Shomen Mukherjee
- School of Arts and Sciences Azim Premji University Bengaluru India
- Biology and Life Sciences Division, School of Arts and Sciences Ahmedabad University Ahmedabad Gujarat India
| |
Collapse
|
13
|
Rochlin I, White G, Reissen N, Martheswaran T, Faraji A. Effects of aerial adulticiding for mosquito management on nontarget insects: A Bayesian and community ecology approach. Ecosphere 2022. [DOI: 10.1002/ecs2.3896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology Rutgers University New Brunswick New Jersey USA
| | - Greg White
- Salt Lake City Mosquito Abatement District Salt Lake City Utah USA
| | - Nadja Reissen
- Salt Lake City Mosquito Abatement District Salt Lake City Utah USA
| | - Tarun Martheswaran
- Salt Lake City Mosquito Abatement District Salt Lake City Utah USA
- Waterford School Sandy Utah USA
| | - Ary Faraji
- Salt Lake City Mosquito Abatement District Salt Lake City Utah USA
| |
Collapse
|
14
|
Tajudeen YA, Oladunjoye IO, Mustapha MO, Mustapha ST, Ajide-Bamigboye NT. Tackling the global health threat of arboviruses: An appraisal of the three holistic approaches to health. Health Promot Perspect 2021; 11:371-381. [PMID: 35079581 PMCID: PMC8767080 DOI: 10.34172/hpp.2021.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The rapid circulation of arboviruses in the human population has been linked with changes in climatic, environmental, and socio-economic conditions. These changes are known to alter the transmission cycles of arboviruses involving the anthropophilic vectors and thus facilitate an extensive geographical distribution of medically important arboviral diseases, thereby posing a significant health threat. Using our current understanding and assessment of relevant literature, this review aimed to understand the underlying factors promoting the spread of arboviruses and how the three most renowned interdisciplinary and holistic approaches to health such as One Health, Eco-Health, and Planetary Health can be a panacea for control of arboviruses. Methods: A comprehensive structured search of relevant databases such as Medline, PubMed, WHO, Scopus, Science Direct, DOAJ, AJOL, and Google Scholar was conducted to identify recent articles on arboviruses and holistic approaches to health using the keywords including "arboviral diseases", "arbovirus vectors", "arboviral infections", "epidemiology of arboviruses", "holistic approaches", "One Health", "Eco-Health", and "Planetary Health". Results: Changes in climatic factors like temperature, humidity, and precipitation support the growth, breeding, and fecundity of arthropod vectors transmitting the arboviral diseases. Increased human migration and urbanization due to socio-economic factors play an important role in population increase leading to the rapid geographical distribution of arthropod vectors and transmission of arboviral diseases. Medical factors like misdiagnosis and misclassification also contribute to the spread of arboviruses. Conclusion: This review highlights two important findings: First, climatic, environmental, socio-economic, and medical factors influence the constant distributions of arthropod vectors. Second, either of the three holistic approaches or a combination of any two can be adopted on arboviral disease control. Our findings underline the need for holistic approaches as the best strategy to mitigating and controlling the emerging and reemerging arboviruses.
Collapse
|
15
|
Gorris ME, Bartlow AW, Temple SD, Romero-Alvarez D, Shutt DP, Fair JM, Kaufeld KA, Del Valle SY, Manore CA. Updated distribution maps of predominant Culex mosquitoes across the Americas. Parasit Vectors 2021; 14:547. [PMID: 34688314 PMCID: PMC8542338 DOI: 10.1186/s13071-021-05051-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Estimates of the geographical distribution of Culex mosquitoes in the Americas have been limited to state and provincial levels in the United States and Canada and based on data from the 1980s. Since these estimates were made, there have been many more documented observations of mosquitoes and new methods have been developed for species distribution modeling. Moreover, mosquito distributions are affected by environmental conditions, which have changed since the 1980s. This calls for updated estimates of these distributions to understand the risk of emerging and re-emerging mosquito-borne diseases. METHODS We used contemporary mosquito data, environmental drivers, and a machine learning ecological niche model to create updated estimates of the geographical range of seven predominant Culex species across North America and South America: Culex erraticus, Culex nigripalpus, Culex pipiens, Culex quinquefasciatus, Culex restuans, Culex salinarius, and Culex tarsalis. RESULTS We found that Culex mosquito species differ in their geographical range. Each Culex species is sensitive to both natural and human-influenced environmental factors, especially climate and land cover type. Some prefer urban environments instead of rural ones, and some are limited to tropical or humid areas. Many are found throughout the Central Plains of the USA. CONCLUSIONS Our updated contemporary Culex distribution maps may be used to assess mosquito-borne disease risk. It is critical to understand the current geographical distributions of these important disease vectors and the key environmental predictors structuring their distributions not only to assess current risk, but also to understand how they will respond to climate change. Since the environmental predictors structuring the geographical distribution of mosquito species varied, we hypothesize that each species may have a different response to climate change.
Collapse
Affiliation(s)
- Morgan E. Gorris
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Andrew W. Bartlow
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Seth D. Temple
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM USA
- Department of Statistics, University of Washington, Seattle, WA USA
| | - Daniel Romero-Alvarez
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS USA
- OneHealth Research Group, Facultad de Medicina, Universidad de las Américas, Quito, Ecuador
| | - Deborah P. Shutt
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Jeanne M. Fair
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Sara Y. Del Valle
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Carrie A. Manore
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| |
Collapse
|
16
|
Glidden CK, Nova N, Kain MP, Lagerstrom KM, Skinner EB, Mandle L, Sokolow SH, Plowright RK, Dirzo R, De Leo GA, Mordecai EA. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr Biol 2021; 31:R1342-R1361. [PMID: 34637744 PMCID: PMC9255562 DOI: 10.1016/j.cub.2021.08.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing. At the forefront of these efforts is an attempt to clarify ways in which biodiversity conservation can help reduce the risk of zoonotic spillover of pathogens from wild animals, sparking epidemics and pandemics in humans and livestock. However, our understanding of the mechanisms by which biodiversity change influences the spillover process is incomplete, limiting the application of integrated strategies aimed at achieving positive outcomes for both conservation and disease management. Here, we review the literature, considering a broad scope of biodiversity dimensions, to identify cases where zoonotic pathogen spillover is mechanistically linked to changes in biodiversity. By reframing the discussion around biodiversity and disease using mechanistic evidence - while encompassing multiple aspects of biodiversity including functional diversity, landscape diversity, phenological diversity, and interaction diversity - we work toward general principles that can guide future research and more effectively integrate the related goals of biodiversity conservation and spillover prevention. We conclude by summarizing how these principles could be used to integrate the goal of spillover prevention into ongoing biodiversity conservation initiatives.
Collapse
Affiliation(s)
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Morgan P Kain
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA
| | | | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Centre for Planetary Health and Food Security, Griffith University, Gold Coast, QLD 4222, Australia
| | - Lisa Mandle
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Natural Capital Project, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Giulio A De Leo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Gourevitch JD, Alonso-Rodríguez AM, Aristizábal N, de Wit LA, Kinnebrew E, Littlefield CE, Moore M, Nicholson CC, Schwartz AJ, Ricketts TH. Projected losses of ecosystem services in the US disproportionately affect non-white and lower-income populations. Nat Commun 2021; 12:3511. [PMID: 34112778 PMCID: PMC8192915 DOI: 10.1038/s41467-021-23905-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Addressing how ecosystem services (ES) are distributed among groups of people is critical for making conservation and environmental policy-making more equitable. Here, we evaluate the distribution and equity of changes in ES benefits across demographic and socioeconomic groups in the United States (US) between 2020 and 2100. Specifically, we use land cover and population projections to model potential shifts in the supply, demand, and benefits of the following ES: provision of clean air, protection against a vector-borne disease (West Nile virus), and crop pollination. Across the US, changes in ES benefits are unevenly distributed among socioeconomic and demographic groups and among rural and urban communities, but are relatively uniform across geographic regions. In general, non-white, lower-income, and urban populations disproportionately bear the burden of declines in ES benefits. This is largely driven by the conversion of forests and wetlands to cropland and urban land cover in counties where these populations are expected to grow. In these locations, targeted land use policy interventions are required to avoid exacerbating inequalities already present in the US.
Collapse
Affiliation(s)
- Jesse D Gourevitch
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA.
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA.
| | - Aura M Alonso-Rodríguez
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Natalia Aristizábal
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Luz A de Wit
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Eva Kinnebrew
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Caitlin E Littlefield
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Maya Moore
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Food Systems Program, University of Vermont, Burlington, VT, USA
| | - Charles C Nicholson
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Department of Entomology and Nematology, University of California, Davis, CA, USA
- Department of Biology, Lund University, Lund, Sweden
| | - Aaron J Schwartz
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Taylor H Ricketts
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| |
Collapse
|
18
|
Dynamics of data availability in disease modeling: An example evaluating the trade-offs of ultra-fine-scale factors applied to human West Nile virus disease models in the Chicago area, USA. PLoS One 2021; 16:e0251517. [PMID: 34010306 PMCID: PMC8133451 DOI: 10.1371/journal.pone.0251517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background Since 1999, West Nile virus (WNV) has moved rapidly across the United States, resulting in tens of thousands of human cases. Both the number of human cases and the minimum infection rate (MIR) in vector mosquitoes vary across time and space and are driven by numerous abiotic and biotic forces, ranging from differences in microclimates to socio-demographic factors. Because the interactions among these multiple factors affect the locally variable risk of WNV illness, it has been especially difficult to model human disease risk across varying spatial and temporal scales. Cook and DuPage Counties, comprising the city of Chicago and surrounding suburbs, experience some of the highest numbers of human neuroinvasive cases of WNV in the United States. Despite active mosquito control efforts, there is consistent annual WNV presence, resulting in more than 285 confirmed WNV human cases and 20 deaths from the years 2014–2018 in Cook County alone. Methods A previous Chicago-area WNV model identified the fifty-five most high and low risk locations in the Northwest Mosquito Abatement District (NWMAD), an enclave ¼ the size of the combined Cook and DuPage county area. In these locations, human WNV risk was stratified by model performance, as indicated by differences in studentized residuals. Within these areas, an additional two-years of field collections and data processing was added to a 12-year WNV dataset that includes human cases, MIR, vector abundance, and land-use, historical climate, and socio-economic and demographic variables, and was assessed by an ultra-fine-scale (1 km spatial x 1 week temporal resolution) multivariate logistic regression model. Results Multivariate statistical methods applied to the ultra-fine-scale model identified fewer explanatory variables while improving upon the fit of the previous model. Beyond MIR and climatic factors, efforts to acquire additional covariates only slightly improved model predictive performance. Conclusions These results suggest human WNV illness in the Chicago area may be associated with fewer, but increasingly critical, key variables at finer scales. Given limited resources, these findings suggest large variations in model performance occur, depending on covariate availability, and provide guidance in variable selection for optimal WNV human illness modeling.
Collapse
|
19
|
Orta-Pineda G, Abella-Medrano CA, Suzán G, Serrano-Villagrana A, Ojeda-Flores R. Effects of landscape anthropization on sylvatic mosquito assemblages in a rainforest in Chiapas, Mexico. Acta Trop 2021; 216:105849. [PMID: 33524383 DOI: 10.1016/j.actatropica.2021.105849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
Global change and ecosystem transformation at regional and local scales during recent decades have facilitated the exponential increase of outbreaks of mosquito-borne diseases. Mosquito-borne pathogens are responsible for millions of infections, mainly in tropical regions where marginalized human populations are located, and where in recent years processes of landscape anthropization have occurred. Anthropogenic landscape transformation is known to change species assemblages. However, the magnitude of these effects is largely unknown, and the effects of anthropogenic landscape transformation on sylvatic mosquito assemblages are poorly known in Mexican ecosystems. We evaluate how mosquito abundance, richness, and diversity change along a gradient of three human-modified landscapes-one highly anthropized, one moderately anthropized, and one slightly anthropized-within a tropical forest matrix in a Protected Natural Area in Chiapas. A total of 4 538 mosquitoes belonging to 23 species were captured and identified at the three sites. We found differences in the structure and abundance of the three mosquito assemblages. The species assemblage of the highly anthropized site was significantly different from the other sites, and the relative abundance of the assemblages increased with landscape anthropization. Our results suggest that landscape anthropization alters the composition and structure of mosquito assemblages, modifying the abundance and species richness of mosquitoes associated with sylvatic ecosystems. This could support the hypothesis of intermediate disturbance that suggests the diversity is maximized when late and early successional species coexist in these ecosystems. This information is essential to understand the ecology of potential sylvatic vectors and the environmental factors that are involved in the emergence and re-emergence of mosquito-borne diseases.
Collapse
|
20
|
Mohammed MN, Yasmin AR, Noraniza MA, Ramanoon SZ, Arshad SS, Bande F, Mohammed HO. Serological evidence of West Nile viral infection in archived swine serum samples from Peninsular Malaysia. J Vet Sci 2021; 22:e29. [PMID: 33908203 PMCID: PMC8170214 DOI: 10.4142/jvs.2021.22.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/20/2022] Open
Abstract
West Nile virus (WNV), a neurotropic arbovirus, has been detected in mosquitos, birds, wildlife, horses, and humans in Malaysia, but limited information is available on WNV infection in Malaysian pigs. We tested 80 archived swine serum samples for the presence of WNV antibody and West Nile (WN) viral RNA using ID Screen West Nile Competition Multi-species enzyme-linked immunosorbent assay kits and WNV-specific primers in reverse transcription polymerase chain reaction assays, respectively. A WNV seroprevalence of 62.5% (50/80) at 95% confidence interval (51.6%-72.3%) was recorded, with a significantly higher seroprevalence among young pigs (weaner and grower) and pigs from south Malaysia. One sample was positive for Japanese encephalitis virus antibodies; WN viral RNA was not detected in any of the serum samples.
Collapse
Affiliation(s)
- Mohammed Nma Mohammed
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.,Department of Animal Production, Federal University of Technology Minna, PMB 65, Minna, Niger, Nigeria
| | - Abd Rahaman Yasmin
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Mohd Adzahan Noraniza
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Siti Zubaidah Ramanoon
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Faruku Bande
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Bayero University, PMB 3011, Kano, Nigeria
| | - Hussni O Mohammed
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
García-Carrasco JM, Muñoz AR, Olivero J, Segura M, Real R. Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS Negl Trop Dis 2021; 15:e0009022. [PMID: 33411739 PMCID: PMC7790247 DOI: 10.1371/journal.pntd.0009022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
West Nile virus is a widely spread arthropod-born virus, which has mosquitoes as vectors and birds as reservoirs. Humans, as dead-end hosts of the virus, may suffer West Nile Fever (WNF), which sometimes leads to death. In Europe, the first large-scale epidemic of WNF occurred in 1996 in Romania. Since then, human cases have increased in the continent, where the highest number of cases occurred in 2018. Using the location of WNF cases in 2017 and favorability models, we developed two risk models, one environmental and the other spatio-environmental, and tested their capacity to predict in 2018: 1) the location of WNF; 2) the intensity of the outbreaks (i.e. the number of confirmed human cases); and 3) the imminence of the cases (i.e. the Julian week in which the first case occurred). We found that climatic variables (the maximum temperature of the warmest month and the annual temperature range), human-related variables (rain-fed agriculture, the density of poultry and horses), and topo-hydrographic variables (the presence of rivers and altitude) were the best environmental predictors of WNF outbreaks in Europe. The spatio-environmental model was the most useful in predicting the location of WNF outbreaks, which suggests that a spatial structure, probably related to bird migration routes, has a role in the geographical pattern of WNF in Europe. Both the intensity of cases and their imminence were best predicted using the environmental model, suggesting that these features of the disease are linked to the environmental characteristics of the areas. We highlight the relevance of river basins in the propagation dynamics of the disease, as outbreaks started in the lower parts of the river basins, from where WNF spread towards the upper parts. Therefore, river basins should be considered as operational geographic units for the public health management of the disease.
Collapse
Affiliation(s)
- José-María García-Carrasco
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Antonio-Román Muñoz
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Jesús Olivero
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Marina Segura
- International Vaccination Center of Malaga, Maritime Port of Malaga, Ministry of Health, Consumption and Social Welfare, Government of Spain, Málaga, Spain
| | - Raimundo Real
- Biogeography, Diversity and Conservation Lab, Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| |
Collapse
|
22
|
Lefcort H, Tsybulnik DY, Browning RJ, Eagle HP, Eggleston TE, Magori K, Andrade CC. Behavioral characteristics and endosymbionts of two potential tularemia and Rocky Mountain spotted fever tick vectors. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:321-332. [PMID: 33207056 DOI: 10.1111/jvec.12403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Due to climate change-induced alterations of temperature and humidity, the distribution of pathogen-carrying organisms such as ticks may shift. Tick survival is often limited by environmental factors such as dryness, but a predicted hotter and wetter world may allow the expansion of tick ranges. Dermacentor andersoni and D. variabilis ticks are morphologically similar, co-occur throughout the Inland Northwest of Washington State, U.S.A., and both can be injected with pathogenic Rickettsia and Francisella bacteria. Differences in behavior and the potential role of endosymbiotic Rickettsia and Francisella in these ticks are poorly studied. We wanted to measure behavioral and ecological differences between the two species and determine which, if any, Rickettsia and Francisella bacteria - pathogenic or endosymbiotic - they carried. Additionally, we wanted to determine if either tick species may be selected for if the climate in eastern Washington becomes wetter or dryer. We found that D. andersoni is more resistant to desiccation, but both species share similar questing behaviors such as climbing and attraction to bright light. Both also avoid the odor of eucalyptus and DEET but not permethrin. Although both tick species are capable of transmitting pathogenic species of Francisella and Rickettsia, which cause tularemia and Rocky Mountain Spotted Fever, respectively, we found primarily non-pathogenic endosymbiotic strains of Francisella and Rickettsia, and only one tick infected with F. tularensis subspecies holarctica.
Collapse
Affiliation(s)
- Hugh Lefcort
- Biology Department, Gonzaga University, Spokane, WA, 99258
| | | | | | | | | | - Krisztian Magori
- Department of Biology, Eastern Washington University, Cheney, WA, 99004
| | | |
Collapse
|
23
|
Marshall DS, Butler CJ. Potential Distribution of the Biocontrol Agent Toxorhynchites rutilus By 2070. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:131-138. [PMID: 33600581 DOI: 10.2987/8756-971x-36.3.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Climate change projections indicate that mosquito distributions will expand to include new areas of North America, increasing human exposure to mosquito-borne disease. Controlling these vectors is imperative, as mosquito-borne disease incidence will rise in response to expansion of mosquito range and increased seasonality. One means of mosquito control used in the USA is the biocontrol agent, Toxorhynchites rutilus. Climate change will open new habitats for its use by vector control organizations, but the extent of this change in habitat is currently unknown. We used a maximum entropy approach to create species distribution models for Tx. rutilus under 4 climate change scenarios by 2070. Mean temperature of warmest quarter (22.6°C to 29.1°C), annual precipitation (1,025.15 mm to 1,529.40 mm), and precipitation seasonality (≤17.86) are the most important bioclimatic variables for suitable habitat. The center of current possible habitat distribution of Tx. rutilus is in central Tennessee. Depending upon the scenario, we expect centroids to shift north-northeast by 97.68 km to 280.16 km by 2070. The extreme change in area of greater than 50% suitable habitat probability is 141.14% with 99.44% area retained. Our models indicate limited change in current habitat as well as creation of new habitat. These results are promising for North American mosquito control programs for the continued and potential combat of vector mosquitoes using Tx. rutilus.
Collapse
Affiliation(s)
- Daniel S Marshall
- Department of Biology, University of Central Oklahoma, 100 N University Drive Box 89, Edmond, OK 73034
| | - Christopher J Butler
- Department of Biology, University of Central Oklahoma, 100 N University Drive Box 89, Edmond, OK 73034
| |
Collapse
|
24
|
Gangoso L, Aragonés D, Martínez-de la Puente J, Lucientes J, Delacour-Estrella S, Estrada Peña R, Montalvo T, Bueno-Marí R, Bravo-Barriga D, Frontera E, Marqués E, Ruiz-Arrondo I, Muñoz A, Oteo JA, Miranda MA, Barceló C, Arias Vázquez MS, Silva-Torres MI, Ferraguti M, Magallanes S, Muriel J, Marzal A, Aranda C, Ruiz S, González MA, Morchón R, Gómez-Barroso D, Figuerola J. Determinants of the current and future distribution of the West Nile virus mosquito vector Culex pipiens in Spain. ENVIRONMENTAL RESEARCH 2020; 188:109837. [PMID: 32798954 DOI: 10.1016/j.envres.2020.109837] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Changes in environmental conditions, whether related or not to human activities, are continuously modifying the geographic distribution of vectors, which in turn affects the dynamics and distribution of vector-borne infectious diseases. Determining the main ecological drivers of vector distribution and how predicted changes in these drivers may alter their future distributions is therefore of major importance. However, the drivers of vector populations are largely specific to each vector species and region. Here, we identify the most important human-activity-related and bioclimatic predictors affecting the current distribution and habitat suitability of the mosquito Culex pipiens and potential future changes in its distribution in Spain. We determined the niche of occurrence (NOO) of the species, which considers only those areas lying within the range of suitable environmental conditions using presence data. Although almost ubiquitous, the distribution of Cx. pipiens is mostly explained by elevation and the degree of urbanization but also, to a lesser extent, by mean temperatures during the wettest season and temperature seasonality. The combination of these predictors highlights the existence of a heterogeneous pattern of habitat suitability, with most suitable areas located in the southern and northeastern coastal areas of Spain, and unsuitable areas located at higher altitude and in colder regions. Future climatic predictions indicate a net decrease in distribution of up to 29.55%, probably due to warming and greater temperature oscillations. Despite these predicted changes in vector distribution, their effects on the incidence of infectious diseases are, however, difficult to forecast since different processes such as local adaptation to temperature, vector-pathogen interactions, and human-derived changes in landscape may play important roles in shaping the future dynamics of pathogen transmission.
Collapse
Affiliation(s)
- L Gangoso
- Department of Wetland Ecology, Estación Biológica de Doñana, EBD-CSIC, C/ Américo Vespucio 26, 41092, Seville, Spain.
| | - D Aragonés
- Remote Sensing and Geographic Information Systems Laboratory (LAST-EBD), Estación Biológica de Doñana, EBD-CSIC, C/ Américo Vespucio 26, 41092, Seville, Spain
| | - J Martínez-de la Puente
- Department of Wetland Ecology, Estación Biológica de Doñana, EBD-CSIC, C/ Américo Vespucio 26, 41092, Seville, Spain; CIBER of Epidemiology and Public Health (CIBERESP), C/ Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | - J Lucientes
- Animal Health Department, The AgriFood Institute of Aragon (IA2), Faculty of Veterinary Medicine, C/ Miguel Servet 177, 50013, Zaragoza, Spain
| | - S Delacour-Estrella
- Animal Health Department, The AgriFood Institute of Aragon (IA2), Faculty of Veterinary Medicine, C/ Miguel Servet 177, 50013, Zaragoza, Spain
| | - R Estrada Peña
- Animal Health Department, The AgriFood Institute of Aragon (IA2), Faculty of Veterinary Medicine, C/ Miguel Servet 177, 50013, Zaragoza, Spain
| | - T Montalvo
- Agència de Salut Pública de Barcelona, Consorci Sanitari de Barcelona, Plaça Lesseps 8, 08023, Barcelona, Spain; CIBER of Epidemiology and Public Health (CIBERESP), C/ Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | - R Bueno-Marí
- Departamento de Investigación y Desarrollo (I+D), Laboratorios Lokímica, Polígono Industrial El Bony, C/42, n°4, 46470, Catarroja, Valencia, Spain
| | - D Bravo-Barriga
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Av. de la Universidad s/n, 10003, Cáceres, Spain
| | - E Frontera
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Av. de la Universidad s/n, 10003, Cáceres, Spain
| | - E Marqués
- Service of Mosquito Control (Badia de Roses i del Baix Ter), Plaça del Bruel 1, Castelló d'Empúries, 17486, Empuriabrava, Girona, Spain
| | - I Ruiz-Arrondo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, C/ Piqueras 98, 26006, Logroño, La Rioja, Spain
| | - A Muñoz
- Quimera Biological Systems S.L., Pol. Malpica-Alfindén, C/ Olivo 14, Nave 6, 50171, La Puebla de Alfindén, Zaragoza, Spain
| | - J A Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, C/ Piqueras 98, 26006, Logroño, La Rioja, Spain
| | - M A Miranda
- Applied Zoology and Animal Conservation group, Department of Biology, University of the Balearic Islands (UIB), Ctra. de Valldemossa, km 7.5, 07122, Palma, Illes Balears, Spain
| | - C Barceló
- Applied Zoology and Animal Conservation group, Department of Biology, University of the Balearic Islands (UIB), Ctra. de Valldemossa, km 7.5, 07122, Palma, Illes Balears, Spain
| | - M S Arias Vázquez
- Zoonoses and Public Health. COPAR Research Group, Faculty of Veterinary, University of Santiago de Compostela, Av. Carvallo Calero, 27002, Lugo, Spain
| | - M I Silva-Torres
- Zoonoses and Public Health. COPAR Research Group, Faculty of Veterinary, University of Santiago de Compostela, Av. Carvallo Calero, 27002, Lugo, Spain
| | - M Ferraguti
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Av. de Elvas s/n, 06006, Badajoz, Spain
| | - S Magallanes
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Av. de Elvas s/n, 06006, Badajoz, Spain
| | - J Muriel
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Av. de Elvas s/n, 06006, Badajoz, Spain; Instituto Pirenaico de Ecología, IPE (CSIC), Av. Nuestra Señora de la Victoria 16, 22700, Jaca, Spain
| | - A Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Av. de Elvas s/n, 06006, Badajoz, Spain
| | - C Aranda
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, N-340, 08980, Sant Feliu de Llobregat, Barcelona, Spain
| | - S Ruiz
- Service of Mosquito Control de la Diputación Provincial de Huelva, Ctra. Hospital Infanta Elena s/n, 21007, Huelva, Spain
| | - M A González
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development Basque Research and Technology Alliance (BRTA), Berreaga 1, 48160, Derio, Bizkaia, Spain
| | - R Morchón
- Group of Animal and Human dirofilariosis. University of Salamanca, Faculty of Pharmacy, Campus Miguel Unamuno, C/ Lic. Méndez Nieto, s/n, 37007, Salamanca, Spain
| | - D Gómez-Barroso
- Centro Nacional de Epidemiologia. Instituto de Salud Carlos III, C/ Monforte de Lemos 5, 28029, Madrid. Spain; CIBER of Epidemiology and Public Health (CIBERESP), C/ Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | - J Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana, EBD-CSIC, C/ Américo Vespucio 26, 41092, Seville, Spain; CIBER of Epidemiology and Public Health (CIBERESP), C/ Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| |
Collapse
|
25
|
West Nile Virus: An Update on Pathobiology, Epidemiology, Diagnostics, Control and "One Health" Implications. Pathogens 2020; 9:pathogens9070589. [PMID: 32707644 PMCID: PMC7400489 DOI: 10.3390/pathogens9070589] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is an important zoonotic flavivirus responsible for mild fever to severe, lethal neuroinvasive disease in humans, horses, birds, and other wildlife species. Since its discovery, WNV has caused multiple human and animal disease outbreaks in all continents, except Antarctica. Infections are associated with economic losses, mainly due to the cost of treatment of infected patients, control programmes, and loss of animals and animal products. The pathogenesis of WNV has been extensively investigated in natural hosts as well as in several animal models, including rodents, lagomorphs, birds, and reptiles. However, most of the proposed pathogenesis hypotheses remain contentious, and much remains to be elucidated. At the same time, the unavailability of specific antiviral treatment or effective and safe vaccines contribute to the perpetuation of the disease and regular occurrence of outbreaks in both endemic and non-endemic areas. Moreover, globalisation and climate change are also important drivers of the emergence and re-emergence of the virus and disease. Here, we give an update of the pathobiology, epidemiology, diagnostics, control, and “One Health” implications of WNV infection and disease.
Collapse
|
26
|
Poh KC, Medeiros MCI, Hamer GL. Landscape and demographic determinants of Culex infection with West Nile virus during the 2012 epidemic in Dallas County, TX. Spat Spatiotemporal Epidemiol 2020; 33:100336. [PMID: 32370939 DOI: 10.1016/j.sste.2020.100336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/10/2019] [Accepted: 02/05/2020] [Indexed: 11/16/2022]
Abstract
In 2012, the United States experienced one of the largest outbreaks of West Nile virus (WNV)-associated deaths, with the majority occurring in Dallas County (Co.), Texas (TX) and surrounding areas. In this study, logistic mixed models were used to identify associations between the landscape, human population, and WNV-infected Culex quinquefasciatus mosquitoes during the 2012 WNV epidemic in Dallas Co. We found increased probabilities for WNV-positive mosquitoes in north and central Dallas Co. The most significant predictors of the presence of WNV in Cx. quinquefasciatus pools were increased urbanization (based on an index composed of greater population density, lower normalized difference vegetation index, higher coverage of urban land types, and more impervious surfaces), older human populations, and lower elevation. These relationships between the landscape, sociodemographics, and risk of enzootic transmission identified regions of Dallas Co., TX with highest risk of spillover to human disease during the 2012 WNV epidemic.
Collapse
Affiliation(s)
- Karen C Poh
- Department of Entomology, Texas A&M University, TAMU MS 2475, College Station, 77843 TX, USA.
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, TAMU MS 2475, College Station, 77843 TX, USA.
| |
Collapse
|
27
|
Rochlin I, Faraji A, Healy K, Andreadis TG. West Nile Virus Mosquito Vectors in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1475-1490. [PMID: 31549725 DOI: 10.1093/jme/tjz146] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 05/11/2023]
Abstract
In North America, the geographic distribution, ecology, and vectorial capacity of a diverse assemblage of mosquito species belonging to the genus Culex determine patterns of West Nile virus transmission and disease risk. East of the Mississippi River, mostly ornithophagic Culex pipiens L. complex mosquitoes drive intense enzootic transmission with relatively small numbers of human cases. Westward, the presence of highly competent Culex tarsalis (Coquillett) under arid climate and hot summers defines the regions with the highest human risk. West Nile virus human risk distribution is not uniform geographically or temporally within all regions. Notable geographic 'hotspots' persist with occasional severe outbreaks. Despite two decades of comprehensive research, several questions remain unresolved, such as the role of non-Culex bridge vectors, which are not involved in the enzootic cycle, but may be involved in virus transmission to humans. The absence of bridge vectors also may help to explain the frequent lack of West Nile virus 'spillover' into human populations despite very intense enzootic amplification in the eastern United States. This article examines vectorial capacity and the eco-epidemiology of West Nile virus mosquito vectors in four geographic regions of North America and presents some of the unresolved questions.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, New Brunswick, NJ
| | - Ary Faraji
- Salt Lake City Mosquito Abatement District, Salt Lake City, UT
| | - Kristen Healy
- Department of Entomology, Louisiana State University, Baton Rouge, LA
| | - Theodore G Andreadis
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT
| |
Collapse
|
28
|
Kramer LD, Ciota AT, Kilpatrick AM. Introduction, Spread, and Establishment of West Nile Virus in the Americas. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1448-1455. [PMID: 31549719 PMCID: PMC7182919 DOI: 10.1093/jme/tjz151] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 05/04/2023]
Abstract
The introduction of West Nile virus (WNV) to North America in 1999 and its subsequent rapid spread across the Americas demonstrated the potential impact of arboviral introductions to new regions, and this was reinforced by the subsequent introductions of chikungunya and Zika viruses. Extensive studies of host-pathogen-vector-environment interactions over the past two decades have illuminated many aspects of the ecology and evolution of WNV and other arboviruses, including the potential for pathogen adaptation to hosts and vectors, the influence of climate, land use and host immunity on transmission ecology, and the difficulty in preventing the establishment of a zoonotic pathogen with abundant wildlife reservoirs. Here, we focus on outstanding questions concerning the introduction, spread, and establishment of WNV in the Americas, and what it can teach us about the future of arboviral introductions. Key gaps in our knowledge include the following: viral adaptation and coevolution of hosts, vectors and the virus; the mechanisms and species involved in the large-scale spatial spread of WNV; how weather modulates WNV transmission; the drivers of large-scale variation in enzootic transmission; the ecology of WNV transmission in Latin America; and the relative roles of each component of host-virus-vector interactions in spatial and temporal variation in WNV transmission. Integrative studies that examine multiple factors and mechanisms simultaneously are needed to advance our knowledge of mechanisms driving transmission.
Collapse
Affiliation(s)
- Laura D Kramer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY
- Corresponding author, e-mail:
| | - Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| |
Collapse
|
29
|
Kilpatrick AM, Wheeler SS. Impact of West Nile Virus on Bird Populations: Limited Lasting Effects, Evidence for Recovery, and Gaps in Our Understanding of Impacts on Ecosystems. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1491-1497. [PMID: 31549723 PMCID: PMC6821264 DOI: 10.1093/jme/tjz149] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 05/16/2023]
Abstract
The introduction of West Nile virus to North America in 1999 had profound impacts on human and wildlife health. Here, we review studies of WNV impacts on bird populations and find that overall impacts have been less than initially anticipated, with few species showing sustained changes in population size or demographic rates across multiple regions. This raises four questions: 1) What is the evidence for WNV impact on bird populations and how can we strengthen future analyses? We argue that future studies of WNV impacts should explicitly incorporate temporal variation in WNV transmission intensity, integrate field data with laboratory experimental infection studies, and correct for multiple comparisons. 2) What mechanisms might explain the relatively modest impact of WNV on most bird populations? We suggest that spatial and temporal variation in WNV transmission moderates WNV impacts on species that occur in multiple habitats, some of which provide refugia from infection. 3) Have species recovered from the initial invasion of WNV? We find evidence that many species and populations have recovered from initial WNV impact, but a few have not. 4) Did WNV cause cascading effects on other species and ecosystems? Unfortunately, few studies have examined the cascading effects of WNV population declines, but evidence suggests that some species may have been released from predation or competition. We close by discussing potentially overlooked groups of birds that may have been affected by WNV, and one highlight species, the yellow-billed magpie (Pica nutalli Audubon, 1837 [Passeriformes: Corvidae]), that appears to have suffered the largest range-wide impact from WNV.
Collapse
Affiliation(s)
- A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| | - Sarah S Wheeler
- Sacramento-Yolo Mosquito and Vector Control District, Elk Grove, CA
| |
Collapse
|
30
|
Hadfield J, Brito AF, Swetnam DM, Vogels CBF, Tokarz RE, Andersen KG, Smith RC, Bedford T, Grubaugh ND. Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLoS Pathog 2019; 15:e1008042. [PMID: 31671157 PMCID: PMC6822705 DOI: 10.1371/journal.ppat.1008042] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been 20 years since West Nile virus first emerged in the Americas, and since then, little progress has been made to control outbreaks caused by this virus. After its first detection in New York in 1999, West Nile virus quickly spread across the continent, causing an epidemic of human disease and massive bird die-offs. Now the virus has become endemic to the United States, where an estimated 7 million human infections have occurred, making it the leading mosquito-borne virus infection and the most common cause of viral encephalitis in the country. To bring new attention to one of the most important mosquito-borne viruses in the Americas, we provide an interactive review using Nextstrain: a visualization tool for real-time tracking of pathogen evolution (nextstrain.org/WNV/NA). Nextstrain utilizes a growing database of more than 2,000 West Nile virus genomes and harnesses the power of phylogenetics for students, educators, public health workers, and researchers to visualize key aspects of virus spread and evolution. Using Nextstrain, we use virus genomics to investigate the emergence of West Nile virus in the U S, followed by its rapid spread, evolution in a new environment, establishment of endemic transmission, and subsequent international spread. For each figure, we include a link to Nextstrain to allow the readers to directly interact with and explore the underlying data in new ways. We also provide a brief online narrative that parallels this review to further explain the data and highlight key epidemiological and evolutionary features (nextstrain.org/narratives/twenty-years-of-WNV). Mirroring the dynamic nature of outbreaks, the Nextstrain links provided within this paper are constantly updated as new West Nile virus genomes are shared publicly, helping to stay current with the research. Overall, our review showcases how genomics can track West Nile virus spread and evolution, as well as potentially uncover novel targeted control measures to help alleviate its public health burden.
Collapse
Affiliation(s)
- James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Anderson F. Brito
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Daniele M. Swetnam
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ryan E. Tokarz
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
- Scripps Research Translational Institute, La Jolla, California, United States of America
| | - Ryan C. Smith
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
31
|
Keyel AC, Elison Timm O, Backenson PB, Prussing C, Quinones S, McDonough KA, Vuille M, Conn JE, Armstrong PM, Andreadis TG, Kramer LD. Seasonal temperatures and hydrological conditions improve the prediction of West Nile virus infection rates in Culex mosquitoes and human case counts in New York and Connecticut. PLoS One 2019; 14:e0217854. [PMID: 31158250 PMCID: PMC6546252 DOI: 10.1371/journal.pone.0217854] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/19/2019] [Indexed: 01/05/2023] Open
Abstract
West Nile virus (WNV; Flaviviridae: Flavivirus) is a widely distributed arthropod-borne virus that has negatively affected human health and animal populations. WNV infection rates of mosquitoes and human cases have been shown to be correlated with climate. However, previous studies have been conducted at a variety of spatial and temporal scales, and the scale-dependence of these relationships has been understudied. We tested the hypothesis that climate variables are important to understand these relationships at all spatial scales. We analyzed the influence of climate on WNV infection rate of mosquitoes and number of human cases in New York and Connecticut using Random Forests, a machine learning technique. During model development, 66 climate-related variables based on temperature, precipitation and soil moisture were tested for predictive skill. We also included 20-21 non-climatic variables to account for known environmental effects (e.g., land cover and human population), surveillance related information (e.g., relative mosquito abundance), and to assess the potential explanatory power of other relevant factors (e.g., presence of wastewater treatment plants). Random forest models were used to identify the most important climate variables for explaining spatial-temporal variation in mosquito infection rates (abbreviated as MLE). The results of the cross-validation support our hypothesis that climate variables improve the predictive skill for MLE at county- and trap-scales and for human cases at the county-scale. Of the climate-related variables selected, mean minimum temperature from July-September was selected in all analyses, and soil moisture was selected for the mosquito county-scale analysis. Models demonstrated predictive skill, but still over- and under-estimated WNV MLE and numbers of human cases. Models at fine spatial scales had lower absolute errors but had greater errors relative to the mean infection rates.
Collapse
Affiliation(s)
- Alexander C. Keyel
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
- Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Albany, NY, United States of America
| | - Oliver Elison Timm
- Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Albany, NY, United States of America
| | - P. Bryon Backenson
- Bureau of Communicable Disease Control, New York State Department of Health, Albany, NY, United States of America
| | - Catharine Prussing
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, United States of America
| | - Sarah Quinones
- Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Albany, NY, United States of America
| | - Kathleen A. McDonough
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, United States of America
| | - Mathias Vuille
- Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Albany, NY, United States of America
| | - Jan E. Conn
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| | - Philip M. Armstrong
- Center for Vector Biology & Zoonotic Diseases, Department of Environmental Sciences, The Connecticut Agricultural Experimental Station, New Haven, CT, United States of America
| | - Theodore G. Andreadis
- Center for Vector Biology & Zoonotic Diseases, Department of Environmental Sciences, The Connecticut Agricultural Experimental Station, New Haven, CT, United States of America
| | - Laura D. Kramer
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| |
Collapse
|
32
|
Esser HJ, Mögling R, Cleton NB, van der Jeugd H, Sprong H, Stroo A, Koopmans MPG, de Boer WF, Reusken CBEM. Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasit Vectors 2019; 12:265. [PMID: 31133059 PMCID: PMC6537422 DOI: 10.1186/s13071-019-3515-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Arboviruses represent a significant burden to public health and local economies due to their ability to cause unpredictable and widespread epidemics. To maximize early detection of arbovirus emergence in non-endemic areas, surveillance efforts should target areas where circulation is most likely. However, identifying such hotspots of potential emergence is a major challenge. The ecological conditions leading to arbovirus outbreaks are shaped by complex interactions between the virus, its vertebrate hosts, arthropod vector, and abiotic environment that are often poorly understood. Here, we systematically review the ecological risk factors associated with the circulation of six arboviruses that are of considerable concern to northwestern Europe. These include three mosquito-borne viruses (Japanese encephalitis virus, West Nile virus, Rift Valley fever virus) and three tick-borne viruses (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus, and louping-ill virus). We consider both intrinsic (e.g. vector and reservoir host competence) and extrinsic (e.g. temperature, precipitation, host densities, land use) risk factors, identify current knowledge gaps, and discuss future directions. Our systematic review provides baseline information for the identification of regions and habitats that have suitable ecological conditions for endemic circulation, and therefore may be used to target early warning surveillance programs aimed at detecting multi-virus and/or arbovirus emergence.
Collapse
Affiliation(s)
- Helen J Esser
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Ramona Mögling
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Natalie B Cleton
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Economic Affairs, Wageningen, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem F de Boer
- Resource Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, WHO CC for arbovirus and viral hemorrhagic fever reference and research, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
33
|
Using Earth observation images to inform risk assessment and mapping of climate change-related infectious diseases. ACTA ACUST UNITED AC 2019; 45:133-142. [PMID: 31285704 DOI: 10.14745/ccdr.v45i05a04] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The number of human cases of several climate-related infectious diseases, including tick- and mosquito-borne diseases, has increased in Canada and other parts of the world since the end of the last century. Predicting and mapping the risks associated with these diseases using environmental and climatic determinants derived from satellite images is an emerging method that can support research, surveillance, prevention and control activities and help to better assess the impacts of climate change in Canada. Earth observation images can be used to systematically monitor changes in the Earth's surface and atmosphere at different scales of time and space. These images can inform estimation and monitoring of environmental and climatic determinants, and thus disease prediction and risk mapping. The current array of Earth observation satellites provides access to a large quantity and variety of data. These data have different characteristics in terms of spatial, temporal and thematic precision and resolution. The objectives of this overview are to describe how Earth observation images may inform risk assessment and mapping of tick-borne and mosquito-borne diseases in Canada, their potential benefits and limitations, the implications and next steps.
Collapse
|
34
|
Myer MH, Johnston JM. Spatiotemporal Bayesian modeling of West Nile virus: Identifying risk of infection in mosquitoes with local-scale predictors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2818-2829. [PMID: 30373059 PMCID: PMC7676626 DOI: 10.1016/j.scitotenv.2018.09.397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 05/16/2023]
Abstract
Monitoring and control of West Nile virus (WNV) presents a challenge to state and local vector control managers. Models of mosquito presence and viral incidence have revealed that variations in mosquito autecology and land use patterns introduce unique dynamics of disease at the scale of a county or city, and that effective prediction requires locally parameterized models. We applied Bayesian spatiotemporal modeling to West Nile surveillance data from 49 mosquito trap sites in Nassau County, New York, from 2001 to 2015 and evaluated environmental and sociological predictors of West Nile virus incidence in Culex pipiens-restuans. A Bayesian spike-and-slab variable selection algorithm was used to help select influential independent variables. This method can be used to identify locally-important predictors. The best model predicted West Nile positives well, with an Area Under Curve (AUC) of 0.83 on holdout data. The temporal trend was nonlinear and increased throughout the year. The spatial component identified increased West Nile incidence odds in the northwestern portion of the county, with lower odds in wetlands on the south shore of Long Island. High Normalized Difference Vegetation Index (NDVI) areas, wetlands, and areas of high urban development had negative associations with WNV incidence. In this study we demonstrate a method for improving spatiotemporal models of West Nile virus incidence for decision making at the county and community scale, which empowers disease and vector control organizations to prioritize and evaluate prevention efforts.
Collapse
Affiliation(s)
- Mark H Myer
- ORISE Research Participant, U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 960 College Station Rd, Athens, GA 30605, USA
| | - John M Johnston
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 960 College Station Rd, Athens, GA 30605, USA.
| |
Collapse
|
35
|
Lustig Y, Sofer D, Bucris ED, Mendelson E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front Microbiol 2018; 9:2421. [PMID: 30369916 PMCID: PMC6194321 DOI: 10.3389/fmicb.2018.02421] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/21/2018] [Indexed: 01/20/2023] Open
Abstract
West Nile Virus (WNV) is an arthropod-borne flavivirus whose zoonotic cycle includes both mosquitoes and birds as amplifiers and humans and horses as dead-end hosts. In recent years WNV has been spreading globally and is currently endemic in Africa, The Middle East, India, Australia, central and southern Europe, and the Americas. Integrated surveillance schemes and environmental data aim to detect viral circulation and reduce the risk of infection for the human population emphasizing the critical role for One Health principles in public health. Approximately 20% of WNV infected patients develop West Nile Fever while in less than 1%, infection results in West Nile Neurological Disease. Currently, the diagnosis of WNV infection is primarily based on serology, since molecular identification of WNV RNA is unreliable due to the short viremia. The recent emergence of Zika virus epidemic in America and Asia has added another layer of complexity to WNV diagnosis due to significant cross-reactivity between several members of the Flaviviridae family such as Zika, dengue, Usutu, and West Nile viruses. Diagnosis is especially challenging in persons living in regions with flavivirus co-circulation as well as in travelers from WNV endemic countries traveling to Zika or dengue infected areas or vise-versa. Here, we review the recent studies implementing WNV surveillance of mosquitoes and birds within the One Health initiative. Furthermore, we discuss the utility of novel molecular methods, alongside traditional molecular and serological methods, in WNV diagnosis and epidemiological research.
Collapse
Affiliation(s)
- Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Dahan Bucris
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel.,School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Kaul RB, Evans MV, Murdock CC, Drake JM. Spatio-temporal spillover risk of yellow fever in Brazil. Parasit Vectors 2018; 11:488. [PMID: 30157908 PMCID: PMC6116573 DOI: 10.1186/s13071-018-3063-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/15/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Yellow fever virus is a mosquito-borne flavivirus that persists in an enzoonotic cycle in non-human primates (NHPs) in Brazil, causing disease in humans through spillover events. Yellow fever (YF) re-emerged in the early 2000s, spreading from the Amazon River basin towards the previously considered low-risk, southeastern region of the country. Previous methods mapping YF spillover risk do not incorporate the temporal dynamics and ecological context of the disease, and are therefore unable to predict seasonality in spatial risk across Brazil. We present the results of a bagged logistic regression predicting the propensity for YF spillover per municipality (administrative sub-district) in Brazil from environmental and demographic covariates aggregated by month. Ecological context was incorporated by creating National and Regional models of spillover dynamics, where the Regional model consisted of two separate models determined by the regions' NHP reservoir species richness (high vs low). RESULTS Of the 5560 municipalities, 82 reported YF cases from 2001 to 2013. Model accuracy was high for the National and low reservoir richness (LRR) models (AUC = 0.80), while the high reservoir richness (HRR) model accuracy was lower (AUC = 0.63). The National model predicted consistently high spillover risk in the Amazon, while the Regional model predicted strong seasonality in spillover risk. Within the Regional model, seasonality of spillover risk in the HRR region was asynchronous to the LRR region. However, the observed seasonality of spillover risk in the LRR Regional model mirrored the national model predictions. CONCLUSIONS The predicted risk of YF spillover varies with space and time. Seasonal trends differ between regions indicating, at times, spillover risk can be higher in the urban coastal regions than the Amazon River basin which is counterintuitive based on current YF risk maps. Understanding the spatio-temporal patterns of YF spillover risk could better inform allocation of public health services.
Collapse
Affiliation(s)
- RajReni B Kaul
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Odum School of Ecology, University of Georgia, Athens, GA, USA.
| | - Michelle V Evans
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Courtney C Murdock
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Odum School of Ecology, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, University of Georgia, Athens, GA, USA.,Center for Tropical and Global Emerging Diseases, University of Georgia, Athens, GA, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,River Basin Center, University of Georgia, Athens, GA, USA
| | - John M Drake
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
37
|
Kovach TJ, Kilpatrick AM. Increased Human Incidence of West Nile Virus Disease near Rice Fields in California but Not in Southern United States. Am J Trop Med Hyg 2018; 99:222-228. [PMID: 29714160 DOI: 10.4269/ajtmh.18-0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Anthropogenic land use change, including agriculture, can alter mosquito larval habitat quality, increase mosquito abundance, and increase incidence of vector-borne disease. Rice is a staple food crop for more than half of the world's population, with ∼1% of global production occurring within the United States (US). Flooded rice fields provide enormous areas of larval habitat for mosquito species and may be hotspots for mosquito-borne pathogens, including West Nile virus (WNV). West Nile virus was introduced into the Americas in 1999 and causes yearly epidemics in the US with an average of approximately 1,400 neuroinvasive cases and 130 deaths per year. We examined correlations between rice cultivation and WNV disease incidence in rice-growing regions within the US. Incidence of WNV disease increased with the fraction of each county under rice cultivation in California but not in the southern US. We show that this is likely due to regional variation in the mosquitoes transmitting WNV. Culex tarsalis was an important vector of WNV in California, and its abundance increased with rice cultivation, whereas in rice-growing areas of the southern US, the dominant WNV vector was Culex quinquefasciatus, which rarely breeds in rice fields. These results illustrate how cultivation of particular crops can increase disease risk and how spatial variation in vector ecology can alter the relationship between land cover and disease.
Collapse
Affiliation(s)
- Tony J Kovach
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|
38
|
Population genetic structure of the Culex pipiens (Diptera: Culicidae) complex, vectors of West Nile virus, in five habitats. Parasit Vectors 2018; 11:10. [PMID: 29301567 PMCID: PMC5755309 DOI: 10.1186/s13071-017-2594-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 12/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Culex pipiens complex consists of several morphologically similar, closely related species. In the United States, Cx. pipiens L. is distributed North of 39° latitude, while Cx. quinquefasciatus Say occurs South of 36° latitude; a hybrid zone occurs between these two latitudes including in the Central Valley of California. Members of the Cx. pipiens complex and their hybrids are vectors for West Nile virus (WNv). Hybrid offspring of Cx. pipiens and Cx. quinquefasciatus have been found to have enhanced transmission rates of WNv over those of pure populations of each species. We investigated whether hybrids of Cx. pipiens and Cx. quinquefasciatus occurred more frequently in any of five habitats which were dairies, rural, suburban, and urban areas, and wetlands. In addition, the proportion of alleles unique to Cx. quinquefasciatus and Cx. pipiens found in each habitat-associated population were determined. METHODS Amplified fragment length polymorphism (AFLP) markers were used to compare the population structure of the Cx. pipiens complex from each habitat to geographically distant populations considered pure Cx. pipiens and Cx. quinquefasciatus. Structure analyses were used to assign individuals to either Cx. pipiens, Cx. quinquefasciatus, or hybrids of the Cx. pipiens complex. The ancestry of hybrids (F1, F2, or backcrossed) in relation to the two parent populations was estimated for each Central Valley population. Loci unique to the pure Cx. pipiens population and the pure Cx. quinquefasciatus population were determined. The proportion of loci unique to Cx. pipiens and Cx. quinquefasciatus populations were subsequently determined for each population from the five Merced habitats and from the Oroville California population. The unique loci found in Merced populations and not in Cx. pipiens or Cx. quinquefasciatus were also determined. A principal components analysis was run, as was an analysis to determine loci under putative selection. RESULTS The Structure Harvester analysis found K = 3, and the Culex pipiens complex mosquitoes formed a genetic cluster distinct from Cx. quinquefasciatus and Cx. pipiens. Individuals collected from each habitat were nearly all hybrids. However, Cx. pipiens complex collected near dairies had more individuals categorized as Cx. pipiens than collections from the other habitats. None of the mosquitoes collected in Merced or Oroville were considered pure Cx. quinquefasciatus. Significant genetic divergence was detected among the Cx. pipiens complex from the five habitats in Merced; Cx. pipiens complex mosquitoes from dairies were divergent from the urban and suburban populations. New Hybrids analysis found that individuals from all five Merced habitat-associated populations and the population from Oroville were primarily categorized as hybrids backcrossed to the Cx. pipiens population. Finally, all five habitat-associated populations shared more alleles with Cx. pipiens than with Cx. quinquefasciatus, even though the pure Cx. quinquefasciatus population was more geographically proximate to Merced. Results from the principal component analysis, and the occurrence of several unique loci in Merced populations, suggest that Cx. pipiens molestus may also occur in the habitats sampled. CONCLUSIONS Nearly all mosquitoes in the five habitats in Merced in the Central Valley of California area were hybrids of Cx. pipiens and Cx. quinquefasciatus, consisting of hybrids backcrossed to Cx. pipiens. Habitat-associated mosquitoes collected near dairies had more individuals consisting of pure Cx. pipiens, and no mosquitoes from Merced or Oroville CA classified as pure Cx. quinquefasciatus. The genetic distances among Cx. pipiens and Cx. quinquefasciatus, and hybrid populations agree with previous studies using other molecular markers. Cx. pipiens hybrids in Merced shared more alleles with Cx. pipiens than Cx. quinquefasciatus which was unexpected, since Merced is geographically closer to the northern limit of Cx. quinquefasciatus distribution. Culex pipiens molestus may occur in more habitats in the Central Valley than previously suspected, which warrants further investigation. Future studies could investigate the vector competence of hybrids backcrossed to either Cx. pipiens or Cx. quinquefasciatus parent for their ability to transmit West Nile virus.
Collapse
|
39
|
Rogalski MA, Gowler CD, Shaw CL, Hufbauer RA, Duffy MA. Human drivers of ecological and evolutionary dynamics in emerging and disappearing infectious disease systems. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0043. [PMID: 27920388 DOI: 10.1098/rstb.2016.0043] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 01/03/2023] Open
Abstract
Humans have contributed to the increased frequency and severity of emerging infectious diseases, which pose a significant threat to wild and domestic species, as well as human health. This review examines major pathways by which humans influence parasitism by altering (co)evolutionary interactions between hosts and parasites on ecological timescales. There is still much to learn about these interactions, but a few well-studied cases show that humans influence disease emergence every step of the way. Human actions significantly increase dispersal of host, parasite and vector species, enabling greater frequency of infection in naive host populations and host switches. Very dense host populations resulting from urbanization and agriculture can drive the evolution of more virulent parasites and, in some cases, more resistant host populations. Human activities that reduce host genetic diversity or impose abiotic stress can impair the ability of hosts to adapt to disease threats. Further, evolutionary responses of hosts and parasites can thwart disease management and biocontrol efforts. Finally, in rare cases, humans influence evolution by eradicating an infectious disease. If we hope to fully understand the factors driving disease emergence and potentially control these epidemics we must consider the widespread influence of humans on host and parasite evolutionary trajectories.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Mary A Rogalski
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Camden D Gowler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Clara L Shaw
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruth A Hufbauer
- College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
40
|
Stauffer GE, Miller DA, Williams LM, Brown J. Ruffed grouse population declines after introduction of West Nile virus. J Wildl Manage 2017. [DOI: 10.1002/jwmg.21347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Glenn E. Stauffer
- Department of Ecosystem Science and ManagementThe Pennsylvania State University419 Forest Resources Building, University ParkPA16802USA
| | - David A.W. Miller
- Department of Ecosystem Science and ManagementThe Pennsylvania State University419 Forest Resources Building, University ParkPA16802USA
| | - Lisa M. Williams
- Bureau of Wildlife ManagementPennsylvania Game Commission2001 Elmerton AvenueHarrisburgPA17110USA
| | - Justin Brown
- Bureau of Wildlife ManagementPennsylvania Game Commission2001 Elmerton AvenueHarrisburgPA17110USA
| |
Collapse
|
41
|
Wang Y, Pons W, Fang J, Zhu H. The impact of weather and storm water management ponds on the transmission of West Nile virus. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170017. [PMID: 28878963 PMCID: PMC5579078 DOI: 10.1098/rsos.170017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
West Nile virus (WNV) is the most widely distributed arbovirus in the world and the spread is influenced by complex factors including weather conditions and urban environmental settings like storm water management ponds (SWMP). The purpose of this work was to develop an ordinary differential equation model to explore the impacts of SWMP, temperature and precipitation on WNV vector abundance and the transmission of WNV between mosquito and bird populations. The model was used to analyse how weather conditions and SWMP can influence the basic reproduction number. The results found that an excess of precipitation and fiercer intraspecific competition will reduce vector population and the peak value of infectious vectors and birds. This information can be used to identify measures that would be useful to control larval abundance in SWMP and the transmission of WNV.
Collapse
Affiliation(s)
- Yiyuan Wang
- LAMPS, Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Wendy Pons
- Environmental Health, Peel Public Health, Ontario, Canada
| | - Jessica Fang
- Toronto and Region Conservation Authority, Brampton, Ontario, Canada
| | - Huaiping Zhu
- LAMPS, Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Myer MH, Campbell SR, Johnston JM. Spatiotemporal modeling of ecological and sociological predictors of West Nile virus in Suffolk County, NY, mosquitoes. Ecosphere 2017; 8:e01854. [PMID: 30147987 PMCID: PMC6104833 DOI: 10.1002/ecs2.1854] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Suffolk County, New York, is a locus for West Nile virus (WNV) infection in the American northeast that includes the majority of Long Island to the east of New York City. The county has a system of light and gravid traps used for mosquito collection and disease monitoring. In order to identify predictors of WNV incidence in mosquitoes and predict future occurrence of WNV, we have developed a spatiotemporal Bayesian model, beginning with over 40 ecological, meteorological, and built-environment covariates. A mixed-effects model including spatially and temporally correlated errors was fit to WNV surveillance data from 2008 to 2014 using the R package “R-INLA,” which allows for Bayesian modeling using the stochastic partial differential equation (SPDE) approach. The integrated nested Laplace approximation (INLA) SPDE allows for simultaneous fitting of a temporal parameter and a spatial covariance, while incorporating a variety of likelihood functions and running in R statistical software on a home computer. We found that land cover classified as open water and woody wetlands had a negative association with WNV incidence in mosquitoes, and the count of septic systems was associated with an increase in WNV. Mean temperature at two-week lag was associated with a strong positive impact, while mean precipitation at no lag and one-week lag was associated with positive and negative impacts on WNV, respectively. Incorporation of spatiotemporal factors resulted in a marked increase in model goodness-of-fit. The predictive power of the model was evaluated on 2015 surveillance results, where the best model achieved a sensitivity of 80.9% and a specificity of 77.0%. The spatial covariate was mapped across the county, identifying a gradient of WNV prevalence increasing from east to west. The Bayesian spatiotemporal model improves upon previous approaches, and we recommend the INLA SPDE methodology as an efficient way to develop robust models from surveillance data to develop and enhance monitoring and control programs. Our study confirms previously found associations between weather conditions and WNV and suggests that wetland cover has a mitigating effect on WNV infection in mosquitoes, while high septic system density is associated with an increase in WNV infection.
Collapse
Affiliation(s)
- Mark H Myer
- Oak Ridge Institute for Science and Education, Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, 960 College Station Road, Athens, Georgia 30605 USA
| | - Scott R Campbell
- Arthropod-Borne Disease Laboratory, Suffolk County Department of Health Services, Yaphank, New York 11980 USA
| | - John M Johnston
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, 960 College Station Road, Athens, Georgia 30605 USA
| |
Collapse
|
43
|
Myer MH, Campbell SR, Johnston JM. Spatiotemporal modeling of ecological and sociological predictors of West Nile virus in Suffolk County, NY, mosquitoes. Ecosphere 2017; 8:e01854. [PMID: 30147987 DOI: 10.1002/ecs2.1854e01854-n/a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Suffolk County, New York, is a locus for West Nile virus (WNV) infection in the American northeast that includes the majority of Long Island to the east of New York City. The county has a system of light and gravid traps used for mosquito collection and disease monitoring. In order to identify predictors of WNV incidence in mosquitoes and predict future occurrence of WNV, we have developed a spatiotemporal Bayesian model, beginning with over 40 ecological, meteorological, and built-environment covariates. A mixed-effects model including spatially and temporally correlated errors was fit to WNV surveillance data from 2008 to 2014 using the R package "R-INLA," which allows for Bayesian modeling using the stochastic partial differential equation (SPDE) approach. The integrated nested Laplace approximation (INLA) SPDE allows for simultaneous fitting of a temporal parameter and a spatial covariance, while incorporating a variety of likelihood functions and running in R statistical software on a home computer. We found that land cover classified as open water and woody wetlands had a negative association with WNV incidence in mosquitoes, and the count of septic systems was associated with an increase in WNV. Mean temperature at two-week lag was associated with a strong positive impact, while mean precipitation at no lag and one-week lag was associated with positive and negative impacts on WNV, respectively. Incorporation of spatiotemporal factors resulted in a marked increase in model goodness-of-fit. The predictive power of the model was evaluated on 2015 surveillance results, where the best model achieved a sensitivity of 80.9% and a specificity of 77.0%. The spatial covariate was mapped across the county, identifying a gradient of WNV prevalence increasing from east to west. The Bayesian spatiotemporal model improves upon previous approaches, and we recommend the INLA SPDE methodology as an efficient way to develop robust models from surveillance data to develop and enhance monitoring and control programs. Our study confirms previously found associations between weather conditions and WNV and suggests that wetland cover has a mitigating effect on WNV infection in mosquitoes, while high septic system density is associated with an increase in WNV infection.
Collapse
Affiliation(s)
- Mark H Myer
- Oak Ridge Institute for Science and Education, Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, 960 College Station Road, Athens, Georgia 30605 USA
| | - Scott R Campbell
- Arthropod-Borne Disease Laboratory, Suffolk County Department of Health Services, Yaphank, New York 11980 USA
| | - John M Johnston
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, 960 College Station Road, Athens, Georgia 30605 USA
| |
Collapse
|
44
|
Epidemic host community contribution to mosquito-borne disease transmission: Ross River virus. Epidemiol Infect 2016; 145:656-666. [PMID: 27890043 DOI: 10.1017/s0950268816002739] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Most vector-borne diseases infect multiple host species, but disentangling the relative importance of different host species to transmission can be complex. Here we study how host species' abundance and competence (duration and titre of parasitaemia) influence host importance during epidemic scenarios. We evaluate this theory using Ross River virus (RRV, family Togaviridae, genus Alphavirus), a multi-host mosquito-borne disease with significant human health impacts across Australia and Papua New Guinea. We used host contribution models to find the importance of key hosts (possums, wallabies, kangaroos, horses, humans) in typical mammal communities around five Australian epidemic centres. We found humans and possums contributed most to epidemic RRV transmission, owing to their high abundances, generally followed by macropods. This supports humans as spillover hosts, and that human-mosquito and possum-mosquito transmission is predominant during epidemics. Sensitivity analyses indicate these findings to be robust across epidemic centres. We emphasize the importance of considering abundance and competence in identifying key hosts (during epidemics in this case), and that competence alone is inadequate. Knowledge of host importance in disease transmission may help to equip health agencies to bring about greater effectiveness of disease mitigation strategies.
Collapse
|
45
|
Little E, Campbell SR, Shaman J. Development and validation of a climate-based ensemble prediction model for West Nile Virus infection rates in Culex mosquitoes, Suffolk County, New York. Parasit Vectors 2016; 9:443. [PMID: 27507279 PMCID: PMC4979155 DOI: 10.1186/s13071-016-1720-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/24/2016] [Indexed: 11/24/2022] Open
Abstract
Background West Nile Virus (WNV) is an endemic public health concern in the United States that produces periodic seasonal epidemics. Underlying these outbreaks is the enzootic cycle of WNV between mosquito vectors and bird hosts. Identifying the key environmental conditions that facilitate and accelerate this cycle can be used to inform effective vector control. Results Here, we model and forecast WNV infection rates among mosquito vectors in Suffolk County, New York using readily available meteorological and hydrological conditions. We first validate a statistical model built with surveillance data between 2001 and 2009 (m09) and specify a set of new statistical models using surveillance data from 2001 to 2012 (m12). This ensemble of new models is then used to make predictions for 2013–2015, and multimodel inference is employed to provide a formal probabilistic interpretation across the disparate individual model predictions. The findings of the m09 and m12 models align; with the ensemble of m12 models indicating an association between warm, dry early spring (April) conditions and increased annual WNV infection rates in Culex mosquitoes. Conclusions This study shows that real-time climate information can be used to predict WNV infection rates in Culex mosquitoes prior to its seasonal peak and before WNV spillover transmission risk to humans is greatest. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1720-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eliza Little
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Scott R Campbell
- Arthropod-Borne Disease Laboratory, Suffolk County Department of Health Services, Yaphank, NY, USA
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
46
|
Roiz D, Ruiz S, Soriguer R, Figuerola J. Landscape Effects on the Presence, Abundance and Diversity of Mosquitoes in Mediterranean Wetlands. PLoS One 2015; 10:e0128112. [PMID: 26086804 PMCID: PMC4472724 DOI: 10.1371/journal.pone.0128112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/23/2015] [Indexed: 11/18/2022] Open
Abstract
Environment determines the distribution of mosquito-borne diseases in that it influences the vector-host-pathogen transmission cycle, including vector distribution, abundance and diversity. In this study, we analyse the relationship between environmental variables estimated by remote sensing and the spatial distribution (presence, abundance and diversity) of seven mosquito species vectors of West Nile and other pathogens (Usutu, avian malaria and dirofilariasis) in the Doñana Natural Park, Spain. Traps were distributed over an area of 54,984 ha divided into six ecological units: marshland, sand dunes, scrubland, ricefields, crops and fishponds. We collected mosquitoes once a month from up to 112 locations using BG-Sentinel traps baited with BG-lure and CO2 during March-November 2010. Hydroperiod, NDVI and Inundation surface were estimated at several resolution scales (100, 250, 500, 1000 and 2000 metres) from corrected and normalized Landsat Images. We sampled 972,346 female mosquitoes, the most abundant species being Culex theileri, Ochlerotatus caspius, Culex modestus, Culex perexiguus, Culex pipiens, Anopheles atroparvus and Ochlerotatus detritus. Our results suggest that: (1) hydroperiod, inundation surface and NDVI are strongly related to the spatial distribution of mosquitoes; (2) the spatial scales used to measure these variables affected quantification of these relationships, the larger scale being more informative; (3) these relationships are species-specific; (4) hydroperiod is negatively related to mosquito presence and richness; (5) Culex abundance is positively related to hydroperiod; (6) NDVI is positively related to mosquito diversity, presence and abundance, except in the case of the two salt marsh species (Oc. caspius and Oc. detritus); and (7) inundation surfaces positively condition the abundance and richness of most species except the salt marsh mosquitoes. Remote sensing data provided reliable information for monitoring mosquito populations. Landscape significantly affected mosquito distribution and abundance, and as a result may alter disease risk. These results suggest that while environmental conditions affect the distribution and abundance of mosquitoes, other factors such as human modification of landscapes may give rise to significant changes in mosquito populations and consequently disease risk.
Collapse
Affiliation(s)
- David Roiz
- Estación Biológica de Doñana (CSIC), Isla de La Cartuja, Av. Américo Vespucio, s/n. 41092, Sevilla, Spain
- * E-mail:
| | - Santiago Ruiz
- Diputación de Huelva, Área de Medio Ambiente, Servicio de Control de Mosquitos, Huelva, Spain
| | - Ramon Soriguer
- Estación Biológica de Doñana (CSIC), Isla de La Cartuja, Av. Américo Vespucio, s/n. 41092, Sevilla, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (CSIC), Isla de La Cartuja, Av. Américo Vespucio, s/n. 41092, Sevilla, Spain
| |
Collapse
|
47
|
Marcantonio M, Rizzoli A, Metz M, Rosà R, Marini G, Chadwick E, Neteler M. Identifying the environmental conditions favouring West Nile Virus outbreaks in Europe. PLoS One 2015; 10:e0121158. [PMID: 25803814 PMCID: PMC4372576 DOI: 10.1371/journal.pone.0121158] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/28/2015] [Indexed: 11/29/2022] Open
Abstract
West Nile Virus (WNV) is a globally important mosquito borne virus, with significant implications for human and animal health. The emergence and spread of new lineages, and increased pathogenicity, is the cause of escalating public health concern. Pinpointing the environmental conditions that favour WNV circulation and transmission to humans is challenging, due both to the complexity of its biological cycle, and the under-diagnosis and reporting of epidemiological data. Here, we used remote sensing and GIS to enable collation of multiple types of environmental data over a continental spatial scale, in order to model annual West Nile Fever (WNF) incidence across Europe and neighbouring countries. Multi-model selection and inference were used to gain a consensus from multiple linear mixed models. Climate and landscape were key predictors of WNF outbreaks (specifically, high precipitation in late winter/early spring, high summer temperatures, summer drought, occurrence of irrigated croplands and highly fragmented forests). Identification of the environmental conditions associated with WNF outbreaks is key to enabling public health bodies to properly focus surveillance and mitigation of West Nile virus impact, but more work needs to be done to enable accurate predictions of WNF risk.
Collapse
Affiliation(s)
- Matteo Marcantonio
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- * E-mail:
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Markus Metz
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Elizabeth Chadwick
- School of Bioscience, Cardiff University, Cardiff, Wales, United Kingdom
| | - Markus Neteler
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
48
|
Hahn MB, Monaghan AJ, Hayden MH, Eisen RJ, Delorey MJ, Lindsey NP, Nasci RS, Fischer M. Meteorological conditions associated with increased incidence of West Nile virus disease in the United States, 2004-2012. Am J Trop Med Hyg 2015; 92:1013-22. [PMID: 25802435 DOI: 10.4269/ajtmh.14-0737] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/08/2015] [Indexed: 11/07/2022] Open
Abstract
West Nile virus (WNV) is a leading cause of mosquito-borne disease in the United States. Annual seasonal outbreaks vary in size and location. Predicting where and when higher than normal WNV transmission will occur can help direct limited public health resources. We developed models for the contiguous United States to identify meteorological anomalies associated with above average incidence of WNV neuroinvasive disease from 2004 to 2012. We used county-level WNV data reported to ArboNET and meteorological data from the North American Land Data Assimilation System. As a result of geographic differences in WNV transmission, we divided the United States into East and West, and 10 climate regions. Above average annual temperature was associated with increased likelihood of higher than normal WNV disease incidence, nationally and in most regions. Lower than average annual total precipitation was associated with higher disease incidence in the eastern United States, but the opposite was true in most western regions. Although multiple factors influence WNV transmission, these findings show that anomalies in temperature and precipitation are associated with above average WNV disease incidence. Readily accessible meteorological data may be used to develop predictive models to forecast geographic areas with elevated WNV disease risk before the coming season.
Collapse
Affiliation(s)
- Micah B Hahn
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Andrew J Monaghan
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Mary H Hayden
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Rebecca J Eisen
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Mark J Delorey
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Nicole P Lindsey
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Roger S Nasci
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Marc Fischer
- National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
49
|
Association between agricultural land use and West Nile virus antibody prevalence in Iowa birds. J Wildl Dis 2014; 49:869-78. [PMID: 24502714 DOI: 10.7589/2012-10-263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Plains states of the central United States, research suggests that the prevalence of West Nile virus (WNV) disease in humans is higher in agricultural areas than in nonagricultural areas. In contrast, there is limited information about WNV exposure in birds, the primary amplifying host of WNV, in agriculturally dominated landscapes. We evaluated whether exposure to WNV in peridomestic birds sampled in central Iowa varied with the proportion of land use devoted to agriculture. Over the summers of 2009 and 2010, we captured birds in sites comprising gradients of agricultural, urban, and natural land uses, and tested their sera for antibodies to WNV. Overall, WNV antibody prevalence was low (2.3%). Our results suggest that agricultural land use had minimal influence on WNV exposure in birds. We conclude that birds are not likely to be useful indicators of WNV activity in agricultural areas in the Plains states despite human risk being highest in those areas. Antibody prevalence for WNV, however, was higher in American Robins, Mourning Doves, and Northern Cardinals than in other species, making these species potentially useful for monitoring WNV activity in the US Plains states.
Collapse
|
50
|
Wimberly MC, Lamsal A, Giacomo P, Chuang TW. Regional variation of climatic influences on West Nile virus outbreaks in the United States. Am J Trop Med Hyg 2014; 91:677-684. [PMID: 25092814 PMCID: PMC4183387 DOI: 10.4269/ajtmh.14-0239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The national resurgence of human West Nile virus (WNV) disease in 2012 raised questions about the factors responsible for WNV outbreaks. Interannual climatic variations may influence WNV amplification and transmission to humans through multiple pathways, including mosquito breeding habitats, gonotrophic cycles, extrinsic incubation, avian communities, and human behavior. We examined the influences of temperature and precipitation anomalies on interannual variation in human WNV cases in three regions of the United States. There were consistent positive influences of winter temperatures, weaker and more variable positive effects of spring and summer temperatures, and highly variable precipitation effects that ranged from positive to negative. The overwintering period may be a particularly important climatic constraint on the dynamics of WNV in cold-temperate regions of North America. Geographic differences in the seasonal timing and relative importance of climatic drivers of WNV risk likely reflect underlying variability in key ecological and social characteristics.
Collapse
Affiliation(s)
- Michael C. Wimberly
- *Address correspondence to Michael C. Wimberly, Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD 57007. E-mail:
| | | | | | | |
Collapse
|