1
|
Parolini C. Sepsis and high-density lipoproteins: Pathophysiology and potential new therapeutic targets. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167761. [PMID: 40044061 DOI: 10.1016/j.bbadis.2025.167761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/19/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
In 2020, sepsis has been defined a worldwide health major issue (World Health Organization). Lung, urinary tract and abdominal cavity are the preferred sites of sepsis-linked infection. Research has highlighted that the advancement of sepsis is not only related to the presence of inflammation or microbial or host pattern recognition. Clinicians and researchers now recognized that a severe immunosuppression is also a common feature found in patients with sepsis, increasing the susceptibility to secondary infections. Lipopolysaccharides (LPS) are expressed on the cell surface of Gram-negative, whereas Gram-positive bacteria express peptidoglycan (PGN) and lipoteichoic acid (LTA). The main mechanism by which LPS trigger host innate immune responses is binding to TLR4-MD2 (toll-like receptor4-myeloid differentiation factor 2), whereas, PGN and LTA are exogenous ligands of TLR2. Nucleotide-binding oligomerization domain (NOD)-like receptors are the most well-characterized cytosolic pattern recognition receptors, which bind microbial molecules, endogenous by-products and environmental triggers. It has been demonstrated that high-density lipoproteins (HDL), besides their major role in promoting cholesterol efflux, possess diverse pleiotropic properties, ranging from a modulation of the immune system to anti-inflammatory, anti-apoptotic, and anti-oxidant functions. In addition, HDL are able at i) binding LPS, preventing the activating of TLR4, and ii) inducing the expression of ATF3 (Activating transcription factor 3), a negative regulator of the TLR signalling pathways, contributing at justifying their capacity to hamper infection-based illnesses. Therefore, reconstituted HDL (rHDL), constituted by apolipoprotein A-I/apolipoprotein A-IMilano complexed with phospholipids, may be considered as a new therapeutic tool for the management of sepsis.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", via Balzaretti 9 - Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
2
|
Steixner-Kumar AA, Santacruz D, Geiger T, Rust W, Böttner D, Krenkel O, Bahrami E, Okafo G, Barth TF, Haenle M, Kratzer W, Schlingeloff P, Schmidberger J, Neubauer H, Dick A, Werner M, Simon E. Single-cell landscape of peripheral immune cells in MASLD/MASH. Hepatol Commun 2025; 9:e0643. [PMID: 40257301 PMCID: PMC12014121 DOI: 10.1097/hc9.0000000000000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/30/2024] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) progresses to metabolic dysfunction-associated steatohepatitis (MASH) and is a major cause of liver cirrhosis. Although liver inflammation is the hallmark feature of MASH versus MASLD, the involvement of the peripheral immune cell compartments in disease progression is poorly understood, and single-cell profiles of peripheral immune cells in MASLD/MASH are not known. METHODS Patients with MASLD/MASH and healthy volunteers have been prospectively enrolled in a cross-sectional study. Patients have been histologically stratified and further characterized by liver bulk RNA sequencing (RNA-Seq). Peripheral immune cells from patients and control blood samples have been comprehensively profiled using bulk and single RNA-Seq. RESULTS Twenty-two patients with fibrosis stage less than F3 have been histologically stratified into patients with low, medium, and high disease activity scores (NAFLD activity score [NAS]). In contrast to fibrosis, the NAS group correlated with noninvasive imaging readouts and blood biomarkers of liver damage and inflammation (ALT, AST). The prevalence of type 2 diabetes and obesity increased with the NAS stage. Bulk RNA-seq profiling of patient liver biopsies revealed gene signatures that were positively and negatively associated with NAS. Known marker genes for liver fibrosis where upregulated on RNA level. Blood bulk RNA-seq showed only moderate differences in patients versus healthy controls. In contrast, single-cell analysis of white blood cells revealed multiple alterations of immune (sub-)populations, including an increased abundance of immature B cells and myeloid suppressor cells in patients with MASLD/MASH as compared to healthy controls. CONCLUSIONS The study gives new insights into the pathophysiology of MASLD/MASH already manifesting relatively early in peripheral immune cell compartments. This opens new avenues for the development of new biomarker diagnostics and disease therapies.
Collapse
Affiliation(s)
- Agnes Anna Steixner-Kumar
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Diana Santacruz
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Tobias Geiger
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Werner Rust
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Dennis Böttner
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Oliver Krenkel
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Ehsan Bahrami
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - George Okafo
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | | | - Mark Haenle
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Wolfgang Kratzer
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | | | - Heike Neubauer
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Alec Dick
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Markus Werner
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Eric Simon
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| |
Collapse
|
3
|
Arrè V, Negro R, Giannelli G. The role of inflammasomes in hepatocellular carcinoma: Mechanisms and therapeutic insights. Ann Hepatol 2024; 30:101772. [PMID: 39701280 DOI: 10.1016/j.aohep.2024.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Hepatocellular carcinoma is among the most frequent forms of primary liver cancer and develops within a context of chronic inflammation, frequently associated with a multitude of risk factors, including viral infections, metabolic dysfunction-associated fatty liver disease, metabolic dysfunction-associated steatohepatitis and liver fibrosis. The tumor microenvironment is crucial for the progression of HCC, as immune cells, tumor-associated fibroblasts and hepatic stellate cells interact to promote chronic inflammation and tumor spread. Inflammasomes, the multiprotein complexes that launch the innate immune response, emerge as important mediators in the pathogenesis of HCC. Among others, the inflammasome Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 3 (NLRP3), and absent in melanoma 2 (AIM2), exhibit a dual role in HCC background. It has been reported that they can exert oncosuppressive functions by triggering the inflammatory death of cancer cells. Vice versa, chronic activation contributes to the development of a pro-tumorigenic environment, thus supporting tumor growth. In addition, other inflammasomes such as Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 6 and 12 (NLRP6 and NLRP12, respectively) regulate HCC onset and progression, although more experimental evidence is required. This review focuses on the molecular mechanisms underpinning the inflammasome's contribution to the onset, progression and spread of HCC. Moreover, we will explore the potential therapeutic approaches currently under investigation, which aim to improve the efficacy and reduce the side effects of the treatments currently available. Targeting inflammasomes may be a promising therapeutic strategy for the treatment of HCC, offering new opportunities to improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
4
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kimm MA, Kästle S, Stechele MMR, Öcal E, Richter L, Ümütlü MR, Schinner R, Öcal O, Salvermoser L, Alunni-Fabbroni M, Seidensticker M, Goldberg SN, Ricke J, Wildgruber M. Early monocyte response following local ablation in hepatocellular carcinoma. Front Oncol 2022; 12:959987. [PMID: 36353535 PMCID: PMC9638411 DOI: 10.3389/fonc.2022.959987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2023] Open
Abstract
Local ablative therapies are established treatment modalities in the treatment of early- and intermediate-stage hepatocellular carcinoma (HCC). Systemic effects of local ablation on circulating immune cells may contribute to patients' response. Depending on their activation, myeloid cells are able to trigger HCC progression as well as to support anti-tumor immunity. Certain priming of monocytes may already occur while still in the circulation. By using flow cytometry, we analyzed peripheral blood monocyte cell populations from a prospective clinical trial cohort of 21 HCC patients following interstitial brachytherapy (IBT) or radiofrequency ablation (RFA) and investigated alterations in the composition of monocyte subpopulations and monocytic myeloid-derived suppressor cells (mMDSCs) as well as receptors involved in orchestrating monocyte function. We discovered that mMDSC levels increased following both IBT and RFA in virtually all patients. Furthermore, we identified varying alterations in the level of monocyte subpopulations following radiation compared to RFA. (A) Liquid biopsy liquid biopsy of circulating monocytes in the future may provide information on the inflammatory response towards local ablation as part of an orchestrated immune response.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sophia Kästle
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Matthias M. R. Stechele
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elif Öcal
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Muzaffer R. Ümütlü
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Osman Öcal
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas Salvermoser
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - S. Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Division of Image-guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jens Ricke
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
6
|
Novel Systemic Treatment Modalities Including Immunotherapy and Molecular Targeted Therapy for Recurrent and Metastatic Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23147889. [PMID: 35887235 PMCID: PMC9320653 DOI: 10.3390/ijms23147889] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common cancers worldwide. More than half of patients with HNSCC eventually experience disease recurrence and/or metastasis, which can threaten their long-term survival. HNSCCs located in the oral cavity and larynx are usually associated with tobacco and/or alcohol use, whereas human papillomavirus (HPV) infection, particularly HPV16 infection, is increasingly recognized as a cause of oropharyngeal HNSCC. Despite clinical, histologic, and molecular differences between HPV-positive and HPV-negative HNSCCs, current treatment approaches are the same. For recurrent disease, these strategies include chemotherapy, immunotherapy with PD-1-inhibitors, or a monoclonal antibody, cetuximab, that targets epidermal growth factor; these therapies can be administered either as single agents or in combination. However, these treatment strategies carry a high risk of toxic side effects; therefore, more effective and less toxic treatments are needed. The landscape of HNSCC therapy is changing significantly; numerous clinical trials are underway to test novel therapeutic options like adaptive cellular therapy, antibody-drug conjugates, new targeted therapy agents, novel immunotherapy combinations, and therapeutic vaccines. This review helps in understanding the various developments in HNSCC therapy and sheds light on the path ahead in terms of further research in this field.
Collapse
|
7
|
Liu C, Wang Z, Wang W, Zheng L, Li M. Positive effects of selenium supplementation on selenoprotein S expression and cytokine status in a murine model of acute liver injury. J Trace Elem Med Biol 2022; 71:126927. [PMID: 35030482 DOI: 10.1016/j.jtemb.2022.126927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND It is a consensus that selenomethionine (SeMet) can protect liver from damage, but the immune mechanism of SeMet in acute liver injury (ALI) is still unclear. This study aims to investigate the protective effects of SeMet against ALI and to elucidate the possible immune mechanism. METHODS Firstly, the role of SeMet in CCl4-induced ALI mice was investigated through survival rate, serum ALT and AST, liver necrosis and apoptosis analysis. The expression and secretion of inflammatory cytokines and chemokines in the liver and serum of CCl4-induced ALI mice were analyzed by qRT-PCR and ELISA. Then the immune cell phenotypes were analyzed by flow cytometry and confocal imaging. In addition, MDSCs depletion, CXCL12/CXCR4 axis blocking and selenoprotein S (SELENOS) knockdown assays were used to reveal the immune mechanism of SeMet. RESULTS We found that SeMet prolonged survival rate, decreased the serum ALT and AST, alleviated liver necrosis and inhibited hepatocytes apoptosis. Prospective, SeMet decreased the expression of IL-6 and TNF-α, and increased the expression of IL-10. Interestingly, SeMet decreased the expression of MCP-1, while increased the expression of CXCL12. The immune analysis showed that SeMet decreased the activation of T cells through promoting MDSCs accumulation mediated by CXCL12/CXCR4 axis. Furthermore, SeMet increased SELENOS expression in vivo, and knockdown of SELENOS effectively abolished the protective effect of SeMet during ALI. CONCLUSION This study demonstrates that SeMet alleviates CCl4-induced ALI by promoting MDSCs accumulation through SELENOS mediated CXCL12/CXCR4 axis. Therefore, our study infers that selenium intake may be as a new therapeutic option for management of inflammation-mediated liver injury.
Collapse
Affiliation(s)
- Chunliang Liu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Biochemistry, Medical College of Soochow University, Suzhou, China.
| | - Zerong Wang
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Wei Wang
- Department of Biochemistry, Medical College of Soochow University, Suzhou, China
| | - Lei Zheng
- Department of Biochemistry, Medical College of Soochow University, Suzhou, China
| | - Ming Li
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Gudd CLC, Possamai LA. The Role of Myeloid Cells in Hepatotoxicity Related to Cancer Immunotherapy. Cancers (Basel) 2022; 14:1913. [PMID: 35454819 PMCID: PMC9027811 DOI: 10.3390/cancers14081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Drug-related hepatotoxicity is an emerging clinical challenge with the widening use of immunotherapeutic agents in the field of oncology. This is an important complication to consider as more immune oncological targets are being identified to show promising results in clinical trials. The application of these therapeutics may be complicated by the development of immune-related adverse events (irAEs), a serious limitation often requiring high-dose immunosuppression and discontinuation of cancer therapy. Hepatoxicity presents one of the most frequently encountered irAEs and a better understanding of the underlying mechanism is crucial for the development of alternative therapeutic interventions. As a novel drug side effect, the immunopathogenesis of the condition is not completely understood. In the liver, myeloid cells play a central role in the maintenance of homeostasis and promotion of inflammation. Recent research has identified myeloid cells to be associated with hepatic adverse events of various immune modulatory monoclonal antibodies. In this review article, we provide an overview of the role of myeloid cells in the immune pathogenesis during hepatoxicity related to cancer immunotherapies and highlight potential treatment options.
Collapse
Affiliation(s)
- Cathrin L. C. Gudd
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Lucia A. Possamai
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Dong P, Yan Y, Fan Y, Wang H, Wu D, Yang L, Zhang J, Yin X, Lv Y, Zhang J, Hou Y, Liu F, Yu X. The Role of Myeloid-Derived Suppressor Cells in the Treatment of Pancreatic Cancer. Technol Cancer Res Treat 2022; 21:15330338221142472. [PMID: 36573015 PMCID: PMC9806441 DOI: 10.1177/15330338221142472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/05/2022] [Accepted: 10/14/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer has the highest mortality rate of all major cancers, with a 5-year survival rate of about 10%. Early warning signs and symptoms of pancreatic cancer are vague or nonexistent, and most patients are diagnosed in Stage IV, when surgery is not an option for about 80%-85% of patients. For patients with inoperable pancreatic cancer, current conventional treatment modalities such as chemotherapy and radiotherapy (RT) have suboptimal efficacy. Tumor progression is closely associated with the tumor microenvironment, which includes peripheral blood vessels, bone marrow-derived inflammatory cells, fibroblasts, immune cells, signaling molecules, and extracellular matrix. Tumor cells affect the microenvironment by releasing extracellular signaling molecules, inducing peripheral immune tolerance, and promoting tumor angiogenesis. In turn, the immune cells of the tumor affect the survival and proliferation of cancer cells. Myeloid-derived suppressor cells are key cellular components in the tumor microenvironment and exert immunosuppressive functions by producing cytokines, recognizing other immune cells, and promoting tumor growth and metastasis. Myeloid-derived suppressor cells are the main regulator of the tumor immune response and a key target for tumor treatments. Since the combination of RT and immunotherapy is the main strategy for the treatment of pancreatic cancer, it is very important to understand the immune mechanisms which lead to MDSCs generation and the failure of current therapies in order to develop new target-based therapies. This review summarizes the research advances on the role of Myeloid-derived suppressor cells in the progression of pancreatic cancer and its treatment application in recent years.
Collapse
Affiliation(s)
- Peng Dong
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yu Yan
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yujun Fan
- Medical Management Center,Health Commission of Shandong Province, Jinan, Shandong, China
| | - Hui Wang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Danzhu Wu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
- Department of Oncology, Clinical Medical College of Jining Medical University, Jining, Shandong, China
| | - Liyuan Yang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Junpeng Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine Shandong University, Jinan, China
| | - Xiaoyang Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yajuan Lv
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Jiandong Zhang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Fengjun Liu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Xinshuang Yu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| |
Collapse
|
10
|
Pimenta DB, Varela VA, Datoguia TS, Caraciolo VB, Lopes GH, Pereira WO. The Bone Marrow Microenvironment Mechanisms in Acute Myeloid Leukemia. Front Cell Dev Biol 2021; 9:764698. [PMID: 34869355 PMCID: PMC8639599 DOI: 10.3389/fcell.2021.764698] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) is a highly complex tissue that provides important regulatory signals to orchestrate hematopoiesis. Resident and transient cells occupy and interact with some well characterized niches to produce molecular and cellular mechanisms that interfere with differentiation, migration, survival, and proliferation in this microenvironment. The acute myeloid leukemia (AML), the most common and severe hematological neoplasm in adults, arises and develop in the BM. The osteoblastic, vascular, and reticular niches provide surface co-receptors, soluble factors, cytokines, and chemokines that mediate important functions on hematopoietic cells and leukemic blasts. There are some evidences of how AML modify the architecture and function of these three BM niches, but it has been still unclear how essential those modifications are to maintain AML development. Basic studies and clinical trials have been suggesting that disturbing specific cells and molecules into the BM niches might be able to impair leukemia competencies. Either through niche-specific molecule inhibition alone or in combination with more traditional drugs, the bone marrow microenvironment is currently considered the potential target for new strategies to treat AML patients. This review describes the cellular and molecular constitution of the BM niches under healthy and AML conditions, presenting this anatomical compartment by a new perspective: as a prospective target for current and next generation therapies.
Collapse
Affiliation(s)
- Débora Bifano Pimenta
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Vanessa Araujo Varela
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Tarcila Santos Datoguia
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Victória Bulcão Caraciolo
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Gabriel Herculano Lopes
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Welbert Oliveira Pereira
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
11
|
Lesnova EI, Masalova OV, Permyakova KY, Kozlov VV, Nikolaeva TN, Pronin AV, Valuev-Elliston VT, Ivanov AV, Kushch AA. Difluoromethylornithine (DFMO), an Inhibitor of Polyamine Biosynthesis, and Antioxidant N-Acetylcysteine Potentiate Immune Response in Mice to the Recombinant Hepatitis C Virus NS5B Protein. Int J Mol Sci 2021; 22:6892. [PMID: 34206987 PMCID: PMC8268280 DOI: 10.3390/ijms22136892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is one of the main triggers of chronic liver disease. Despite tremendous progress in the HCV field, there is still no vaccine against this virus. Potential vaccines can be based on its recombinant proteins. To increase the humoral and, especially, cellular immune response to them, more effective adjuvants are needed. Here, we evaluated a panel of compounds as potential adjuvants using the HCV NS5B protein as an immunogen. These compounds included inhibitors of polyamine biosynthesis and urea cycle, the mTOR pathway, antioxidants, and cellular receptors. A pronounced stimulation of cell proliferation and interferon-γ (IFN-γ) secretion in response to concanavalin A was shown for antioxidant N-acetylcysteine (NAC), polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO), and TLR9 agonist CpG ODN 1826 (CpG). Their usage during the immunization of mice with the recombinant NS5B protein significantly increased antibody titers, enhanced lymphocyte proliferation and IFN-γ production. NAC and CpG decreased relative Treg numbers; CpG increased the number of myeloid-derived suppressor cells (MDSCs), whereas neither NAC nor DFMO affected MDSC counts. NAC and DFMO suppressed NO and interleukin 10 (IL-10) production by splenocytes, while DFMO increased the levels of IL-12. This is the first evidence of immunomodulatory activity of NAC and DFMO during prophylactic immunization against infectious diseases.
Collapse
Affiliation(s)
- Ekaterina I. Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Olga V. Masalova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Kristina Yu. Permyakova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
- Federal State Budgetary Educational Institution of Higher Education “Moscow State Academy of Veterinary Medicine and Biotechnology—MVA by K.I. Skryabin”, 109472 Moscow, Russia
| | - Vyacheslav V. Kozlov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Tatyana N. Nikolaeva
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Alexander V. Pronin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Vladimir T. Valuev-Elliston
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alla A. Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (K.Y.P.); (V.V.K.); (T.N.N.); (A.V.P.); (A.A.K.)
| |
Collapse
|
12
|
Wang S, Ding S, Luo H, Chai X. International Normalized Ratio to Albumin Ratio (PTAR): An Objective Risk Stratification Tool in Patients with Sepsis. Int J Gen Med 2021; 14:1829-1841. [PMID: 34012289 PMCID: PMC8126875 DOI: 10.2147/ijgm.s305085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Background Sepsis is a life-threatening multiple-organ dysfunction caused by dysregulation of host response to severe infection. Liver failure is a validated independent predictor of mortality. Accurate and rapid assessment of liver function is critical in patients with sepsis. However, an appropriate scoring system for liver function requires further development. Objective Our study aimed to validate the usefulness of the prothrombin time-international normalized ratio (PT-INR) to albumin ratio (PTAR) in predicting the mortality of patients with sepsis. Methods Data on a total of 4536 patients, obtained from the Multiparameter Intelligent Monitoring in Intensive Care III database, were included in our retrospective study. Logistic regression, Poisson regression with robust variance estimate analysis, and Cox proportional hazards models were used to explore the relationship between PTAR and mortality. Area under the curve (AUC) and decision curve analysis (DCA) were used to estimate the performance of PTAR in predicting the prognosis in septic patient. Results Multivariable Poisson regression showed that the relative risk (RR) of PTAR to ICU mortality, hospital mortality, and 28-day and 90-day mortality in septic patients was 1.26 (95% CI: 1.15-1.37), 1.24 (95% CI: 1.15-1.34), 1.23 (95% CI: 1.15-1.31), and 1.21 (95% CI: 1.13-1.28), respectively. Multivariable Cox regression showed that the hazard ratio (HR) of PTAR to 28-day mortality and 90-day mortality was 1.56 (95% CI: 1.44-1.70), and 1.55 (95% CI: 1.43-1.68), respectively. PTAR showed a moderate discrimination capacity in predicting hospital mortality (AUC: 0.655, 95% CI: 0.636-0.675) and 90-day mortality (AUC: 0.650, 95% CI: 0.633-0.667). Conclusion The PTAR scoring system is a convenient tool for predicting the prognosis of patients with sepsis.
Collapse
Affiliation(s)
- Shaoxiong Wang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Trauma Center, The Second Xiangya Hospital, Central South University, Changsha,Hunan, People's Republic of China
| | - Shuizi Ding
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiangping Chai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Trauma Center, The Second Xiangya Hospital, Central South University, Changsha,Hunan, People's Republic of China
| |
Collapse
|
13
|
Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In Situ Vaccination as a Strategy to Modulate the Immune Microenvironment of Hepatocellular Carcinoma. Front Immunol 2021; 12:650486. [PMID: 34025657 PMCID: PMC8137829 DOI: 10.3389/fimmu.2021.650486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is a highly prevalent malignancy that develops in patients with chronic liver diseases and dysregulated systemic and hepatic immunity. The tumor microenvironment (TME) contains tumor-associated macrophages (TAM), cancer-associated fibroblasts (CAF), regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) and is central to mediating immune evasion and resistance to therapy. The interplay between these cells types often leads to insufficient antigen presentation, preventing effective anti-tumor immune responses. In situ vaccines harness the tumor as the source of antigens and implement sequential immunomodulation to generate systemic and lasting antitumor immunity. Thus, in situ vaccines hold the promise to induce a switch from an immunosuppressive environment where HCC cells evade antigen presentation and suppress T cell responses towards an immunostimulatory environment enriched for activated cytotoxic cells. Pivotal steps of in situ vaccination include the induction of immunogenic cell death of tumor cells, a recruitment of antigen-presenting cells with a focus on dendritic cells, their loading and maturation and a subsequent cross-priming of CD8+ T cells to ensure cytotoxic activity against tumor cells. Several in situ vaccine approaches have been suggested, with vaccine regimens including oncolytic viruses, Flt3L, GM-CSF and TLR agonists. Moreover, combinations with checkpoint inhibitors have been suggested in HCC and other tumor entities. This review will give an overview of various in situ vaccine strategies for HCC, highlighting the potentials and pitfalls of in situ vaccines to treat liver cancer.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
14
|
Tang J, Yan Z, Feng Q, Yu L, Wang H. The Roles of Neutrophils in the Pathogenesis of Liver Diseases. Front Immunol 2021; 12:625472. [PMID: 33763069 PMCID: PMC7982672 DOI: 10.3389/fimmu.2021.625472] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Neutrophils are the largest population of circulating leukocytes and the first responder against invading pathogens or other danger signals. Sophisticated machineries help them play critical roles in immunity and inflammation, including phagocytosis, superoxide production, cytokine and chemokine production, degranulation, and formation of neutrophil extracellular traps (NETs). After maturation and release from the bone marrow, neutrophils migrate to inflamed tissues in response to many stimuli. Increasing evidences indicate that neutrophils are critically involved in the pathogenesis of liver diseases, including liver cancer, thus making them promising target for the treatment of liver diseases. Here, we would like to provide the latest finding about the role of neutrophils in liver diseases and discuss the potentiality of neutrophils as target for liver diseases.
Collapse
Affiliation(s)
- Jiaojiao Tang
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zijun Yan
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- Graduate Management Unit, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qiyu Feng
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lexing Yu
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Hongyang Wang
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
15
|
Ma C, Zhang Q, Greten TF. MDSCs in liver cancer: A critical tumor-promoting player and a potential therapeutic target. Cell Immunol 2021; 361:104295. [PMID: 33508529 DOI: 10.1016/j.cellimm.2021.104295] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Liver cancer is a leading cause of cancer deaths worldwide. Hepatocellular carcinoma (~75-85%) and cholangiocarcinoma (~10-15%) account for the majority of primary liver malignancies. Patients with primary liver cancer are often diagnosed with unresectable diseases and do not respond well to current therapies. The liver is also a common site of metastasis. Liver metastasis is difficult to treat, and the prognosis is poor. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with immunosuppressive activity. MDSCs are an important component of the tumor microenvironment and promote tumor progression through various mechanisms. MDSCs expand in both liver cancer patients and mouse liver cancer models. Importantly, MDSCs correlate with poor clinical outcomes for liver cancer patients. The tumor-promoting functions of MDSCs have also been shown in mouse liver cancer models. All these studies suggest that targeting MDSCs can potentially benefit liver cancer treatment. This review summarizes the current findings of MDSC regulation in liver cancer and related disease conditions.
Collapse
Affiliation(s)
- Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qianfei Zhang
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; NCI-CCR Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Lurje I, Hammerich L, Tacke F. Dendritic Cell and T Cell Crosstalk in Liver Fibrogenesis and Hepatocarcinogenesis: Implications for Prevention and Therapy of Liver Cancer. Int J Mol Sci 2020; 21:ijms21197378. [PMID: 33036244 PMCID: PMC7583774 DOI: 10.3390/ijms21197378] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a chronic, highly prevalent disease that may progress to cirrhosis and substantially increases the risk for development of hepatocellular carcinoma (HCC). Fibrotic livers are characterized by an inflammatory microenvironment that is composed of various immunologically active cells, including liver-resident populations (e.g., Kupffer cells, hepatic stellate cells and sinusoidal endothelium) and infiltrating leukocytes (e.g., monocytes, monocyte-derived macrophages, neutrophils and lymphocytes). While inflammatory injury drives both fibrogenesis and carcinogenesis, the tolerogenic microenvironment of the liver conveys immunosuppressive effects that encourage tumor growth. An insufficient crosstalk between dendritic cells (DCs), the professional antigen presenting cells, and T cells, the efficient anti-tumor effector cells, is one of the main mechanisms of HCC tumor tolerance. The meticulous analysis of patient samples and mouse models of fibrosis-HCC provided in-depth insights into molecular mechanisms of immune interactions in liver cancer. The therapeutic modulation of this multifaceted immunological response, e.g., by inhibiting immune checkpoint molecules, in situ vaccination, oncolytic viruses or combinations thereof, is a rapidly evolving field that holds the potential to improve the outcome of patients with HCC. This review aims to highlight the current understanding of DC–T cell interactions in fibrogenesis and hepatocarcinogenesis and to illustrate the potentials and pitfalls of therapeutic clinical translation.
Collapse
|
17
|
Li S, Wang N, Tan HY, Chueng F, Zhang ZJ, Yuen MF, Feng Y. Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic liver disease. Clin Transl Med 2020; 10:e112. [PMID: 32790968 PMCID: PMC7438809 DOI: 10.1002/ctm2.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Berberine is an isoquinoline alkaloid compound derived from many herbs, which has been used extensively to improve liver function. But action mechanism of its hepatoprotection in alcoholic liver disease (ALD) is far from being clear. Aim To investigate the underlying mechanism of berberine's therapeutic effect on ALD associated with gut microbiota‐immune system axis. Method An animal model fed with ethanol that mimics drinking pattern ideally in ALD patients was established. Liver function was evaluated by biochemical test and histological examination. Immune cells were detected by flow cytometry and feces samples were collected for 16S rRNA gene amplicon sequencing. Results We first reported the promising beneficial effect of berberine on ameliorating acute‐on‐chronic alcoholic hepatic damage and explored the underlying mechanism involving gut microbiota‐immune system axis. Notably, berberine activated a population with immune suppressive function, defined as granulocytic‐ myeloid‐derived suppressor cell (G‐MDSC)‐like population, in the liver of mice with alleviating alcohol‐induced hepatic injury. Berberine remarkably enhanced the increase of G‐MDSC‐like cells in blood and liver and decreased cytotoxic T cells correspondingly. Suppression of G‐MDSC‐like population significantly attenuated the protective effect of berberine against alcohol. Berberine activated IL6/STAT3 signaling in in vitro culture of G‐MSDCs‐like population, while inhibition of STAT3 activity attenuated the activation of this population by berberine. Moreover, berberine changed the overall gut microbial community, primarily increased the abundance of Akkermansia muciniphila. Of note, depletion of gut microbiota abolished the inducing effect of berberine on G‐MDSC‐like population, and attenuated its hepatoprotective effect against alcohol in mice, suggesting intestinal flora might be involved in mediating the expansion of this protective population. Conclusion Collectively, this study delivered insight into the role of immunosuppressive response in ALD, and facilitated the understanding of the pharmacological effects and action mechanisms of berberine.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Fan Chueng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Man-Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R, P. R. China
| |
Collapse
|
18
|
Jayant K, Habib N, Huang KW, Warwick J, Arasaradnam R. Recent Advances: The Imbalance of Immune Cells and Cytokines in the Pathogenesis of Hepatocellular Carcinoma. Diagnostics (Basel) 2020; 10:338. [PMID: 32466214 PMCID: PMC7277978 DOI: 10.3390/diagnostics10050338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Recent advancement in the immunological understanding of genesis of hepatocellular carcinoma (HCC) has implicated a decline in anti-tumour immunity on the background of chronic inflammatory state of liver parenchyma. The development of HCC involves a network of immunological activity in the tumour microenvironment involving continuous interaction between tumour and stromal cells. The reduction in anti-tumour immunity is secondary to changes in various immune cells and cytokines, and the tumour microenvironment plays a critical role in modulating the process of liver fibrosis, hepatocarcinogenesis, epithelial-mesenchymal transition (EMT), tumor invasion and metastasis. Thus, it is considered as one of primary factor behind the despicable tumour behavior and observed poor survival; along with increased risk of recurrence following treatment in HCC. The primary intent of the present review is to facilitate the understanding of the complex network of immunological interactions of various immune cells, cytokines and tumour cells associated with the development and progression of HCC.
Collapse
Affiliation(s)
- Kumar Jayant
- Warwick Medical School, University of Warwick, Coventry CV4 7H, UK; (J.W.); (R.A.)
- Department of Surgery and Cancer, Imperial College London, London SW7 5NH, UK; (N.H.); (K.W.H.)
| | - Nagy Habib
- Department of Surgery and Cancer, Imperial College London, London SW7 5NH, UK; (N.H.); (K.W.H.)
| | - Kai W. Huang
- Department of Surgery and Cancer, Imperial College London, London SW7 5NH, UK; (N.H.); (K.W.H.)
- Department of Surgery & Hepatitis Research Center, National Taiwan University Hospital, Taipei 10002, Taiwan
- Centre of Mini-Invasive Interventional Oncology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Jane Warwick
- Warwick Medical School, University of Warwick, Coventry CV4 7H, UK; (J.W.); (R.A.)
| | - Ramesh Arasaradnam
- Warwick Medical School, University of Warwick, Coventry CV4 7H, UK; (J.W.); (R.A.)
| |
Collapse
|
19
|
Fisicaro P, Barili V, Rossi M, Montali I, Vecchi A, Acerbi G, Laccabue D, Zecca A, Penna A, Missale G, Ferrari C, Boni C. Pathogenetic Mechanisms of T Cell Dysfunction in Chronic HBV Infection and Related Therapeutic Approaches. Front Immunol 2020; 11:849. [PMID: 32477347 PMCID: PMC7235343 DOI: 10.3389/fimmu.2020.00849] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A great effort of research has been devoted in the last few years to developing new anti-HBV therapies of finite duration that also provide effective sustained control of virus replication and antigen production. Among the potential therapeutic strategies, immune-modulation represents a promising option to cure HBV infection and the adaptive immune response is a rational target for novel therapeutic interventions, in consideration of the key role played by T cells in the control of virus infections. HBV-specific T cells are severely dysfunctional in chronic HBV infection as a result of several inhibitory mechanisms which are simultaneously active within the chronically inflamed liver. Indeed, the liver is a tolerogenic organ harboring different non-parenchymal cell populations which can serve as antigen presenting cells (APC) but are poorly efficient in effector T cell priming, with propensity to induce T cell tolerance rather than T cell activation, because of a poor expression of co-stimulatory molecules, up-regulation of the co-inhibitory ligands PD-L1 and PD-L2 upon IFN stimulation, and production of immune regulatory cytokines, such as IL10 and TGF-β. They include resident dendritic cells (DCs), comprising myeloid and plasmacytoid DCs, liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs) as well as the hepatocytes themselves. Additional regulatory mechanisms which contribute to T cell attrition in the chronically infected liver are the high levels of soluble mediators, such as arginase, indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines, the up-regulation of inhibitory checkpoint receptor/ligand pairs, the expansion of regulatory cells, such as CD4+FOXp3+ Treg cells, myeloid-derived suppressor cells and NK cells. This review will deal with the interactions between immune cells and liver environment discussing the different mechanisms which contribute to T cell dysfunction in chronic hepatitis B, some of which are specifically activated in HBV infection and others which are instead common to chronic inflammatory liver diseases in general. Therapeutic interventions targeting dysregulated pathways and cellular functions will be also delineated.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
20
|
Weston CJ, Zimmermann HW, Adams DH. The Role of Myeloid-Derived Cells in the Progression of Liver Disease. Front Immunol 2019; 10:893. [PMID: 31068952 PMCID: PMC6491757 DOI: 10.3389/fimmu.2019.00893] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Control of homeostasis and rapid response to tissue damage in the liver is orchestrated by crosstalk between resident and infiltrating inflammatory cells. A crucial role for myeloid cells during hepatic injury and repair has emerged where resident Kupffer cells, circulating monocytes, macrophages, dendritic cells and neutrophils control local tissue inflammation and regenerative function to maintain tissue architecture. Studies in humans and rodents have revealed a heterogeneous population of myeloid cells that respond to the local environment by either promoting regeneration or driving the inflammatory processes that can lead to hepatitis, fibrogenesis, and the development of cirrhosis and malignancy. Such plasticity of myeloid cell responses presents unique challenges for therapeutic intervention strategies and a greater understanding of the underlying mechanisms is needed. Here we review the role of myeloid cells in the establishment and progression of liver disease and highlight key pathways that have become the focus for current and future therapeutic strategies.
Collapse
Affiliation(s)
- Chris John Weston
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| | | | - David H Adams
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
Liu Q, Wang X, Liu X, Kumar S, Gochman G, Ji Y, Liao YP, Chang CH, Situ W, Lu J, Jiang J, Mei KC, Meng H, Xia T, Nel AE. Use of Polymeric Nanoparticle Platform Targeting the Liver To Induce Treg-Mediated Antigen-Specific Immune Tolerance in a Pulmonary Allergen Sensitization Model. ACS NANO 2019; 13:4778-4794. [PMID: 30964276 PMCID: PMC6506187 DOI: 10.1021/acsnano.9b01444] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Nanoparticles (NPs) can be used to accomplish antigen-specific immune tolerance in allergic and autoimmune disease. The available options for custom-designing tolerogenic NPs include the use of nanocarriers that introduce antigens into natural tolerogenic environments, such as the liver, where antigen presentation promotes tolerance to self- or foreign antigens. Here, we demonstrate the engineering of a biodegradable polymeric poly(lactic- co-glycolic acid) (PLGA) nanocarrier for the selective delivery of the murine allergen, ovalbumin (OVA), to the liver. This was accomplished by developing a series of NPs in the 200-300 nm size range as well as decorating particle surfaces with ligands that target scavenger and mannose receptors on liver sinusoidal endothelial cells (LSECs). LSECs represent a major antigen-presenting cell type in the liver capable of generating regulatory T-cells (Tregs). In vitro exposure of LSECs to NPOVA induced abundant TGF-β, IL-4, and IL-10 production, which was further increased by surface ligands. Animal experiments showed that, in the chosen size range, NPOVA was almost exclusively delivered to the liver, where the colocalization of fluorescent-labeled particles with LSECs could be seen to increase by surface ligand decoration. Moreover, prophylactic treatment with NPOVA in OVA-sensitized and challenged animals (aerosolized inhalation) could be seen to significantly suppress anti-OVA IgE responses, airway eosinophilia, and TH2 cytokine production in the bronchoalveolar lavage fluid. The suppression of allergic airway inflammation was further enhanced by attachment of surface ligands, particularly for particles decorated with the ApoB peptide, which induced high levels of TGF-β production in the lung along with the appearance of Foxp3+ Tregs. The ApoB-peptide-coated NPs could also interfere in allergic airway inflammation when delivered postsensitization. The significance of these findings is that liver and LSEC targeting PLGA NPs could be used for therapy of allergic airway disease, in addition to the potential of using their tolerogenic effects for other disease applications.
Collapse
Affiliation(s)
- Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiangsheng Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Sanjan Kumar
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Grant Gochman
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Ying Ji
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Wesley Situ
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jianqin Lu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jinhong Jiang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Kuo-Ching Mei
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Huan Meng
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andre E. Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Interplay between early-life malnutrition, epigenetic modulation of the immune function and liver diseases. Nutr Res Rev 2019; 32:128-145. [PMID: 30707092 DOI: 10.1017/s0954422418000239] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Early-life nutrition plays a critical role in fetal growth and development. Food intake absence and excess are the two main types of energy malnutrition that predispose to the appearance of diseases in adulthood, according to the hypothesis of 'developmental origins of health and disease'. Epidemiological data have shown an association between early-life malnutrition and the metabolic syndrome in later life. Evidence has also demonstrated that nutrition during this period of life can affect the development of the immune system through epigenetic mechanisms. Thus, epigenetics has an essential role in the complex interplay between environmental factors and genetics. Altogether, this leads to the inflammatory response that is commonly seen in non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome. In conjunction, DNA methylation, covalent modification of histones and the expression of non-coding RNA are the epigenetic phenomena that affect inflammatory processes in the context of NAFLD. Here, we highlight current understanding of the mechanisms underlying developmental programming of NAFLD linked to epigenetic modulation of the immune system and environmental factors, such as malnutrition.
Collapse
|
23
|
Bi Y, Li J, Yang Y, Wang Q, Wang Q, Zhang X, Dong G, Wang Y, Duan Z, Shu Z, Liu T, Chen Y, Zhang K, Hong F. Human liver stem cells attenuate concanavalin A-induced acute liver injury by modulating myeloid-derived suppressor cells and CD4 + T cells in mice. Stem Cell Res Ther 2019; 10:22. [PMID: 30635035 PMCID: PMC6330470 DOI: 10.1186/s13287-018-1128-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a serious threat to the life of people all over the world. Finding an effective way to manage ALF is important. Human liver stem cells (HLSCs) are early undifferentiated cells that have been implicated in the regeneration and functional reconstruction of the liver. In this study, we aimed to evaluate the protective effects of the HLSC line HYX1 against concanavalin A (ConA)-induced acute liver injury. METHODS HYX1 cells were characterized by microscopy, functional assays, gene expression, and western blot analyses. We showed that HYX1 cells can differentiate into hepatocytes. We intraperitoneally injected HYX1 cells in mice and administered ConA via caudal vein injection 3, 6, 12, 24, and 48 h later. The effects of HYX1 cell transplantation were evaluated through blood tests, histology, and flow cytometry. RESULTS HYX1 cells reduced the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) in serum and dramatically decreased the severity of liver injuries. Mechanistically, HYX1 cells promoted myeloid-derived suppressor cell (MDSC) migration into the spleen and liver, while reducing CD4+ T cell levels in both tissues. In addition, HYX1 cells suppressed the secretion of proinflammatory cytokines, such as tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), but led to increased interleukin-10 (IL-10) production. CONCLUSIONS These results confirm the efficacy of HLSCs in the prevention of the ConA-induced acute liver injury through modulation of MDSCs and CD4+ T cell migration and cytokine secretion.
Collapse
Affiliation(s)
- Yanzhen Bi
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Captial Medical University, Beijing, 100069 People’s Republic of China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Yonghong Yang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067 People’s Republic of China
| | - Quanyi Wang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067 People’s Republic of China
| | - Quanquan Wang
- Department of Neuromuscular Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiaobei Zhang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067 People’s Republic of China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, People’s Republic of China
| | - Yibo Wang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067 People’s Republic of China
| | - Zhongping Duan
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Captial Medical University, Beijing, 100069 People’s Republic of China
| | - Zhenfeng Shu
- Shanghai Meifeng Biotechnology Co., Ltd, Shanghai, People’s Republic of China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Yu Chen
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Captial Medical University, Beijing, 100069 People’s Republic of China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130041 People’s Republic of China
| | - Feng Hong
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Jining, 272067 People’s Republic of China
| |
Collapse
|
24
|
Kadhim S, Singh NP, Zumbrun EE, Cui T, Chatterjee S, Hofseth L, Abood A, Nagarkatti P, Nagarkatti M. Resveratrol-Mediated Attenuation of Staphylococcus aureus Enterotoxin B-Induced Acute Liver Injury Is Associated With Regulation of microRNA and Induction of Myeloid-Derived Suppressor Cells. Front Microbiol 2018; 9:2910. [PMID: 30619104 PMCID: PMC6304356 DOI: 10.3389/fmicb.2018.02910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Resveratrol (RES) is a polyphenolic compound found abundantly in plant products including red grapes, peanuts, and mulberries. Because of potent anti-inflammatory properties of RES, we investigated whether RES can protect from Staphylococcal enterotoxin B (SEB)-induced acute liver injury in mice. SEB is a potent super antigen that induces robust inflammation and releases inflammatory cytokines that can be fatal. We observed that SEB caused acute liver injury in mice with increases in enzyme aspartate transaminase (AST) levels, and massive infiltration of immune cells into the liver. Treatment with RES (100 mg/kg body weight) attenuated SEB-induced acute liver injury, as indicated by decreased AST levels and cellular infiltration in the liver. Interestingly, RES treatment increased the number of myeloid derived suppressor cells (MDSCs) in the liver. RES treatment led to alterations in the microRNA (miR) profile in liver mononuclear cells (MNCs) of mice exposed to SEB, and pathway analysis indicated these miRs targeted many inflammatory pathways. Of these, we identified miR-185, which was down-regulated by RES, to specifically target Colony Stimulating Factor (CSF1) using transfection studies. Moreover, the levels of CSF1 were significantly increased in RES-treated SEB mice. Because CSF1 is critical in MDSC induction, our studies suggest that RES may induce MDSCs by down-regulating miR-185 leading to increase the expression of CSF1. The data presented demonstrate for the first time that RES can effectively attenuates SEB-induced acute liver injury and that this may result from its action on miRs and induction of MDSCs.
Collapse
Affiliation(s)
- Sabah Kadhim
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Narendra P. Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Elizabeth E. Zumbrun
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Lorne Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Abduladheem Abood
- College of Dental Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
25
|
Salminen A, Kaarniranta K, Kauppinen A. The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Res Rev 2018; 48:1-10. [PMID: 30248408 DOI: 10.1016/j.arr.2018.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 01/10/2023]
Abstract
A chronic low-grade inflammation is one of the hallmarks of the aging process. This gradually augmenting inflammatory state has been termed inflammaging. Inflammaging is associated with increased myelopoiesis in the bone marrow. This myelopoiesis-biased process increases the generation not only of mature myeloid cells, e.g. monocytes, macrophages, and neutrophils, but also immature myeloid progenitors and myeloid-derived suppressor cells (MDSCs). It is known that the aging process is associated with a significant increase in the presence of MDSCs in the bone marrow, blood, spleen, and peripheral lymph nodes. Consequently, MDSCs will become recruited into inflamed tissues where they suppress acute inflammatory responses and trigger the resolution of inflammation. However, if the perpetrator cannot be eliminated, the long-term presence of MDSCs suppresses the host's immune defence and increases the susceptibility to infections and tumorigenesis. Chronic immunosuppression also impairs the clearance of waste products and dead cells, impairs energy metabolism, and disturbs tissue proteostasis. This immunosuppressive state is reminiscent of the immunosenescence observed in inflammaging. It seems that proinflammatory changes in tissues with aging stimulate the myelopoietic production of MDSCs which subsequently induces immunosenescence and maintains the chronic inflammaging process. We will briefly describe the functions of MDSCs and then examine in detail how inflammaging enhances the generation MDSCs and how MDSCs are involved in the control of immunosenescence occurring in inflammaging.
Collapse
|
26
|
Sendo S, Saegusa J, Morinobu A. Myeloid-derived suppressor cells in non-neoplastic inflamed organs. Inflamm Regen 2018; 38:19. [PMID: 30237829 PMCID: PMC6139938 DOI: 10.1186/s41232-018-0076-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are a highly heterogeneous population of immature myeloid cells with immunosuppressive function. Although their function in tumor-bearing conditions is well studied, less is known about the role of MDSCs in various organs under non-neoplastic inflammatory conditions. MAIN BODY MDSCs are divided into two subpopulations, G-MDSCs and M-MDSCs, and their distribution varies between organs. MDSCs negatively control inflammation in inflamed organs such as the lungs, joints, liver, kidneys, intestines, central nervous system (CNS), and eyes by suppressing T cells and myeloid cells. MDSCs also regulate fibrosis in the lungs, liver, and kidneys and help repair CNS injuries. MDSCs in organs are plastic and can differentiate into osteoclasts and tolerogenic dendritic cells according to the microenvironment under non-neoplastic inflammatory conditions. CONCLUSION This article summarizes recent findings about MDSCs under inflammatory conditions, especially with respect to their function and differentiation in specific organs.
Collapse
Affiliation(s)
- Sho Sendo
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Jun Saegusa
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Division of Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Akio Morinobu
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| |
Collapse
|
27
|
Salminen A, Kaarniranta K, Kauppinen A. The potential importance of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of Alzheimer's disease. Cell Mol Life Sci 2018; 75:3099-3120. [PMID: 29779041 PMCID: PMC11105369 DOI: 10.1007/s00018-018-2844-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 02/08/2023]
Abstract
The exact cause of Alzheimer's disease (AD) is still unknown, but the deposition of amyloid-β (Aβ) plaques and chronic inflammation indicates that immune disturbances are involved in AD pathogenesis. Recent genetic studies have revealed that many candidate genes are expressed in both microglia and myeloid cells which infiltrate into the AD brains. Invading myeloid cells controls the functions of resident microglia in pathological conditions, such as AD pathology. AD is a neurologic disease with inflammatory component where the immune system is not able to eliminate the perpetrator, while, concurrently, it should prevent neuronal injuries induced by inflammation. Recent studies have indicated that AD brains are an immunosuppressive microenvironment, e.g., microglial cells are hyporesponsive to Aβ deposits and anti-inflammatory cytokines enhance Aβ deposition. Immunosuppression is a common element in pathological disorders involving chronic inflammation. Studies on cancer-associated inflammation have demonstrated that myeloid-derived suppressor cells (MDSCs) have a crucial role in the immune escape of tumor cells. Immunosuppression is not limited to tumors, since MDSCs can be recruited into chronically inflamed tissues where inflammatory mediators enhance the proliferation and activation of MDSCs. AD brains express a range of chemokines and cytokines which could recruit and expand MDSCs in inflamed AD brains and thus generate an immunosuppressive microenvironment. Several neuroinflammatory disorders, e.g., the early phase of AD pathology, have been associated with an increase in the level of circulating MDSCs. We will elucidate the immunosuppressive armament of MDSCs and present evidences in support of the crucial role of MDSCs in the pathogenesis of AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
28
|
Lian M, Selmi C, Gershwin ME, Ma X. Myeloid Cells and Chronic Liver Disease: a Comprehensive Review. Clin Rev Allergy Immunol 2018; 54:307-317. [PMID: 29313221 DOI: 10.1007/s12016-017-8664-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myeloid cells play a major role in the sensitization to liver injury, particularly in chronic inflammatory liver diseases with a biliary or hepatocellular origin, and the interplay between myeloid cells and the liver may explain the increased incidence of hepatic osteodystrophy. The myeloid cell-liver axis involves several mature myeloid cells as well as immature or progenitor cells with the complexity of the liver immune microenvironment aggravating the mist of cell differentiation. The unique positioning of the liver at the junction of the peripheral and portal circulation systems underlines the interaction of myeloid cells and hepatic cells and leads to immune tolerance breakdown. We herein discuss the scenarios of different chronic liver diseases closely modulated by myeloid cells and illustrate the numerous potential targets, the understanding of which will ultimately steer the development of solid immunotherapeutic regimens. Ultimately, we are convinced that an adequate modulation of the liver microenvironment to modify the functional and quantitative characteristics of myeloid cells will be a successful approach to treating chronic liver diseases of different etiologies.
Collapse
Affiliation(s)
- Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
29
|
Salminen A, Kaarniranta K, Kauppinen A. Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): Impact on cancer and age-related chronic inflammatory disorders. Int Immunopharmacol 2018; 61:231-240. [DOI: 10.1016/j.intimp.2018.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
|
30
|
Li S, Wang N, Tan HY, Hong M, Yuen MF, Li H, Feng Y. Expansion of Granulocytic, Myeloid-Derived Suppressor Cells in Response to Ethanol-Induced Acute Liver Damage. Front Immunol 2018; 9:1524. [PMID: 30072984 PMCID: PMC6060237 DOI: 10.3389/fimmu.2018.01524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023] Open
Abstract
The dual role of ethanol in regulating both pro-inflammatory and anti-inflammatory response has recently been reported. Myeloid-derived suppressor cells (MDSCs) are one of the major components in the immune suppressive network in both innate and adaptive immune responses. In this study, we aim to define the role of a population expressing CD11b+Ly6GhighLy6Cint with immunosuppressive function in response to ethanol-induced acute liver damage. We find this increased granulocytic-MDSCs (G-MDSCs) population in the blood, spleen, and liver of mice treated with ethanol. Depletion of these cells increases serum alanine aminotransferase and aspartate aminotransferase levels, while G-MDSCs population adoptive transfer can ameliorate liver damage induced by ethanol, indicating the protective role in the early stage of alcoholic liver disease. The significant changes of T-cell profiles after G-MDSCs populations adoptive transfer and anti-Gr1 injection signify that both cytotoxic T and T helper cells might be the targeted cells of G-MDSCs. In the in vitro study, we find that myeloid precursors preferentially generate G-MDSCs and improve their suppressive capacity via chemokine interaction and YAP signaling when exposed to ethanol. Furthermore, IL-6 serves as an important indirect factor in mediating the expansion of G-MDSCs populations after acute ethanol exposure. Collectively, we show that expansion of G-MDSCs in response to ethanol consumption plays a protective role in acute alcoholic liver damage. Our study provides novel evidence of the immune response to acute ethanol consumption.
Collapse
Affiliation(s)
- Sha Li
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor-Yue Tan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ming Hong
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Man-Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Huabin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yibin Feng
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
31
|
Bernsmeier C, Triantafyllou E, Brenig R, Lebosse FJ, Singanayagam A, Patel VC, Pop OT, Khamri W, Nathwani R, Tidswell R, Weston CJ, Adams DH, Thursz MR, Wendon JA, Antoniades CG. CD14 + CD15 - HLA-DR - myeloid-derived suppressor cells impair antimicrobial responses in patients with acute-on-chronic liver failure. Gut 2018; 67:1155-1167. [PMID: 28592438 PMCID: PMC5969362 DOI: 10.1136/gutjnl-2017-314184] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Immune paresis in patients with acute-on-chronic liver failure (ACLF) accounts for infection susceptibility and increased mortality. Immunosuppressive mononuclear CD14+HLA-DR- myeloid-derived suppressor cells (M-MDSCs) have recently been identified to quell antimicrobial responses in immune-mediated diseases. We sought to delineate the function and derivation of M-MDSC in patients with ACLF, and explore potential targets to augment antimicrobial responses. DESIGN Patients with ACLF (n=41) were compared with healthy subjects (n=25) and patients with cirrhosis (n=22) or acute liver failure (n=30). CD14+CD15-CD11b+HLA-DR- cells were identified as per definition of M-MDSC and detailed immunophenotypic analyses were performed. Suppression of T cell activation was assessed by mixed lymphocyte reaction. Assessment of innate immune function included cytokine expression in response to Toll-like receptor (TLR-2, TLR-4 and TLR-9) stimulation and phagocytosis assays using flow cytometry and live cell imaging-based techniques. RESULTS Circulating CD14+CD15-CD11b+HLA-DR- M-MDSCs were markedly expanded in patients with ACLF (55% of CD14+ cells). M-MDSC displayed immunosuppressive properties, significantly decreasing T cell proliferation (p=0.01), producing less tumour necrosis factor-alpha/interleukin-6 in response to TLR stimulation (all p<0.01), and reduced bacterial uptake of Escherichia coli (p<0.001). Persistently low expression of HLA-DR during disease evolution was linked to secondary infection and 28-day mortality. Recurrent TLR-2 and TLR-4 stimulation expanded M-MDSC in vitro. By contrast, TLR-3 agonism reconstituted HLA-DR expression and innate immune function ex vivo. CONCLUSION Immunosuppressive CD14+HLA-DR- M-MDSCs are expanded in patients with ACLF. They were depicted by suppressing T cell function, attenuated antimicrobial innate immune responses, linked to secondary infection, disease severity and prognosis. TLR-3 agonism reversed M-MDSC expansion and innate immune function and merits further evaluation as potential immunotherapeutic agent.
Collapse
Affiliation(s)
- Christine Bernsmeier
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK,Liver Biology Laboratory, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Evangelos Triantafyllou
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK,Division of Digestive Diseases, St. Mary’s Campus, Imperial College London, London, UK,Institute of Immunology and Immunotherapy, NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Robert Brenig
- Liver Biology Laboratory, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Fanny J Lebosse
- Division of Digestive Diseases, St. Mary’s Campus, Imperial College London, London, UK
| | - Arjuna Singanayagam
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK,Division of Digestive Diseases, St. Mary’s Campus, Imperial College London, London, UK,Institute of Immunology and Immunotherapy, NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Vishal C Patel
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK
| | - Oltin T Pop
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK
| | - Wafa Khamri
- Division of Digestive Diseases, St. Mary’s Campus, Imperial College London, London, UK
| | - Rooshi Nathwani
- Division of Digestive Diseases, St. Mary’s Campus, Imperial College London, London, UK
| | - Robert Tidswell
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK
| | - Christopher J Weston
- Institute of Immunology and Immunotherapy, NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - David H Adams
- Institute of Immunology and Immunotherapy, NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Mark R Thursz
- Division of Digestive Diseases, St. Mary’s Campus, Imperial College London, London, UK
| | - Julia A Wendon
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK
| | - Charalambos Gustav Antoniades
- Institute of Liver Studies, King’s College Hospital, King’s College London, London, UK,Division of Digestive Diseases, St. Mary’s Campus, Imperial College London, London, UK,Institute of Immunology and Immunotherapy, NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
32
|
Cytokines, hepatic cell profiling and cell interactions during bone marrow cell therapy for liver fibrosis in cholestatic mice. PLoS One 2017; 12:e0187970. [PMID: 29176797 PMCID: PMC5703547 DOI: 10.1371/journal.pone.0187970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Bone marrow cells (BMC) migrate to the injured liver after transplantation, contributing to regeneration through multiple pathways, but mechanisms involved are unclear. This work aimed to study BMC migration, characterize cytokine profile, cell populations and proliferation in mice with liver fibrosis transplanted with GFP+ BMC. Confocal microscopy analysis showed GFP+ BMC near regions expressing HGF and SDF-1 in the fibrotic liver. Impaired liver cell proliferation in fibrotic groups was restored after BMC transplantation. Regarding total cell populations, there was a significant reduction in CD68+ cells and increased Ly6G+ cells in transplanted fibrotic group. BMC contributed to the total populations of CD144, CD11b and Ly6G cells in the fibrotic liver, related to an increment of anti-fibrotic cytokines (IL-10, IL-13, IFN-γ and HGF) and reduction of pro-inflammatory cytokines (IL-17A and IL-6). Therefore, HGF and SDF-1 may represent important chemoattractants for transplanted BMC in the injured liver, where these cells can give rise to populations of extrahepatic macrophages, neutrophils and endothelial progenitor cells that can interact synergistically with other liver cells towards the modulation of an anti-fibrotic cytokine profile promoting the onset of liver regeneration.
Collapse
|
33
|
Shen X, Peng Y, Li H. The Injury-Related Activation of Hedgehog Signaling Pathway Modulates the Repair-Associated Inflammation in Liver Fibrosis. Front Immunol 2017; 8:1450. [PMID: 29163520 PMCID: PMC5681491 DOI: 10.3389/fimmu.2017.01450] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis is a wound healing response initiated by inflammation responding for different iterative parenchymal damages caused by diverse etiologies. Immune cells, which exert their ability of either inducing injury or promoting repair, have been regarded as crucial participants in the fibrogenic response. A characteristic feature of the fibrotic microenvironment associated with chronic liver injury is aberrant activation of hedgehog (Hh) signaling pathway. Growing evidence from a number of different studies in vivo and in vitro has indicated that immune-mediated events involved in liver fibrogenesis are regulated by Hh signaling pathway. In this review, we emphasize the impacts of injury-activated Hh signaling on liver fibrogenesis through modulating repair-related inflammation and focus on the regulatory action of aberrant Hh signaling on repair-related inflammatory responses mediated by hepatic classical and non-classical immune cell populations in the progression of liver fibrosis. Moreover, we also assess the potentiality of Hh pathway inhibitors as good candidates for anti-fibrotic therapeutic agents because of their immune regulation actions for fibrogenic liver repair. The identification of immune-modulatory mechanisms of Hh signaling pathway underlying the fibrotic process of chronic liver diseases might provide a basis for Hh-centered therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Xin Shen
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yu Peng
- Department of Information Engineering, Hubei University of Chinese Medicine, Wuhan, China
| | - Hanmin Li
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
34
|
Drabczyk-Pluta M, Werner T, Hoffmann D, Leng Q, Chen L, Dittmer U, Zelinskyy G. Granulocytic myeloid-derived suppressor cells suppress virus-specific CD8 + T cell responses during acute Friend retrovirus infection. Retrovirology 2017; 14:42. [PMID: 28835242 PMCID: PMC5569525 DOI: 10.1186/s12977-017-0364-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) can suppress T cell responses in several different diseases. Previously these suppressive cells were observed to expand in HIV patients and in a mouse retrovirus model, yet their suppressive effect on virus-specific CD8+ T cells in vitro and in vivo has not been characterized thus far. RESULTS We used the Friend retrovirus (FV) model to demonstrate that MDSCs expand and become activated during the late phase of acute FV infection. Only the subpopulation of granulocytic MDSCs (gMDSCs) but not monocytic MDSC suppressed virus-specific CD8+ T cell proliferation and function in vitro. gMDSCs expressed arginase 1, high levels of the inhibitory ligand PD-L1 and the ATP dephosphorylating enzyme CD39 on the cell surface upon infection. All three molecules were involved in the suppressive effect of the gMDSCs in vitro. MDSC depletion experiments in FV-infected mice revealed that they restrict virus-specific CD8+ T cell responses and thus affect the immune control of chronic retroviruses in vivo. CONCLUSIONS Our study demonstrates that MDSCs become activated and expand during the acute phase of retrovirus infection. Their suppressive activity on virus-specific CD8+ T cells may contribute to T cell dysfunction and the development of chronic infection.
Collapse
Affiliation(s)
- Malgorzata Drabczyk-Pluta
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Tanja Werner
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Daniel Hoffmann
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Qibin Leng
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lieping Chen
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Gennadiy Zelinskyy
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
35
|
Abstract
Sepsis and septic shock are characterized by life-threatening organ dysfunction caused by a dysregulated host response to infection. The liver has a central role during sepsis, and is essential to the regulation of immune defence during systemic infections by mechanisms such as bacterial clearance, acute-phase protein or cytokine production and metabolic adaptation to inflammation. However, the liver is also a target for sepsis-related injury, including hypoxic hepatitis due to ischaemia and shock, cholestasis due to altered bile metabolism, hepatocellular injury due to drug toxicity or overwhelming inflammation, as well as distinct pathologies such as secondary sclerosing cholangitis in critically ill patients. Hence, hepatic dysfunction substantially impairs the prognosis of sepsis and serves as a powerful independent predictor of mortality in the intensive care unit. Sepsis is particularly problematic in patients with liver cirrhosis (who experience increased bacterial translocation from the gut and impaired microbial defence) as it can trigger acute-on-chronic liver failure - a syndrome with high short-term mortality. Here, we review the importance of the liver as a guardian, modifier and target of sepsis, the factors that contribute to sepsis in patients with liver cirrhosis and new therapeutic strategies.
Collapse
|
36
|
Liepelt A, Tacke F. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. Am J Physiol Gastrointest Liver Physiol 2016; 311:G203-9. [PMID: 27313175 DOI: 10.1152/ajpgi.00193.2016] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/09/2016] [Indexed: 01/31/2023]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is constitutively expressed in healthy liver. However, its expression increases following acute or chronic liver injury. Liver sinusoidal endothelial cells (LSEC), hepatic stellate cells (HSC), and malignant hepatocytes are important sources of SDF-1/CXCL12 in liver diseases. CXCL12 is able to activate two chemokine receptors with different downstream signaling pathways, CXCR4 and CXCR7. CXCR7 expression is relevant on LSEC, while HSC, mesenchymal stem cells, and tumor cells mainly respond via CXCR4. Here, we summarize recent developments in the field of liver diseases involving this chemokine and its receptors. SDF-1-dependent signaling contributes to modulating acute liver injury and subsequent tissue regeneration. By activating HSC and recruiting mesenchymal cells from bone marrow, CXCL12 can promote liver fibrosis progression, while CXCL12-CXCR7 interactions endorse proregenerative responses in chronic injury. Moreover, the SDF-1 pathway is linked to development of hepatocellular carcinoma (HCC) by promoting tumor growth, angiogenesis, and HCC metastasis. High hepatic CXCR4 expression has been suggested as a biomarker indicating poor prognosis of HCC patients. Tumor-infiltrating myeloid-derived suppressor cells (MDSC) also express CXCR4 and migrate toward CXCL12. Thus CXCL12 inhibition might not only directly block HCC growth but also modulate the tumor microenvironment (angiogenesis, MDSC), thereby sensitizing HCC patients to conventional or emerging novel cancer therapies (e.g., sorafenib, regorafenib, nivolumab, pembrolizumab). We herein summarize the current knowledge on the complex interplay between CXCL12 and CXCR4/CXCR7 in liver diseases and discuss approaches on the therapeutic targeting of these axes in hepatitis, fibrosis, and liver cancer.
Collapse
Affiliation(s)
- Anke Liepelt
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
37
|
Demetris AJ, Bellamy COC, Gandhi CR, Prost S, Nakanuma Y, Stolz DB. Functional Immune Anatomy of the Liver-As an Allograft. Am J Transplant 2016; 16:1653-80. [PMID: 26848550 DOI: 10.1111/ajt.13749] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 01/25/2023]
Abstract
The liver is an immunoregulatory organ in which a tolerogenic microenvironment mitigates the relative "strength" of local immune responses. Paradoxically, necro-inflammatory diseases create the need for most liver transplants. Treatment of hepatitis B virus, hepatitis C virus, and acute T cell-mediated rejection have redirected focus on long-term allograft structural integrity. Understanding of insults should enable decades of morbidity-free survival after liver replacement because of these tolerogenic properties. Studies of long-term survivors show low-grade chronic inflammatory, fibrotic, and microvascular lesions, likely related to some combination of environment insults (i.e. abnormal physiology), donor-specific antibodies, and T cell-mediated immunity. The resultant conundrum is familiar in transplantation: adequate immunosuppression produces chronic toxicities, while lightened immunosuppression leads to sensitization, immunological injury, and structural deterioration. The "balance" is more favorable for liver than other solid organ allografts. This occurs because of unique hepatic immune physiology and provides unintended benefits for allografts by modulating various afferent and efferent limbs of allogenic immune responses. This review is intended to provide a better understanding of liver immune microanatomy and physiology and thereby (a) the potential structural consequences of low-level, including allo-antibody-mediated injury; and (b) how liver allografts modulate immune reactions. Special attention is given to the microvasculature and hepatic mononuclear phagocytic system.
Collapse
Affiliation(s)
- A J Demetris
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - C O C Bellamy
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - C R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - S Prost
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Y Nakanuma
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - D B Stolz
- Center for Biologic Imaging, Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
38
|
The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury. Toxicol Appl Pharmacol 2016; 304:110-20. [PMID: 27163765 DOI: 10.1016/j.taap.2016.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300mg/kg, i.p.) to control mice resulted in an increase in CD11b(+) infiltrating Ly6G(+) granulocytic and Ly6G(-) monocytic cells in the spleen and the liver. The majority of the Ly6G(+) cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G(-) cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80(+)) and immature (F4/80(-)) pro-inflammatory Ly6C(hi) macrophages and mature anti-inflammatory (Ly6C(lo)) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3(+) macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs.
Collapse
|
39
|
Maini MK, Gehring AJ. The role of innate immunity in the immunopathology and treatment of HBV infection. J Hepatol 2016; 64:S60-S70. [PMID: 27084038 DOI: 10.1016/j.jhep.2016.01.028] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
In this review we give a brief update on sensors recently determined to be capable of detecting HBV, and examine how the virus represses the induction of pro-inflammatory cytokines like type I interferons. We overview cellular components of innate immunity that are present at high frequencies in the liver, and discuss their roles in HBV control and/or pathogenesis. We argue that many innate effectors have adaptive-like features or can exert specific effects on HBV through immunoregulation of T cells. Finally we consider current and possible future strategies to manipulate innate immunity as novel approaches towards a functional cure for HBV.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, United Kingdom.
| | - Adam J Gehring
- Molecular Microbiology and Immunology Department, Saint Louis University School of Medicine, United States
| |
Collapse
|
40
|
Abstract
The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.
Collapse
Affiliation(s)
- Felix Heymann
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| |
Collapse
|