1
|
Ashkar Daw M, Azrad M, Peretz A. Associations between biofilm formation and virulence factors among clinical Helicobacter pylori isolates. Microb Pathog 2024; 196:106977. [PMID: 39321970 DOI: 10.1016/j.micpath.2024.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) causes several gastrointestinal diseases. Its virulence factors contributing to disease development include biofilm formation, cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA) proteins that induce host tissue damage. In addition, urease activity enables H. pylori growth in the gastric acidic environment. This work aimed to characterize bacterial factors associated with biofilm production among 89 clinical H. pylori isolates, collected from patient gastric biopsies. METHODS Biofilm production was detected using the crystal violet method. PCR was performed to determine vacA genotype (s1m1, s1m2, s2m1 and s2m2) and cagA gene presence. Urease activity was measured via the phenol red method. Susceptibility to six antibiotics was assessed by the Etest method. RESULTS Most H. pylori isolates produced biofilm. No association was found between biofilm-formation capacity and cagA presence or vacA genotype. Urease activity levels varied across isolates; no association was found between biofilm-formation and urease activity. Clarithromycin resistance was measured in 49 % of the isolates. Isolates susceptible to tetracycline were more commonly strong biofilm producers. In contrast, a significantly higher rate of strong biofilm producers was observed among resistant isolates to amoxicillin, levofloxacin and rifampicin, compared to susceptible isolates. Non-biofilm producers were more common among isolates sensitive to rifampicin and metronidazole, compared to resistant isolates. CONCLUSIONS Further studies are needed to understand the factors that regulate biofilm production in order to search for treatments for H. pylori biofilm destruction.
Collapse
Affiliation(s)
- Mariam Ashkar Daw
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.
| | - Maya Azrad
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias, 1528001, Israel(1).
| | - Avi Peretz
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias, 1528001, Israel(1).
| |
Collapse
|
2
|
Chitas R, Fonseca DR, Parreira P, Martins MCL. Targeted nanotherapeutics for the treatment of Helicobacter pylori infection. J Biomed Sci 2024; 31:78. [PMID: 39128983 DOI: 10.1186/s12929-024-01068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Helicobacter pylori infection is involved in gastric diseases such as peptic ulcer and adenocarcinoma. Approved antibiotherapies still fail in 10 to 40% of the infected patients and, in this scenario, targeted nanotherapeutics emerged as powerful allies for H. pylori eradication. Nano/microparticles conjugated with H. pylori binding molecules were developed to eliminate H. pylori by either (i) blocking essential mechanisms of infection, such as adhesion to gastric mucosa or (ii) binding and killing H. pylori through the release of drugs within the bacteria or at the site of infection. Glycan antigens (as Lewis B and sialyl-Lewis X), pectins, lectins, phosphatidylethanolamine and epithelial cell membranes were conjugated with nano/microparticles to successfully block H. pylori adhesion. Urea-coated nanoparticles were used to improve drug delivery inside bacteria through H. pylori UreI channel. Moreover, nanoparticles coated with antibodies against H. pylori and loaded with sono/photosensitizers, were promising for their application as targeted sono/photodynamic therapies. Further, non-specific H. pylori nano/microparticles, but only active in the acidic gastric environment, coated with binders to bacterial membrane, extracellular polymeric substances or to high temperature requirement A protease, were evaluated. In this review, an overview of the existing nanotherapeutics targeting H. pylori will be given and their rational, potential to counteract infection, as well as level of development will be presented and discussed.
Collapse
Affiliation(s)
- Rute Chitas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana R Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Porto, Portugal
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Hałasa R, Turecka K, Mizerska U, Krauze-Baranowska M. Anti- Helicobacter pylori Biofilm Extracts from Rubus idaeus and Rubus occidentalis. Pharmaceutics 2024; 16:501. [PMID: 38675162 PMCID: PMC11054215 DOI: 10.3390/pharmaceutics16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Helicobacter pylori infections are still an important health problem and are directly related to the development of gastric ulcer, gastric adenocarcinoma, mucosal lymphoid tissue lymphoma, and diabetes. At the same time, the number of substances/drugs effective against these bacteria is limited due to increasing resistance. Raw plant materials from various species of the Rubus genus-fruits and shoots-have shown antimicrobial activity in numerous studies against different bacteria, including H. pylori in a planktonic form. Research carried out on a model using fragments of intravenous infusions and triphenyl tetrazolium chloride (TTC) as a dye showed that the shoot extract of Rubus idaeus 'Willamette', the fruit extract of R. idaeus 'Poranna Rosa', R. idaeus and R. idaeus 'Laszka', and R. occidentalis Litacz' prevent the formation of biofilm by H. pylori. Active concentrations inhibiting biofilm formation were 6.65 mg/mL for shoots and 16.65 mg/mL for fruits. However, in the resulting biofilm, the extract from the shoots of R. idaeus 'Willamette' and the fruit of R. idaeus 'Poranna Rosa' at a concentration of 16.65 mg/mL was active against living bacteria, and the remaining extracts showed such activity at a concentration of 33.3 mg/mL. In studies on the interaction of the extract with antibiotics on biofilm, the extract from the shoots of R. idaeus 'Willamette' showed synergy with doxycycline and levofloxacin, additivity with amoxicillin and clarithromycin, and neutrality with metronidazole. H. pylori biofilm research was carried out in a newly elaborated research model-culture on fragments of intravenous infusions with the addition of TTC as a marker of living bacterial cells. The research results may constitute the basis for the development of new combination therapies for the treatment of H. pylori infections, including its resistant strains. The proposed new biofilm research model, which is cheap and effective, may allow testing of new substances that are potentially more effective against H. pylori and other biofilm-forming bacterial strains.
Collapse
Affiliation(s)
- Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Katarzyna Turecka
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| | - Urszula Mizerska
- Department of Polymeric Nanomaterials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lodz, Poland;
| | | |
Collapse
|
4
|
Vesga FJ, Beltrán-Benavides AR, Márquez-Duque AM, Venegas C, Trespalacios AA. Helicobacter pylori virulence genotypes in Bogotá River and wastewater treatment plants in Colombia. Helicobacter 2023; 28:e13023. [PMID: 37753804 DOI: 10.1111/hel.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Helicobacter pylori is a bacterium that infects 70%-80% of the population in Colombia, causing chronic gastritis in all those infected and gastric cancer in 1%-2% of those infected. In Colombia, some studies have identified the presence of vacA and cagA genes in environmental samples such as treated, surface, and wastewater, but they have not been evaluated in the Bogotá River. For this, the aim of this study was to identify the virulence genotypes of H. pylori present in samples from the Bogotá River and domestic wastewater treatment plants (WWTPs). MATERIALS AND METHODS A total of 75 water samples (51 from the Bogotá River and 24 from wastewater treatment plants) were collected. The presence of H. pylori DNA and its virulence genotypes was determined by polymerase chain reaction (PCR). RESULTS The presence of H. pylori DNA was demonstrated in 44% (33/75) of the samples, obtaining 63.6% (21/33) from the Bogotá River and 36.4% (12/33) from the WWTPs. The most prevalent H. pylori genotype was cagA (-) and vacAm1/s1/i1 being the most virulent of the vacA gene. CONCLUSIONS This is the first study in Colombia that determines the cagA and vacA genotypes in surface water and WWTPs, indicating the circulation of virulent genotypes in the population. The presence of this pathogen in the waters can be represent a risk to the health of the surrounding population since these waters are reused by the communities for different purposes.
Collapse
Affiliation(s)
- Fidson-Juarismy Vesga
- Microbiology Department, Grupo de Biotecnología ambiental e industrial (GBAI), Laboratorio Calidad Microbiológica de Aguas y Lodos (CMAL), Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Ana María Márquez-Duque
- Microbiology Department, Bacteriology, Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Camilo Venegas
- Microbiology Department, Grupo de Biotecnología ambiental e industrial (GBAI), Laboratorio Calidad Microbiológica de Aguas y Lodos (CMAL), Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alba-Alicia Trespalacios
- Microbiology Department, Infectious Diseases Research Group, Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
5
|
Ekundayo TC, Swalaha FM, Ijabadeniyi OA. Socioeconomic indices guided linear mixed-effects and meta-regression modelling of the temporal, global and regional prevalence of Helicobacter pylori in environmental waters: A class I carcinogen. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118282. [PMID: 37315468 DOI: 10.1016/j.jenvman.2023.118282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Environmental waters (EW) substantially lend to the transmission of Helicobacter pylori (Hp). But the increase in Hp infections and antimicrobial resistance is often attributed to socioeconomic status. The connection between socioeconomic status and Hp prevalence in EW is however yet to be investigated. This study aimed to assess the impacts of socioeconomic indices (SI: continent, world bank region (WBR), world bank income (WBI), WHO region, Socio-demographic Index (SDI quintile), Sustainable Development Index (SuDI), and Human Development Index (HDI)) on the prevalence of Hp in EW. Hp-EW data were fitted to a generalized linear mixed-effects model and SI-guided meta-regression models with a 1000-resampling test. The worldwide prevalence of Hp in EW was 21.76% [95% confidence interval [CI]: 10.29-40.29], which declined significantly from 59.52% [43.28-74.37] in 1990-99 to 19.36% [3.99-58.09] in 2010-19 and with increasing trend in 2020-22 (33.33%, 22.66-45.43). Hp prevalence in EW was highest in North America (45.12%, 17.07-76.66), then Europe (22.38%, 5.96-56.74), South America (22.09%, 13.76-33.49), Asia (2.98%, 0.02-85.17), and Africa (2.56%, 0.00-99.99). It was negligibly different among sampling settings, WBI, and WHO regions demonstrating highest prevalence in rural location [42.62%, 3.07-94.56], HIEs [32.82%, 13.19-61.10], and AMR [39.43%, 19.92-63.01], respectively. However, HDI, sample size, and microbiological method robustly predict Hp prevalence in EW justifying 26.08%, 21.15%, and 16.44% of the true difference, respectively. In conclusion, Hp is highly prevalence in EW across regional/socioeconomic strata and thus challenged the uses of socioeconomic status as surrogate for hygienic/sanitary practices in estimating Hp infection prevalence.
Collapse
Affiliation(s)
- Temitope C Ekundayo
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Bike Campus, 121 Steve Biko Rd, Musgrave, Berea, 4001, Durban, South Africa.
| | - Feroz M Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Bike Campus, 121 Steve Biko Rd, Musgrave, Berea, 4001, Durban, South Africa
| | - Oluwatosin A Ijabadeniyi
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Bike Campus, 121 Steve Biko Rd, Musgrave, Berea, 4001, Durban, South Africa
| |
Collapse
|
6
|
Antimicrobial and Antibiofilm Activities of Carvacrol, Amoxicillin and Salicylhydroxamic Acid Alone and in Combination vs. Helicobacter pylori: Towards a New Multi-Targeted Therapy. Int J Mol Sci 2023; 24:ijms24054455. [PMID: 36901886 PMCID: PMC10002413 DOI: 10.3390/ijms24054455] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
The World Health Organization has indicated Helicobacter pylori as a high-priority pathogen whose infections urgently require an update of the antibacterial treatments pipeline. Recently, bacterial ureases and carbonic anhydrases (CAs) were found to represent valuable pharmacological targets to inhibit bacterial growth. Hence, we explored the underexploited possibility of developing a multiple-targeted anti-H. pylori therapy by assessing the antimicrobial and antibiofilm activities of a CA inhibitor, carvacrol (CAR), amoxicillin (AMX) and a urease inhibitor (SHA), alone and in combination. Minimal Inhibitory (MIC) and Minimal Bactericidal (MBC) Concentrations of their different combinations were evaluated by checkerboard assay and three different methods were employed to assess their capability to eradicate H. pylori biofilm. Through Transmission Electron Microscopy (TEM) analysis, the mechanism of action of the three compounds alone and together was determined. Interestingly, most combinations were found to strongly inhibit H. pylori growth, resulting in an additive FIC index for both CAR-AMX and CAR-SHA associations, while an indifferent value was recorded for the AMX-SHA association. Greater antimicrobial and antibiofilm efficacy of the combinations CAR-AMX, SHA-AMX and CAR-SHA against H. pylori were found with respect to the same compounds used alone, thereby representing an innovative and promising strategy to counteract H. pylori infections.
Collapse
|
7
|
Moadelighomi SZJ, Mirpour M, Ghasemi MF. Eugenol contributes to decreased expression of rpoD and genes in clinically isolated Helicobacter pylori: An in vitro study using real-time-PCR technique. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203291. [PMID: 36031384 PMCID: PMC9561771 DOI: 10.1002/advs.202203291] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Due to the continuous rise in biofilm-related infections, biofilms seriously threaten human health. The formation of biofilms makes conventional antibiotics ineffective and dampens immune clearance. Therefore, it is important to understand the mechanisms of biofilm formation and develop novel strategies to treat biofilms more effectively. This review article begins with an introduction to biofilm formation in various clinical scenarios and their corresponding therapy. Established biofilm models used in research are then summarized. The potential targets which may assist in the development of new strategies for combating biofilms are further discussed. The novel technologies developed recently for the prevention and treatment of biofilms including antimicrobial surface coatings, physical removal of biofilms, development of new antimicrobial molecules, and delivery of antimicrobial agents are subsequently presented. Finally, directions for future studies are pointed out.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jaime T. Yrastorza
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Matis
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jenna Cusick
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siwei Zhao
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Guangshun Wang
- Department of Pathology and MicrobiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
9
|
Arteaga-Resendiz NK, Rodea GE, Ribas-Aparicio RM, Olivares-Cervantes AL, Castelán-Vega JA, Olivares-Trejo JDJ, Mendoza-Elizalde S, López-Villegas EO, Colín C, Aguilar-Rodea P, Reyes-López A, Salazar García M, Velázquez-Guadarrama N. HP0953 - hypothetical virulence factor overexpresion and localization during Helicobacter pylori infection of gastric epithelium. World J Gastroenterol 2022; 28:3886-3902. [PMID: 36157534 PMCID: PMC9367236 DOI: 10.3748/wjg.v28.i29.3886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The high prevalence and persistence of Helicobacter pylori (H. pylori) infection, as well as the diversity of pathologies related to it, suggest that the virulence factors used by this microorganism are varied. Moreover, as its proteome contains 340 hypothetical proteins, it is important to investigate them to completely understand the mechanisms of its virulence and survival. We have previously reported that the hypothetical protein HP0953 is overexpressed during the first hours of adhesion to inert surfaces, under stress conditions, suggesting its role in the environmental survival of this bacterium and perhaps as a virulence factor.
AIM To investigate the expression and localization of HP0953 during adhesion to an inert surface and against gastric (AGS) cells.
METHODS Expression analysis was performed for HP0953 during H. pylori adhesion. HP0953 expression at 0, 3, 12, 24, and 48 h was evaluated and compared using the Kruskal-Wallis equality-of-populations rank test. Recombinant protein was produced and used to obtain polyclonal antibodies for immunolocalization. Immunogold technique was performed on bacterial sections during adherence to inert surfaces and AGS cells, which was analyzed by transmission electron microscopy. HP0953 protein sequence was analyzed to predict the presence of a signal peptide and transmembrane helices, both provided by the ExPASy platform, and using the GLYCOPP platform for glycosylation sites. Different programs, via, I-TASSER, RaptorX, and HHalign-Kbest, were used to perform three-dimensional modeling.
RESULTS HP0953 exhibited its maximum expression at 12 h of infection in gastric epithelium cells. Immunogold technique revealed HP0953 localization in the cytoplasm and accumulation in some peripheral areas of the bacterial body, with greater expression when it is close to AGS cells. Bioinformatics analysis revealed the presence of a signal peptide that interacts with the transmembrane region and then allows the release of the protein to the external environment. The programs also showed a similarity with the Tip-alpha protein of H. pylori. Tip-alpha is an exotoxin that penetrates cells and induces tumor necrosis factor alpha production, and HP0953 could have a similar function as posttranslational modification sites were found; modifications in turn require enzymes located in eukaryotic cells. Thus, to be functional, HP0953 may necessarily need to be translocated inside the cell where it can trigger different mechanisms producing cellular damage.
CONCLUSION The location of HP0953 around infected cells, the probable posttranslational modifications, and its similarity to an exotoxin suggest that this protein is a virulence factor.
Collapse
Affiliation(s)
- Nancy K Arteaga-Resendiz
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Gerardo E Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Rosa María Ribas-Aparicio
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alma L Olivares-Cervantes
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Juan Arturo Castelán-Vega
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - José de Jesús Olivares-Trejo
- Laboratorio de Adquisición de Hierro, Universidad Autónoma de la Ciudad México, Posgrado Ciencias Genómica, Mexico City 03100, Mexico
| | - Sandra Mendoza-Elizalde
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Edgar O López-Villegas
- Laboratorio Central de Microscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Christian Colín
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Pamela Aguilar-Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Alfonso Reyes-López
- Centro de estudios económicos y sociales en salud, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Marcela Salazar García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
10
|
Ke S, Weiss ST, Liu YY. Rejuvenating the human gut microbiome. Trends Mol Med 2022; 28:619-630. [PMID: 35781423 PMCID: PMC9339459 DOI: 10.1016/j.molmed.2022.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Industrial advances have caused significant loss of diversity in our gut microbiome, potentially increasing our susceptibility to many diseases. Recently, rewilding the human gut microbiome - that is, bringing it back to an ancestral or preindustrial state (e.g., by transplanting stool material from donors in nonindustrial societies) - has been hotly debated from medical, ethical, and evolutionary perspectives. Here we propose an alternative solution: rejuvenating the human gut microbiome by stool banking and autologous fecal microbiota transplantation, that is, collecting the hosts' stool samples at a younger age when they are at optimal health, and cryopreserving the samples in a stool bank for the hosts' own future use. In this article we discuss the motivation, applications, feasibility, and challenges of this solution.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Helicobacter pylori biofilms are disrupted by nanostructured lipid carriers: A path to eradication? J Control Release 2022; 348:489-498. [PMID: 35654169 DOI: 10.1016/j.jconrel.2022.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
Bacterial biofilms account for 80% of all chronic infections, with cells being up to 1000 times more resistant to antibiotics than their planktonic counterparts. The recently discovered ability of Helicobacter pylori to form biofilms once again highlights why this bacterium is one of the most successful human pathogens. The current treatments failure rate reaches 40% of cases, emphasizing that new therapeutic options are a pressing need. Nanostructured lipid carriers (NLC), with and without docosahexaenoic acid (DHA), were very effective against H. pylori planktonic cells but their effect on H. pylori biofilms was unknown. Here, DHA-loaded NLC (DHA-NLC) and NLC without any drug (blank NLC) were tested on an optimized H. pylori in vitro floating mature biofilm model. DHA-NLC and blank NLC reduced the total biofilm biomass and had a bactericidal effect against both biofilm and planktonic bacteria in all the concentrations tested (0.125-2 mg/mL). DHA-NLC achieved biofilm biomass reduction in a concentration ~ 8 times lower than blank NLC (0.125 vs 1 mg/mL, respectively). Both NLC were bactericidal at the lowest concentration tested (0.125 mg/mL) although with different efficiency, i.e. a decrease of ∼6 log10 for DHA-NLC and ∼5 log10 for blank NLC. In addition, the equivalent amount of free DHA (3.1 μM) only reduced bacterial viability in ∼2 log10, demonstrating the synergistic effect of DHA and NLC in the treatment of H. pylori biofilms. Nevertheless, although viable bacteria were not detected by colony forming unit (CFU) counting after treatment with both NLC, confocal microscopy imaging highlighted that some H. pylori cells remained alive. In addition, scanning electron microscopy (SEM) analysis confirmed an increase in bacteria with a coccoid morphology after treatment, suggesting a transition to a viable but non-culturable (VBNC) state. Altogether, it is herein established that NLC, even without any drug, are promising for the management of H. pylori bacteria organized in biofilms, opening new perspectives for the eradication of this gastric pathogen.
Collapse
|
12
|
Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol 2022; 53:33-50. [PMID: 34988937 PMCID: PMC8731681 DOI: 10.1007/s42770-021-00675-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is an organism associated with ulcer disease and gastric cancer. The latter is one of the most prevalent malignancies and currently the fourth major cause of cancer-related deaths globally. The pathogen infects about 50% of the world population, and currently, no treatment ensures its total elimination. There has been an increase in our understanding of the pathophysiology and pathogenesis mechanisms of H. pylori over the years. H. pylori can induce several genetic alterations, express numerous virulence factors, and trigger diverse adaptive mechanisms during its adherence and colonization. For successful colonization and infection establishment, several effector proteins/toxins are released by the organism. Evidence is also available reporting spiral to coccoid transition as a unique tactic H. pylori uses to survive in the host's gastrointestinal tract (GIT). Thus, the virulence and pathogenicity of H. pylori are under the control of complex interplay between the virulence factors, host, and environmental factors. Expounding the role of the various virulence factors in H. pylori pathogenesis and clinical outcomes is crucial for vaccine development and in providing and developing a more effective therapeutic intervention. Here we critically reflect on H. pylori infection and delineate what is currently known about the virulence and pathogenesis mechanisms of H. pylori.
Collapse
Affiliation(s)
| | - Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria.
| |
Collapse
|
13
|
Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Mol Med 2022; 28:10. [PMID: 35093033 PMCID: PMC8800364 DOI: 10.1186/s10020-022-00435-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biofilm is a community of bacteria embedded in an extracellular matrix, which can colonize different human cells and tissues and subvert the host immune reactions by preventing immune detection and polarizing the immune reactions towards an anti-inflammatory state, promoting the persistence of biofilm-embedded bacteria in the host. MAIN BODY OF THE MANUSCRIPT It is now well established that the function of immune cells is ultimately mediated by cellular metabolism. The immune cells are stimulated to regulate their immune functions upon sensing danger signals. Recent studies have determined that immune cells often display distinct metabolic alterations that impair their immune responses when triggered. Such metabolic reprogramming and its physiological implications are well established in cancer situations. In bacterial infections, immuno-metabolic evaluations have primarily focused on macrophages and neutrophils in the planktonic growth mode. CONCLUSION Based on differences in inflammatory reactions of macrophages and neutrophils in planktonic- versus biofilm-associated bacterial infections, studies must also consider the metabolic functions of immune cells against biofilm infections. The profound characterization of the metabolic and immune cell reactions could offer exciting novel targets for antibiofilm therapy.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Niloofar Sabokroo
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Senchukova MA, Tomchuk O, Shurygina EI. Helicobacter pylori in gastric cancer: Features of infection and their correlations with long-term results of treatment. World J Gastroenterol 2021; 27:6290-6305. [PMID: 34712033 PMCID: PMC8515796 DOI: 10.3748/wjg.v27.i37.6290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a spiral-shaped bacterium responsible for the development of chronic gastritis, gastric ulcer, gastric cancer (GC), and MALT-lymphoma of the stomach. H. pylori can be present in the gastric mucosa (GM) in both spiral and coccoid forms. However, it is not known whether the severity of GM contamination by various vegetative forms of H. pylori is associated with clinical and morphological characteristics and long-term results of GC treatment. AIM To establish the features of H. pylori infection in patients with GC and their correlations with clinical and morphological characteristics of diseases and long-term results of treatment. METHODS Of 109 patients with GC were included in a prospective cohort study. H. pylori in the GM and tumor was determined by rapid urease test and by immunohistochemically using the antibody to H. pylori. The results obtained were compared with the clinical and morphological characteristics and prognosis of GC. Statistical analysis was performed using the Statistica 10.0 software. RESULTS H. pylori was detected in the adjacent to the tumor GM in 84.5% of cases, of which a high degree of contamination was noted in 50.4% of the samples. Coccoid forms of H. pylori were detected in 93.4% of infected patients, and only coccoid-in 68.9%. It was found that a high degree of GM contamination by the coccoid forms of H. pylori was observed significantly more often in diffuse type of GC (P = 0.024), in poorly differentiated GC (P = 0.011), in stage T3-4 (P = 0.04) and in N1 (P = 0.011). In cases of moderate and marked concentrations of H. pylori in GM, a decrease in 10-year relapse free and overall survival from 55.6% to 26.3% was observed (P = 0.02 and P = 0.07, respectively). The relationship between the severity of the GM contamination by the spiral-shaped forms of H. pylori and the clinical and morphological characteristics and prognosis of GC was not revealed. CONCLUSION The data obtained indicates that H. pylori may be associated not only with induction but also with the progression of GC.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| | - Olesya Tomchuk
- Department of Histology, Cytology, Embryology, Orenburg State Medical University, Orenburg 460000, Russia
| | - Elena I Shurygina
- Department of Pathology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
15
|
Piscione M, Mazzone M, Di Marcantonio MC, Muraro R, Mincione G. Eradication of Helicobacter pylori and Gastric Cancer: A Controversial Relationship. Front Microbiol 2021; 12:630852. [PMID: 33613500 PMCID: PMC7889593 DOI: 10.3389/fmicb.2021.630852] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Worldwide, gastric cancer (GC) represents the fifth cancer for incidence, and the third as cause of death in developed countries. Indeed, it resulted in more than 780,000 deaths in 2018. Helicobacter pylori appears to be responsible for the majority of these cancers. On the basis of recent studies, and either alone or combined with additional etiological factors, H. pylori is considered a "type I carcinogen." Over recent decades, new insights have been obtained into the strategies that have been adopted by H. pylori to survive the acidic conditions of the gastric environment, and to result in persistent infection, and dysregulation of host functions. The multistep processes involved in the development of GC are initiated by transition of the mucosa into chronic non-atrophic gastritis, which is primarily triggered by infection with H. pylori. This gastritis then progresses into atrophic gastritis and intestinal metaplasia, and then to dysplasia, and following Correa's cascade, to adenocarcinoma. The use of antibiotics for eradication of H. pylori can reduce the incidence of precancerous lesions only in the early stages of gastric carcinogenesis. Here, we first survey the etiology and risk factors of GC, and then we analyze the mechanisms underlying tumorigenesis induced by H. pylori, focusing attention on virulence factor CagA, inflammation, oxidative stress, and ErbB2 receptor tyrosine kinase. Moreover, we investigate the relationships between H. pylori eradication therapy and other diseases, considering not only cardia (upper stomach) cancers and Barrett's esophagus, but also asthma and allergies, through discussion of the "hygiene hypothesis. " This hypothesis suggests that improved hygiene and antibiotic use in early life reduces microbial exposure, such that the immune response does not become primed, and individuals are not protected against atopic disorders, asthma, and autoimmune diseases. Finally, we overview recent advances to uncover the complex interplay between H. pylori and the gut microbiota during gastric carcinogenesis, as characterized by reduced bacterial diversity and increased microbial dysbiosis. Indeed, it is of particular importance to identify the bacterial taxa of the stomach that might predict the outcome of gastric disease through the stages of Correa's cascade, to improve prevention and therapy of gastric carcinoma.
Collapse
Affiliation(s)
| | | | | | | | - Gabriella Mincione
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| |
Collapse
|
16
|
Biofilm Formation as a Complex Result of Virulence and Adaptive Responses of Helicobacter pylori. Pathogens 2020; 9:pathogens9121062. [PMID: 33353223 PMCID: PMC7766044 DOI: 10.3390/pathogens9121062] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is a bacterium that is capable of colonizing a host for many years, often for a lifetime. The survival in the gastric environment is enabled by the production of numerous virulence factors conditioning adhesion to the mucosa surface, acquisition of nutrients, and neutralization of the immune system activity. It is increasingly recognized, however, that the adaptive mechanisms of H. pylori in the stomach may also be linked to the ability of this pathogen to form biofilms. Initially, biofilms produced by H. pylori were strongly associated by scientists with water distribution systems and considered as a survival mechanism outside the host and a source of fecal-oral infections. In the course of the last 20 years, however, this trend has changed and now the most attention is focused on the biomedical aspect of this structure and its potential contribution to the therapeutic difficulties of H. pylori. Taking into account this fact, the aim of the current review is to discuss the phenomenon of H. pylori biofilm formation and present this mechanism as a resultant of the virulence and adaptive responses of H. pylori, including morphological transformation, membrane vesicles secretion, matrix production, efflux pump activity, and intermicrobial communication. These mechanisms will be considered in the context of transcriptomic and proteomic changes in H. pylori biofilms and their modulating effect on the development of this complex structure.
Collapse
|
17
|
Hortelano I, Moreno Y, Vesga FJ, Ferrús MA. Evaluation of different culture media for detection and quantification of H. pylori in environmental and clinical samples. Int Microbiol 2020; 23:481-487. [PMID: 32607781 DOI: 10.1007/s10123-020-00135-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
The objective of the present study was to establish the most suitable culture medium for the isolation of H. pylori from environmental and clinical samples. Ten different culture media were compared and evaluated. Four of them had been previously described and were modified in this study. The rest of the media were designed de novo. Three different matrices, tap water, wastewater, and feces, were inoculated with serial dilutions of H. pylori NCTC 11637 strain at a final concentration of 104 and 103 CFU/ml and the recovery rates were calculated. From inoculated tap water and wastewater samples, H. pylori colonies were recovered from four out of the analyzed culture media. When fecal samples were analyzed, the isolation of the pathogen under study was only possible from two culture media. Different optimal media were observed for each type of sample, even for wastewater and stool samples. Nevertheless, our results indicated that the combination of Dent Agar with polymyxin B sulfate did not inhibit the growth of H. pylori and was highly selective for its recovery, regardless of the sample origin. Thus, we propose the use of this medium as a diagnostic tool for the isolation of H. pylori from environmental and clinical samples, as well as for epidemiological studies.
Collapse
Affiliation(s)
- Irene Hortelano
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain.
| | - Fidson Juarismi Vesga
- Microbiology Department, Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - María Antonia Ferrús
- Biotechnology Department, Universitat Politècnica de València, 46022, Valencia, Spain
| |
Collapse
|
18
|
Cai Y, Wang C, Chen Z, Xu Z, Li H, Li W, Sun Y. Transporters HP0939, HP0497, and HP0471 participate in intrinsic multidrug resistance and biofilm formation in Helicobacter pylori by enhancing drug efflux. Helicobacter 2020; 25:e12715. [PMID: 32548895 DOI: 10.1111/hel.12715] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The multidrug resistance of Helicobacter pylori is becoming an increasingly serious issue. It is therefore necessary to study the mechanism of multidrug resistance of H pylori. We have previously identified that the HP0939, HP0497, and HP0471 transporters affect the efflux of drugs from H pylori. As efflux pumps participate in bacterial multidrug resistance and biofilm formation, we hypothesized that these transporters could be involved in the multidrug resistance and biofilm formation of H pylori. MATERIALS AND METHODS We therefore constructed three knockout strains, Δhp0939, Δhp0497, and Δhp0471, and three high-expression strains, Hp0939he , Hp0497he , and Hp0471he , using the wild-type (WT) 26 695 strain of H pylori as the template. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of wild strains, knockout strains, and high-expression strains to amoxicillin, metronidazole, and other antibiotics were measured. The efflux capacity of high-expression strains and wild strains was compared by Hoechst 33 342 accumulation assay. RESULTS Determination of the MIC and MBC of the antibiotics revealed that the knockout strains were more sensitive to antibiotics, while the high-expression strains were less sensitive to antibiotics, compared to the WT. The ability of the high-expression strains to efflux drugs was significantly higher than that of the WT. We also induced H pylori to form biofilms, and observed that the knockout strains could barely form biofilms and were more sensitive to several antibiotics, compared to the WT. The mRNA expression of hp0939, hp0497, and hp0471 in the clinically sensitive and multidrug-resistant strains was determined, and it was found that these genes were highly expressed in the multidrug-resistant strains that were isolated from the clinics. CONCLUSIONS In this study, we found three transporters involved in intrinsic multidrug resistance of H pylori.
Collapse
Affiliation(s)
- Yuying Cai
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Caixia Wang
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhenghong Chen
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China
| | - Zhengzheng Xu
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| | - Huanjie Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| | - Wenjuan Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| |
Collapse
|
19
|
Jugreet BS, Suroowan S, Rengasamy RK, Mahomoodally MF. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Ierardi E, Losurdo G, Mileti A, Paolillo R, Giorgio F, Principi M, Di Leo A. The Puzzle of Coccoid Forms of Helicobacter pylori: Beyond Basic Science. Antibiotics (Basel) 2020; 9:293. [PMID: 32486473 PMCID: PMC7345126 DOI: 10.3390/antibiotics9060293] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 01/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) may enter a non-replicative, non-culturable, low metabolically active state, the so-called coccoid form, to survive in extreme environmental conditions. Since coccoid forms are not susceptible to antibiotics, they could represent a cause of therapy failure even in the absence of antibiotic resistance, i.e., relapse within one year. Furthermore, coccoid forms may colonize and infect the gastric mucosa in animal models and induce specific antibodies in animals and humans. Their detection is hard, since they are not culturable. Techniques, such as electron microscopy, polymerase chain reaction, loop-mediated isothermal amplification, flow cytometry and metagenomics, are promising even if current evidence is limited. Among the options for the treatment, some strategies have been suggested, such as a very high proton pump inhibitor dose, high-dose dual therapy, N-acetycysteine, linolenic acid and vonoprazan. These clinical, diagnostic and therapeutic uncertainties will represent fascinating challenges in the future.
Collapse
Affiliation(s)
- Enzo Ierardi
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, 70124 Bari, Italy; (G.L.); (A.M.); (R.P.); (M.P.); (A.D.L.)
| | - Giuseppe Losurdo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, 70124 Bari, Italy; (G.L.); (A.M.); (R.P.); (M.P.); (A.D.L.)
- Ph.D. Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, 70124 Bari, Italy
| | - Alessia Mileti
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, 70124 Bari, Italy; (G.L.); (A.M.); (R.P.); (M.P.); (A.D.L.)
| | - Rosa Paolillo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, 70124 Bari, Italy; (G.L.); (A.M.); (R.P.); (M.P.); (A.D.L.)
| | | | - Mariabeatrice Principi
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, 70124 Bari, Italy; (G.L.); (A.M.); (R.P.); (M.P.); (A.D.L.)
| | - Alfredo Di Leo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro” of Bari, 70124 Bari, Italy; (G.L.); (A.M.); (R.P.); (M.P.); (A.D.L.)
| |
Collapse
|
21
|
Vesga FJ, Moreno Y, Ferrús MA, Ledesma-Gaitan LM, Campos C, Trespalacios AA. Correlation among fecal indicator bacteria and physicochemical parameters with the presence of Helicobacter pylori DNA in raw and drinking water from Bogotá, Colombia. Helicobacter 2019; 24:e12582. [PMID: 30950129 DOI: 10.1111/hel.12582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The quality of raw and drinking water is a matter of considerable concern due to the possibility of fecal contamination. To assess the quality and public health risk of different types of water, the fecal indicator bacteria (FIB) are used. However, some pathogens, such as Helicobacter pylori, may be present in water when FIB cannot be found. H pylori is recognized as the causative agent of chronic gastritis, peptic and duodenal ulcers, and gastric cancer. The aim of this study was to evaluate the relationships among physicochemical parameters, FIB concentrations, and the presence of H pylori DNA in raw and drinking water from Bogotá, Colombia. MATERIALS AND METHODS A total of 310 water samples were collected 1 day per week from July 2015 to August 2016, and physicochemical parameters (pH, turbidity, conductivity, and residual free chlorine) were measured. Presence of H pylori DNA was determined and quantified by quantitative polymerase chain reaction (qPCR). Fecal indicator bacteria (total coliforms, Escherichia coli, and spores of sulfite-reducing Clostridia) were enumerated by using standard culture techniques. RESULTS Thirty of 155 (31%) raw water samples and forty-eight of 155 (38.7%) drinking water samples were positive for the presence of H pylori. No statistically significant relationships were found between physicochemical parameters or FIB with the presence or absence of H pylori in any sample (P < 0.05). CONCLUSIONS This study provides evidence of the presence of H pylori DNA in raw and drinking water in Bogotá, and shows that the detection and enumeration of FIB and physicochemical parameters in water do not correlate with the risk of contamination with H pylori.
Collapse
Affiliation(s)
- Fidson-Juarismy Vesga
- Science Faculty, Microbiology Department, Pontificia Universidad Javeriana, Bogotá, Colombia
- Research Institute of Water Engineering and Environment (IIAMA), Universitat Politécnica de València, Valencia, Spain
| | - Yolanda Moreno
- Research Institute of Water Engineering and Environment (IIAMA), Universitat Politécnica de València, Valencia, Spain
| | - María Antonia Ferrús
- Biotechnology Department, ETSIAM, Universitat Politécnica de València, Valencia, Spain
| | | | - Claudia Campos
- Science Faculty, Microbiology Department, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | |
Collapse
|
22
|
Mixed Borrelia burgdorferi and Helicobacter pylori Biofilms in Morgellons Disease Dermatological Specimens. Healthcare (Basel) 2019; 7:healthcare7020070. [PMID: 31108976 PMCID: PMC6627092 DOI: 10.3390/healthcare7020070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Morgellons disease (MD) is a dermopathy that is associated with tick-borne illness. It is characterized by spontaneously developing skin lesions containing embedded or projecting filaments, and patients may also experience symptoms resembling those of Lyme disease (LD) including musculoskeletal, neurological and cardiovascular manifestations. Various species of Borrelia and co-infecting pathogens have been detected in body fluids and tissue specimens from MD patients. We sought to investigate the coexistence of Borrelia burgdorferi (Bb) and Helicobacter pylori (Hp) in skin specimens from MD subjects, and to characterize their association with mixed amyloid biofilm development. METHODS Testing for Bb and Hp was performed on dermatological specimens from 14 MD patients using tissue culture, immunohistochemical (IHC) staining, polymerase chain reaction (PCR) testing, fluorescent in situ hybridization (FISH) and confocal microscopy. Markers for amyloid and biofilm formation were investigated using histochemical and IHC staining. RESULTS Bb and Hp were detected in dermatological tissue taken from MD lesions. Bb and Hp tended to co-localize in foci within the epithelial tissue. Skin sections exhibiting foci of co-infecting Bb and Hp contained amyloid markers including β-amyloid protein, thioflavin and phosphorylated tau. The biofilm marker alginate was also found in the sections. CONCLUSIONS Mixed Bb and Hp biofilms containing β-amyloid and phosphorylated tau may play a role in the evolution of MD.
Collapse
|
23
|
Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Front Microbiol 2019; 10:846. [PMID: 31110496 PMCID: PMC6501431 DOI: 10.3389/fmicb.2019.00846] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria are highly social organisms that communicate via signaling molecules and can assume a multicellular lifestyle to build biofilm communities. Until recently, complications from biofilm-associated infection have been primarily ascribed to increased bacterial resistance to antibiotics and host immune evasion, leading to persistent infection. In this theory and hypothesis article we present a relatively new argument that biofilm formation has potential etiological role in the development of digestive tract cancer. First, we summarize recent new findings suggesting the potential link between bacterial biofilm and various types of cancer to build the foundation of our hypothesis. To date, evidence has been particularly convincing for colorectal cancer and its precursor, i.e., polyps, pointing to several key individual bacterial species, such as Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus gallolyticus subsp. Gallolyticus. Then, we further extend this hypothesis to one of the most common bacterial infection in humans, Helicobacter pylori (Hp), which is considered a major cause of gastric cancer. Thus far, there has been no direct evidence linking in vivo Hp gastric biofilm formation to gastric carcinogenesis. Yet, we synthesize the information to support an argument that biofilm associated-Hp is potentially more carcinogenic, summarizing biological characteristics of biofilm-associated bacteria. We also discuss mechanistic pathways as to how Hp or other biofilm-associated bacteria control biofilm formation and highlight recent findings on Hp genes that influence biofilm formation, which may lead to strain variability in biofilm formation. This knowledge may open a possibility of developing targeted intervention. We conclude, however, that this field is still in its infancy. To test the hypothesis rigorously and to link it ultimately to gastric pathologies (e.g., premalignant lesions and cancer), studies are needed to learn more about Hp biofilms, such as compositions and biological properties of extracellular polymeric substance (EPS), presence of non-Hp microbiome and geographical distribution of biofilms in relation to gastric gland types and structures. Identification of specific Hp strains with enhanced biofilm formation would be helpful not only for screening patients at high risk for sequelae from Hp infection, but also for development of new antibiotics to avoid resistance, regardless of its association with gastric cancer.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elena Kasamatsu
- Instituto de Investigaciones en Ciencias de la Salud, National University of Asunción, Asunción, Paraguay
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
24
|
Prasad A, Devi AT, Prasad MNN, Zameer F, Shruthi G, Shivamallu C. Phyto anti-biofilm elicitors as potential inhibitors of Helicobacter pylori. 3 Biotech 2019; 9:53. [PMID: 30729077 DOI: 10.1007/s13205-019-1582-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/17/2019] [Indexed: 12/25/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is a global public health concern. Due to its high adaptability in various adverse environments (temperature, pH, adhesion, phenotypic forms), targeting the bacterium is quite challenging. Moreover, due to its high persistence, decreased patience compliance and emerging antibiotic resistance, researchers have been forced to search for novel candidates with lesser or no side effects. Hence, in the current study, phytobioactives have been screened for its anti-biofilm attributes against H.pylori. Gastric biopsy samples have been screened using confirmatory techniques (microbiological, biochemical and molecular) for their virulent and non-virulent biomarkers. Physico-nutritive parameters were standardized. H. pylori biofilms were assessed using microtitre plate assay. Biofilms' biomass and exopolysaccharide have been evaluated using crystal violet and ruthenium red staining, respectively. Anti-biofilm screening was performed using potent aqueous phytochemicals namely Acorus calamus, Colocasia esculenta and Vitex trifolia. The results indicated the confluent growth of the H. pylori biofilms confirmed through genotyping and grew best at 37 °C for 72 h at a pH of 7.5 on polystyrene plates. Further, among the phytochemicals tested, Acorus calamus exhibited the highest H. pylori anti-biofilm activity via a dose-dependent pattern. The overall observations of the study will pave way for newer approaches to understand and combat bacterial pathogenesis and will contribute towards better health and hygiene.
Collapse
|
25
|
Phytochemicals in Helicobacter pylori Infections: What Are We Doing Now? Int J Mol Sci 2018; 19:ijms19082361. [PMID: 30103451 PMCID: PMC6121492 DOI: 10.3390/ijms19082361] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
In this critical review, plant sources used as effective antibacterial agents against Helicobacter pylori infections are carefully described. The main intrinsic bioactive molecules, responsible for the observed effects are also underlined and their corresponding modes of action specifically highlighted. In addition to traditional uses as herbal remedies, in vitro and in vivo studies focusing on plant extracts and isolated bioactive compounds with anti-H. pylori activity are also critically discussed. Lastly, special attention was also given to plant extracts with urease inhibitory effects, with emphasis on involved modes of action.
Collapse
|
26
|
Vesga FJ, Moreno Y, Ferrús MA, Campos C, Trespalacios AA. Detection of Helicobacter pylori in drinking water treatment plants in Bogotá, Colombia, using cultural and molecular techniques. Int J Hyg Environ Health 2018; 221:595-601. [PMID: 29709385 DOI: 10.1016/j.ijheh.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori is one of the most common causes of chronic bacterial infection in humans, and a predisposing factor for peptic ulcer and gastric cancer. The infection has been consistently associated with lack of access to clean water and proper sanitation. H. pylori has been detected in surface water, wastewater and drinking water. However, its ability to survive in an infectious state in the environment is hindered because it rapidly loses its cultivability. The aim of this study was to determine the presence of cultivable and therefore viable H. pylori in influent and effluent water from drinking water treatment plants (DWTP). A total of 310 influent and effluent water samples were collected from three drinking water treatment plants located at Bogotá city, Colombia. Specific detection of H. pylori was achieved by culture, qPCR and FISH techniques. Fifty-six positive H. pylori cultures were obtained from the water samples. Characteristic colonies were covered by the growth of a large number of other bacteria present in the water samples, making isolation difficult to perform. Thus, the mixed cultures were submitted to Fluorescent in situ Hybridization (FISH) and qPCR analysis, followed by sequencing of the amplicons for confirmation. By qPCR, 77 water samples, both from the influent and the effluent, were positive for the presence of H. pylori. The results of our study demonstrate that viable H. pylori cells were present in both, influent and effluent water samples obtained from drinking water treatment plants in Bogotá and provide further evidence that contaminated water may act as a transmission vehicle for H. pylori. Moreover, FISH and qPCR methods result rapid and specific techniques to identify H. pylori from complex environmental samples such as influent water.
Collapse
Affiliation(s)
- Fidson-Juarismy Vesga
- Microbiology Department, Science Faculty, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia; Research Institute of Water Engineering and Environment (IIAMA), Universitat Politècnica de València, Valencia, 46022, Spain
| | - Yolanda Moreno
- Research Institute of Water Engineering and Environment (IIAMA), Universitat Politècnica de València, Valencia, 46022, Spain.
| | - María Antonia Ferrús
- Biotechnology Department, ETSIAM, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Claudia Campos
- Microbiology Department, Science Faculty, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Alba Alicia Trespalacios
- Microbiology Department, Science Faculty, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| |
Collapse
|
27
|
Gafri HFS, Mohamed Zuki F, Aroua MK, Hashim NA. Mechanism of bacterial adhesion on ultrafiltration membrane modified by natural antimicrobial polymers (chitosan) and combination with activated carbon (PAC). REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Bacterial adhesion to surfaces is related to several factors, such as surface charge, surface energy, and substrate characteristics (leading to the formation of biofilms). Organisms are dominant in most environmental, industrial, and medical problems and processes that are of interest to microbiologists. Biofilm cells are at least 500 times more resistant to antibacterial agents compared to planktonic cells. The usage of ultrafiltration membranes is fast becoming popular for water treatment. Membrane lifetime and permeate flux are primarily affected by the phenomena of microbial accumulation and fouling at the membrane’s surface. This review intends to understand the mechanism of membrane fouling by bacterial attachment on polymeric ultrafiltration membrane modified by natural antimicrobial polymers (chitosan) combined with powder activated carbon. Also, to guide future research on membrane water treatment processes, adhesion prediction using the extended Derjaguin-Landau-Verwey-Overbeek theory is discussed.
Collapse
Affiliation(s)
- Hasan Fouzi S. Gafri
- Department of Chemical Engineering , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Fathiah Mohamed Zuki
- Department of Chemical Engineering , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Mohamed Kheireddine Aroua
- Centre for Carbon Dioxide Capture and Utilization (CCDCU), School of Science and Technology , Sunway University, Bandar Sunway , 47500 Petaling Jaya , Malaysia
- Department of Engineering , Lancaster University , Lancaster, LA1 4YW , UK
| | - Nur Awanis Hashim
- Department of Chemical Engineering , University of Malaya , 50603 Kuala Lumpur , Malaysia
| |
Collapse
|
28
|
Krzyżek P, Gościniak G. A proposed role for diffusible signal factors in the biofilm formation and morphological transformation of Helicobacter pylori. TURKISH JOURNAL OF GASTROENTEROLOGY 2017; 29:7-13. [PMID: 29082887 DOI: 10.5152/tjg.2017.17349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to the increasing resistance of Helicobacter pylori to antibiotics, there is a growing need for new strategies for the effective eradication of this pathogen. The inhibition of quorum-sensing activity in most microorganisms leads to a decrease in virulence. A different reaction is observed in H. pylori, as interfering with the production of autoinducer-2 initiates biofilm formation and increases the survival of these bacteria. Therefore, it is believed that there is an alternative way to control the physiological changes of H. pylori exposed to environmental stress. In this article, we present the compounds probably involved in the modulation of H. pylori virulence. Diffusible signal factors (DSFs) are fatty acid signal molecules involved in communication between microbes. DSFs are likely to stimulate H. Pylori transition into a sedentary state that correlates with bacterial transformation into a more resistant coccoid form and initiates biofilm formation. Biofilm is a structure that plays a crucial role in protecting against adverse environmental factors (low pH, oxidative stress, action of immune system) and limiting the effective concentration of antimicrobial substances. This article has suggested and characterized the existence of an alternative DSF-mediated cell-cell signaling of H. pylori, which controls autoaggregative behaviors, biofilm formation, and the transition of microorganisms into the coccoid form.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Grażyna Gościniak
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
29
|
De Re V, Repetto O, Zanussi S, Casarotto M, Caggiari L, Canzonieri V, Cannizzaro R. Protein signature characterizing Helicobacter pylori strains of patients with autoimmune atrophic gastritis, duodenal ulcer and gastric cancer. Infect Agent Cancer 2017; 12:22. [PMID: 28465717 PMCID: PMC5408474 DOI: 10.1186/s13027-017-0133-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Background Helicobacter pylori (H. pylori) represents a key factor in the etiology of autoimmune atrophic gastritis (AAG), duodenal ulcer (DU) and gastric cancer (GC). The aim of this study was to characterize the differential protein expression of H. pylori isolated from gastric biopsies of patients affected by either AAG, DU or GC. Methods The H. pylori strains were isolated from endoscopic biopsies from the stomach of patients with gastric disease. Protein profiles of H. pylori were compared by two-dimensional difference in gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) for the identification of significantly different spots (Student t-test, p < 0.05). Results A total of 47 differentially expressed spots were found between H. pylori isolated from patients with either DU or AAG diseases and those isolated from patients with GC (Anova < 0.05, log fold change >1.5). These spots corresponded to 35 unique proteins. The identity of 7 protein spots was validated after one-dimensional electrophoresis and MS/MS analyses of excised gel portions. In H. pylori isolated from DU-patients a significant increase in proteins with antioxidant activity emerged (AroQ, AspA, FldA, Icd, OorA and ScoB), together with a higher content of proteins counteracting the high acid environment (KatA and NapA). In H. pylori isolated from AAG-patients proteins neutralizing hydrogen concentrations through organic substance metabolic processes decreased (GroL, TrxB and Tuf). In addition, a reduction of bacterial motility (FlhA) was found to be associated with AAG-H. pylori isolates. In GC-H. pylori strains it was found an increase in nucleic acid-binding proteins (e.g. DnaG, Tuf, RpoA, RplU) which may be involved in a higher demand of DNA- and protein-related processes. Conclusion Our data suggest the presence of specific protein signatures discriminating among H. pylori isolated from either AAG, DU or GC. Changes in protein expression profiles evaluated by DIGE succeeded in deciphering part of the molecular scenarios associated with the different H. pylori-related gastric diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13027-017-0133-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valli De Re
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Via F. Gallini 2, 33081 Aviano, Italy
| | - Ombretta Repetto
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Via F. Gallini 2, 33081 Aviano, Italy
| | - Stefania Zanussi
- Microbiology-Immunology and Virology, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Mariateresa Casarotto
- Microbiology-Immunology and Virology, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Laura Caggiari
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Via F. Gallini 2, 33081 Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Gastroenterology, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Renato Cannizzaro
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Via F. Gallini 2, 33081 Aviano, Italy.,Microbiology-Immunology and Virology, IRCCS CRO National Cancer Institute, Aviano, Italy.,Pathology Gastroenterology, IRCCS CRO National Cancer Institute, Aviano, Italy.,Gastroenterology, IRCCS CRO National Cancer Institute, Aviano, Italy
| |
Collapse
|
30
|
Cárdenas-Mondragón MG, Ares MA, Panunzi LG, Pacheco S, Camorlinga-Ponce M, Girón JA, Torres J, De la Cruz MA. Transcriptional Profiling of Type II Toxin-Antitoxin Genes of Helicobacter pylori under Different Environmental Conditions: Identification of HP0967-HP0968 System. Front Microbiol 2016; 7:1872. [PMID: 27920769 PMCID: PMC5118875 DOI: 10.3389/fmicb.2016.01872] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and is responsible for causing peptic ulcers and gastric carcinoma. The expression of virulence factors allows the persistence of H. pylori in the stomach, which results in a chronic, sometimes uncontrolled inflammatory response. Type II toxin-antitoxin (TA) systems have emerged as important virulence factors in many pathogenic bacteria. Three type II TA systems have previously been identified in the genome of H. pylori 26695: HP0315-HP0316, HP0892-HP0893, and HP0894-HP0895. Here we characterized a heretofore undescribed type II TA system in H. pylori, HP0967-HP0968, which is encoded by the bicistronic operon hp0968-hp0967 and belongs to the Vap family. The predicted HP0967 protein is a toxin with ribonuclease activity whereas HP0968 is an antitoxin that binds to its own regulatory region. We found that all type II TA systems were expressed in H. pylori during early stationary growth phase, and differentially expressed in the presence of urea, nickel, and iron, although, the hp0968-hp0967 pair was the most affected under these environmental conditions. Transcription of hp0968-hp0967 was strongly induced in a mature H. pylori biofilm and when the bacteria interacted with AGS epithelial cells. Kanamycin and chloramphenicol considerably boosted transcription levels of all the four type II TA systems. The hp0968-hp0967 TA system was the most frequent among 317 H. pylori strains isolated from all over the world. This study is the first report on the transcription of type II TA genes in H. pylori under different environmental conditions. Our data show that the HP0967 and HP0968 proteins constitute a bona fide type II TA system in H. pylori, whose expression is regulated by environmental cues, which are relevant in the context of infection of the human gastric mucosa.
Collapse
Affiliation(s)
- María G Cárdenas-Mondragón
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Leonardo G Panunzi
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280 Marseille, France
| | - Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología UNAM Cuernavaca, Mexico
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, IMSS Mexico City, Mexico
| |
Collapse
|
31
|
Wong EHJ, Ng CG, Chua EG, Tay ACY, Peters F, Marshall BJ, Ho B, Goh KL, Vadivelu J, Loke MF. Comparative Genomics Revealed Multiple Helicobacter pylori Genes Associated with Biofilm Formation In Vitro. PLoS One 2016; 11:e0166835. [PMID: 27870886 PMCID: PMC5117725 DOI: 10.1371/journal.pone.0166835] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 11/06/2016] [Indexed: 02/07/2023] Open
Abstract
Background Biofilm formation by Helicobacter pylori may be one of the factors influencing eradication outcome. However, genetic differences between good and poor biofilm forming strains have not been studied. Materials and Methods Biofilm yield of 32 Helicobacter pylori strains (standard strain and 31 clinical strains) were determined by crystal-violet assay and grouped into poor, moderate and good biofilm forming groups. Whole genome sequencing of these 32 clinical strains was performed on the Illumina MiSeq platform. Annotation and comparison of the differences between the genomic sequences were carried out using RAST (Rapid Annotation using Subsystem Technology) and SEED viewer. Genes identified were confirmed using PCR. Results Genes identified to be associated with biofilm formation in H. pylori includes alpha (1,3)-fucosyltransferase, flagellar protein, 3 hypothetical proteins, outer membrane protein and a cag pathogenicity island protein. These genes play a role in bacterial motility, lipopolysaccharide (LPS) synthesis, Lewis antigen synthesis, adhesion and/or the type-IV secretion system (T4SS). Deletion of cagA and cagPAI confirmed that CagA and T4SS were involved in H. pylori biofilm formation. Conclusions Results from this study suggest that biofilm formation in H. pylori might be genetically determined and might be influenced by multiple genes. Good, moderate and poor biofilm forming strain might differ during the initiation of biofilm formation.
Collapse
Affiliation(s)
- Eric Hong Jian Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chow Goon Ng
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng Guan Chua
- The Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine (M502), University of Western Australia, Perth, Australia
| | - Alfred Chin Yen Tay
- The Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine (M502), University of Western Australia, Perth, Australia
| | - Fanny Peters
- The Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine (M502), University of Western Australia, Perth, Australia
| | - Barry J. Marshall
- The Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine (M502), University of Western Australia, Perth, Australia
- UM Marshall Centre, High Impact Research Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Bow Ho
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Khean Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Wang L, Xie HZ, Liu YB, Wang BS, Zhang LY, Ye CH, Chen GF, Fu ZB, Liu CJ, Wen BS. Helicobacter pylori infection density and colonization depth in gastric mucosa: Influence on pathogenicity and drug resistance. Shijie Huaren Xiaohua Zazhi 2016; 24:347-354. [DOI: 10.11569/wcjd.v24.i3.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To observe the influence of Helicobacter pylori (H. pylori) infection density and colonization depth in the gastric mucosa on the severity of gastric mucosal inflammation, in order to approach the pathogenicity and the mechanism of antibiotic resistance caused by the H. pylori biofilm.
METHODS: Gastric mucosal biopsy specimens were histopathologically studied in 158 patients with H. pylori positive chronic gastritis and peptic ulcer. The severity of gastric mucosa inflammation and the H. pylori infection density were evaluated using haematoxylin-eosin staining to explore the relationship between H. pylori infection density and the severity of gastric mucosa inflammation. The colonization of H. pylori in different layers of the gastric mucosa (gastric mucosa surface, gastric pits, and superficial glands) was observed by immunohistochemistry. The relationship between the H. pylori colonization depth and the severity of gastric mucosa inflammation was analyzed statistically.
RESULTS: H. pylori can colonize at the surface, pits and superficial glands of the gastric mucosa as revealed by immunohistochemistry. Of 158 gastric mucosa specimens, 41 had low H. pylori density (+) at the surface of the gastric mucosa, 38 had moderate H. pylori density (++), and 79 had high density (+++); the corresponding figures were 29, 42 and 74 at the pits, and 51, 51 and 39 at the superficial glands. There was a significant association between H. pylori density and the inflammatory severity at the surface and pits (P < 0.05), but not at the superficial glands (P > 0.05). Of 158 gastric mucosa specimens, 40 had low H. pylori density (+) at the surface of the gastric mucosa, 39 had moderate H. pylori density (++), and 79 had high density (+++); the corresponding figures were 29, 41 and 74 at the pits, and 48, 53 and 29 at the superficial glands. There were significant associations between H. pylori density and inflammatory activity at the surface, pits, and superficial glands (P < 0.05). Higher H. pylori density was associated with more severe mucosal inflammation.
CONCLUSION: H. pylori can colonize at the surface, pits and superficial glands of the gastric mucosa layer. There is a significant association between H. pylori infection density and the severity of gastric mucosa inflammation. H. pylori biofilm, which is formed depending on bacterial number (infection density), may participate in the pathogenicity and antibiotics resistance of H. pylori.
Collapse
|
33
|
Grande R, Di Marcantonio MC, Robuffo I, Pompilio A, Celia C, Di Marzio L, Paolino D, Codagnone M, Muraro R, Stoodley P, Hall-Stoodley L, Mincione G. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA). Front Microbiol 2015; 6:1369. [PMID: 26733944 PMCID: PMC4679919 DOI: 10.3389/fmicb.2015.01369] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori persistence is associated with its capacity to develop biofilms as a response to changing environmental conditions and stress. Extracellular DNA (eDNA) is a component of H. pylori biofilm matrix but the lack of DNase I activity supports the hypothesis that eDNA might be protected by other extracellular polymeric substances (EPS) and/or Outer Membrane Vesicles (OMVs), which bleb from the bacteria surface during growth. The aim of the present study was to both identify the eDNA presence on OMVs segregated from H. pylori ATCC 43629/NCTC 11639 biofilm (bOMVs) and its planktonic phase (pOMVs) and to characterize the physical-chemical properties of the OMVs. The presence of eDNA in bOMVs and pOMVs was initially carried out using DNase I-gold complex labeling and Transmission Electron Microscope analysis (TEM). bOMVs and pOMVs were further isolated and physical-chemical characterization carried out using dynamic light scattering (DLS) analysis. eDNA associated with OMVs was detected and quantified using a PicoGreen spectrophotometer assay, while its extraction was performed with a DNA Kit. TEM images showed that eDNA was mainly associated with the OMV membrane surfaces; while PicoGreen staining showed a four-fold increase of dsDNA in bOMVs compared with pOMVs. The eDNA extracted from OMVs was visualized using gel electrophoresis. DLS analysis indicated that both planktonic and biofilm H. pylori phenotypes generated vesicles, with a broad distribution of sizes on the nanometer scale. The DLS aggregation assay suggested that eDNA may play a role in the aggregation of OMVs, in the biofilm phenotype. Moreover, the eDNA associated with vesicle membrane may impede DNase I activity on H. pylori biofilms. These results suggest that OMVs derived from the H. pylori biofilm phenotype may play a structural role by preventing eDNA degradation by nucleases, providing a bridging function between eDNA strands on OMV surfaces and promoting aggregation.
Collapse
Affiliation(s)
- Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Maria C Di Marcantonio
- Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Iole Robuffo
- Department of Biological Sciences, Institute of Molecular Genetics, National Research Council Chieti, Italy
| | - Arianna Pompilio
- Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Christian Celia
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Nanomedicine, Houston Methodist Research InstituteHouston, TX, USA
| | - Luisa Di Marzio
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara Chieti, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia" Catanzaro, Italy
| | - Marilina Codagnone
- Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Raffaella Muraro
- Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State UniversityColumbus, OH, USA; Department of Orthopaedics, The Ohio State UniversityColumbus, OH, USA; Faculty of Engineering and the Environment, University of SouthamptonSouthampton, UK
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State UniversityColumbus, OH, USA; NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation TrustSouthampton, UK
| | - Gabriella Mincione
- Center of Excellence on Aging, Ce.S.I., "G. d'Annunzio" University of Chieti-PescaraChieti, Italy; Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-PescaraChieti, Italy
| |
Collapse
|
34
|
Sarem M, Corti R. [Role of Helicobacter pylori coccoid forms in infection and recrudescence]. GASTROENTEROLOGIA Y HEPATOLOGIA 2015; 39:28-35. [PMID: 26089229 DOI: 10.1016/j.gastrohep.2015.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori is a spiral Gram-negative bacillus, which colonizes the human stomach and plays a key role in the pathogenesis of a number of gastroduodenal diseases. However, when expose to environmental stressed conditions, such as increased oxygen tension, extended incubation and exposure to antibiotics, Helicobacter pylori is able to entering the viable but nonculturable state, in which the bacterium modifies its morphology from a spiral to coccoid form, as a manifestation of cell adaptation to these adverse conditions. In gastric tissues, viable coccoid forms may remain latent for long time and retain virulence factors, so these forms possibly contribute to the treatment failures and recurrence of Helicobacter pylori infection and gastroduodenal diseases as well. In this review, we will discuss several aspects of cellular adaptation and survival of Helicobacter pylori, antibiotic susceptibility and virulence of coccoid forms and its involvement with recrudescence.
Collapse
Affiliation(s)
- Muhannad Sarem
- Instituto Universitario de Ciencias de la Salud, Facultad de Medicina, Fundación H. A. Barceló, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Rodolfo Corti
- Unidad de Esófago y Estómago, Hospital Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
35
|
Yonezawa H, Osaki T, Kamiya S. Biofilm Formation by Helicobacter pylori and Its Involvement for Antibiotic Resistance. BIOMED RESEARCH INTERNATIONAL 2015; 2015:914791. [PMID: 26078970 PMCID: PMC4452508 DOI: 10.1155/2015/914791] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/25/2014] [Indexed: 12/12/2022]
Abstract
Bacterial biofilms are communities of microorganisms attached to a surface. Biofilm formation is critical not only for environmental survival but also for successful infection. Helicobacter pylori is one of the most common causes of bacterial infection in humans. Some studies demonstrated that this microorganism has biofilm forming ability in the environment and on human gastric mucosa epithelium as well as on in vitro abiotic surfaces. In the environment, H. pylori could be embedded in drinking water biofilms through water distribution system in developed and developing countries so that the drinking water may serve as a reservoir for H. pylori infection. In the human stomach, H. pylori forms biofilms on the surface of gastric mucosa, suggesting one possible explanation for eradication therapy failure. Finally, based on the results of in vitro analyses, H. pylori biofilm formation can decrease susceptibility to antibiotics and H. pylori antibiotic resistance mutations are more frequently generated in biofilms than in planktonic cells. These observations indicated that H. pylori biofilm formation may play an important role in preventing and controlling H. pylori infections. Therefore, investigation of H. pylori biofilm formation could be effective in elucidating the detailed mechanisms of infection and colonization by this microorganism.
Collapse
Affiliation(s)
- Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
36
|
Norsworthy AN, Visick KL. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont. Mol Microbiol 2015; 96:233-48. [PMID: 25586643 DOI: 10.1111/mmi.12932] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 01/20/2023]
Abstract
Cells acclimate to fluctuating environments by utilizing sensory circuits. One common sensory pathway used by bacteria is two-component signaling (TCS), composed of an environmental sensor [the sensor kinase (SK)] and a cognate, intracellular effector [the response regulator (RR)]. The squid symbiont Vibrio fischeri uses an elaborate TCS phosphorelay containing a hybrid SK, RscS, and two RRs, SypE and SypG, to control biofilm formation and host colonization. Here, we found that another hybrid SK, SypF, was essential for biofilms by functioning downstream of RscS to directly control SypE and SypG. Surprisingly, although wild-type SypF functioned as an SK in vitro, this activity was dispensable for colonization. In fact, only a single non-enzymatic domain within SypF, the HPt domain, was critical in vivo. Remarkably, this domain within SypF interacted with RscS to permit a bypass of RscS's own HPt domain and SypF's enzymatic function. This represents the first in vivo example of a functional SK that exploits the enzymatic activity of another SK, an adaptation that demonstrates the elegant plasticity in the arrangement of TCS regulators.
Collapse
Affiliation(s)
- Allison N Norsworthy
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL, 60153, USA
| | | |
Collapse
|