1
|
Jamerlan AM, An SSA, Hulme JP. Microbial diversity and fitness in the gut-brain axis: influences on developmental risk for Alzheimer's disease. Gut Microbes 2025; 17:2486518. [PMID: 40207973 PMCID: PMC11988266 DOI: 10.1080/19490976.2025.2486518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
The gut-brain axis (GBA) denotes the dynamic and bidirectional communication system that connects the gastrointestinal tract and the central nervous system (CNS). This review explored this axis, focusing on the role of microbial diversity and fitness in maintaining gastrointestinal health and preventing neurodegeneration, particularly in Alzheimer's disease (AD). Gut dysbiosis, characterized by the imbalance in populations of beneficial and harmful bacteria, has been associated with increased systemic inflammation, neuroinflammation, and the progression of AD through pathogenic mechanisms involving amyloid deposition, tauopathy, and increased blood-brain barrier (BBB) permeability. Emerging evidence highlighted the therapeutic potential of probiotics, dietary interventions, and intermittent fasting in restoring microbial balance, reducing inflammation, and minimizing neurodegenerative risks. Probiotics and synbiotics are promising in helping improve cognitive function and metabolic health, while dietary patterns like the Mediterranean diet were linked to decreased neuroinflammation and enhanced gut-brain communication. Despite significant advancement, further research is needed to elucidate the specific microbial strains, metabolites, and mechanisms influencing brain health. Future studies employing longitudinal designs and advanced omics technologies are essential to developing targeted microbiome-based therapies for managing AD-related disorders.
Collapse
Affiliation(s)
- Angelo M. Jamerlan
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, Seongnam-si, Republic of Korea
| | - Seong Soo A. An
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, Seongnam-si, Republic of Korea
| | - John P. Hulme
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
2
|
Yang S, Liu H, Liu Y. Advances in intestinal epithelium and gut microbiota interaction. Front Microbiol 2025; 16:1499202. [PMID: 40104591 PMCID: PMC11914147 DOI: 10.3389/fmicb.2025.1499202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
The intestinal epithelium represents a critical interface between the host and external environment, serving as the second largest surface area in the human body after the lungs. This dynamic barrier is sustained by specialized epithelial cell types and their complex interactions with the gut microbiota. This review comprehensively examines the recent advances in understanding the bidirectional communication between intestinal epithelial cells and the microbiome. We briefly highlight the role of various intestinal epithelial cell types, such as Paneth cells, goblet cells, and enteroendocrine cells, in maintaining intestinal homeostasis and barrier function. Gut microbiota-derived metabolites, particularly short-chain fatty acids and bile acids, influence epithelial cell function and intestinal barrier integrity. Additionally, we highlight emerging evidence of the sophisticated cooperation between different epithelial cell types, with special emphasis on the interaction between tuft cells and Paneth cells in maintaining microbial balance. Understanding these complex interactions has important implications for developing targeted therapeutic strategies for various gastrointestinal disorders, including inflammatory bowel disease, metabolic disorders, and colorectal cancer.
Collapse
Affiliation(s)
- Sen Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, The Fifth Peoples Hospital of Chengdu, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Song H, Hong Y, Lee H. Rapid automated production of tubular 3D intestine-on-a-chip with diverse cell types using coaxial bioprinting. LAB ON A CHIP 2024; 25:90-101. [PMID: 39648875 DOI: 10.1039/d4lc00731j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Despite considerable animal sacrifices and investments, drug development often falters in clinical trials due to species differences. To address this issue, specific in vitro models, such as organ-on-a-chip technology using human cells in microfluidic devices, are recognized as promising alternatives. Among the various organs, the human small intestine plays a pivotal role in drug development, particularly in the assessment of digestion and nutrient absorption. However, current intestine-on-a-chip devices struggle to accurately replicate the complex 3D tubular structures of the human small intestine, particularly when it comes to integrating a variety of cell types effectively. This limitation is primarily due to conventional fabrication methods, such as soft lithography and replica molding. In this research, we introduce a novel coaxial bioprinting method to construct 3D tubular structures that closely emulate the organization and functionality of the small intestine with multiple cell types. To ensure stable production of these small intestine-like tubular structures, we analyzed the rheological properties of bioinks to select the most suitable materials for coaxial bioprinting technology. Additionally, we conducted biological assessments to validate the gene expression patterns and functional attributes of the 3D intestine-on-a-chip. Our 3D intestine-on-a-chip, which faithfully replicates intestinal functions and organization, demonstrates clear superiority in both structure and biological function compared to the conventional 2D model. This innovative approach holds significant promise for a wide range of future applications.
Collapse
Affiliation(s)
- Heeju Song
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea.
| | - Yeonjin Hong
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea.
| | - Hyungseok Lee
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea.
- Department of Mechanical and Biomedical, Mechatronics Engineering, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea
| |
Collapse
|
4
|
Raya Tonetti F, Eguileor A, Mrdjen M, Pathak V, Travers J, Nagy LE, Llorente C. Gut-liver axis: Recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology 2024; 80:1342-1371. [PMID: 38691396 PMCID: PMC11801230 DOI: 10.1097/hep.0000000000000924] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.
Collapse
Affiliation(s)
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marko Mrdjen
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Vai Pathak
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jared Travers
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, University Hospital, Cleveland OH
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Maita K, Fujihara H, Matsumura M, Miyakawa M, Baba R, Morimoto H, Nakayama R, Ito Y, Kawaguchi K, Hamada Y. Impact of Reduced Saliva Production on Intestinal Integrity and Microbiome Alterations: A Sialoadenectomy Mouse Model Study. Int J Mol Sci 2024; 25:12455. [PMID: 39596522 PMCID: PMC11594800 DOI: 10.3390/ijms252212455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates the effect of reduced saliva production on intestinal histological structure and microbiome composition using a sialoadenectomy murine model, evaluating differences in saliva secretion, body weight, intestinal histopathological changes, and microbiome alteration using 16S rRNA gene sequencing across three groups (control, sham, and sialoadenectomy). For statistical analysis, one-way analysis of variance and multiple comparisons using Bonferroni correction were performed. p-values < 0.05 were considered statistically significant. Microbiome analysis was performed using Qiime software. The results show that reduced saliva secretion leads to structural changes in the intestinal tract, including shorter and atrophic villi, deformed Paneth cells, decreased goblet cell density, and immunohistochemical changes in epidermal growth factor and poly(ADP-ribose) polymerase-1, especially at three months after surgery. They also showed significant alterations in the intestinal microbiome, including increased Lactobacillaceae and altered populations of Ruminococcaceae and Peptostreptococcaceae, suggesting potential inflammatory responses and decreased short-chain fatty acid production. However, by 12 months after surgery, these effects appeared to be normalized, indicating potential compensatory mechanisms. Interestingly, sham-operated mice displayed favorable profiles, possibly due to immune activation from minor surgical intervention. This study underscores saliva's essential role in intestinal condition, emphasizing the "oral-gut axis" and highlighting broader implications for the relationship between oral and systemic health.
Collapse
Affiliation(s)
- Kanna Maita
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (K.M.); (Y.H.)
| | - Hisako Fujihara
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (K.M.); (Y.H.)
- Department of Oral Hygiene, Tsurumi Junior College, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Mitsuki Matsumura
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (K.M.); (Y.H.)
| | - Moeko Miyakawa
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (K.M.); (Y.H.)
| | - Ryoko Baba
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu 807-8555, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu 807-8555, Japan
| | - Ryoko Nakayama
- Department of Pathology, School of Dental Medicine, Tsurumi University 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Yumi Ito
- Department of Diagnostic Pathology, Tsurumi University Dental Hospital, Yokohama 230-8501, Japan
| | - Koji Kawaguchi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (K.M.); (Y.H.)
| | - Yoshiki Hamada
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (K.M.); (Y.H.)
| |
Collapse
|
6
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
7
|
Pieszka M, Szczepanik K, Łoniewski I. Utilizing pigs as a model for studying intestinal barrier function. ANNALS OF ANIMAL SCIENCE 2024. [DOI: 10.2478/aoas-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Intestinal permeability has been extensively studied, particularly in gastrointestinal diseases such as inflammatory bowel disease, food allergy, visceral disease, celiac disease, and Crohn’s disease. These studies have established that changes in intestinal permeability contribute to the pathogenesis of many gastrointestinal and systemic diseases. While numerous works in the 20th century focused on this topic, it remains relevant for several reasons. Despite the development of new research techniques, it is still unclear whether changes in intestinal permeability are the primary mechanism initiating the disease process or if they occur secondary to an ongoing chronic inflammatory process. Investigating the possibility of stabilizing the intestinal barrier, thereby reducing its permeability preemptively to prevent damage and after the damage has occurred, may offer new therapeutic approaches. Increased intestinal permeability is believed to lead to reduced nutrient absorption, resulting in decreased immunity and production of digestive enzymes.
Collapse
Affiliation(s)
- Marek Pieszka
- Department of Animal Nutrition and Feed Sciences , National Research Institute of Animal Production , Balice , Poland
| | - Kinga Szczepanik
- Department of Animal Nutrition and Feed Sciences , National Research Institute of Animal Production , Balice , Poland
| | - Igor Łoniewski
- Sanprobi sp. z o.o. sp. k ., Kurza Stopka 5/C , Szczecin , Poland
- Department of Biochemical Science , Pomeranian Medical University in Szczecin , Szczecin , Poland
| |
Collapse
|
8
|
Hernández-López V, Reyes R, García-Álvarez N, Real F, Díaz-Marrero AR, Fernández JJ. Changes at small intestine induced by food-fish contaminated with ciguatoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116741. [PMID: 39024956 DOI: 10.1016/j.ecoenv.2024.116741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Ciguateric syndrome is a food poisoning associated with the consumption of some species of fish that have accumulated ciguatoxins (CTXs) in their tissues. The effects of the syndrome occur with nervous imbalances which have been described for quite some time, and mentioned in sailing literature for centuries. In the last decade, research has been focused on the implementation of analytical methods for toxin identification and the study of action modes of CTXs to design effective treatments. However, an important aspect is to determine the damage that CTXs caused in the organs of affected individuals. In this work, the damages observed in tissues of mice, mainly in the small intestine, were analyzed. The animals were fed with CTX-contaminated fish muscle at concentrations 10-times below the median lethal dose (LD50) for 10 weeks. The analysis of tissues derived from the oral treatment resulted in an increased occurrence of Paneth cells, presence of lymphoid tissue infiltrating the mucosa and fibrous lesions in the mucosal layer of the small intestine. A decreasing weight in animals fed with toxic muscle was observed.
Collapse
Affiliation(s)
- Víctor Hernández-López
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), La Laguna 38206, Spain.
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna 38206, Spain; Instituto Universitario de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna 38200, Spain.
| | - Natalia García-Álvarez
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria (ULPGC), Arucas 35017, Spain.
| | - Fernando Real
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria (ULPGC), Arucas 35017, Spain.
| | - Ana R Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), La Laguna 38206, Spain; Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), La Laguna 38206, Spain.
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), La Laguna 38206, Spain; Departamento de Química Orgánica, Universidad de La Laguna (ULL), La Laguna 38206, Spain.
| |
Collapse
|
9
|
Ragab M, Schlichting H, Hicken M, Mester P, Hirose M, Almeida LN, Christiansen L, Ibrahim S, Tews HC, Divanovic S, Sina C, Derer S. Azathioprine promotes intestinal epithelial cell differentiation into Paneth cells and alleviates ileal Crohn's disease severity. Sci Rep 2024; 14:12879. [PMID: 38839896 PMCID: PMC11153537 DOI: 10.1038/s41598-024-63730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
Paneth cells (PCs), a subset of intestinal epithelial cells (IECs) found at the base of small intestinal crypts, play an essential role in maintaining intestinal homeostasis. Altered PCs function is associated with diverse intestinal pathologies, including ileal Crohn's disease (CD). CD patients with ileal involvement have been previously demonstrated to display impairment in PCs and decreased levels of anti-microbial peptides. Although the immunosuppressive drug Azathioprine (AZA) is widely used in CD therapy, the impact of AZA on IEC differentiation remains largely elusive. In the present study, we hypothesized that the orally administered drug AZA also exerts its effect through modulation of the intestinal epithelium and specifically via modulation of PC function. AZA-treated CD patients exhibited an ileal upregulation of AMPs on both mRNA and protein levels compared to non-AZA treated patients. Upon in vitro AZA stimulation, intestinal epithelial cell line MODE-K exhibited heightened expression levels of PC marker in concert with diminished cell proliferation but boosted mitochondrial OXPHOS activity. Moreover, differentiation of IECs, including PCs differentiation, was boosted in AZA-treated murine small intestinal organoids and was associated with decreased D-glucose consumption and decreased growth rates. Of note, AZA treatment strongly decreased Lgr5 mRNA expression as well as Ki67 positive cells. Further, AZA restored dysregulated PCs associated with mitochondrial dysfunction. AZA-dependent inhibition of IEC proliferation is accompanied by boosted mitochondria function and IEC differentiation into PC.
Collapse
Affiliation(s)
- Mohab Ragab
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Heidi Schlichting
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Maren Hicken
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology and Center for Research On Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Larissa N Almeida
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Lea Christiansen
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology and Center for Research On Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christian Sina
- Institute of Nutritional Medicine and 1st Department of Medicine, Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
10
|
Abstract
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.
Collapse
Affiliation(s)
- Giselle McCallum
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Abubaker S, Miri S, Mottawea W, Hammami R. Microbial Extracellular Vesicles in Host-Microbiota Interactions. Results Probl Cell Differ 2024; 73:475-520. [PMID: 39242390 DOI: 10.1007/978-3-031-62036-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Extracellular vesicles have emerged as key players in cellular communication, influencing various physiological processes and pathophysiological progression, including digestion, immune response, and tissue repairs. Recently, a class of EVs derived from microbial communities has gained significant attention due to their pivotal role in intercellular communication and their potential as biomarkers and biotherapeutic agents. Microbial EVs are membrane-bound molecules encapsulating bioactive metabolites that modulate host physiological and pathological processes. This chapter discusses the evolving history of microbiota-produced EVs, including their discovery, characterization, current research status, and their diverse mechanisms of interaction with other microbes and hosts. This review also highlights the importance of EVs in health and disease and discusses recent research that shows promising results for the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Sarah Abubaker
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Saba Miri
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
13
|
Beharry KD, Latkowska M, Valencia AM, Allana A, Soto J, Cai CL, Golombek S, Hand I, Aranda JV. Factors Influencing Neonatal Gut Microbiome and Health with a Focus on Necrotizing Enterocolitis. Microorganisms 2023; 11:2528. [PMID: 37894186 PMCID: PMC10608807 DOI: 10.3390/microorganisms11102528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Maturational changes in the gut start in utero and rapidly progress after birth, with some functions becoming fully developed several months or years post birth including the acquisition of a full gut microbiome, which is made up of trillions of bacteria of thousands of species. Many factors influence the normal development of the neonatal and infantile microbiome, resulting in dysbiosis, which is associated with various interventions used for neonatal morbidities and survival. Extremely low gestational age neonates (<28 weeks' gestation) frequently experience recurring arterial oxygen desaturations, or apneas, during the first few weeks of life. Apnea, or the cessation of breathing lasting 15-20 s or more, occurs due to immature respiratory control and is commonly associated with intermittent hypoxia (IH). Chronic IH induces oxygen radical diseases of the neonate, including necrotizing enterocolitis (NEC), the most common and devastating gastrointestinal disease in preterm infants. NEC is associated with an immature intestinal structure and function and involves dysbiosis of the gut microbiome, inflammation, and necrosis of the intestinal mucosal layer. This review describes the factors that influence the neonatal gut microbiome and dysbiosis, which predispose preterm infants to NEC. Current and future management and therapies, including the avoidance of dysbiosis, the use of a human milk diet, probiotics, prebiotics, synbiotics, restricted antibiotics, and fecal transplantation, for the prevention of NEC and the promotion of a healthy gut microbiome are also reviewed. Interventions directed at boosting endogenous and/or exogenous antioxidant supplementation may not only help with prevention, but may also lessen the severity or shorten the course of the disease.
Collapse
Affiliation(s)
- Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Magdalena Latkowska
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Arwin M. Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Saddleback Memorial Medical Center, Laguna Hills, CA 92653, USA;
| | - Ahreen Allana
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.A.); (J.S.)
| | - Jatnna Soto
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.A.); (J.S.)
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Sergio Golombek
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Ivan Hand
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Kings County Hospital Center, Brooklyn, NY 11203, USA;
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| |
Collapse
|
14
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
15
|
Shukla PK, Rao RG, Meena AS, Giorgianni F, Lee SC, Raju P, Shashikanth N, Shekhar C, Beranova S, Balazs L, Tigyi G, Gosain A, Rao R. Paneth cell dysfunction in radiation injury and radio-mitigation by human α-defensin 5. Front Immunol 2023; 14:1174140. [PMID: 37638013 PMCID: PMC10448521 DOI: 10.3389/fimmu.2023.1174140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The mechanism underlying radiation-induced gut microbiota dysbiosis is undefined. This study examined the effect of radiation on the intestinal Paneth cell α-defensin expression and its impact on microbiota composition and mucosal tissue injury and evaluated the radio-mitigative effect of human α-defensin 5 (HD5). Methods Adult mice were subjected to total body irradiation, and Paneth cell α-defensin expression was evaluated by measuring α-defensin mRNA by RT-PCR and α-defensin peptide levels by mass spectrometry. Vascular-to-luminal flux of FITC-inulin was measured to evaluate intestinal mucosal permeability and endotoxemia by measuring plasma lipopolysaccharide. HD5 was administered in a liquid diet 24 hours before or after irradiation. Gut microbiota was analyzed by 16S rRNA sequencing. Intestinal epithelial junctions were analyzed by immunofluorescence confocal microscopy and mucosal inflammatory response by cytokine expression. Systemic inflammation was evaluated by measuring plasma cytokine levels. Results Ionizing radiation reduced the Paneth cell α-defensin expression and depleted α-defensin peptides in the intestinal lumen. α-Defensin down-regulation was associated with the time-dependent alteration of gut microbiota composition, increased gut permeability, and endotoxemia. Administration of human α-defensin 5 (HD5) in the diet 24 hours before irradiation (prophylactic) significantly blocked radiation-induced gut microbiota dysbiosis, disruption of intestinal epithelial tight junction and adherens junction, mucosal barrier dysfunction, and mucosal inflammatory response. HD5, administered 24 hours after irradiation (treatment), reversed radiation-induced microbiota dysbiosis, tight junction and adherens junction disruption, and barrier dysfunction. Furthermore, HD5 treatment also prevents and reverses radiation-induced endotoxemia and systemic inflammation. Conclusion These data demonstrate that radiation induces Paneth cell dysfunction in the intestine, and HD5 feeding prevents and mitigates radiation-induced intestinal mucosal injury, endotoxemia, and systemic inflammation.
Collapse
Affiliation(s)
- Pradeep K. Shukla
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roshan G. Rao
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Avtar S. Meena
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Francesco Giorgianni
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sue Chin Lee
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Preeti Raju
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Nitesh Shashikanth
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chandra Shekhar
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sarka Beranova
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Louisa Balazs
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gabor Tigyi
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ankush Gosain
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - RadhaKrishna Rao
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
16
|
Cigarroa-Ruiz LA, Toledo-Solís FJ, Frías-Gómez SA, Guerrero-Zárate R, Camarillo-Coop S, Alvarez-Villagómez CS, Peña-Marín ES, Galaviz MA, Martínez-García R, Álvarez-González CA. Addition of β-glucans in diets for tropical gar (Atractosteus tropicus) larvae: effects on growth, digestive enzymes and gene expression of intestinal epithelial integrity and immune system. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:613-626. [PMID: 37311916 DOI: 10.1007/s10695-023-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
The effect of β-glucans 1,3/1,6 from Saccharomyces cerevisiae yeast at different inclusion percentages (0.0, 0.2, 0.4, 0.6, and 0.8%) in the diet for tropical gar (Atractosteus tropicus) larvae was evaluated on growth, digestive enzyme activity and, relative expression of the immune system genes. The bioassay started on the third day after hatching (DAH) and lasted 21 days, using a total of 1500 larvae of 0.055 ± 0.008 g and, a total length of 2.46 ± 0.26 cm. Larviculture was carried out in a recirculation system with 15 tanks of 70 L using a density of 100 organisms per experimental unit. No significant differences in larval growth were observed by the inclusion of β-glucans (p > 0.05). Digestive enzymes showed changes in lipase and trypsin activities, presenting higher values in fish fed 0.6% and 0.8% β-glucans diets compared to the other treatments (p < 0.05). Leucine-aminopeptidase, chymotrypsin, acid phosphatase, and alkaline phosphatase activity showed higher activities in larvae fed with a 0.4% β-glucan diet compared to the control group. The relative expression of intestinal membrane integrity (mucin 2) muc-2, (occludins) occ, (nucleotide-binding oligomerization domain) nod-2, and immune system lys (lysosome) genes showed over-expression in larvae fed the 0.4% β-glucan diet to the rest of the treatments (p < 0.05). The inclusion of β-glucans at 0.4-0.6% in diets for A. tropicus larvae could improve larviculture, as effects on the increase in the activity of several digestive enzymes and the expression of genes of the immune system.
Collapse
Affiliation(s)
- L A Cigarroa-Ruiz
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México
| | - F J Toledo-Solís
- Centro de Investigaciones Costeras, Universidad de Ciencias y Artes de Chiapas (UNICACH), Calle Juan José Calzada S/N, 30500, Tonalá, Chiapas, Mexico.
| | - S A Frías-Gómez
- Laboratorio de Producción Acuícola FES Iztacala, Barrio de los Héroes, Av. De Los Barrios 1, Los Reyes Ixtacala, 54090, Tlalnepantla de Baz, Mexico
| | - R Guerrero-Zárate
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México
| | - S Camarillo-Coop
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México
| | - C S Alvarez-Villagómez
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México
| | - E S Peña-Marín
- Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas, Universidad, Carr. Transpeninsular 3917, 22870, Ensenada, Baja California, Mexico
| | - M A Galaviz
- Facultad de Ciencias Marinas, Autónoma de Baja California (UABC), Universidad, PO Box 76, 22860, Ensenada, Baja California, Mexico
| | - R Martínez-García
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México
| | - C A Álvarez-González
- Laboratorio de Fisiología en Recursos Acuáticos, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 0.5 Km Carretera Villahermosa-Cárdenas, 86000, Villahermosa, Tabasco, México.
| |
Collapse
|
17
|
Yin L, Gao M, Xu L, Qi Y, Han L, Peng J. Single-cell analysis of cellular heterogeneity and interactions in the ischemia-reperfusion injured mouse intestine. J Pharm Anal 2023; 13:760-775. [PMID: 37577387 PMCID: PMC10422115 DOI: 10.1016/j.jpha.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Nine major cell populations among 46,716 cells were identified in mouse intestinal ischemia‒reperfusion (II/R) injury by single-cell RNA sequencing. For enterocyte cells, 11 subclusters were found, in which enterocyte cluster 1 (EC1), enterocyte cluster 3 (EC3), and enterocyte cluster 8 (EC8) were newly discovered cells in ischemia 45 min/reperfusion 720 min (I 45 min/R 720 min) group. EC1 and EC3 played roles in digestion and absorption, and EC8 played a role in cell junctions. For TA cells, after ischemia 45 min/reperfusion 90 min (I 45 min/R 90 min), many TA cells at the stage of proliferation were identified. For Paneth cells, Paneth cluster 3 was observed in the resting state of normal jejunum. After I 45 min/R 90 min, three new subsets were found, in which Paneth cluster 1 had good antigen presentation activity. The main functions of goblet cells were to synthesize and secrete mucus, and a novel subcluster (goblet cluster 5) with highly proliferative ability was discovered in I 45 min/R 90 min group. As a major part of immune system, the changes in T cells with important roles were clarified. Notably, enterocyte cells secreted Guca2b to interact with Gucy2c receptor on the membranes of stem cells, TA cells, Paneth cells, and goblet cells to elicit intercellular communication. One marker known as glutathione S-transferase mu 3 (GSTM3) affected intestinal mucosal barrier function by adjusting mitogen-activated protein kinases (MAPK) signaling during II/R injury. The data on the heterogeneity of intestinal cells, cellular communication and the mechanism of GSTM3 provide a cellular basis for treating II/R injury.
Collapse
Affiliation(s)
- Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning, 116044, China
| |
Collapse
|
18
|
Maccioni L, Fu Y, Horsmans Y, Leclercq I, Stärkel P, Kunos G, Gao B. Alcohol-associated bowel disease: new insights into pathogenesis. EGASTROENTEROLOGY 2023; 1:e100013. [PMID: 37662449 PMCID: PMC10472976 DOI: 10.1136/egastro-2023-100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 09/05/2023]
Abstract
Excessive alcohol drinking can cause pathological changes including carcinogenesis in the digestive tract from mouth to large intestine, but the underlying mechanisms are not fully understood. In this review, we discuss the effects of alcohol on small and large intestinal functions, such as leaky gut, dysbiosis and alterations of intestinal epithelium and gut immune dysfunctions, commonly referred to as alcohol-associated bowel disease (ABD). To date, detailed mechanistic insights into ABD are lacking. Accumulating evidence suggests a pathogenic role of ethanol metabolism in dysfunctions of the intestinal tract. Ethanol metabolism generates acetaldehyde and acetate, which could potentially promote functional disruptions of microbial and host components of the intestinal barrier along the gastrointestinal tract. The potential involvement of acetaldehyde and acetate in the pathogenesis of the underlying ABD, including cancer, is discussed. We also highlight some gaps in knowledge existing in the field of ABD. Finally, we discuss future directions in exploring the role of acetaldehyde and acetate generated during chronic alcohol intake in various pathologies affecting different sites of the intestinal tract.
Collapse
Affiliation(s)
- Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Horsmans
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Peter Stärkel
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Schaaf CR, Polkoff KM, Carter A, Stewart AS, Sheahan B, Freund J, Ginzel J, Snyder JC, Roper J, Piedrahita JA, Gonzalez LM. A LGR5 reporter pig model closely resembles human intestine for improved study of stem cells in disease. FASEB J 2023; 37:e22975. [PMID: 37159340 PMCID: PMC10446885 DOI: 10.1096/fj.202300223r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Intestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model. We applied histology, immunofluorescence, fluorescence-activated cell sorting, flow cytometry, gene expression quantification, and 3D organoid cultures to whole tissue and single cells from the duodenum, jejunum, ileum, and colon of LGR5-H2B-GFP and wild-type pigs. Ileum and colon LGR5-H2B-GFP, healthy human, and murine biopsies were compared by mRNA fluorescent in situ hybridization (FISH). To model CRC, adenomatous polyposis coli (APC) mutation was induced by CRISPR/Cas9 editing in porcine LGR5-H2B-GFP colonoids. Crypt-base, green fluorescent protein (GFP) expressing cells co-localized with ISC biomarkers. LGR5-H2B-GFPhi cells had significantly higher LGR5 expression (p < .01) and enteroid forming efficiency (p < .0001) compared with LGR5-H2B-GFPmed/lo/neg cells. Using FISH, similar LGR5, OLFM4, HOPX, LYZ, and SOX9 expression was identified between human and LGR5-H2B-GFP pig crypt-base cells. LGR5-H2B-GFP/APCnull colonoids had cystic growth in WNT/R-spondin-depleted media and significantly upregulated WNT/β-catenin target gene expression (p < .05). LGR5+ ISCs are reproducibly isolated in LGR5-H2B-GFP pigs and used to model CRC in an organoid platform. The known anatomical and physiologic similarities between pig and human, and those shown by crypt-base FISH, underscore the significance of this novel LGR5-H2B-GFP pig to translational ISC research.
Collapse
Affiliation(s)
- Cecilia R. Schaaf
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Kathryn M. Polkoff
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Amber Carter
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Amy S. Stewart
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Breanna Sheahan
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - John Freund
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Joshua Ginzel
- Department of SurgeryDuke UniversityDurhamNorth CarolinaUSA
| | - Joshua C. Snyder
- Department of SurgeryDuke UniversityDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Jatin Roper
- Department of Medicine, Division of GastroenterologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Pharmacology and Cancer BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Jorge A. Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Liara M. Gonzalez
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
20
|
Atanga R, Singh V, In JG. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int J Mol Sci 2023; 24:ijms24108836. [PMID: 37240181 DOI: 10.3390/ijms24108836] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enteroendocrine cells are specialized secretory lineage cells in the small and large intestines that secrete hormones and peptides in response to luminal contents. The various hormones and peptides can act upon neighboring cells and as part of the endocrine system, circulate systemically via immune cells and the enteric nervous system. Locally, enteroendocrine cells have a major role in gastrointestinal motility, nutrient sensing, and glucose metabolism. Targeting the intestinal enteroendocrine cells or mimicking hormone secretion has been an important field of study in obesity and other metabolic diseases. Studies on the importance of these cells in inflammatory and auto-immune diseases have only recently been reported. The rapid global increase in metabolic and inflammatory diseases suggests that increased understanding and novel therapies are needed. This review will focus on the association between enteroendocrine changes and metabolic and inflammatory disease progression and conclude with the future of enteroendocrine cells as potential druggable targets.
Collapse
Affiliation(s)
- Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie G In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
21
|
Abbott J, Näthke IS. The adenomatous polyposis coli protein 30 years on. Semin Cell Dev Biol 2023:S1084-9521(23)00093-9. [PMID: 37095033 DOI: 10.1016/j.semcdb.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Mutations in the gene encoding the Adenomatous polyposis coli protein (APC) were discovered as driver mutations in colorectal cancers almost 30 years ago. Since then, the importance of APC in normal tissue homeostasis has been confirmed in a plethora of other (model) organisms spanning a large evolutionary space. APC is a multifunctional protein, with roles as a key scaffold protein in complexes involved in diverse signalling pathways, most prominently the Wnt signalling pathway. APC is also a cytoskeletal regulator with direct and indirect links to and impacts on all three major cytoskeletal networks. Correspondingly, a wide range of APC binding partners have been identified. Mutations in APC are extremely strongly associated with colorectal cancers, particularly those that result in the production of truncated proteins and the loss of significant regions from the remaining protein. Understanding the complement of its role in health and disease requires knowing the relationship between and regulation of its diverse functions and interactions. This in turn requires understanding its structural and biochemical features. Here we set out to provide a brief overview of the roles and function of APC and then explore its conservation and structure using the extensive sequence data, which is now available, and spans a broad range of taxonomy. This revealed conservation of APC across taxonomy and new relationships between different APC protein families.
Collapse
Affiliation(s)
- James Abbott
- Division of Computational Biology & D'Arcy Thompson Unit, University of Dundee, Dow Street, Dundee, DD2 1 EH, United Kingdom.
| | - Inke S Näthke
- Division of Molecular Cell and Developmental Biology, University of Dundee, Dow Street, Dundee DD2 1EH, United Kingdom.
| |
Collapse
|
22
|
Constantin AM, Mihu CM, Boşca AB, Melincovici CS, Mărginean MV, Jianu EM, Onofrei MM, Micu CM, Alexandru BC, Sufleţel RT, Moldovan IM, Coneac A, Crintea A, Ştefan RA, Ştefan PA, Djouini A, Şovrea AS. Short histological kaleidoscope - recent findings in histology. Part III. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:115-133. [PMID: 37518868 PMCID: PMC10520383 DOI: 10.47162/rjme.64.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
The paper provides an overview of the current understanding of different cells' biology (e.g., keratinocytes, Paneth cells, myoepithelial cells, myofibroblasts, chondroclasts, monocytes, atrial cardiomyocytes), including their origin, structure, function, and role in disease pathogenesis, and of the latest findings in the medical literature concerning the brown adipose tissue and the juxtaoral organ of Chievitz.
Collapse
Affiliation(s)
- Anne Marie Constantin
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Senchukova MA. Genetic heterogeneity of colorectal cancer and the microbiome. World J Gastrointest Oncol 2023; 15:443-463. [PMID: 37009315 PMCID: PMC10052667 DOI: 10.4251/wjgo.v15.i3.443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
In 2020, the International Agency for Research on Cancer and the World Health Organization's GLOBOCAN database ranked colorectal cancer (CRC) as the third most common cancer in the world. Most cases of CRC (> 95%) are sporadic and develop from colorectal polyps that can progress to intramucosal carcinoma and CRC. Increasing evidence is accumulating that the gut microbiota can play a key role in the initiation and progression of CRC, as well as in the treatment of CRC, acting as an important metabolic and immunological regulator. Factors that may determine the microbiota role in CRC carcinogenesis include inflammation, changes in intestinal stem cell function, impact of bacterial metabolites on gut mucosa, accumulation of genetic mutations and other factors. In this review, I discuss the major mechanisms of the development of sporadic CRC, provide detailed characteristics of the bacteria that are most often associated with CRC, and analyze the role of the microbiome and microbial metabolites in inflammation initiation, activation of proliferative activity in intestinal epithelial and stem cells, and the development of genetic and epigenetic changes in CRC. I consider long-term studies in this direction to be very important, as they open up new opportunities for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
24
|
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe? World J Gastroenterol 2023; 29:19-42. [PMID: 36683718 PMCID: PMC9850957 DOI: 10.3748/wjg.v29.i1.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
25
|
Wallaeys C, Garcia‐Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol Med 2022; 15:e16427. [PMID: 36573340 PMCID: PMC9906427 DOI: 10.15252/emmm.202216427] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2022] Open
Abstract
Paneth cells are versatile secretory cells located in the crypts of Lieberkühn of the small intestine. In normal conditions, they function as the cornerstones of intestinal health by preserving homeostasis. They perform this function by providing niche factors to the intestinal stem cell compartment, regulating the composition of the microbiome through the production and secretion of antimicrobial peptides, performing phagocytosis and efferocytosis, taking up heavy metals, and preserving barrier integrity. Disturbances in one or more of these functions can lead to intestinal as well as systemic inflammatory and infectious diseases. This review discusses the multiple functions of Paneth cells, and the mechanisms and consequences of Paneth cell dysfunction. It also provides an overview of the tools available for studying Paneth cells.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Natalia Garcia‐Gonzalez
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
26
|
Su X, Jin M, Xu C, Gao Y, Yang Y, Qi H, Zhang Q, Yang X, Ya W, Zhang Y, Yang R. FABP4 in Paneth cells regulates antimicrobial protein expression to reprogram gut microbiota. Gut Microbes 2022; 14:2139978. [PMID: 36519446 PMCID: PMC9635462 DOI: 10.1080/19490976.2022.2139978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial proteins possess a broad spectrum of bactericidal activity and play an important role in shaping the composition of gut microbiota, which is related to multiple diseases such as metabolic syndrome. However, it is incompletely known for the regulation of defensin expression in the gut Paneth cells. Here, we found that FABP4 in the Paneth cells of gut epithelial cells and organoids can downregulate the expression of defensins. FABP4fl/flpvillinCreT mice were highly resistance to Salmonella Typhimurium (S.T) infection and had increased bactericidal ability to pathogens. The FABP4-mediated downregulation of defensins is through degrading PPARγ after K48 ubiquitination. We also demonstrate that high-fat diet (HFD)-mediated downregulation of defensins is through inducing a robust FABP4 in Paneth cells. Firmicutes/Bacteroidetes (F/B) ratio in FABP4fl/flpvillinCreT mice is lower than control mice, which is opposite to that in mice fed HFD, indicating that FABP4 in the Paneth cells could reprogram gut microbiota. Interestingly, FABP4-mediated downregulation of defensins in Paneth cells not only happens in mice but also in human. A better understanding of the regulation of defensins, especially HFD-mediated downregulation of defensin in Paneth cells will provide insights into factor(s) underlying modern diseases.Abbreviations: FABP4: Fatty acid binding protein 4; S. T: Salmonella Typhimurium; HFD: High-fat diet; Defa: α-defensin; 930 HD5: Human α-defensin 5; HD6: Human α-defensin 6; F/B: Firmicutes/Bacteroidetes; SFB: Segmental filamentous bacteria; AMPs: Antimicrobial peptides; PPARγ: Peroxisome proliferator-activated receptor γ; P-PPAR: Phosphorylated PPAR; Dhx15: DEAD-box helicase 15; 935 EGF: Epidermal growth factor; ENR: Noggin and R-spondin 1; CFU: Colony forming unit; Lyz1: Lysozyme 1; Saa1: Serum amyoid A 1; Pla2g2a: Phospholipase A2, group IIA; MMP-7: Matrix metalloproteinase; AU-PAGE: Acid-urea polyacrylamide gel electrophoresis; PA: Palmitic 940 acid; GPR40: G-protein-coupled receptor; GF: Germ-free; EGF: Epidermal growth factor; LP: Lamina propria; KO: Knock out; WT: Wild-type.
Collapse
Affiliation(s)
- Xiaomin Su
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin, China
| | - Mengli Jin
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin, China,Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin, China,Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yazheng Yang
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin, China,Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Houbao Qi
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin, China,Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Qianjing Zhang
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin, China,Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaorong Yang
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin, China,Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Wang Ya
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin, China,Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin, China,Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China,CONTACT Rongcun Yang Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin300071, China
| |
Collapse
|
27
|
Chua D, Low ZS, Cheam GX, Ng AS, Tan NS. Utility of Human Relevant Preclinical Animal Models in Navigating NAFLD to MAFLD Paradigm. Int J Mol Sci 2022; 23:14762. [PMID: 36499091 PMCID: PMC9737809 DOI: 10.3390/ijms232314762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is an emerging contributor to disease burden worldwide. The past decades of work established the heterogeneous nature of non-alcoholic fatty liver disease (NAFLD) etiology and systemic contributions to the pathogenesis of the disease. This called for the proposal of a redefinition in 2020 to that of metabolic dysfunction-associated fatty liver disease (MAFLD) to better reflect the current understanding of the disease. To date, several clinical cohort studies comparing NAFLD and MAFLD hint at the relevancy of the new nomenclature in enriching for patients with more severe hepatic injury and extrahepatic comorbidities. However, the underlying systemic pathogenesis is still not fully understood. Preclinical animal models have been imperative in elucidating key biological mechanisms in various contexts, including intrahepatic disease progression, interorgan crosstalk and systemic dysregulation. Furthermore, they are integral in developing novel therapeutics against MAFLD. However, substantial contextual variabilities exist across different models due to the lack of standardization in several aspects. As such, it is crucial to understand the strengths and weaknesses of existing models to better align them to the human condition. In this review, we consolidate the implications arising from the change in nomenclature and summarize MAFLD pathogenesis. Subsequently, we provide an updated evaluation of existing MAFLD preclinical models in alignment with the new definitions and perspectives to improve their translational relevance.
Collapse
Affiliation(s)
- Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Guo Xiang Cheam
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
28
|
Agrizzi Verediano T, Agarwal N, Stampini Duarte Martino H, Kolba N, Grancieri M, Dias Paes MC, Tako E. Effect of Black Corn Anthocyanin-Rich Extract ( Zea mays L.) on Cecal Microbial Populations In Vivo ( Gallus gallus). Nutrients 2022; 14:4679. [PMID: 36364942 PMCID: PMC9655515 DOI: 10.3390/nu14214679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 08/17/2023] Open
Abstract
Black corn has been attracting attention to investigate its biological properties due to its anthocyanin composition, mainly cyanidin-3-glucoside. Our study evaluated the effects of black corn extract (BCE) on intestinal morphology, gene expression, and the cecal microbiome. The BCE intra-amniotic administration was evaluated by an animal model in Gallus gallus. The eggs (n = 8 per group) were divided into: (1) no injection; (2) 18 MΩ H2O; (3) 5% black corn extract (BCE); and (4) 0.38% cyanidin-3-glucoside (C3G). A total of 1 mL of each component was injected intra-amniotic on day 17 of incubation. On day 21, the animals were euthanized after hatching, and the duodenum and cecum content were collected. The cecal microbiome changes were attributed to BCE administration, increasing the population of Bifidobacterium and Clostridium, and decreasing E. coli. The BCE did not change the gene expression of intestinal inflammation and functionality. The BCE administration maintained the villi height, Paneth cell number, and goblet cell diameter (in the villi and crypt), similar to the H2O injection but smaller than the C3G. Moreover, a positive correlation was observed between Bifidobacterium, Clostridium, E. coli, and villi GC diameter. The BCE promoted positive changes in the cecum microbiome and maintained intestinal morphology and functionality.
Collapse
Affiliation(s)
- Thaisa Agrizzi Verediano
- Nutrition and Health Department, Universidade Federal de Viçosa, Vicosa 36571-000, Minas Gerais, Brazil
| | - Nikita Agarwal
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | | | - Nikolai Kolba
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| | - Mariana Grancieri
- Nutrition and Health Department, Universidade Federal de Viçosa, Vicosa 36571-000, Minas Gerais, Brazil
| | - Maria Cristina Dias Paes
- Empresa Brasileira de Pesquisa e Agropecuária (EMBRAPA), Sete Lagoas 35701-970, Minas Gerais, Brazil
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA
| |
Collapse
|
29
|
Li G, Wang Q, Feng J, Wang J, Wang Y, Huang X, Shao T, Deng X, Cao Y, Zhou M, Zhao C. Recent insights into the role of defensins in diabetic wound healing. Biomed Pharmacother 2022; 155:113694. [PMID: 36099789 DOI: 10.1016/j.biopha.2022.113694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic wound, one of the most common serious complications of diabetic patients, is an important factor in disability and death. Much of the research on the pathophysiology of diabetic wound healing has long focused on mechanisms mediated by hyperglycemia, chronic inflammation, microcirculatory and macrocirculatory dysfunction. However, recent evidence suggests that defensins may play a crucial role in the development and perpetuation of diabetic wound healing. The available findings suggest that defensins exert a beneficial influence on diabetic wound healing through antimicrobial, immunomodulatory, angiogenic, tissue regenerator effects, and insulin resistance improvement. Therefore, summarizing the existing research progress on defensins in the diabetic wound may present a promising strategy for diabetic patients.
Collapse
Affiliation(s)
- Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jialin Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
30
|
Long T, Abbasi N, Hernandez JE, Li Y, Sayed IM, Ma S, Iemolo A, Yee BA, Yeo GW, Telese F, Ghosh P, Das S, Huang WJM. RNA binding protein DDX5 directs tuft cell specification and function to regulate microbial repertoire and disease susceptibility in the intestine. Gut 2022; 71:1790-1802. [PMID: 34853057 PMCID: PMC9156727 DOI: 10.1136/gutjnl-2021-324984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Tuft cells residing in the intestinal epithelium have diverse functions. In the small intestine, they provide protection against inflammation, combat against helminth and protist infections, and serve as entry portals for enteroviruses. In the colon, they had been implicated in tumourigenesis. Commitment of intestinal progenitor cells to the tuft cell lineage requires Rho GTPase Cell Division Cycle 42 (CDC42), a Rho GTPase that acts downstream of the epidermal growth factor receptor and wingless-related integration site signalling cascades, and the master transcription factor POU class 2 homeobox 3 (POU2F3). This study investigates how this pathway is regulated by the DEAD box containing RNA binding protein DDX5 in vivo. DESIGN We assessed the role of DDX5 in tuft cell specification and function in control and epithelial cell-specific Ddx5 knockout mice (DDX5ΔIEC) using transcriptomic approaches. RESULTS DDX5ΔIEC mice harboured a loss of intestinal tuft cell populations, modified microbial repertoire, and altered susceptibilities to ileal inflammation and colonic tumourigenesis. Mechanistically, DDX5 promotes CDC42 protein synthesis through a post-transcriptional mechanism to license tuft cell specification. Importantly, the DDX5-CDC42 axis is parallel but distinct from the known interleukin-13 circuit implicated in tuft cell hyperplasia, and both pathways augment Pou2f3 expression in secretory lineage progenitors. In mature tuft cells, DDX5 not only promotes integrin signalling and microbial responses, it also represses gene programmes involved in membrane transport and lipid metabolism. CONCLUSION RNA binding protein DDX5 directs tuft cell specification and function to regulate microbial repertoire and disease susceptibility in the intestine.
Collapse
Affiliation(s)
- Tianyun Long
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Nazia Abbasi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Juan E Hernandez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Yuxin Li
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Shengyun Ma
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Attilio Iemolo
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Francesca Telese
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
31
|
Polyphenols–Gut–Heart: An Impactful Relationship to Improve Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11091700. [PMID: 36139775 PMCID: PMC9495581 DOI: 10.3390/antiox11091700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
A healthy gut provides the perfect habitat for trillions of bacteria, called the intestinal microbiota, which is greatly responsive to the long-term diet; it exists in a symbiotic relationship with the host and provides circulating metabolites, hormones, and cytokines necessary for human metabolism. The gut–heart axis is a novel emerging concept based on the accumulating evidence that a perturbed gut microbiota, called dysbiosis, plays a role as a risk factor in the pathogenesis of cardiovascular disease. Consequently, recovery of the gut microbiota composition and function could represent a potential new avenue for improving patient outcomes. Despite their low absorption, preclinical evidence indicates that polyphenols and their metabolites are transformed by intestinal bacteria and halt detrimental microbes’ colonization in the host. Moreover, their metabolites are potentially effective in human health due to antioxidant, anti-inflammatory, and anti-cancer effects. The aim of this review is to provide an overview of the causal role of gut dysbiosis in the pathogenesis of atherosclerosis, hypertension, and heart failure; to discuss the beneficial effects of polyphenols on the intestinal microbiota, and to hypothesize polyphenols or their derivatives as an opportunity to prevent and treat cardiovascular diseases by shaping gut eubiosis.
Collapse
|
32
|
Loktionov A. Colon mucus in colorectal neoplasia and beyond. World J Gastroenterol 2022; 28:4475-4492. [PMID: 36157924 PMCID: PMC9476883 DOI: 10.3748/wjg.v28.i32.4475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/23/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
Little was known about mammalian colon mucus (CM) until the beginning of the 21st century. Since that time considerable progress has been made in basic research addressing CM structure and functions. Human CM is formed by two distinct layers composed of gel-forming glycosylated mucins that are permanently secreted by goblet cells of the colonic epithelium. The inner layer is dense and impenetrable for bacteria, whereas the loose outer layer provides a habitat for abundant commensal microbiota. Mucus barrier integrity is essential for preventing bacterial contact with the mucosal epithelium and maintaining homeostasis in the gut, but it can be impaired by a variety of factors, including CM-damaging switch of commensal bacteria to mucin glycan consumption due to dietary fiber deficiency. It is proven that impairments in CM structure and function can lead to colonic barrier deterioration that opens direct bacterial access to the epithelium. Bacteria-induced damage dysregulates epithelial proliferation and causes mucosal inflammatory responses that may expand to the loosened CM and eventually result in severe disorders, including colitis and neoplastic growth. Recently described formation of bacterial biofilms within the inner CM layer was shown to be associated with both inflammation and cancer. Although obvious gaps in our knowledge of human CM remain, its importance for the pathogenesis of major colorectal diseases, comprising inflammatory bowel disease and colorectal cancer, is already recognized. Continuing progress in CM exploration is likely to result in the development of a range of new useful clinical applications addressing colorectal disease diagnosis, prevention and therapy.
Collapse
|
33
|
Comparing the Effects of Concord Grape ( Vitis labrusca L.) Puree, Juice, and Pomace on Intestinal Morphology, Functionality, and Bacterial Populations In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14173539. [PMID: 36079797 PMCID: PMC9460804 DOI: 10.3390/nu14173539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/20/2022] Open
Abstract
This is a preliminary study evaluating the effect of different fractions of Concord grapes (Vitis labrusca L.) on the brush border membrane (BBM) morphology, duodenal gene expression, and specific gut bacterial populations. For this study, we utilized a unique intraamniotic approach, wherein, the test substances are administered into the amnion of the Gallus gallus egg (on day 17). The embryo orally consumes the amniotic fluid along with the injected test substance before the hatch. We randomly divided ~50 fertilized eggs into 5 groups including 6% grape (juice, puree, and pomace) along with controls (no injection and diluent—H2O). The grape juice was prepared by crushing the grapes; the grape residues were used as pomace. The grape puree included the grape skin, endocarp, mesocarp, and juice but not the seeds. On day 21, the hatch day, the blood, pectoral muscle, liver, duodenum, and large intestine were harvested. Our results showed no significant differences in blood glucose, pectoral glycogen level, or body weight. However, significant (p < 0.05) differences in duodenal and liver gene expression were observed between the treatment groups. The grape puree treatment resulted in higher Clostridium numbers and lower Bifidobacterium numbers when compared to all other groups. In summary, the dietary consumption of grape polyphenols has the potential to beneficially modulate aspects of intestinal health provided their concentration is limited.
Collapse
|
34
|
Schreiber R, Cabrita I, Kunzelmann K. Paneth Cell Secretion in vivo Requires Expression of Tmem16a and Tmem16f. GASTRO HEP ADVANCES 2022; 1:1088-1098. [PMID: 39131261 PMCID: PMC11308424 DOI: 10.1016/j.gastha.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/03/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Paneth cells play a central role in intestinal innate immune response. These cells are localized at the base of small intestinal crypts of Lieberkuhn. The calcium-activated chloride channel TMEM16A and the phospholipid scramblase TMEM16F control intracellular Ca2+ signaling and exocytosis. We analyzed the role of TMEM16A and TMEM16F for Paneth cells secretion. Methods Mice with intestinal epithelial knockout of Tmem16a (Tmem16a-/-) and Tmem16f (Tmem16f-/-) were generated. Tissue structures and Paneth cells were analyzed, and Paneth cell exocytosis was examined in small intestinal organoids in vitro. Intracellular Ca2+ signals were measured and were compared between wild-type and Tmem16 knockout mice. Bacterial colonization and intestinal apoptosis were analyzed. Results Paneth cells in the crypts of Lieberkuhn from Tmem16a-/- and Tmem16f-/- mice demonstrated accumulation of lysozyme. Tmem16a and Tmem16f were localized in wild-type Paneth cells but were absent in cells from knockout animals. Paneth cell number and size were enhanced in the crypt base and mucus accumulated in intestinal goblet cells of knockout animals. Granule fusion and exocytosis on cholinergic and purinergic stimulation were examined online. Both were strongly compromised in the absence of Tmem16a or Tmem16f and were also blocked by inhibition of Tmem16a/f. Purinergic Ca2+ signaling was largely inhibited in Tmem16a knockout mice. Jejunal bacterial content was enhanced in knockout mice, whereas cellular apoptosis was inhibited. Conclusion The present data demonstrate the role of Tmem16 for exocytosis in Paneth cells. Inhibition or activation of Tmem16a/f is likely to affect microbial content and immune functions present in the small intestine.
Collapse
Affiliation(s)
- Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Bavaria, Germany
| | - Ines Cabrita
- Nephrologisches Forschungslabor, University of Cologne, Köln, NRW, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Bavaria, Germany
| |
Collapse
|
35
|
Yu J, Liu T, Gao Z, Liu R, Wang Z, Chen Y, Cao J, Dong Y. Akkermansia muciniphila Colonization Alleviating High Fructose and Restraint Stress-Induced Jejunal Mucosal Barrier Disruption. Nutrients 2022; 14:nu14153164. [PMID: 35956340 PMCID: PMC9370786 DOI: 10.3390/nu14153164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is a mucin-degrading bacterium that resides in the mucus layer, but its potential in intestinal inflammatory diseases has sparked controversy. It is well known that both the consumption of fructose-containing beverages and psychological stress increase the risk of intestinal disease. Our results revealed that a high-fructose diet aggravated the damage to the jejunal mucosal barrier caused by restraint stress, reduced tight junction protein expression and the intestinal digestion and absorption capacity, disrupted the ability of Paneth cells to secrete antimicrobial peptides, and promoted the expression of inflammatory cytokines. A. muciniphila colonization enhanced the defense function of the mucosal barrier by enhancing the function of the NLRP6, promoting autophagy, maintaining the normal secretion of antimicrobial peptides in Paneth cells, promoting the expression of tight junction proteins, negatively regulating the NF-kB signaling pathway and inhibiting the expression of inflammatory cytokines. Our work indicates that A. muciniphila ameliorates the disruption of the intestinal mucosal barrier under high fructose and restraint stress. These results provided a rationale for the development of probiotic colonization for the prevention or treatment of intestinal diseases.
Collapse
|
36
|
Black corn (Zea mays L.) soluble extract showed anti-inflammatory effects and improved the intestinal barrier integrity in vivo (Gallus gallus). Food Res Int 2022; 157:111227. [DOI: 10.1016/j.foodres.2022.111227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
|
37
|
Khoramjoo SM, Kazemifard N, Baradaran Ghavami S, Farmani M, Shahrokh S, Asadzadeh Aghdaei H, Sherkat G, Zali MR. Overview of Three Proliferation Pathways (Wnt, Notch, and Hippo) in Intestine and Immune System and Their Role in Inflammatory Bowel Diseases (IBDs). Front Med (Lausanne) 2022; 9:865131. [PMID: 35677821 PMCID: PMC9170180 DOI: 10.3389/fmed.2022.865131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder, which involves the gastrointestinal (GI) tract consisting Crohn's disease (CD) and ulcerative colitis (UC). The etiology of this disease is not yet clear and, hence, there are numerous medications and treatments for patients with IBD, although a definite and permanent treatment is still missing. Therefore, finding novel therapeutic approaches are vital for curing patients with IBD. In the GI tract, there are various lineages of cells with different roles that their existence is necessary for the barrier function of intestinal epithelial cells (IECs). Therefore, signaling pathways, which manage the hemostasis of cell lineages in intestine, such as Wnt, Notch, and Hippo, could have crucial roles in regulation of barrier function in the intestine. Additionally, these signaling pathways function as a governor of cell growth, tissue homeostasis, and organ size. In patients with IBD, recent studies have revealed that these signaling pathways are dysregulated that it could result in depletion or excess of a cell lineage in the intestine. Moreover, dysregulation of these signaling pathways in different cell lineages of the immune system could lead to dysregulation of the immune system's responses in IBD. In this article, we summarized the components and signaling of Wnt, Notch, and Hippo pathways and their role in the intestine and immune system. Furthermore, we reviewed latest scientific literature on the crosstalk among these three signaling pathways in IBD. An overview of these three signaling pathways and their interactions in IBD could provide a novel insight for prospective study directions into finding efficient medications or treatments.
Collapse
Affiliation(s)
- Seyed Mobin Khoramjoo
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nesa Kazemifard
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Shaghayegh Baradaran Ghavami
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Sherkat
- Faculty of Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Mead BE, Hattori K, Levy L, Imada S, Goto N, Vukovic M, Sze D, Kummerlowe C, Matute JD, Duan J, Langer R, Blumberg RS, Ordovas-Montanes J, Yilmaz ÖH, Karp JM, Shalek AK. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nat Biomed Eng 2022; 6:476-494. [PMID: 35314801 PMCID: PMC9046079 DOI: 10.1038/s41551-022-00863-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
The cellular composition of barrier epithelia is essential to organismal homoeostasis. In particular, within the small intestine, adult stem cells establish tissue cellularity, and may provide a means to control the abundance and quality of specialized epithelial cells. Yet, methods for the identification of biological targets regulating epithelial composition and function, and of small molecules modulating them, are lacking. Here we show that druggable biological targets and small-molecule regulators of intestinal stem cell differentiation can be identified via multiplexed phenotypic screening using thousands of miniaturized organoid models of intestinal stem cell differentiation into Paneth cells, and validated via longitudinal single-cell RNA-sequencing. We found that inhibitors of the nuclear exporter Exportin 1 modulate the fate of intestinal stem cells, independently of known differentiation cues, significantly increasing the abundance of Paneth cells in the organoids and in wild-type mice. Physiological organoid models of the differentiation of intestinal stem cells could find broader utility for the screening of biological targets and small molecules that can modulate the composition and function of other barrier epithelia.
Collapse
Grants
- R01 DK088199 NIDDK NIH HHS
- Howard Hughes Medical Institute
- P30 CA014051 NCI NIH HHS
- DP2 GM119419 NIGMS NIH HHS
- R01 DE013023 NIDCR NIH HHS
- U54 CA217377 NCI NIH HHS
- P30 DK034854 NIDDK NIH HHS
- R01 HL095722 NHLBI NIH HHS
- T32 GM087237 NIGMS NIH HHS
- R01 CA034992 NCI NIH HHS
- R01 CA211184 NCI NIH HHS
- The National Science Foundation graduate research fellowship program and the Massachusetts Institute of Technology – GlaxoSmithKline (MIT-GSK) Gertrude B. Elion Postdoctoral fellowship.
- Fellowships from The Japanese Biochemical Society (The Osamu Hayaishi Memorial Scholarship for Study Abroad), Mochida Memorial Foundation for Medical and Pharmaceutical Research, and The Uehara Memorial Foundation.
- NIH (DE013023)
- NIH (DK088199)
- New York Stem Cell Foundation – Robertson Investigator, the Richard and Susan Smith Family Foundation, the HHMI Damon Runyon Cancer Research Foundation Fellowship (DRG-2274-16), the AGA Research Foundation’s AGA-Takeda Pharmaceuticals Research Scholar Award in IBD – AGA2020-13-01, the HDDC Pilot and Feasibility P30 DK034854, the Food Allergy Science Initiative, and The New York Stem Cell Foundation.
- NIH (R01CA211184, R01CA034992); Pew-Stewart Trust scholar award; the Kathy and Curt Marble Cancer Research Award; a Bridge grant; and the MIT Stem Cell Initiative through Fondation MIT.
- the Kenneth Rainin Foundation Innovator and Breakthrough awards, the Crohn’s and Colitis Foundation (#624458),the NIH (HL095722), and the Harvard Digestive Disease Center and NIH grant P30DK034854.
- the Beckman Young Investigator Program, the Pew-Stewart Scholars Program for Cancer Research, a Sloan Fellowship in Chemistry, the NIH (1DP2GM119419, 1U54CA217377), the Koch Institute Support (core) Grant P30-CA14051 from the National Cancer Institute, and the MIT Stem Cell Initiative through Fondation MIT.
Collapse
Affiliation(s)
- Benjamin E Mead
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Kazuki Hattori
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren Levy
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shinya Imada
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Norihiro Goto
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Marko Vukovic
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology Boston Children's Hospital, Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Daphne Sze
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Conner Kummerlowe
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Juan D Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, MGH Harvard Medical School, Boston, MA, USA
| | - Jinzhi Duan
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Langer
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jose Ordovas-Montanes
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology Boston Children's Hospital, Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Pathology, MGH, Harvard Medical School, Boston, MA, USA
| | - Jeffrey M Karp
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Alex K Shalek
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA.
- Department of Chemistry, MIT, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
39
|
Barreto E Barreto L, Rattes IC, da Costa AV, Gama P. Paneth cells and their multiple functions. Cell Biol Int 2022; 46:701-710. [PMID: 35032139 DOI: 10.1002/cbin.11764] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 01/08/2023]
Abstract
The small intestine mucosa is lined by specialized cells that form the crypt-villus axis, which expands its surface. Among the six intestinal epithelial cell types, the Paneth cell is located at the base of the crypt, and it contains numerous granules in its cytoplasm, composed of antimicrobial peptides, such as defensins and lysozyme, and growth factors, such as EGF, TGF-alpha, and Wnt ligands. Together, these elements act in the defense against microorganisms, regulation of intestinal microbiota, maintenance, and regulation of stem cell identity. Pathologies that target Paneth cells can disturb such defense activity, but they also affect the maintenance of stem cell niche. In that way, Crohn's disease, necrotizing enterocolitis, and graft-versus-host disease promote a reduction of Paneth cell population, and consequently of secretion of their products into the lumen of the crypts, making the affected organism predisposed to infections and dysbiosis. Additionally, the emergence of new intestinal cells is also decreased. This review aims to address the main characteristics of Paneth cells, highlighting their multiple functions and the importance of their preservation to ensure bowel homeostasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laylla Barreto E Barreto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Isadora Campos Rattes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline Vasques da Costa
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Patrícia Gama
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
40
|
Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-A Mutual Relationship. Animals (Basel) 2022; 12:ani12020145. [PMID: 35049768 PMCID: PMC8772550 DOI: 10.3390/ani12020145] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The gastrointestinal tract is a complex organization of various types of epithelial cells forming a single layer of the mucosal barrier, the host mucosal immune system, and microorganisms termed as gut microbiota inhabiting this area. The mucosal barrier, including physical and chemical factors, spatially segregates gut microbiota and the host immune system preventing the development of immune response directed towards non-pathogenic commensals and dietary antigens. However, for the maintenance of the integrity of the mucosal surfaces, cross-talk between epithelial cells and microbiota is required. The microbiome and the intestinal epithelium developed a complex dependence necessary for sustaining intestinal homeostasis. In this review, we highlight the role of specific epithelial cell subtypes and their role in barrier arrangement, the mechanisms employed by them to control intestinal microbiota as well as the mechanisms utilized by the microbiome to regulate intestinal epithelial function. This review will provide information regarding the development of inflammatory disorders dependent on the loss of intestinal barrier function and composition of the intestinal microbiota. Abstract The gastrointestinal tract, which is constantly exposed to a multitude of stimuli, is considered responsible for maintaining the homeostasis of the host. It is inhabited by billions of microorganisms, the gut microbiota, which form a mutualistic relationship with the host. Although the microbiota is generally recognized as beneficial, at the same time, together with pathogens, they are a permanent threat to the host. Various populations of epithelial cells provide the first line of chemical and physical defense against external factors acting as the interface between luminal microorganisms and immunocompetent cells in lamina propria. In this review, we focus on some essential, innate mechanisms protecting mucosal integrity, thus responsible for maintaining intestine homeostasis. The characteristics of decisive cell populations involved in maintaining the barrier arrangement, based on mucus secretion, formation of intercellular junctions as well as production of antimicrobial peptides, responsible for shaping the gut microbiota, are presented. We emphasize the importance of cross-talk between gut microbiota and epithelial cells as a factor vital for the maintenance of the homeostasis of the GI tract. Finally, we discuss how the imbalance of these regulations leads to the compromised barrier integrity and dysbiosis considered to contribute to inflammatory disorders and metabolic diseases.
Collapse
|
41
|
Agarwal N, Kolba N, Jung Y, Cheng J, Tako E. Saffron ( Crocus sativus L.) Flower Water Extract Disrupts the Cecal Microbiome, Brush Border Membrane Functionality, and Morphology In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14010220. [PMID: 35011095 PMCID: PMC8747550 DOI: 10.3390/nu14010220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022] Open
Abstract
Saffron (Crocus sativus L.) is known as the most expensive spice. C. sativus dried red stigmas, called threads, are used for culinary, cosmetic, and medicinal purposes. The rest of the flower is often discarded, but is now being used in teas, as coloring agents, and fodder. Previous studies have attributed antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, anti-depressant, and anticancer properties to C. sativus floral bio-residues. The aim of this study is to assess C. sativus flower water extract (CFWE) for its effects on hemoglobin, brush boarder membrane (BBM) functionality, morphology, intestinal gene expression, and cecal microbiome in vivo (Gallus gallus), a clinically validated model. For this, Gallus gallus eggs were divided into six treatment groups (non-injected, 18 Ω H2O, 1% CFWE, 2% CFWE, 5% CFWE, and 10% CFWE) with n~10 for each group. On day 17 of incubation, 1 mL of the extracts/control were administered in the amnion of the eggs. The amniotic fluid along with the administered extracts are orally consumed by the developing embryo over the course of the next few days. On day 21, the hatchlings were euthanized, the blood, duodenum, and cecum were harvested for assessment. The results showed a significant dose-dependent decrease in hemoglobin concentration, villus surface area, goblet cell number, and diameter. Furthermore, we observed a significant increase in Paneth cell number and Mucin 2 (MUC2) gene expression proportional to the increase in CFWE concentration. Additionally, the cecum microbiome analysis revealed C. sativus flower water extract altered the bacterial populations. There was a significant dose-dependent reduction in Lactobacillus and Clostridium sp., suggesting an antibacterial effect of the extract on the gut in the given model. These results suggest that the dietary consumption of C. sativus flower may have negative effects on BBM functionality, morphology, mineral absorption, microbial populations, and iron status.
Collapse
Affiliation(s)
| | | | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
42
|
Jay P. Tuft cells: sentinels of the intestinal mucosa. C R Biol 2021; 344:263-273. [DOI: 10.5802/crbiol.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
|
43
|
Mohammadi S, Morell-Perez C, Wright CW, Wyche TP, White CH, Sana TR, Lieberman LA. Assessing donor-to-donor variability in human intestinal organoid cultures. Stem Cell Reports 2021; 16:2364-2378. [PMID: 34450035 PMCID: PMC8452536 DOI: 10.1016/j.stemcr.2021.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Donor-to-donor variability in primary human organoid cultures has not been well characterized. As these cultures contain multiple cell types, there is greater concern that variability could lead to increased noise. In this work we investigated donor-to-donor variability in human gut adult stem cell (ASC) organoids. We examined intestinal developmental pathways during culture differentiation in ileum- and colon-derived cultures established from multiple donors, showing that differentiation patterns were consistent among cultures. This finding indicates that donor-to-donor variability in this system remains at a manageable level. Intestinal metabolic activity was evaluated by targeted analysis of central carbon metabolites and by analyzing hormone production patterns. Both experiments demonstrated similar metabolic functions among donors. Importantly, this activity reflected intestinal biology, indicating that these ASC organoid cultures are appropriate for studying metabolic processes. This work establishes a framework for generating high-confidence data using human primary cultures through thorough characterization of variability. Developmental gene expression patterns were used to assess organoid variability Organoid differentiation patterns were consistent among independent donors Metabolic state of organoids was developmentally controlled Variability of hormone secretion and metabolic activity in organoids was minimal
Collapse
Affiliation(s)
- Sina Mohammadi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA.
| | | | - Charles W Wright
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Thomas P Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Cory H White
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Theodore R Sana
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Linda A Lieberman
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA.
| |
Collapse
|
44
|
Gómez DP, Boudreau F. Organoids and Their Use in Modeling Gut Epithelial Cell Lineage Differentiation and Barrier Properties During Intestinal Diseases. Front Cell Dev Biol 2021; 9:732137. [PMID: 34485312 PMCID: PMC8414659 DOI: 10.3389/fcell.2021.732137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022] Open
Abstract
Maintenance of intestinal epithelium homeostasis is a complex process because of the multicellular and molecular composition of the gastrointestinal wall and the involvement of surrounding interactive signals. The complex nature of this intestinal barrier system poses challenges in the detailed mechanistic understanding of intestinal morphogenesis and the onset of several gut pathologies, including intestinal inflammatory disorders, food allergies, and cancer. For several years, the gut scientific community has explored different alternatives in research involving animals and in vitro models consisting of cultured monolayers derived from the immortalized or cancerous origin cell lines. The recent ability to recapitulate intestinal epithelial dynamics from mini-gut cultures has proven to be a promising step in the field of scientific research and biomedicine. The organoids can be grown as two- or three-dimensional structures, and are derived from adult or pluripotent stem cells that ultimately establish an intestinal epithelium that is composed of all differentiated cell types present in the normal epithelium. In this review, we summarize the different origins and recent use of organoids in modeling intestinal epithelial differentiation and barrier properties.
Collapse
Affiliation(s)
- Dianne Pupo Gómez
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Francois Boudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
45
|
Abdelnaby H, Ndiaye NC, D'Amico F, Fouad AM, Hassan S, Elshafey A, Al Hashash W, Faisal M, Alshamali Y, Al-Taweel T, Peyrin-Biroulet L. NOD2/CARD15 polymorphisms (P268S, IVS8 +158, G908R, L1007fs, R702W) among Kuwaiti patients with Crohn's disease: A case-control study. Saudi J Gastroenterol 2021; 27:249-256. [PMID: 34341249 PMCID: PMC8448012 DOI: 10.4103/sjg.sjg_613_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Nucleotide-binding oligomerization domain-containing two (NOD2/CARD15) gene polymorphisms are implicated in the pathogenesis of Crohn's disease (CD). AIM To describe the allelic frequency of NOD2/CARD15 gene variants among Kuwaiti patients with CD and investigate potential genotype/phenotype associations. METHODS Adult Kuwaiti citizens with an established diagnosis of CD and healthy controls were enrolled from October 2018 to May 2020. Three common NOD2/CARD15 polymorphisms (R702W, G908R, and L1007fs) and P268S and IVS8+158 polymorphisms were screened by polymerase chain reaction/restriction analysis length polymorphism (PCR/RFLP). RESULTS Ninety adult Kuwaiti patients with CD and 210 healthy subjects (as controls) were recruited. P268S, IVS8+158, G908R, and R702W minor alleles were identified in 38.9%, 21.1%, 12.2%, and 4.4% of CD patients, respectively. NOD2/CARD15 polymorphisms coexisted in 35 healthy controls (16.7%) and 21 CD patients (23.3%). Individuals with either a single or multiple polymorphism were approximately two times more likely to have CD than those with no polymorphism. Patients with multiple polymorphisms had significantly more stricturing and penetrating disease. CONCLUSION NOD2/CARD15 gene polymorphisms were significantly associated with an increased risk of disease and aggressive phenotypes among the Kuwaiti CD population.
Collapse
Affiliation(s)
- Hassan Abdelnaby
- Department of Endemic and Infectious Diseases, Suez Canal University, Ismailia, Egypt,Department of Internal Medicine, Division of Gastroenterology, Al Sabah Hospital, Ministry of Health, Kuwait,Address for correspondence: Dr. Hassan Abdelnaby, Department of Internal Medicine, Division of Gastroenterology, Al Sabah Hospital, Ministry of Health, P.O. Box (5) 13001 Safat,. E-mail:
| | - Ndeye Coumba Ndiaye
- Inserm U1256 « Nutrition – Genetics and Exposure to Environmental Risks - NGERE », University of Lorraine, Vandoeuvre-les-Nancy, France
| | - Ferdinando D'Amico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Ahmed Mahmoud Fouad
- Department of Public Health, Occupational and Environmental Medicine, Ismailia, Italy
| | - Sameh Hassan
- Department of Internal Medicine, Division of Gastroenterology, Al Sabah Hospital, Ministry of Health, Kuwait
| | - Alaa Elshafey
- Medical Genetics, Pediatric Department, Menofia University, Egypt,Kuwait Medical Genetic Centre, Ministry of Health, Kuwait
| | - Wafaa Al Hashash
- Department of Internal Medicine, Division of Gastroenterology, Al Sabah Hospital, Ministry of Health, Kuwait
| | - Mohammed Faisal
- Surgical Oncology Unit, Department of Surgery, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Yousef Alshamali
- Department of Internal Medicine, Division of Gastroenterology, Jaber Al-Ahmad Hospital, Ministry of Health, Kuwait
| | - Talal Al-Taweel
- Department of Internal Medicine, Division of Gastroenterology, Jaber Al-Ahmad Hospital, Ministry of Health, Kuwait
| | - Laurent Peyrin-Biroulet
- Inserm U1256 « Nutrition – Genetics and Exposure to Environmental Risks - NGERE », University of Lorraine, Vandoeuvre-les-Nancy, France,InsermU954, Department of Gastroenterology, Nancy University Hospital, University of Lorraine, Vandoeuvre Les Nancy, France
| |
Collapse
|
46
|
Lizárraga-Verdugo E, Carmona TG, Ramos-Payan R, Avendaño-Félix M, Bermúdez M, Parra-Niebla M, López-Camarillo C, Fernandez-Figueroa E, Lino-Silva L, Saavedra HA, Vela-Sarmiento I, Ovando RC, Ruíz-García E, Aguilar-Medina M. SOX9 is associated with advanced T-stages of clinical stage II colon cancer in young Mexican patients. Oncol Lett 2021; 22:497. [PMID: 33981359 PMCID: PMC8108287 DOI: 10.3892/ol.2021.12758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide and includes colon cancer (CC) and rectal cancer (RC). Regarding CC, the development of novel molecular biomarkers for the accurate diagnosis and prognosis, as well as the identification of novel targets for therapeutic intervention, are urgently needed. SRY-related high-mobility group box 9 (SOX9), a transcription factor, is involved in development, and has been associated with the progression of human cancer. However, its underlying clinical and functional effects in CRC have not been fully understood. Therefore, the present study aimed to evaluate the clinical and functional relevance of SOX9 expression in CC. The expression of SOX9 in tumor tissues was evaluated in 97 biopsies from Mexican patients with CC with early-stage I and II disease by immunohistochemistry (IHC). In addition, SOX9 silencing in the HCT116 cell line was performed using specific small interfering RNAs, while downregulation efficiency was verified by reverse transcription-quantitative PCR and immunofluorescence. Spheroid-formation assay was carried out using ultra-low attachment plates. The IHC results showed that SOX9 was upregulated in patients with stage II (91%) and advanced T3 stage (67%) CC. Interestingly, higher SOX9 expression was associated with clinical stage, tumor size and tumor location. Furthermore, increased SOX9 expression was found in relapsed cases with local tumors; however, it was not associated with increased survival probability. Additionally, functional analysis indicated that SOX9 silencing significantly attenuated the sphere-formation capability of HCT116 cells. The present study was the first to evaluate the expression levels of SOX9 in Mexican patients diagnosed with early-stage CC. The aforementioned findings indicated that high SOX9 expression could play an important role in tumorigenesis and be associated with advanced T-stages of clinical-stage II patients, but not with relapse-free survival.
Collapse
Affiliation(s)
- Erik Lizárraga-Verdugo
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, 80010 Culiacán, Sinaloa, Mexico
| | | | - Rosalío Ramos-Payan
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, 80010 Culiacán, Sinaloa, Mexico
| | - Mariana Avendaño-Félix
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, 80010 Culiacán, Sinaloa, Mexico
| | - Mercedes Bermúdez
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, 80010 Culiacán, Sinaloa, Mexico
| | - Maryelv Parra-Niebla
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, 80010 Culiacán, Sinaloa, Mexico
| | - César López-Camarillo
- Oncogenomics Laboratory, Autonomous University of Mexico City, 06720 Mexico City, Mexico
| | - Edith Fernandez-Figueroa
- Department of Computational Genomics Laboratories, National Cancer Institute, 14080 Mexico City, Mexico
| | - Leonardo Lino-Silva
- Department of Pathology, National Cancer Institute, 14080 Mexico City, Mexico
| | | | - Itzel Vela-Sarmiento
- Department of Gastrointestinal Tumors, National Cancer Institute, 14080 Mexico City, Mexico
| | | | - Erika Ruíz-García
- Department of Translational Medicine, National Cancer Institute, 14080 Mexico City, Mexico
| | - Maribel Aguilar-Medina
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, 80010 Culiacán, Sinaloa, Mexico
| |
Collapse
|
47
|
Huang HI, Jewell ML, Youssef N, Huang MN, Hauser ER, Fee BE, Rudemiller NP, Privratsky JR, Zhang JJ, Reyes EY, Wang D, Taylor GA, Gunn MD, Ko DC, Cook DN, Chandramohan V, Crowley SD, Hammer GE. Th17 Immunity in the Colon Is Controlled by Two Novel Subsets of Colon-Specific Mononuclear Phagocytes. Front Immunol 2021; 12:661290. [PMID: 33995384 PMCID: PMC8113646 DOI: 10.3389/fimmu.2021.661290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Intestinal immunity is coordinated by specialized mononuclear phagocyte populations, constituted by a diversity of cell subsets. Although the cell subsets constituting the mononuclear phagocyte network are thought to be similar in both small and large intestine, these organs have distinct anatomy, microbial composition, and immunological demands. Whether these distinctions demand organ-specific mononuclear phagocyte populations with dedicated organ-specific roles in immunity are unknown. Here we implement a new strategy to subset murine intestinal mononuclear phagocytes and identify two novel subsets which are colon-specific: a macrophage subset and a Th17-inducing dendritic cell (DC) subset. Colon-specific DCs and macrophages co-expressed CD24 and CD14, and surprisingly, both were dependent on the transcription factor IRF4. Novel IRF4-dependent CD14+CD24+ macrophages were markedly distinct from conventional macrophages and failed to express classical markers including CX3CR1, CD64 and CD88, and surprisingly expressed little IL-10, which was otherwise robustly expressed by all other intestinal macrophages. We further found that colon-specific CD14+CD24+ mononuclear phagocytes were essential for Th17 immunity in the colon, and provide definitive evidence that colon and small intestine have distinct antigen presenting cell requirements for Th17 immunity. Our findings reveal unappreciated organ-specific diversity of intestine-resident mononuclear phagocytes and organ-specific requirements for Th17 immunity.
Collapse
Affiliation(s)
- Hsin-I. Huang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Mark L. Jewell
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Nourhan Youssef
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Min-Nung Huang
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
| | - Elizabeth R. Hauser
- Department of Biostatistics and Bioinformatics, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
- Cooperative Studies Program Epidemiology Center, VA Medical Center, Durham, NC, United States
| | - Brian E. Fee
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, NC, United States
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States
| | - Nathan P. Rudemiller
- Department of Medicine, Division of Nephrology, Duke University and Durham VA Medical Centers, Durham, NC, United States
| | - Jamie R. Privratsky
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Junyi J. Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Estefany Y. Reyes
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Donghai Wang
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Gregory A. Taylor
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, NC, United States
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Michael D. Gunn
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Donald N. Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, United States
| | - Vidyalakshmi Chandramohan
- Department of Neurosurgery and Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Steven D. Crowley
- Department of Medicine, Division of Nephrology, Duke University and Durham VA Medical Centers, Durham, NC, United States
| | - Gianna Elena Hammer
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
48
|
Induction of food tolerance is dependent on intestinal inflammatory state. Immunol Lett 2021; 234:33-43. [PMID: 33915190 DOI: 10.1016/j.imlet.2021.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Food allergies are usually managed by food avoidance. Hidden allergens in food, due to cross-contamination and/or allergenic additives added during production, place an important concern in today's increasing food allergy cases worldwide. Previous studies showed that the introduction of unacquainted food components, in an inflamed intestine, results in sensitization to this food. Thus, our aim was to evaluate the kinetics of multiple food allergy induction. Adult male C57BL/6 mice were divided into five groups, four of which were submitted to an intestinal inflammation induction protocol to peanuts. Egg white (OVA) diluted 1:5 v/v in distilled water was instilled by gavage 6h-before (PRIOR), concomitant (AT) and 6h-after (DURING) the onset of the peanut challenge diet. Positive control (POS CONT) and NEG CONT received saline per gavage. Finally, animals were challenged with subcutaneous injections of OVA. Results showed no changes in diet intake were observed. Anti-OVA polyisotypic IgG antibody titers significantly increased in AT. Flow cytometry revealed significant decrease in CD4+CD25+Foxp3+ and significant increase in TCD8+ in AT. Histomorphometrically, AT and DURING were classified as Infiltrative and Partial Destruction stages. PRIOR was classified as Infiltrative, while POS CONT was classified as Partial Destruction. NEG CONT was classified as Normal. Together, our results confirm that the introduction of unfamiliar food only a few hours before the initiation of a gut inflammation process is able to induce oral tolerance, however the introduction of a dietary protein concomitant to the onset or during an ongoing gut inflammation may induce multiple allergies.
Collapse
|
49
|
Bischoff SC, Kaden-Volynets V, Filipe Rosa L, Guseva D, Seethaler B. Regulation of the gut barrier by carbohydrates from diet - Underlying mechanisms and possible clinical implications. Int J Med Microbiol 2021; 311:151499. [PMID: 33864957 DOI: 10.1016/j.ijmm.2021.151499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 02/09/2023] Open
Abstract
The gut barrier has been recognized as being of relevance in the pathogenesis of multiple different diseases ranging from inflammatory bowel disease, irritable bowel syndrome, inflammatory joint disease, fatty liver disease, and cardiometabolic disorders. The regulation of the gut barrier is, however, poorly understood. Especially, the role of food components such as sugars and complex carbohydrates has been discussed controversially in this respect. More recently, the intestinal microbiota has been proposed as an important regulator of the gut barrier. Whether the microbiota affects the barrier by its own, or whether food components such as carbohydrates mediate their effects through alterations of the microbiota composition or its metabolites, is still not clear. In this review, we will summarize the current knowledge on this topic derived from both animal and human studies and discuss data for possible clinical impact.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Valentina Kaden-Volynets
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany; Acousia Therapeutics GmbH & Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany.
| | - Louisa Filipe Rosa
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Daria Guseva
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Benjamin Seethaler
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
50
|
Contribution of Infectious Agents to the Development of Celiac Disease. Microorganisms 2021; 9:microorganisms9030547. [PMID: 33800833 PMCID: PMC8001938 DOI: 10.3390/microorganisms9030547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.
Collapse
|