1
|
Bi X, Wang Z, He J. Recent advances in biomimetic nanodelivery systems for the treatment of myocardial ischemia reperfusion injury. Colloids Surf B Biointerfaces 2025; 247:114414. [PMID: 39626610 DOI: 10.1016/j.colsurfb.2024.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is a significant challenge in the treatment of myocardial infarction, a leading cause of global mortality due to irreversible cardiac damage. Biomimetic nanodelivery systems offer promising therapeutic strategies to address MIRI. In this review, we comprehensively investigate the underlying pathophysiological mechanisms of MIRI and discuss recent advances in biomimetic nanodelivery systems including cell membrane-coated nanoparticles, exosomes, and nanoenzymes as innovative approaches for MIRI treatment. We emphasize the advantages and potential of biomimetic strategies in enhancing therapeutic efficacy, assess the preclinical effectiveness of these nanodelivery systems, and discuss the challenges associated with translating these approaches into clinical practice. This paper aims to provide new perspectives on biomimetic strategies for MIRI treatment, contributing to the development of effective drug delivery systems.
Collapse
Affiliation(s)
- Xiaojun Bi
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Ze Wang
- Dalian Medical University, Liaoning 116044, China
| | - Jingteng He
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
2
|
Vitorino R. Minimally Invasive Versus Invasive Proteomics: Urine and Blood Biomarkers in Coronary Artery Disease. Proteomics Clin Appl 2025; 19:e202400062. [PMID: 39605279 DOI: 10.1002/prca.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Coronary artery disease (CAD) is a major cause of morbidity and mortality worldwide. This underlines the urgent need for effective biomarkers for early diagnosis, risk stratification, and therapeutic counseling. Proteomic signatures from plasma and urine have emerged as promising tools for these efforts, each offering unique advantages and challenges. This review provides a detailed comparison of urine and blood proteomic analyzes in the context of CAD and explores their respective advantages and limitations. Urine proteomics offers a minimally invasive, easily repeatable, and temporally stable sampling method, but faces challenges such as lower protein concentrations and potential contamination. Despite its invasive nature, blood proteomics captures high protein concentration and directly reflects systemic physiological changes, making it valuable for acute assessments. Advances in artificial intelligence (AI) have significantly improved the analysis and interpretation of proteomic data, enabling greater accuracy in diagnosis and predictive modeling. AI algorithms, particularly in pattern recognition and data integration, are helping to uncover subtle relationships between biomarkers and disease progression and supporting the discovery of plasma- and urine-based CAD biomarkers. This review demonstrates the potential of combining urine and blood proteomic data using AI to advance personalized approaches in CAD diagnosis and treatment. Future research should focus on standardization of collection protocols, validation of biomarkers in different populations, and the complexity of integrating data from different sources to maximize the potential of proteomics in the treatment of CAD.
Collapse
Affiliation(s)
- Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Zhu Z, Geng Y, Ma L, Yao K, Chang R, Ma Y, Li J. Association between CBS gene T833C, G919A and 844ins68 polymorphisms in the 8th exon region and coronary artery disease: a meta-analysis. Clin Exp Hypertens 2024; 46:2328147. [PMID: 38488417 DOI: 10.1080/10641963.2024.2328147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Several studies indicate that the cystathionine β-synthase (CBS) gene T833C, G919A and 844ins68 polymorphisms in the 8th exon region may be correlated with coronary artery disease (CAD) susceptibility, but the results have been inconsistent and inconclusive. Thus, a meta-analysis was conducted to provide a comprehensive estimate of these associations. METHODS On the basis of searches in the PubMed, EMBASE, Cochrane Library, Wanfang, VIP, and CNKI databases, we selected 14 case - control studies including 2123 cases and 2368 controls for this meta-analysis. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated accordingly using a fixed-effect or random-effect model. RESULTS The results indicated an increased risk between the CBS T833C gene polymorphisms and susceptibility to CAD under the dominant model (CC+CT vs. TT: OR = 1.92, 95% CI: 1.11 ~ 3.32), recessive model (CC vs. CT+TT: OR = 1.88, 95% CI: 1.17 ~ 3.03), and homozygous model (CC vs. TT: OR = 2.46, 95% CI: 1.04 ~ 5.83). In these three genetic models, no significant association was identified for CBS G919A (AA+AG vs. GG: OR = 1.48, 95% CI: 0.45 ~ 4.82),(AA vs. AG+GG: OR = 1.58, 95% CI: 0.93 ~ 2.70),(AA vs. GG: OR = 1.66, 95% CI: 0.40 ~ 6.92) or CBS 844ins68 (II+ID vs. DD: OR = 1.04, 95% CI: 0.80 ~ 1.35),(II vs. ID+DD: OR = 1.09, 95% CI: 0.51 ~ 2.36),(II vs. DD: OR = 1.10, 95% CI: 0.51 ~ 2.39). CONCLUSIONS This meta-analysis suggests that the CBS T833C gene polymorphism is significantly associated with the risk of CAD and it shows a stronger association in Asian populations. Individuals with the C allele of the CBS gene T833C polymorphism might be particularly susceptible to CAD.
Collapse
Affiliation(s)
- Zijiang Zhu
- Department of thoracic surgery, Gansu Provincial Central Hospital (Gansu Provincial Maternity and Child-care Hospital), Lanzhou, China
| | - Yuhan Geng
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Long Ma
- Department of thoracic surgery, Gansu Provincial Central Hospital (Gansu Provincial Maternity and Child-care Hospital), Lanzhou, China
- Department of thoracic surgery, Gansu University of Chinese Medicine, Lanzhou, China
| | - Keying Yao
- School of Second Clinical Medical, Lanzhou University, Lanzhou, China
| | - Ruitong Chang
- Department of thoracic surgery, Gansu Provincial Central Hospital (Gansu Provincial Maternity and Child-care Hospital), Lanzhou, China
| | - Yongming Ma
- Department of thoracic surgery, Gansu Provincial Central Hospital (Gansu Provincial Maternity and Child-care Hospital), Lanzhou, China
- Department of thoracic surgery, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jialong Li
- Department of thoracic surgery, Gansu Provincial Central Hospital (Gansu Provincial Maternity and Child-care Hospital), Lanzhou, China
| |
Collapse
|
4
|
Zhou J, Liu M, Park S. Association of Metabolic Diseases and Moderate Fat Intake with Myocardial Infarction Risk. Nutrients 2024; 16:4273. [PMID: 39770895 PMCID: PMC11679910 DOI: 10.3390/nu16244273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) can range from mild to severe cardiovascular events and typically develops through complex interactions between genetic and lifestyle factors. OBJECTIVES We aimed to understand the genetic predisposition associated with MI through genetic correlation, colocalization analysis, and cells' gene expression values to develop more effective prevention and treatment strategies to reduce its burden. METHODS A polygenic risk score (PRS) was employed to estimate the genetic risk for MI and to analyze the dietary interactions with PRS that affect MI risk in adults over 45 years (n = 58,701). Genetic correlation (rg) between MI and metabolic syndrome-related traits was estimated with linkage disequilibrium score regression. Single-cell RNA sequencing (scRNA-seq) analysis was performed to investigate cellular heterogeneity in MI-associated genes. RESULTS Ten significant genetic variants associated with MI risk were related to cardiac, immune, and brain functions. A high PRS was associated with a threefold increase in MI risk (OR: 3.074, 95% CI: 2.354-4.014, p < 0.001). This increased the risk of MI plus obesity, hyperglycemia, dyslipidemia, and hypertension by about twofold after adjusting for MI-related covariates (p < 0.001). The PRS interacted with moderate fat intake (>15 energy percent), alcohol consumption (<30 g/day), and non-smoking, reducing MI risk in participants with a high PRS. MI was negatively correlated with the consumption of olive oil, sesame oil, and perilla oil used for cooking (rg = -0.364). MI risk was associated with storkhead box 1 (STOX1) and vacuolar protein sorting-associated protein 26A (VPS26A) in atrial and ventricular cardiomyocytes and fibroblasts. CONCLUSIONS This study identified novel genetic variants and gene expression patterns associated with MI risk, influenced by their interaction with fat and alcohol intake, and smoking status. Our findings provide insights for developing personalized prevention and treatment strategies targeting this complex clinical presentation of MI.
Collapse
Affiliation(s)
- Junyu Zhou
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China;
| | - Meiling Liu
- Department of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng 048011, China;
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro97bungil, BaeBang-Yup, Asan 31499, Republic of Korea
| |
Collapse
|
5
|
Grbić E, Letonja J, Petrovič D. The VEGFA rs2010963 Gene Polymorphism Is a Potential Genetic Risk Factor for Myocardial Infarction in Slovenian Subjects with Type 2 Diabetes Mellitus. Biomolecules 2024; 14:1584. [PMID: 39766291 PMCID: PMC11674656 DOI: 10.3390/biom14121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Coronary artery disease (CAD) is a life-threatening condition caused by the chronic gradual narrowing of the lumen of the blood vessels of the heart by atherosclerotic plaque with a strong genetic component. The aim of our study was to investigate the association between the VEGFA polymorphism rs2010963 and myocardial infarction in patients with type 2 diabetes, as well as the expression of VEGFA. A total of 1589 unrelated Caucasians with T2DM lasting longer than 10 years were divided into two groups: case group subjects with MI (484) and a control group without a history of CAD (1105). A total of 25 endarterectomy sequesters were immunohistochemically stained to assess VEGFA expression. The rs2010963 polymorphism of the VEGFA gene was genotyped using a KBioscience Ltd. competitive allele-specific fluorescence-based PCR (KASPar) assay. The C allele was significantly more common in the case group according to the dominant model of inheritance (CC + CG vs. GG) (OR: 1.32; 95% CI: 1.05-1.66; p = 0.0197). A statistically significantly higher numerical areal density of VEGFA-positive cells was found in subjects with the C allele (CC + CG genotypes) in comparison to the GG genotype (117 ± 35/mm2 vs. 58 ± 21/mm2; p < 0.001). To conclude, the rs2010963 polymorphism is a potential genetic risk factor for myocardial infarction in Slovenian patients with T2DM.
Collapse
Affiliation(s)
- Emin Grbić
- Department of Physiology, Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina;
| | - Jernej Letonja
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Lu M, Lu B, Wang L. Temporal Decomposition Analysis of Noncommunicable Disease Burden: The Interplay of Population Aging, Population Growth, and Low Physical Activity, 2010-2019. J Phys Act Health 2024:1-10. [PMID: 39657648 DOI: 10.1123/jpah.2024-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND To analyze global trends in the noncommunicable diseases (NCDs) burden attributable to low physical activity, considering the impacts of population aging and growth. METHOD Based on the Global Burden Disease 2019 Study, the NCDs-related death and disability-adjusted life years attributable to low physical activity (defined as <3000 metabolic equivalent-min/wk) were obtained from 2010 to 2019. The average annual percent change was calculated using the joinpoint analysis. Decomposition analysis was applied to assess the separated contributions of 3 components (population aging, population growth, and death change due to all other factors) on the overall change in NCDs death attributed to low physical activity. RESULTS From 2010 to 2019, the average annual percent change of age-standardized rates of NCDs due to low physical activity was -0.09% for death and -0.06% for disability-adjusted life years. However, the global absolute number of deaths from NCDs attributable to low physical activity increased from 672,215 to 831,502, and disability-adjusted life years rose from 12,813,793 to 15,747,938. This rise was largely driven by population aging and growth, contributing to a 13.0% and 14.7% increase, respectively. The most significant impact of population aging on NCD deaths was observed in high-middle socio-demographic index countries (17.6%), whereas population growth had the greatest effect in low socio-demographic index countries (24.3%). CONCLUSIONS The reduction in NCDs death rates attributed to low physical activity is insufficient to counteract the effects of population aging and growth. Targeted interventions for physical activity promotion should focus on the older population with special attention to diseases most sensitive to physical inactivity.
Collapse
Affiliation(s)
- Ming Lu
- National Center for Pediatric Cancer Surveillance, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, BJ, China
| | - Bin Lu
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, BJ, China
| | - Le Wang
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, ZJ, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, ZJ, China
| |
Collapse
|
7
|
Xue D, Hajat A, Fohner AE. Conceptual frameworks for the integration of genetic and social epidemiology in complex diseases. GLOBAL EPIDEMIOLOGY 2024; 8:100156. [PMID: 39104369 PMCID: PMC11299589 DOI: 10.1016/j.gloepi.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Uncovering the root causes of complex diseases requires complex approaches, yet many studies continue to isolate the effects of genetic and social determinants of disease. Epidemiologic efforts that under-utilize genetic epidemiology methods and findings may lead to incomplete understanding of disease. Meanwhile, genetic epidemiology studies are often conducted without consideration of social and environmental context, limiting the public health impact of genomic discoveries. This divide endures despite shared goals and increases in interdisciplinary data due to a lack of shared theoretical frameworks and differing language. Here, we demonstrate that bridging epidemiological divides does not require entirely new ways of thinking. Existing social epidemiology frameworks including Ecosocial theory and Fundamental Cause Theory, can both be extended to incorporate principles from genetic epidemiology. We show that genetic epidemiology can strengthen, rather than detract from, efforts to understand the impact of social determinants of health. In addition to presenting theoretical synergies, we offer practical examples of how genetics can improve the public health impact of epidemiology studies across the field. Ultimately, we aim to provide a guiding framework for trainees and established epidemiologists to think about diseases and complex systems and foster more fruitful collaboration between genetic and traditional epidemiological disciplines.
Collapse
Affiliation(s)
- Diane Xue
- Institute for Public Health Genetics, University of Washington School of Public Health, 1959 NE Pacific St, Room H-690, Seattle, WA 98195, USA
| | - Anjum Hajat
- Department of Epidemiology, University of Washington School of Public Health, Hans Rosling Population Health Building, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Alison E. Fohner
- Institute for Public Health Genetics, University of Washington School of Public Health, 1959 NE Pacific St, Room H-690, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington School of Public Health, Hans Rosling Population Health Building, 3980 15th Ave NE, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Imai Y, Kusano K, Aiba T, Ako J, Asano Y, Harada-Shiba M, Kataoka M, Kosho T, Kubo T, Matsumura T, Minamino T, Minatoya K, Morita H, Nishigaki M, Nomura S, Ogino H, Ohno S, Takamura M, Tanaka T, Tsujita K, Uchida T, Yamagishi H, Ebana Y, Fujita K, Ida K, Inoue S, Ito K, Kuramoto Y, Maeda J, Matsunaga K, Neki R, Sugiura K, Tada H, Tsuji A, Yamada T, Yamaguchi T, Yamamoto E, Kimura A, Kuwahara K, Maemura K, Minamino T, Morisaki H, Tokunaga K. JCS/JCC/JSPCCS 2024 Guideline on Genetic Testing and Counseling in Cardiovascular Disease. Circ J 2024; 88:2022-2099. [PMID: 39343605 DOI: 10.1253/circj.cj-23-0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Yasushi Imai
- Division of Clinical Pharmacology and Division of Cardiovascular Medicine, Jichi Medical University
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Yoshihiro Asano
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center
| | | | - Masaharu Kataoka
- The Second Department of Internal Medicine, University of Occupational and Environmental Health
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine
| | - Toru Kubo
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Takayoshi Matsumura
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Masakazu Nishigaki
- Department of Genetic Counseling, International University of Health and Welfare
| | - Seitaro Nomura
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo
| | | | - Seiko Ohno
- Medical Genome Center, National Cerebral and Cardiovascular Center
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Tetsuro Uchida
- Department of Surgery II (Division of Cardiovascular, Thoracic and Pediatric Surgery), Yamagata University Faculty of Medicine
| | | | - Yusuke Ebana
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University Hospital
| | - Kanna Fujita
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
- Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, The University of Tokyo
| | - Kazufumi Ida
- Division of Counseling for Medical Genetics, National Cerebral and Cardiovascular Center
| | - Shunsuke Inoue
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Jun Maeda
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center
| | - Keiji Matsunaga
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University
| | - Reiko Neki
- Division of Counseling for Medical Genetics, Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center
| | - Kenta Sugiura
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University
| | - Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University
| | - Akihiro Tsuji
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | | | | | | | - Akinori Kimura
- Institutional Research Office, Tokyo Medical and Dental University
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | | | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine
| |
Collapse
|
9
|
Yigit S, Nursal AF, Celik A, Aci R, Askeroglu E. Lack of association between the -2549 insertion/deletion variant of vascular endothelial growth factor and coronary artery disease in the Turkish population. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240333. [PMID: 39536247 PMCID: PMC11554327 DOI: 10.1590/1806-9282.20240333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Coronary artery disease is the leading cause of death worldwide. Vascular endothelial growth factor is known to induce endothelial cell migration and proliferation, increase vascular permeability, and modulate thrombogenicity. The aim of this study is to investigate the relationship between the VEGF insertion/deletion (I/D) variant (rs35569394) and coronary artery disease susceptibility in the Turkish population. METHODS A total of 206 subjects, including 106 coronary artery disease patients and 100 controls, were included in this study. The VEGF I/D variant was genotyped using the polymerase chain reaction method. RESULTS The frequency of the I/I, I/D, and D/D genotypes was 35.84 versus 37%, 33.97 versus 36%, and 30.19 versus 27% in patients and the control group, respectively. VEGF I/D genotype and allele distribution were not statistically significant between coronary artery disease patients and controls (p>0.05). There was no significant difference between VEGF I/D genotype distribution and patient characteristics including age, gender, disease duration, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglyceride, history of hypertension, history of diabetes mellitus, and smoking (p>0.05). CONCLUSION This study suggests that the VEGF I/D variant is not a predisposing factor to coronary artery disease disease in a Turkish sample.
Collapse
Affiliation(s)
- Serbulent Yigit
- Ondokuz Mayıs University, Faculty of Veterinary Medicine, Department of Genetics – Samsun, Turkey
| | - Ayse Feyda Nursal
- Tokat Gaziosmanpaşa University, Faculty of Medicine, Department of Internal Medicine, Department of Medical Genetics – Tokat, Turkey
| | - Atac Celik
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Cardiology – Tokat, Turkey
| | - Recai Aci
- Adnan Menderes University, Söke Vocational School of Health Services – Aydın, Turkey
| | - Elgiz Askeroglu
- Giresun University, Faculty of Arts and Sciences, Department of Statistics – Giresun, Turkey
| |
Collapse
|
10
|
Tran DC, Do MD, Le LHG, Thai TT, Hoang SV, Truong BQ. Relationship between the AGT M235T genetic variant and the characteristics and prognosis of coronary atherosclerosis in patients with acute myocardial infarction. Mol Biol Rep 2024; 51:1072. [PMID: 39425811 DOI: 10.1007/s11033-024-09986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Along with environmental components, genetic factors play an essential role in the pathophysiology and progression of acute myocardial infarction (AMI). There is limited and conflicting data on the influence of the AGT M235T genetic variant on coronary atherosclerosis and death in AMI patients. METHODS We carried out a prospective cohort study among 504 Vietnamese AMI patients selected between January 2020 and May 2021. All patients underwent invasive coronary angiography, had AGT M235T genetic variant genotyped using the polymerase chain reaction method, and were followed up for 12-month all-cause mortality. RESULTS The proportions of the MM, MT, and TT genotypes were 0.4%, 20.8%, and 78.8%, respectively. There was no significant difference between the TT genotype and the MM + MT genotype groups regarding the position and number of stenosed coronary artery branches and the Gensini score. The AGT M235T genetic variant did not affect 12-month mortality (hazard ratio of TT vs. MM + MT: 1.185; 95% confidence interval: 0.596-2.354; P = 0.629). Subgroup analyses by age, sex, hypertension, diabetes mellitus, dyslipidemia, obesity, smoking, and angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker therapy also did not reveal an association between the AGT M235T variant and all-cause mortality. CONCLUSION In summary, the AGT M235T genetic variant was not found to be associated with coronary atherosclerosis characteristics and 12-month mortality in Vietnamese patients with AMI. Further multicenter studies with larger sample sizes and extended follow-up periods are needed to investigate this issue.
Collapse
Affiliation(s)
- Duy Cong Tran
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam
- University Medical Center Ho Chi Minh City, 215 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam
- Department of Cardiology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Minh Duc Do
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam.
| | - Linh Hoang Gia Le
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam
| | - Truc Thanh Thai
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Sy Van Hoang
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam
- Department of Cardiology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Binh Quang Truong
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam.
- University Medical Center Ho Chi Minh City, 215 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
11
|
Cañadas-Garre M, Maqueda JJ, Baños-Jaime B, Hill C, Skelly R, Cappa R, Brennan E, Doyle R, Godson C, Maxwell AP, McKnight AJ. Mitochondrial related variants associated with cardiovascular traits. Front Physiol 2024; 15:1395371. [PMID: 39258111 PMCID: PMC11385366 DOI: 10.3389/fphys.2024.1395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Cardiovascular disease (CVD) is responsible for over 30% of mortality worldwide. CVD arises from the complex influence of molecular, clinical, social, and environmental factors. Despite the growing number of autosomal genetic variants contributing to CVD, the cause of most CVDs is still unclear. Mitochondria are crucial in the pathophysiology, development and progression of CVDs; the impact of mitochondrial DNA (mtDNA) variants and mitochondrial haplogroups in the context of CVD has recently been highlighted. Aims We investigated the role of genetic variants in both mtDNA and nuclear-encoded mitochondrial genes (NEMG) in CVD, including coronary artery disease (CAD), hypertension, and serum lipids in the UK Biobank, with sub-group analysis for diabetes. Methods We investigated 371,542 variants in 2,527 NEMG, along with 192 variants in 32 mitochondrial genes in 381,994 participants of the UK Biobank, stratifying by presence of diabetes. Results Mitochondrial variants showed associations with CVD, hypertension, and serum lipids. Mitochondrial haplogroup J was associated with CAD and serum lipids, whereas mitochondrial haplogroups T and U were associated with CVD. Among NEMG, variants within Nitric Oxide Synthase 3 (NOS3) showed associations with CVD, CAD, hypertension, as well as diastolic and systolic blood pressure. We also identified Translocase Of Outer Mitochondrial Membrane 40 (TOMM40) variants associated with CAD; Solute carrier family 22 member 2 (SLC22A2) variants associated with CAD and CVD; and HLA-DQA1 variants associated with hypertension. Variants within these three genes were also associated with serum lipids. Conclusion Our study demonstrates the relevance of mitochondrial related variants in the context of CVD. We have linked mitochondrial haplogroup U to CVD, confirmed association of mitochondrial haplogroups J and T with CVD and proposed new markers of hypertension and serum lipids in the context of diabetes. We have also evidenced connections between the etiological pathways underlying CVDs, blood pressure and serum lipids, placing NOS3, SLC22A2, TOMM40 and HLA-DQA1 genes as common nexuses.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol Oakfield House, Belfast, United Kingdom
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| |
Collapse
|
12
|
Cheng K, Zhai Q, Song J, Liu B. The Co-pathogenic Target Gene CNTN1 Involved in Coronary Artery Disease and Pulmonary Arterial Hypertension Has Potential for Diagnosis of Coronary Artery Disease. Anatol J Cardiol 2024; 28:381-392. [PMID: 39087405 PMCID: PMC11317787 DOI: 10.14744/anatoljcardiol.2024.4331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND We aimed to find a gene for coronary artery disease (CAD) early diagnosis by detecting co-pathogenic target gene involved in CAD and pulmonary arterial hypertension (PAH).
Methods: Datasets were obtained from the Gene Expression Omnibus (GEO) database, including GSE113079, GSE113439, and GSE12288, to investigate gene expression patterns in cardiovascular diseases. Weighted Gene Co-expression Network Analysis (WGCNA) was performed to identify gene modules associated with clinical traits. Differential gene expression analysis and functional enrichment analysis were carried out. Protein-protein interaction (PPI) networks were constructed. JASPAR database and FIMO tool were utilized to predict transcription factor (TF) binding sites.
Results: Fifteen key genes were identified in CAD and PAH, with CNTN1 being prioritized for further investigation due to its high connectivity degree. Upstream regulation analysis identified potential TFs (DRGX, HOXD3, and RAX) and 7 miRNAs targeting CNTN1. The expression profile of CNTN1 was significantly upregulated in CAD samples, and ROC analysis indicated potential diagnostic value for CAD. CMap database analysis predicted potential targeted drugs for CAD.
Conclusion: CNTN1 was detected as a co-pathogenetic gene for CAD and PAH. It is highly expressed in CAD patients and has potential value for CAD diagnosis. CNTN1 is potentially regulated by 3 TFs and 7 miRNAs.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Cardiovascular Surgery, Zibo Central Hospital, Shandong Province, China
| | - Qixuan Zhai
- Department of Cardiovascular Surgery, Zibo Central Hospital, Shandong Province, China
| | - Jieqiong Song
- Department of Blood Transfusion, Zibo Central Hospital, Shandong Province, China
| | - Bing Liu
- Department of Cardiovascular Surgery, Zibo Central Hospital, Shandong Province, China
| |
Collapse
|
13
|
Quinn M, Zhang RYK, Bello I, Rye KA, Thomas SR. Myeloperoxidase as a Promising Therapeutic Target after Myocardial Infarction. Antioxidants (Basel) 2024; 13:788. [PMID: 39061857 PMCID: PMC11274265 DOI: 10.3390/antiox13070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coronary artery disease (CAD) and myocardial infarction (MI) remain leading causes of death and disability worldwide. CAD begins with the formation of atherosclerotic plaques within the intimal layer of the coronary arteries, a process driven by persistent arterial inflammation and oxidation. Myeloperoxidase (MPO), a mammalian haem peroxidase enzyme primarily expressed within neutrophils and monocytes, has been increasingly recognised as a key pro-inflammatory and oxidative enzyme promoting the development of vulnerable coronary atherosclerotic plaques that are prone to rupture, and can precipitate a MI. Mounting evidence also implicates a pathogenic role for MPO in the inflammatory process that follows a MI, which is characterised by the rapid infiltration of activated neutrophils into the damaged myocardium and the release of MPO. Excessive and persistent cardiac inflammation impairs normal cardiac healing post-MI, resulting in adverse cardiac outcomes and poorer long-term cardiac function, and eventually heart failure. This review summarises the evidence for MPO as a significant oxidative enzyme contributing to the inappropriate inflammatory responses driving the progression of CAD and poor cardiac healing after a MI. It also details the proposed mechanisms underlying MPO's pathogenic actions and explores MPO as a novel therapeutic target for the treatment of unstable CAD and cardiac damage post-MI.
Collapse
Affiliation(s)
| | | | | | | | - Shane R. Thomas
- Cardiometabolic Disease Research Group, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Pietruszyńska-Reszetarska A, Pietruszyński R, Irzmański R. The Significance of Genetically Determined Methylation and Folate Metabolism Disorders in the Pathogenesis of Coronary Artery Disease: A Target for New Therapies? Int J Mol Sci 2024; 25:6924. [PMID: 39000032 PMCID: PMC11241586 DOI: 10.3390/ijms25136924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Methylation is a biochemical process involving the addition of a methyl group (-CH3) to various chemical compounds. It plays a crucial role in maintaining the homeostasis of the endothelium, which lines the interior surface of blood vessels, and has been linked, among other conditions, to coronary artery disease (CAD). Despite significant progress in CAD diagnosis and treatment, intensive research continues into genotypic and phenotypic CAD biomarkers. This review explores the significance of the methylation pathway and folate metabolism in CAD pathogenesis, with a focus on endothelial dysfunction resulting from deficiency in the active form of folate (5-MTHF). We discuss emerging areas of research into CAD biomarkers and factors influencing the methylation process. By highlighting genetically determined methylation disorders, particularly the MTHFR polymorphism, we propose the potential use of the active form of folate (5-MTHF) as a novel CAD biomarker and personalized pharmaceutical for selected patient groups. Our aim is to improve the identification of individuals at high risk of CAD and enhance their prognosis.
Collapse
Affiliation(s)
| | - Robert Pietruszyński
- Cardiology Outpatient Clinic, Military Medical Academy Memorial Teaching Hospital of the Medical University of Lodz—Central Veterans’ Hospital, 90-549 Lodz, Poland;
| | - Robert Irzmański
- Department of Internal Medicine, Rehabilitation and Physical Medicine, Medical University of Lodz, 90-645 Lodz, Poland;
| |
Collapse
|
15
|
Mehvari S, Karimian Fathi N, Saki S, Asadnezhad M, Arzhangi S, Ghodratpour F, Mohseni M, Zare Ashrafi F, Sadeghian S, Boroumand M, Shokohizadeh F, Rostami E, Boroumand R, Najafipour R, Malekzadeh R, Riazalhosseini Y, Akbari M, Lathrop M, Najmabadi H, Hosseini K, Kahrizi K. Contribution of genetic variants in the development of familial premature coronary artery disease in a cohort of cardiac patients. Clin Genet 2024; 105:611-619. [PMID: 38308583 DOI: 10.1111/cge.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Coronary artery disease (CAD), the most prevalent cardiovascular disease, is the leading cause of death worldwide. Heritable factors play a significant role in the pathogenesis of CAD. It has been proposed that approximately one-third of patients with CAD have a positive family history, and individuals with such history are at ~1.5-fold increased risk of CAD in their lifespans. Accordingly, the long-recognized familial clustering of CAD is a strong risk factor for this disease. Our study aimed to identify candidate genetic variants contributing to CAD by studying a cohort of 60 large Iranian families with at least two members in different generations afflicted with premature CAD (PCAD), defined as established disease at ≤45 years in men and ≤55 years in women. Exome sequencing was performed for a subset of the affected individuals, followed by prioritization and Sanger sequencing of candidate variants in all available family members. Subsequently, apparently healthy carriers of potential risk variants underwent coronary computed tomography angiography (CCTA), followed by co-segregation analysis of the combined data. Putative causal variants were identified in seven genes, ABCG8, CD36, CYP27A1, PIK3C2G, RASSF9, RYR2, and ZFYVE21, co-segregating with familial PCAD in seven unrelated families. Among these, PIK3C2G, RASSF9, and ZFYVE21 are novel candidate CAD susceptibility genes. Our findings indicate that rare variants in genes identified in this study are involved in CAD development.
Collapse
Affiliation(s)
- Sepideh Mehvari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nahid Karimian Fathi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sara Saki
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Asadnezhad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saeed Sadeghian
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Boroumand
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shokohizadeh
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Rostami
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahnama Boroumand
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Najafipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Akbari
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- McGill Genome Centre, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Yazdani A, Tiwari S, Heydarpour M. WITHDRAWN: The effect of ischemia on expression quantitative trait loci (eQTL) in human myocardium and insights into myocardial injury etiology. RESEARCH SQUARE 2024:rs.3.rs-3967889. [PMID: 38464039 PMCID: PMC10925459 DOI: 10.21203/rs.3.rs-3967889/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
26 February, 2024. Research Square has withdrawn this preprint as it was submitted and made public without the full consent of all the authors and without the full consent of the principle investigator of the registered clinical trial. Therefore, this work should not be cited as a reference.
Collapse
|
17
|
Yu TH, Lee TL, Tsai IT, Hsuan CF, Wang CP, Lu YC, Tang WH, Wei CT, Chung FM, Lee YJ, Wu CC. Transcription factor 21 rs12190287 polymorphism is related to stable angina and ST elevation myocardial infarction in a Chinese Population. Int J Med Sci 2024; 21:483-491. [PMID: 38250610 PMCID: PMC10797673 DOI: 10.7150/ijms.89901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Background: Transcription factor 21 (TCF21, epicardin, capsuling, pod-1) is expressed in the epicardium and is involved in the regulation of cell fate and differentiation via epithelial-mesenchymal transformation during development of the heart. In addition, TCF21 can suppress the differentiation of epicardial cells into vascular smooth muscle cells and promote cardiac fibroblast development. This study aimed to explore whether TCF21 gene (12190287G/C) variants affect coronary artery disease risk. Methods: We enrolled 381 patients who had stable angina, 138 with ST elevation myocardial infarction (STEMI), and 276 healthy subjects. Genotyping of rs12190287 of the TCF21 gene was performed. Results: Higher frequencies of the CC genotype were found in the patients with stable angina/STEMI than in the healthy controls. After adjusting for diabetes mellitus, hypertension, age, sex, smoking, body mass index and hyperlipidemia, the patients with the CC genotype of the TCF21 gene were associated with 2.49- and 9.19-fold increased risks of stable angina and STEMI, respectively, compared to the patients with the GG genotype. Furthermore, TCF21 CC genotypes showed positive correlations with both stable angina and STEMI, whereas TCF21 GG genotypes exhibited a negative correlation with STEMI. Moreover, the stable angina and STEMI patients with the CC genotype had significantly elevated high-sensitivity C-reactive protein levels than those with the GG genotype. In addition, significant associations were found between type 2 diabetes mellitus, hypertension, and hyperlipidemia with TCF21 gene polymorphisms (p for trend < 0.05). Conclusion: TCF21 gene polymorphisms may increase susceptibility to stable angina and STEMI.
Collapse
Affiliation(s)
- Teng-Hung Yu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 807066, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Yung-Chuan Lu
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| | - Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Yuli Branch, Hualien 98142 Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304 Taiwan
| | - Ching-Ting Wei
- Division of General Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445 Taiwan
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| | | | - Cheng-Ching Wu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445 Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445 Taiwan
| |
Collapse
|
18
|
Al-Ali AK, Al-Rubaish AM, Alali RA, Almansori MS, Al-Jumaan MA, Alshehri AM, Al-Madan MS, Vatte C, Cherlin T, Young S, Verma SS, Morahan G, Koeleman BPC, Keating BJ. Uncovering myocardial infarction genetic signatures using GWAS exploration in Saudi and European cohorts. Sci Rep 2023; 13:21866. [PMID: 38072966 PMCID: PMC10711020 DOI: 10.1038/s41598-023-49105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Genome-wide association studies (GWAS) have yielded significant insights into the genetic architecture of myocardial infarction (MI), although studies in non-European populations are still lacking. Saudi Arabian cohorts offer an opportunity to discover novel genetic variants impacting disease risk due to a high rate of consanguinity. Genome-wide genotyping (GWG), imputation and GWAS followed by meta-analysis were performed based on two independent Saudi Arabian studies comprising 3950 MI patients and 2324 non-MI controls. Meta-analyses were then performed with these two Saudi MI studies and the CardioGRAMplusC4D and UK BioBank GWAS as controls. Meta-analyses of the two Saudi MI studies resulted in 17 SNPs with genome-wide significance. Meta-analyses of all 4 studies revealed 66 loci with genome-wide significance levels of p < 5 × 10-8. All of these variants, except rs2764203, have previously been reported as MI-associated loci or to have high linkage disequilibrium with known loci. One SNP association in Shisa family member 5 (SHISA5) (rs11707229) was evident at a much higher frequency in the Saudi MI populations (> 12% MAF). In conclusion, our results replicated many MI associations, whereas in Saudi-only GWAS (meta-analyses), several new loci were implicated that require future validation and functional analyses.
Collapse
Affiliation(s)
- Amein K Al-Ali
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman bin Faisal University, 3144, Dammam, Saudi Arabia.
| | - Abdullah M Al-Rubaish
- Department of Internal Medicine, King Fahd Hospital of the University, 34445, Al-Khobar, Saudi Arabia
- College of Medicine, Imam Abdulrahman bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Rudaynah A Alali
- Department of Internal Medicine, King Fahd Hospital of the University, 34445, Al-Khobar, Saudi Arabia
- College of Medicine, Imam Abdulrahman bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Mohammed S Almansori
- Department of Internal Medicine, King Fahd Hospital of the University, 34445, Al-Khobar, Saudi Arabia
- College of Medicine, Imam Abdulrahman bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Mohammed A Al-Jumaan
- College of Medicine, Imam Abdulrahman bin Faisal University, 31441, Dammam, Saudi Arabia
- Department of Emergency Medicine, King Fahd Hospital of the University, 34445, Al-Khobar, Saudi Arabia
| | - Abdullah M Alshehri
- Department of Internal Medicine, King Fahd Hospital of the University, 34445, Al-Khobar, Saudi Arabia
- College of Medicine, Imam Abdulrahman bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Mohammed S Al-Madan
- College of Medicine, Imam Abdulrahman bin Faisal University, 31441, Dammam, Saudi Arabia
- Department of Pediatrics, King Fahd Hospital of the University, 34445, Al-Khobar, Saudi Arabia
| | - ChittiBabu Vatte
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman bin Faisal University, 3144, Dammam, Saudi Arabia
| | - Tess Cherlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvia Young
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, 6009, Australia
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, 6009, Australia
| | - Bobby P C Koeleman
- Department of Genetics, University Medical Center Utrecht, Utrecht, 85500/3508 GA, The Netherlands
| | - Brendan J Keating
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Maiorino E, Loscalzo J. Phenomics and Robust Multiomics Data for Cardiovascular Disease Subtyping. Arterioscler Thromb Vasc Biol 2023; 43:1111-1123. [PMID: 37226730 PMCID: PMC10330619 DOI: 10.1161/atvbaha.122.318892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
The complex landscape of cardiovascular diseases encompasses a wide range of related pathologies arising from diverse molecular mechanisms and exhibiting heterogeneous phenotypes. This variety of manifestations poses significant challenges in the development of treatment strategies. The increasing availability of precise phenotypic and multiomics data of cardiovascular disease patient populations has spurred the development of a variety of computational disease subtyping techniques to identify distinct subgroups with unique underlying pathogeneses. In this review, we outline the essential components of computational approaches to select, integrate, and cluster omics and clinical data in the context of cardiovascular disease research. We delve into the challenges faced during different stages of the analysis, including feature selection and extraction, data integration, and clustering algorithms. Next, we highlight representative applications of subtyping pipelines in heart failure and coronary artery disease. Finally, we discuss the current challenges and future directions in the development of robust subtyping approaches that can be implemented in clinical workflows, ultimately contributing to the ongoing evolution of precision medicine in health care.
Collapse
Affiliation(s)
- Enrico Maiorino
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph Loscalzo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Ashrafi V, Yazdi A, Farhadian M. Evaluation of the Relationship between Family History and Occurrence, Anatomical Location, and Extent of Coronary Artery Disease among Patients Undergoing Coronary Angiography. Med J Islam Repub Iran 2023; 37:69. [PMID: 37575688 PMCID: PMC10423060 DOI: 10.47176/mjiri.37.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 08/15/2023] Open
Abstract
Background A positive family history (FH) of coronary artery disease (CAD) is considered an independent risk factor for developing CAD. However, the relationship between the occurrence, angiographic anatomical location of the stenosis, and extent of CAD and the risk factors in the patients and their relatives is not well defined. Evaluation of this relationship is our main goal in this study. Methods In this descriptive cross-sectional study, the FH data for CAD and premature death in first-and second-degree relatives, angiographic anatomical location of the stenosis, the extent of CAD in the patients and their relatives, as well as the relationship between other risk factors and the extent of CAD, were collected from 300 adult patients undergoing coronary angiography at Farshchian cardiovascular hospital in Hamadan (Iran) between March 2020 and 2021. SPSS 24 and the chi-square, Fisher exact, and student t tests were used to analyze data. The significance level was considered P < 0.05. Results Out of 300 patients, 185 (61.7%) were men and 115 (38.3%) were women. A total of 177 patients (59%) in maternal and 82 patients (27.3%) in paternal relatives had an FH of CAD. There was a significant relationship between the severity of coronary artery involvement and risk factors (P < 0.001). Moreover, there was no significant relationship between the location of coronary artery involvement of the right coronary artery, left coronary artery, and left anterior descending artery and the severity of involvement of patients undergoing coronary angiography and their first- and second-degree relatives (P = 0.480). Conclusion Our findings suggest that there was no significant relationship between the anatomical location of the stenosis and the number of vessels involved and the FH of the patients. In patients with an FH, the extent of CAD significantly increased according to their risk factors for heart disease.
Collapse
Affiliation(s)
- Vahid Ashrafi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Cardiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amirhossein Yazdi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Cardiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Farhadian
- Research Center for Health Sciences, Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Khederlou H, Mohammadi A, Tajik M, Kazemshiroodi M. Association between Cardiovascular Risk Factors and High-Risk Features in Myocardial Perfusion Imaging: A Multicenter Study. J Tehran Heart Cent 2023; 18:129-135. [PMID: 37637283 PMCID: PMC10459346 DOI: 10.18502/jthc.v18i2.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/28/2023] [Indexed: 08/29/2023] Open
Abstract
Background Myocardial perfusion imaging (MPI) is a noninvasive method with acceptable sensitivity and specificity in diagnosing coronary artery disease (CAD) in moderate-risk patients, including those with CAD risk factors. Methods The present cross-sectional, prospective study was conducted on 4886 patients from April 2020 through March 2023 at Chamran and Tehran Heart Center hospitals. A questionnaire regarding anthropometric variables, demographic characteristics, CAD risk factors, and MPI findings was designed. Results Totally, 2179 patients (44.6%) had abnormal MPI. Patients with abnormal MPI were significantly older than those with normal MPI. Older age (OR, 1.64; 95% CI, 1.2 to 1.72; P<0.001), diabetes mellitus (DM) (OR, 1.36; 95% CI, 1.1 to 1.48; P=0.012), hypertension (OR, 1.24; 95% CI, 1.04 to 1.37; P=0.032), and dyslipidemia (OR, 1.54; 95% CI, 1.25 to 1.8; P<0.001) were associated with abnormal MPI independently. Patients with more CAD risk factors were more likely to have abnormal MPI. Thus, in patients without or at most with 1 risk factor and those with 8 CAD risk factors, the likelihood of abnormal MPI was 3.7% and 76.2%, respectively. The frequency of left ventricular dilation and right ventricular prominence was significantly higher in patients with older age (P<0.001 and P=0.043, respectively), dyslipidemia (P<0.001 and P=0.007, respectively), DM (P<0.001 and P<0.001, respectively), and hypertension (P=0.048 and P=0.057, respectively). Conclusion Individuals with CAD risk factors, especially those with older age, DM, hypertension, or dyslipidemia, require meticulous attention during CAD evaluation, particularly via MPI.
Collapse
Affiliation(s)
- Hamid Khederlou
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Tajik
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Kazemshiroodi
- Pardis Noor Medical Imaging Center, Department of Nuclear Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Barungi S, Hernández-Camarero P, Moreno-Terribas G, Villalba-Montoro R, Marchal JA, López-Ruiz E, Perán M. Clinical implications of inflammation in atheroma formation and novel therapies in cardiovascular diseases. Front Cell Dev Biol 2023; 11:1148768. [PMID: 37009489 PMCID: PMC10061140 DOI: 10.3389/fcell.2023.1148768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading causes of death and disability in the world. Among all CVD, the most common is coronary artery disease (CAD). CAD results from the complications promoted by atherosclerosis, which is characterized by the accumulation of atherosclerotic plaques that limit and block the blood flow of the arteries involved in heart oxygenation. Atherosclerotic disease is usually treated by stents implantation and angioplasty, but these surgical interventions also favour thrombosis and restenosis which often lead to device failure. Hence, efficient and long-lasting therapeutic options that are easily accessible to patients are in high demand. Advanced technologies including nanotechnology or vascular tissue engineering may provide promising solutions for CVD. Moreover, advances in the understanding of the biological processes underlying atherosclerosis can lead to a significant improvement in the management of CVD and even to the development of novel efficient drugs. To note, over the last years, the observation that inflammation leads to atherosclerosis has gained interest providing a link between atheroma formation and oncogenesis. Here, we have focused on the description of the available therapy for atherosclerosis, including surgical treatment and experimental treatment, the mechanisms of atheroma formation, and possible novel therapeutic candidates such as the use of anti-inflammatory treatments to reduce CVD.
Collapse
Affiliation(s)
- Shivan Barungi
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | | | | | - Juan Antonio Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
- *Correspondence: Elena López-Ruiz, ; Macarena Perán,
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
- *Correspondence: Elena López-Ruiz, ; Macarena Perán,
| |
Collapse
|
23
|
Pan-Lizcano R, Mariñas-Pardo L, Núñez L, Rebollal-Leal F, López-Vázquez D, Pereira A, Molina-Nieto A, Calviño R, Vázquez-Rodríguez JM, Hermida-Prieto M. Rare Variants in Genes of the Cholesterol Pathway Are Present in 60% of Patients with Acute Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232416127. [PMID: 36555767 PMCID: PMC9786046 DOI: 10.3390/ijms232416127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Acute myocardial infarction (AMI) is a pandemic in which conventional risk factors are inadequate to detect who is at risk early in the asymptomatic stage. Although gene variants in genes related to cholesterol, which may increase the risk of AMI, have been identified, no studies have systematically screened the genes involved in this pathway. In this study, we included 105 patients diagnosed with AMI with an elevation of the ST segment (STEMI) and treated with primary percutaneous coronary intervention (PPCI). Using next-generation sequencing, we examined the presence of rare variants in 40 genes proposed to be involved in lipid metabolism and we found that 60% of AMI patients had a rare variant in the genes involved in the cholesterol pathway. Our data show the importance of considering the wide scope of the cholesterol pathway in order to assess the genetic risk related to AMI.
Collapse
Affiliation(s)
- Ricardo Pan-Lizcano
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Luis Mariñas-Pardo
- Facultad de Ciencias de la Salud, Universidad Internacional de Valencia (VIU), 46002 Valencia, Spain
| | - Lucía Núñez
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Departamento de Ciencias de la Salud, GRINCAR Research Group, Universidade da Coruña, 15403 A Coruña, Spain
- Correspondence: ; Tel.: +34-981-178-150
| | - Fernando Rebollal-Leal
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Domingo López-Vázquez
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Ana Pereira
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Aranzazu Molina-Nieto
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Ramón Calviño
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- CIBERCV (Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Manuel Vázquez-Rodríguez
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- CIBERCV (Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Hermida-Prieto
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
| |
Collapse
|
24
|
Fossel M, Bean J, Khera N, Kolonin MG. A Unified Model of Age-Related Cardiovascular Disease. BIOLOGY 2022; 11:1768. [PMID: 36552277 PMCID: PMC9775230 DOI: 10.3390/biology11121768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Despite progress in biomedical technologies, cardiovascular disease remains the main cause of mortality. This is at least in part because current clinical interventions do not adequately take into account aging as a driver and are hence aimed at suboptimal targets. To achieve progress, consideration needs to be given to the role of cell aging in disease pathogenesis. We propose a model unifying the fundamental processes underlying most age-associated cardiovascular pathologies. According to this model, cell aging, leading to cell senescence, is responsible for tissue changes leading to age-related cardiovascular disease. This process, occurring due to telomerase inactivation and telomere attrition, affects all components of the cardiovascular system, including cardiomyocytes, vascular endothelial cells, smooth muscle cells, cardiac fibroblasts, and immune cells. The unified model offers insights into the relationship between upstream risk factors and downstream clinical outcomes and explains why interventions aimed at either of these components have limited success. Potential therapeutic approaches are considered based on this model. Because telomerase activity can prevent and reverse cell senescence, telomerase gene therapy is discussed as a promising intervention. Telomerase gene therapy and similar systems interventions based on the unified model are expected to be transformational in cardiovascular medicine.
Collapse
Affiliation(s)
| | - Joe Bean
- University of Missouri School of Medicine, Kansas City, MO 65211, USA
| | - Nina Khera
- Buckingham Browne and Nichols School, Wellesley, MA 02138, USA
| | - Mikhail G. Kolonin
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
25
|
Angelidis G, Valotassiou V, Satra M, Psimadas D, Koutsikos J, Skoularigis J, Kollia P, Georgoulias P. Investigating the genetic characteristics of CAD: Is there a role for myocardial perfusion imaging techniques? J Nucl Cardiol 2022; 29:2909-2916. [PMID: 33141407 DOI: 10.1007/s12350-020-02403-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/02/2020] [Indexed: 01/18/2023]
Abstract
Several environmental and genetic factors have been found to influence the development and progression of coronary artery disease (CAD). Although the effects of the environmental hazards on CAD pathophysiology are well documented, the genetic architecture of the disease remains quite unclear. A number of single-nucleotide polymorphisms have been identified based on the results of the genome-wide association studies. However, there is a lack of strong evidence regarding molecular causality. The minority of the reported predisposing variants can be related to the conventional risk factors of CAD, while most of the polymorphisms occur in non-protein-coding regions of the DNA. However, independently of the specific underlying mechanisms, genetic information could lead to the identification of a population at higher genetic risk for the long-term development of CAD. Myocardial single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are functional imaging techniques that can evaluate directly myocardial perfusion, and detect vascular and/or endothelial dysfunction. Therefore, these techniques could have a role in the investigation of the underlying mechanisms associated with the identified predisposing variants, advancing our understanding regarding molecular causality. In the population at higher genetic risk, myocardial SPECT or PET could provide important evidence through the early depiction of sub-clinical dysfunctions, well before any atherosclerosis marker could be identified. Notably, SPECT and PET techniques have been already used for the investigation of the functional consequences of several CAD-related polymorphisms, as well as the response to certain treatments (statins). Furthermore, therefore, in the clinical setting, the combination of genetic evidence with the findings of myocardial SPECT, or PET, functional imaging techniques could lead to more efficient screening methods and may improve decision making with regard to the diagnostic investigation and patients' management.
Collapse
Affiliation(s)
- G Angelidis
- Nuclear Medicine Laboratory, University Hospital of Larissa, University of Thessaly, Larissa, Greece.
| | - V Valotassiou
- Nuclear Medicine Laboratory, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - M Satra
- Biology & Genetics Laboratory, University of Thessaly, Larissa, Greece
| | - D Psimadas
- Nuclear Medicine Laboratory, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - J Koutsikos
- Department of Nuclear Medicine, 401 General Military Hospital, Athens, Greece
| | - J Skoularigis
- Department of Cardiology, University of Thessaly, Larissa, Greece
| | - P Kollia
- Department of Genetics & Biotechnology, Faculty of Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - P Georgoulias
- Nuclear Medicine Laboratory, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| |
Collapse
|
26
|
Rankouhi TR, Keulen DV, Tempel D, Venhorst J. Oncostatin M: Risks and Benefits of a Novel Therapeutic Target for Atherosclerosis. Curr Drug Targets 2022; 23:1345-1369. [PMID: 35959619 DOI: 10.2174/1389450123666220811101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of death worldwide. It is predicted that approximately 23.6 million people will die from CVDs annually by 2030. Therefore, there is a great need for an effective therapeutic approach to combat this disease. The European Cardiovascular Target Discovery (CarTarDis) consortium identified Oncostatin M (OSM) as a potential therapeutic target for atherosclerosis. The benefits of modulating OSM - an interleukin (IL)-6 family cytokine - have since been studied for multiple indications. However, as decades of high attrition rates have stressed, the success of a drug target is determined by the fine balance between benefits and the risk of adverse events. Safety issues should therefore not be overlooked. OBJECTIVE In this review, a risk/benefit analysis is performed on OSM inhibition in the context of atherosclerosis treatment. First, OSM signaling characteristics and its role in atherosclerosis are described. Next, an overview of in vitro, in vivo, and clinical findings relating to both the benefits and risks of modulating OSM in major organ systems is provided. Based on OSM's biological function and expression profile as well as drug intervention studies, safety concerns of inhibiting this target have been identified, assessed, and ranked for the target population. CONCLUSION While OSM may be of therapeutic value in atherosclerosis, drug development should also focus on de-risking the herein identified major safety concerns: tissue remodeling, angiogenesis, bleeding, anemia, and NMDA- and glutamate-induced neurotoxicity. Close monitoring and/or exclusion of patients with various comorbidities may be required for optimal therapeutic benefit.
Collapse
Affiliation(s)
- Tanja Rouhani Rankouhi
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Daniëlle van Keulen
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Dennie Tempel
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Jennifer Venhorst
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| |
Collapse
|
27
|
Prognostic Modelling Studies of Coronary Heart Disease—A Systematic Review of Conventional and Genetic Risk Factor Studies. J Cardiovasc Dev Dis 2022; 9:jcdd9090295. [PMID: 36135440 PMCID: PMC9505820 DOI: 10.3390/jcdd9090295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
This study aims to provide an overview of multivariable prognostic modelling studies developed for coronary heart disease (CHD) in the general population and to explore the optimal prognostic model by comparing the models’ performance. A systematic review was performed using Embase, PubMed, Cochrane, Web of Science, and Scopus databases until 30 November 2019. In this work, only prognostic studies describing conventional risk factors alone or a combination of conventional and genomic risk factors, being developmental and/or validation prognostic studies of a multivariable model, were included. A total of 4021 records were screened by titles and abstracts, and 72 articles were eligible. All the relevant studies were checked by comparing the discrimination, reclassification, and calibration measures. Most of the models were developed in the United States and Canada and targeted the general population. The models included a set of similar predictors, such as age, sex, smoking, cholesterol level, blood pressure, BMI, and diabetes mellitus. In this study, many articles were identified and screened for consistency and reliability using CHARM and GRIPS statements. However, the usefulness of most prognostic models was not demonstrated; only a limited number of these models supported clinical evidence. Unfortunately, substantial heterogeneity was recognized in the definition and outcome of CHD events. The inclusion of genetic risk scores in addition to conventional risk factors might help in predicting the incidence of CHDs; however, the generalizability of the existing prognostic models remains open. Validation studies for the existing developmental models are needed to ensure generalizability, improve the research quality, and increase the transparency of the study.
Collapse
|
28
|
Lin ZL, Liu YC, Gao YL, Chen XS, Wang CL, Shou ST, Chai YF. S100A9 and SOCS3 as diagnostic biomarkers of acute myocardial infarction and their association with immune infiltration. Gene 2022; 97:67-79. [PMID: 35675985 DOI: 10.1266/ggs.21-00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death globally, with a mortality rate of over 20%. However, the diagnostic biomarkers frequently used in current clinical practice have limitations in both sensitivity and specificity, likely resulting in delayed diagnosis. This study aimed to identify potential diagnostic biomarkers for AMI and explored the possible mechanisms involved. Datasets were retrieved from the Gene Expression Omnibus. First, we identified differentially expressed genes (DEGs) and preserved modules, from which we identified candidate genes by LASSO (least absolute shrinkage and selection operator) regression and the SVM-RFE (support vector machine-recursive feature elimination) algorithm. Subsequently, we used ROC (receiver operating characteristic) analysis to evaluate the diagnostic accuracy of the candidate genes. Thereafter, functional enrichment analysis and an analysis of immune infiltration were implemented. Finally, we assessed the association between biomarkers and biological processes, infiltrated cells, clinical traits, tissues and time points. We identified nine preserved modules containing 1,016 DEGs and managed to construct a diagnostic model with high accuracy (GSE48060: AUC = 0.923; GSE66360: AUC = 0.973) incorporating two genes named S100A9 and SOCS3. Functional analysis revealed the pivotal role of inflammation; immune infiltration analysis indicated that eight cell types (monocytes, epithelial cells, neutrophils, CD8+ T cells, Th2 cells, NK cells, NKT cells and platelets) were likely involved in AMI. Furthermore, we observed that S100A9 and SOCS3 were correlated with inflammation, variably infiltrated cells, clinical traits of patients, sampling tissues and sampling time points. In conclusion, we suggested S100A9 and SOCS3 as diagnostic biomarkers of AMI and discovered their association with inflammation, infiltrated immune cells and other factors.
Collapse
Affiliation(s)
- Ze-Liang Lin
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | |
|