1
|
Gupta DG, Monika, Varma N. Bridging the Gap: Cost-Effective Strategies for Detecting Ph-Like B-Lineage ALL in Resource-Limited Settings. Mol Diagn Ther 2025; 29:329-344. [PMID: 40155589 DOI: 10.1007/s40291-025-00775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 04/01/2025]
Abstract
Acute lymphoblastic leukemia (ALL) is a complex hematologic disorder primarily affecting children, characterized by genetic mutations that disrupt normal lymphoid cell differentiation and promote abnormal proliferation. A particularly high-risk subtype, Philadelphia chromosome-like ALL (Ph-like ALL), mirrors the genetic profile of Philadelphia chromosome-positive (Ph-positive) ALL but lacks the BCR::ABL1 fusion gene. While Ph-like ALL has been extensively studied in high-income countries (HICs), it remains under-researched in low- and middle-income countries (LMICs), where resource limitations hinder accurate diagnosis and targeted therapy. This review addresses this gap by providing a comprehensive overview of the incidence, genetic landscape, and detection strategies for Ph-like ALL, with a special focus on LMICs. It underscores the prevalence of Ph-like ALL and its association with poor clinical outcomes, emphasizing the critical need for cost-effective diagnostic methodologies tailored to resource-constrained settings. Despite advancements in diagnostic technologies, such as whole gene expression profiling and next-generation sequencing, their high cost and extended turnaround times limit their feasibility in LMICs. Innovative methods, such as the PGIMER In-House Rapid and Cost-Effective (PHi-RACE) classifier, which employs real-time quantitative polymerase chain reaction (PCR), offer promising solutions by delivering high sensitivity and specificity at a significantly reduced cost. This approach is further complemented using fluorescence in situ hybridization (FISH) to characterize kinase alterations, enabling the identification of targeted therapies. This method addresses the urgent need for accessible diagnostic tools in LMICs, enabling early detection and personalized treatment planning. As the landscape of Ph-like ALL detection evolves, integrating low-cost, rapid-turnaround approaches holds significant promise for improving patient outcomes globally. This review aims to highlight the challenges and opportunities in diagnosing and treating Ph-like ALL in LMICs, fostering efforts towards more accessible and effective diagnostic strategies to enhance patient care and prognosis.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Urology and Pathology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Monika
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Li P, Pulugulla S, Das S, Oh J, Spolski R, Lin JX, Leonard WJ. A new pipeline SPICE identifies novel JUN-IKZF1 composite elements. eLife 2025; 12:RP88833. [PMID: 39786853 PMCID: PMC11717359 DOI: 10.7554/elife.88833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.
Collapse
Affiliation(s)
- Peng Li
- Amgen IncRockvilleUnited States
| | - Sree Pulugulla
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Sonali Das
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Jangsuk Oh
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Rosanne Spolski
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIHBethesdaUnited States
| |
Collapse
|
3
|
Li P, Pulugulla SH, Das S, Oh J, Spolski R, Lin JX, Leonard WJ. A new pipeline SPICE identifies novel JUN-IKZF1 composite elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543110. [PMID: 39763964 PMCID: PMC11703198 DOI: 10.1101/2023.05.31.543110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed cooperative binding of JUN and IKZF1 and showed that the activity of an IL10 -luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.
Collapse
Affiliation(s)
- Peng Li
- Correspondence to: P.L. () or W.J.L. ()
| | | | | | | | | | | | | |
Collapse
|
4
|
Huh HD, Park HW. Emerging paradigms in cancer cell plasticity. BMB Rep 2024; 57:273-280. [PMID: 38627950 PMCID: PMC11214895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer cells metastasize to distant organs by altering their characteristics within the tumor microenvironment (TME) to effectively overcome challenges during the multistep tumorigenesis. Plasticity endows cancer cell with the capacity to shift between different morphological states to invade, disseminate, and seed metastasis. The epithelial-to-mesenchymal transition (EMT) is a theory derived from tissue biopsy, which explains the acquisition of EMT transcription factors (TFs) that convey mesenchymal features during cancer migration and invasion. On the other hand, adherent-to-suspension transition (AST) is an emerging theory derived from liquid biopsy, which describes the acquisition of hematopoietic features by AST-TFs that reprograms anchorage dependency during the dissemination of circulating tumor cells (CTCs). The induction and plasticity of EMT and AST dynamically reprogram cell-cell interaction and cell-matrix interaction during cancer dissemination and colonization. Here, we review the mechanisms governing cellular plasticity of AST and EMT during the metastatic cascade and discuss therapeutic challenges posed by these two morphological adaptations to provide insights for establishing new therapeutic interventions. [BMB Reports 2024; 57(6): 273-280].
Collapse
Affiliation(s)
- Hyunbin D. Huh
- Department of Biochemistry, Brain Korea 21 Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyun Woo Park
- Department of Biochemistry, Brain Korea 21 Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
5
|
Bai Z, Zhang D, Gao Y, Tao B, Bao S, Enninful A, Zhang D, Su G, Tian X, Zhang N, Xiao Y, Liu Y, Gerstein M, Li M, Xing Y, Lu J, Xu ML, Fan R. Spatially Exploring RNA Biology in Archival Formalin-Fixed Paraffin-Embedded Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579143. [PMID: 38370833 PMCID: PMC10871202 DOI: 10.1101/2024.02.06.579143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Spatial transcriptomics has emerged as a powerful tool for dissecting spatial cellular heterogeneity but as of today is largely limited to gene expression analysis. Yet, the life of RNA molecules is multifaceted and dynamic, requiring spatial profiling of different RNA species throughout the life cycle to delve into the intricate RNA biology in complex tissues. Human disease-relevant tissues are commonly preserved as formalin-fixed and paraffin-embedded (FFPE) blocks, representing an important resource for human tissue specimens. The capability to spatially explore RNA biology in FFPE tissues holds transformative potential for human biology research and clinical histopathology. Here, we present Patho-DBiT combining in situ polyadenylation and deterministic barcoding for spatial full coverage transcriptome sequencing, tailored for probing the diverse landscape of RNA species even in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for five years. Furthermore, genome-wide single nucleotide RNA variants can be captured to distinguish different malignant clones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA-mRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis trajectory. High resolution Patho-DBiT at the cellular level reveals a spatial neighborhood and traces the spatiotemporal kinetics driving tumor progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to study human tissue biology and aid in clinical pathology evaluation.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Dingyao Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yan Gao
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Ningning Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mark Gerstein
- Section on Biomedical Informatics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mina L. Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
6
|
Svyatova G, Boranbayeva R, Berezina G, Manzhuova L, Murtazaliyeva A. Genes of Predisposition to Childhood Beta-Cell Acute Lymphoblastic Leukemia in the Kazakh Population. Asian Pac J Cancer Prev 2023; 24:2653-2666. [PMID: 37642051 PMCID: PMC10685230 DOI: 10.31557/apjcp.2023.24.8.2653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Today, acute lymphoblastic leukemia is one of the most common malignant diseases of the hematopoietic system. The genetic predisposition to ALL is not fully explored in various ethnic populations. OBJECTIVE The study aimed to conduct a comparative analysis of the population frequencies of alleles and genotypes of polymorphic gene variants: immune regulation GATA3 (rs3824662); transcription and differentiation of B cells: ARID5B (rs7089424, rs10740055), IKZF1 (rs4132601); differentiation of hematopoietic cells: PIP4K2A (rs7088318); apoptosis: CEBPE (rs2239633), tumor suppressors: CDKN2A (rs3731249), TP53 (rs1042522); carcinogen metabolism: CBR3 (rs1056892), CYP1A1 (rs104894, rs4646903), according to genome-wide association studies analyses associated with the risk of developing pediatric beta-cell acute lymphoblastic leukemia (B-cell ALL), in an ethnically homogeneous population of Kazakhs with studied populations. METHODS The genomic database consists of 1800 conditionally healthy persons of Kazakh nationality, genotyped using OmniChip 2.5-8 Illumina chips at the deCODE genetics as part of the InterPregGen 7 project of the European Union (EU) framework program under Grant Agreement No. 282540. RESULTS High population frequencies of single nucleotide polymorphism (SNP) minor alleles identified for immune regulation genes - GATA3 rs3824662 - 42.5%; transcription and differentiation of B-cells genes - ARID5B rs7089424 - 33.1% and rs10740055 - 48.5%, which suggests their significant genetic contribution to the risk of development and prognosis of the effectiveness of B-cell ALL therapy in the Kazakh population. The significantly lower population frequency of the minor allele G rs1056892 CBR3 gene - 38.6% in the Kazakhs suggests its significant protective effect in reducing the risk of childhood B-cell ALL and the smaller number of cardiac complications after anthracycline therapy. CONCLUSION The obtained results will serve as a basis for developing effective methods for predicting the risk of development, early diagnosis, and effectiveness of treatment of B-cell ALL in children.
Collapse
Affiliation(s)
- Gulnara Svyatova
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan.
| | - Riza Boranbayeva
- Scientific Center of Pediatrics and Pediatric Surgery, 050060, 146 Al-Farabi Ave., Almaty, Kazakhstan.
| | - Galina Berezina
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan.
| | - Lyazat Manzhuova
- Scientific Center of Pediatrics and Pediatric Surgery, 050060, 146 Al-Farabi Ave., Almaty, Kazakhstan.
| | - Alexandra Murtazaliyeva
- Republican Medical Genetic Consultation, Scientific Center of Obstetrics, Gynecology and Perinatology, 050020, 125 Dostyk Ave., Almaty, Kazakhstan.
| |
Collapse
|
7
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
8
|
Rani R, Nayak M, Nayak B. Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transpl Immunol 2023; 78:101804. [PMID: 36921730 DOI: 10.1016/j.trim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Initiating from multipotent progenitors, the lineages extrapolated from hematopoietic stem cells are determined by transcription factors specific to each of them. The commitment factors assist in the differentiation of progenitor cells into terminally differentiated cells. B lymphocytes constitute a population of cells that expresses clonally diverse cell surface immunoglobulin (Ig) receptors specific to antigenic epitopes. B cells are a significant facet of the adaptive immune system. The secreted antibodies corresponding to the B cell recognize the antigens via the B cell receptor (BCR). Following antigen recognition, the B cell is activated and thereafter undergoes clonal expansion and proliferation to become memory B cells. The essence of 'cellular reprogramming' has aided in reliably altering the cells to desired tissue type. The potential of reprogramming has been harnessed to decipher and find solutions for various genetically inherited diseases and degenerative disorders. B lymphocytes can be reprogrammed to their initial naive state from where they get differentiated into any lineage or cell type similar to a pluripotent stem cell which can be accomplished by the deletion of master regulators of the B cell lineage. B cells can be reprogrammed into pluripotent stem cells and also can undergo transdifferentiation at the midway of cell differentiation to other cell types. Mandated expression of C/EBP in specialized B cells corresponds to their fast and effective reprogramming into macrophages, reversing the cell fate of these lymphocytes and allowing them to differentiate freshly into other types of cells. The co-expression of C/EBPα and OKSM (Oct4, Sox2, Klf4, c-Myc) amplified the reprogramming efficiency of B lymphocytes. Various human somatic cells including the immune cells are compliant to reprogramming which paves a path for opportunities like autologous tissue grafts, blood transfusion, and cancer immunotherapy. The ability to reprogram B cells offers an unprecedented opportunity for developing a therapeutic approach for several human diseases. Here, we will focus on all the proteins and transcription factors responsible for the developmental commitment of B lymphocytes and how it is harnessed in various applications.
Collapse
Affiliation(s)
- Reetika Rani
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Madhusmita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India.
| |
Collapse
|
9
|
Jagoda E, Marnetto D, Senevirathne G, Gonzalez V, Baid K, Montinaro F, Richard D, Falzarano D, LeBlanc EV, Colpitts CC, Banerjee A, Pagani L, Capellini TD. Regulatory dissection of the severe COVID-19 risk locus introgressed by Neanderthals. eLife 2023; 12:e71235. [PMID: 36763080 PMCID: PMC9917435 DOI: 10.7554/elife.71235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Individuals infected with the SARS-CoV-2 virus present with a wide variety of symptoms ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed a genetic haplotype on chromosome 3 that entered the human population via introgression from Neanderthals as the strongest genetic risk factor for the severe response to COVID-19. However, the specific variants along this introgressed haplotype that contribute to this risk and the biological mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplotype for their likelihood of driving the genetic predisposition to severe COVID-19 outcomes. We do this by first exploring their impact on the regulation of genes involved in COVID-19 infection using a variety of population genetics and functional genomics tools. We then perform a locus-specific massively parallel reporter assay to individually assess the regulatory potential of each allele on the haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked genetic variants to identify four introgressed alleles that are strong functional candidates for driving the association between this locus and severe COVID-19. Using reporter assays in the presence/absence of SARS-CoV-2, we find evidence that these variants respond to viral infection. These variants likely drive the locus' impact on severity by modulating the regulation of two critical chemokine receptor genes: CCR1 and CCR5. These alleles are ideal targets for future functional investigations into the interaction between host genomics and COVID-19 outcomes.
Collapse
Affiliation(s)
- Evelyn Jagoda
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Davide Marnetto
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
| | - Gayani Senevirathne
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Victoria Gonzalez
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Kaushal Baid
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
- Department of Biology, University of BariBariItaly
| | - Daniel Richard
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Darryl Falzarano
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Emmanuelle V LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Arinjay Banerjee
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
- Department of Biology, University of WaterlooWaterlooCanada
- Department of Laboratory Medicine and Pathobiology, University of TorontoTorontoCanada
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
- Department of Biology, University of PadovaPadovaItaly
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
10
|
Fekrvand S, Khanmohammadi S, Abolhassani H, Yazdani R. B- and T-Cell Subset Abnormalities in Monogenic Common Variable Immunodeficiency. Front Immunol 2022; 13:912826. [PMID: 35784324 PMCID: PMC9241517 DOI: 10.3389/fimmu.2022.912826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a heterogeneous group of inborn errors of immunity characterized by reduced serum concentrations of different immunoglobulin isotypes. CVID is the most prevalent symptomatic antibody deficiency with a broad range of infectious and non-infectious clinical manifestations. Various genetic and immunological defects are known to be involved in the pathogenesis of CVID. Monogenic defects account for the pathogenesis of about 20-50% of CVID patients, while a variety of cases do not have a defined genetic background. Deficiencies in molecules of B cell receptor signaling or other pathways involving B-cell development, activation, and proliferation could be associated with monogenetic defects of CVID. Genetic defects damping different B cell developmental stages can alter B- and even other lymphocytes’ differentiation and might be involved in the clinical and immunologic presentations of the disorder. Reports concerning T and B cell abnormalities have been published in CVID patients, but such comprehensive data on monogenic CVID patients is few and no review article exists to describe the abrogation of lymphocyte subsets in these disorders. Hence, we aimed to review the role of altered B- and T-cell differentiation in the pathogenesis of CVID patients with monogenic defects.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Reza Yazdani, ;
| |
Collapse
|
11
|
Quwaider D, Corchete LA, Martín-Izquierdo M, Hernández-Sánchez JM, Rojas EA, Cardona-Benavides IJ, García-Sanz R, Herrero AB, Gutiérrez NC. RNA sequencing identifies novel regulated IRE1-dependent decay targets that affect multiple myeloma survival and proliferation. Exp Hematol Oncol 2022; 11:18. [PMID: 35361260 PMCID: PMC8969279 DOI: 10.1186/s40164-022-00271-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Background IRE1 is an unfolded protein response (UPR) sensor with kinase and endonuclease activity. It plays a central role in the endoplasmic reticulum (ER) stress response through unconventional splicing of XBP1 mRNA and regulated IRE1-dependent decay (RIDD). Multiple myeloma (MM) cells are known to exhibit an elevated level of baseline ER stress due to immunoglobulin production, however RIDD activity has not been well studied in this disease. In this study, we aimed to investigate the potential of RNA-sequencing in the identification of novel RIDD targets in MM cells and to analyze the role of these targets in MM cells. Methods In vitro IRE1-cleavage assay was combined with RNA sequencing. The expression level of RIDD targets in MM cell lines was measured by real-time RT-PCR and Western blot. Results Bioinformatic analysis revealed hundreds of putative IRE1 substrates in the in vitro assay, 32 of which were chosen for further validation. Looking into the secondary structure of IRE1 substrates, we found that the consensus sequences of IRF4, PRDM1, IKZF1, KLF13, NOTCH1, ATR, DICER, RICTOR, CDK12, FAM168B, and CENPF mRNAs were accompanied by a stem-loop structure essential for IRE1-mediated cleavage. In fact, we show that mRNA and protein levels corresponding to these targets were attenuated in an IRE1-dependent manner by treatment with ER-stress-inducing agents. In addition, a synergistic effect between IMiDs and ER-stress inducers was found. Conclusion This study, using RNA sequencing, shows that IRE1 RNase has a broad range of mRNA substrates in myeloma cells and demonstrates for the first time that IRE1 is a key regulator of several proteins of importance in MM survival and proliferation. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00271-4.
Collapse
Affiliation(s)
- Dalia Quwaider
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Luis A Corchete
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Marta Martín-Izquierdo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Jesús M Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Elizabeta A Rojas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Ignacio J Cardona-Benavides
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Ramón García-Sanz
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| | - Ana B Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Norma C Gutiérrez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain. .,Hematology Department, University Hospital of Salamanca, Salamanca, Spain. .,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain.
| |
Collapse
|
12
|
Abbiati RA, Pourdehnad M, Carrancio S, Pierce DW, Kasibhatla S, McConnell M, Trotter MWB, Loos R, Santini CC, Ratushny AV. Quantitative Systems Pharmacology Modeling of Avadomide-Induced Neutropenia Enables Virtual Clinical Dose and Schedule Finding Studies. AAPS J 2021; 23:103. [PMID: 34453265 PMCID: PMC8397660 DOI: 10.1208/s12248-021-00623-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023] Open
Abstract
Avadomide is a cereblon E3 ligase modulator and a potent antitumor and immunomodulatory agent. Avadomide trials are challenged by neutropenia as a major adverse event and a dose-limiting toxicity. Intermittent dosing schedules supported by preclinical data provide a strategy to reduce frequency and severity of neutropenia; however, the identification of optimal dosing schedules remains a clinical challenge. Quantitative systems pharmacology (QSP) modeling offers opportunities for virtual screening of efficacy and toxicity levels produced by alternative dose and schedule regimens, thereby supporting decision-making in translational drug development. We formulated a QSP model to capture the mechanism of avadomide-induced neutropenia, which involves cereblon-mediated degradation of transcription factor Ikaros, resulting in a maturation block of the neutrophil lineage. The neutropenia model was integrated with avadomide-specific pharmacokinetic and pharmacodynamic models to capture dose-dependent effects. Additionally, we generated a disease-specific virtual patient population to represent the variability in patient characteristics and response to treatment observed for a diffuse large B-cell lymphoma trial cohort. Model utility was demonstrated by simulating the avadomide effect in the virtual population for various dosing schedules and determining the incidence of high-grade neutropenia, its duration, and the probability of recovery to low-grade neutropenia.
Collapse
Affiliation(s)
- Roberto A Abbiati
- Bristol Myers Squibb, Center for Innovation and Translational Research Europe (CITRE), Seville, Spain.
| | | | | | | | | | | | - Matthew W B Trotter
- Bristol Myers Squibb, Center for Innovation and Translational Research Europe (CITRE), Seville, Spain
| | - Remco Loos
- Bristol Myers Squibb, Center for Innovation and Translational Research Europe (CITRE), Seville, Spain
| | - Cristina C Santini
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | |
Collapse
|
13
|
Enhancer jungles establish robust tissue-specific regulatory control in the human genome. Genomics 2019; 112:2261-2270. [PMID: 31887344 DOI: 10.1016/j.ygeno.2019.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 11/21/2022]
Abstract
An increasing number of studies suggest that functionally redundant enhancers safeguard development via buffering gene expression against environmental and genetic perturbations. Here, we identified over-represented clusters of enhancers (enhancer jungles or EJs) in human B lymphoblastoid cells. We found that EJs tend to associate with genes involved in the activation of the immune system response. Although spanning multiple genes, the enhancers within an EJ tend to collaborate with each other on regulating a single gene. The employment of homotypic transcription factor binding sites (TFBSs) in EJ enhancers and heterotypic TFBSs between constituent enhancers within an EJ may safeguard a robust transcriptional output of the target gene. EJ enhancers evolve under a weaker selective pressure compared to regular enhancers (REs), and approximately 35% of EJs do not have orthologues in the mouse genome. In GM12878, these human-specific EJs appear to regulate genes associated with the adaptive immune system response, while the conserved EJs are associated with innate immunity. Recently acquired human EJs are associated with the higher level of target gene expression compared with conserved EJs, thus facilitating the environmental adaptation of the organism during evolution. In short, the existence of EJs is a common regulatory architecture conferring a robust regulatory control for key lineage genes.
Collapse
|
14
|
Jansen C, Ramirez RN, El-Ali NC, Gomez-Cabrero D, Tegner J, Merkenschlager M, Conesa A, Mortazavi A. Building gene regulatory networks from scATAC-seq and scRNA-seq using Linked Self Organizing Maps. PLoS Comput Biol 2019; 15:e1006555. [PMID: 31682608 PMCID: PMC6855564 DOI: 10.1371/journal.pcbi.1006555] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/14/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
Rapid advances in single-cell assays have outpaced methods for analysis of those data types. Different single-cell assays show extensive variation in sensitivity and signal to noise levels. In particular, scATAC-seq generates extremely sparse and noisy datasets. Existing methods developed to analyze this data require cells amenable to pseudo-time analysis or require datasets with drastically different cell-types. We describe a novel approach using self-organizing maps (SOM) to link scATAC-seq regions with scRNA-seq genes that overcomes these challenges and can generate draft regulatory networks. Our SOMatic package generates chromatin and gene expression SOMs separately and combines them using a linking function. We applied SOMatic on a mouse pre-B cell differentiation time-course using controlled Ikaros over-expression to recover gene ontology enrichments, identify motifs in genomic regions showing similar single-cell profiles, and generate a gene regulatory network that both recovers known interactions and predicts new Ikaros targets during the differentiation process. The ability of linked SOMs to detect emergent properties from multiple types of highly-dimensional genomic data with very different signal properties opens new avenues for integrative analysis of heterogeneous data.
Collapse
Affiliation(s)
- Camden Jansen
- Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Ricardo N. Ramirez
- Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Nicole C. El-Ali
- Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, London United Kingdom
| | - Jesper Tegner
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Solna, Sweden
- Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Matthias Merkenschlager
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Ali Mortazavi
- Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
15
|
PG545 treatment reduces RRV-induced elevations of AST, ALT with secondary lymphoid organ alterations in C57BL/6 mice. PLoS One 2019; 14:e0217998. [PMID: 31170255 PMCID: PMC6553857 DOI: 10.1371/journal.pone.0217998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/22/2019] [Indexed: 01/04/2023] Open
Abstract
Recently the anti-viral effects of prophylactic treatment with the low-molecular-weight heparan sulfate mimetic PG545 in Ross River virus (RRV) infected mice were reported. We further investigated the related, transient pathophysiology of PG545 drug treatment in RRV-infected and mock-infected PG545-treated mice. PG545 treatment resulted in mild lethargy and piloerection, on days after the drug administration. Mice were treated with two or three doses of PG545 within a ten-day period and were subsequently culled at peak disease or at disease resolution. The treatment responses of the spleen and liver were assessed through histology, flow cytometry, gene arrays and serum biochemistry. Microscopy showed an expanded red pulp in the spleen following either two or three treatments with PG545. The red pulp expansion was further demonstrated by the proliferation of megakaryocytes and erythrocyte precursors within the spleen. In addition, flow cytometry and gene array analyses revealed a reduction of lymphocytes within the spleens of PG545-treated mice. Previously unreported, RRV-induced elevations of aspartate aminotransferase (AST) and alanine transaminase (ALT) enzymes and creatinine were also noted in the RRV-infected mice. However, PG545 only reduced AST and ALT levels but not the creatinine levels in infected mice during treatment. Mice treated with three doses of PG545 also showed hepatosplenomegaly and anaemia, which were reversed upon discontinuation of the treatment. In summary, this study demonstrates that dose and frequency related haemopoietic pathophysiology such as hepatosplenomegaly and anaemia, occurred in C57BL/6 mice treated with PG545. However, this effect was reversible once drug administration is terminated.
Collapse
|
16
|
Ayón-Pérez MF, Pimentel-Gutiérrez HJ, Durán-Avelar MDJ, Vibanco-Pérez N, Pérez-Peraza VM, Pérez-González ÓA, Barrientos-Ríos R, Santillán-Ávila CF, Zambrano-Zaragoza JF, Agraz-Cibrián JM, Gutiérrez-Franco J, Vázquez-Reyes A. IKZF1 Gene Deletion in Pediatric Patients Diagnosed with Acute Lymphoblastic Leukemia in Mexico. Cytogenet Genome Res 2019; 158:10-16. [DOI: 10.1159/000499641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 11/19/2022] Open
Abstract
The IKZF1 gene is formed by 8 exons and encodes IKAROS, a transcription factor that regulates the expression of genes that control cell cycle progression and cell survival. In general, 15-20% of the patients with preB acute lymphoblastic leukemia (preB ALL) harbor IKZF1 deletions, and the frequency of these deletions increases in BCR-ABL1 or Ph-like subgroups. These deletions have been associated with poor treatment response and the risk of relapse. The aim of this descriptive study was to determine the frequency of IKZF1 deletions and the success of an induction therapy response in Mexican pediatric patients diagnosed with preB ALL in 2 hospitals from 2017 to August 2018. Thirty-six bone marrow samples from patients at the Instituto Nacional de Pediatría in Mexico City and the Centro Estatal de Cancerología in Tepic were analyzed. The IKZF1 deletion was identified by MLPA using the SALSA MLPA P335 ALL-IKZF1 probemix. Deletions of at least 1 IKZF1 exon were observed in 7/34 samples (20.6%): 3 with 1 exon deleted; 1 with 2 exons, 1 with 5 exons, 1 with 6 exons, and 1 patient with a complete IKZF1 deletion. This study was descriptive in nature; we calculated the frequency of the IKZF1 gene deletion in a Mexican pediatric population with preB ALL as 20.6%.
Collapse
|
17
|
Dimopoulos K, Fibiger Munch-Petersen H, Winther Eskelund C, Dissing Sjö L, Ralfkiaer E, Gimsing P, Grønbaek K. Expression of CRBN, IKZF1, and IKZF3 does not predict lenalidomide sensitivity and mutations in the cereblon pathway are infrequent in multiple myeloma. Leuk Lymphoma 2018; 60:180-188. [DOI: 10.1080/10428194.2018.1466290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Konstantinos Dimopoulos
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Copenhagen Ø, Denmark
| | | | | | - Lene Dissing Sjö
- Department of Pathology, Rigshospitalet, University Hospital Copenhagen, Copenhagen Ø, Denmark
| | - Elisabeth Ralfkiaer
- Department of Pathology, Rigshospitalet, University Hospital Copenhagen, Copenhagen Ø, Denmark
| | - Peter Gimsing
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Copenhagen Ø, Denmark
| | - Kirsten Grønbaek
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
18
|
Functional Analysis of Promoters from Three Subtypes of the PI3K Family and Their Roles in the Regulation of Lipid Metabolism by Insulin in Yellow Catfish Pelteobagrus fulvidraco. Int J Mol Sci 2018; 19:ijms19010265. [PMID: 29337882 PMCID: PMC5796211 DOI: 10.3390/ijms19010265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
In the present study, the length of 360, 1848 and 367 bp sequences of promoters from three subtypes of PI3K family (PI3KCa, PI3KC2b and PI3KC3) of yellow catfish Pelteobagrus fulvidraco were cloned and characterized. Bioinformatics analysis revealed that PI3KCa, PI3KC2b and PI3KC3 had different structures in their core promoter regions. The promoter regions of PI3KCa and PI3KC2b had CpG islands but no CAAT and TATA box. In contrast, the promoter of PI3KC3 had the canonical TATA and CAAT box but no CpG island. The binding sites of several transcription factors, such as HNF1, STAT and NF-κB, were predicted on PI3KCa promoter. The binding sites of transcription factors, such as FOXO1, PPAR-RXR, STAT, IK1, HNF6 and HNF3, were predicted on PI3KC2b promoter and the binding sites of FOXO1 and STAT transcription factors were predicted on PI3KC3 promoter. Deletion analysis indicated that these transcriptional factors were the potential regulators to mediate the activities of their promoters. Subsequent mutation analysis and electrophoretic mobility-shift assay (EMSA) demonstrated that HNF1 and IK1 directly bound with PI3KCa and PI3KC2b promoters and negatively regulated the activities of PI3KCa and PI3KC2b promoters, respectively. Conversely, FOXO1 directly bound with the PI3KC2b and PI3KC3 promoters and positively regulated their promoter activities. In addition, AS1842856 (AS, a potential FOXO1 inhibitor) incubation significantly reduced the relative luciferase activities of several plasmids of PI3KC2b and PI3KC3 but did not significantly influence the relative luciferase activities of the PI3KCa plasmids. Moreover, by using primary hepatocytes from yellow catfish, AS incubation significantly down-regulated the mRNA levels of PI3KCa, PI3KC2b and PI3KC3 and reduced triacylglyceride (TG) accumulation and insulin-induced TG accumulation, as well as the activities and the mRNA levels of several genes involved in lipid metabolism. Thus, the present study offers new insights into the mechanisms for transcriptional regulation of PI3Ks and for PI3Ks-mediated regulation of lipid metabolism by insulin in fish.
Collapse
|
19
|
A novel IKAROS haploinsufficiency kindred with unexpectedly late and variable B-cell maturation defects. J Allergy Clin Immunol 2017; 141:432-435.e7. [PMID: 28927821 PMCID: PMC6588539 DOI: 10.1016/j.jaci.2017.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022]
|
20
|
Al-Absi B, Razif MFM, Noor SM, Saif-Ali R, Aqlan M, Salem SD, Ahmed RH, Muniandy S. Contributions of IKZF1, DDC, CDKN2A, CEBPE, and LMO1 Gene Polymorphisms to Acute Lymphoblastic Leukemia in a Yemeni Population. Genet Test Mol Biomarkers 2017; 21:592-599. [PMID: 28768142 DOI: 10.1089/gtmb.2017.0084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Genome-wide and candidate gene association studies have previously revealed links between a predisposition to acute lymphoblastic leukemia (ALL) and genetic polymorphisms in the following genes: IKZF1 (7p12.2; ID: 10320), DDC (7p12.2; ID: 1644), CDKN2A (9p21.3; ID: 1029), CEBPE (14q11.2; ID: 1053), and LMO1 (11p15; ID: 4004). In this study, we aimed to conduct an investigation into the possible association between polymorphisms in these genes and ALL within a sample of Yemeni children of Arab-Asian descent. METHODS Seven single-nucleotide polymorphisms (SNPs) in IKZF1, three SNPs in DDC, two SNPs in CDKN2A, two SNPs in CEBPE, and three SNPs in LMO1 were genotyped in 289 Yemeni children (136 cases and 153 controls), using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Logistic regression analyses were used to estimate ALL risk, and the strength of association was expressed as odds ratios with 95% confidence intervals. RESULTS We found that the IKZF1 SNP rs10235796 C allele (p = 0.002), the IKZF1 rs6964969 A>G polymorphism (p = 0.048, GG vs. AA), the CDKN2A rs3731246 G>C polymorphism (p = 0.047, GC+CC vs. GG), and the CDKN2A SNP rs3731246 C allele (p = 0.007) were significantly associated with ALL in Yemenis of Arab-Asian descent. In addition, a borderline association was found between IKZF1 rs4132601 T>G variant and ALL risk. No associations were found between the IKZF1 SNPs (rs11978267; rs7789635), DDC SNPs (rs3779084; rs880028; rs7809758), CDKN2A SNP (rs3731217), the CEBPE SNPs (rs2239633; rs12434881) and LMO1 SNPs (rs442264; rs3794012; rs4237770) with ALL in Yemeni children. CONCLUSION The IKZF1 SNPs, rs10235796 and rs6964969, and the CDKN2A SNP rs3731246 (previously unreported) could serve as risk markers for ALL susceptibility in Yemeni children.
Collapse
Affiliation(s)
- Boshra Al-Absi
- 1 Department of Molecular Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Muhammad F M Razif
- 1 Department of Molecular Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Suzita M Noor
- 2 Department of Biomedical Science, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Riyadh Saif-Ali
- 3 Department of Biochemistry and Molecular Biology, Faculty of Medicine, Sana'a University , Sana'a, Yemen
| | - Mohammed Aqlan
- 4 Department of Pediatrics, Al-Kuwait University Hospital , Sana'a, Yemen
| | - Sameer D Salem
- 3 Department of Biochemistry and Molecular Biology, Faculty of Medicine, Sana'a University , Sana'a, Yemen
| | - Radwan H Ahmed
- 1 Department of Molecular Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Sekaran Muniandy
- 5 Department of Biochemistry, Faculty of Medicine, MAHSA University , Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Functional variant in the promoter region of IL-27 alters gene transcription and confers a risk for ulcerative colitis in northern Chinese Han. Hum Immunol 2017; 78:287-293. [PMID: 28069403 DOI: 10.1016/j.humimm.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disorder of unknown etiology and a polygenic disease. IL-27 encodes p28, a subunit of IL-12 family cytokines, and has been implicated in the pathogenesis of UC. The aims of the present study were to evaluate the genetic association of a variant of the IL-27 gene with UC and to further characterize the functional variant in the IL-27 gene that influences the risk for UC. Our data demonstrated that the genetic variant rs153109 in the 5' upstream region of IL-27 is significantly associated with UC in Chinese Han individuals. Analysis of IL-27 transcripts demonstrated that individuals carrying the risk allele of rs153109 display reduced transcription of IL-27 in PBMCs. Luciferase activity assays demonstrated that the risk allele rs153109 results in decreased promoter activity compared to a non-risk allele in a tissue specific manner. Mechanistic characterization of histone modifications in the promoter region revealed that the risk haplotype tagged by the risk allele of rs153109 reduces the levels of H3K3me3 and H3K27ac.
Collapse
|
22
|
Kurkewich JL, Bikorimana E, Nguyen T, Klopfenstein N, Zhang H, Hallas WM, Stayback G, McDowell MA, Dahl R. The mirn23a microRNA cluster antagonizes B cell development. J Leukoc Biol 2016; 100:665-677. [PMID: 27084569 DOI: 10.1189/jlb.1hi0915-398rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/21/2016] [Indexed: 12/20/2022] Open
Abstract
Ablation of microRNA synthesis by deletion of the microRNA-processing enzyme Dicer has demonstrated that microRNAs are necessary for normal hematopoietic differentiation and function. However, it is still unclear which specific microRNAs are required for hematopoiesis and at what developmental stages they are necessary. This is especially true for immune cell development. We previously observed that overexpression of the products of the mirn23a gene (microRNA-23a, -24-2, and 27a) in hematopoietic progenitors increased myelopoiesis with a reciprocal decrease in B lymphopoiesis, both in vivo and in vitro. In this study, we generated a microRNA-23a, -24-2, and 27a germline knockout mouse to determine whether microRNA-23a, -24-2, and 27a expression was essential for immune cell development. Characterization of hematopoiesis in microRNA-23a, -24-2, and 27a-/- mice revealed a significant increase in B lymphocytes in both the bone marrow and the spleen, with a concomitant decrease in myeloid cells (monocytes/granulocytes). Analysis of the bone marrow progenitor populations revealed a significant increase in common lymphoid progenitors and a significant decrease in both bone marrow common myeloid progenitors and granulocyte monocyte progenitors. Gene-expression analysis of primary hematopoietic progenitors and multipotent erythroid myeloid lymphoid cells showed that microRNA-23a, -24-2, and 27a regulates essential B cell gene-expression networks. Overexpression of microRNA-24-2 target Tribbles homolog 3 can recapitulate the microRNA-23a, -24-2, and 27a-/- phenotype in vitro, suggesting that increased B cell development in microRNA-23a, -24-2, and 27a null mice can be partially explained by a Tribbles homolog 3-dependent mechanism. Data from microRNA-23a, -24-2, and 27a-/- mice support a critical role for this microRNA cluster in regulating immune cell populations through repression of B lymphopoiesis.
Collapse
Affiliation(s)
- Jeffrey L Kurkewich
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Emmanuel Bikorimana
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Tan Nguyen
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Nathan Klopfenstein
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Helen Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - William M Hallas
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| | - Gwen Stayback
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA; and
| | - Mary Ann McDowell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA; and
| | - Richard Dahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, USA
| |
Collapse
|
23
|
Gupta SK, Bakhshi S, Kumar L, Seth R, Kumar R. IKZF1 (IKAROS) deletions in B-ALL and its clinical correlation: A prospective study from a tertiary care centre in Northern India. Leuk Res 2016; 41:7-11. [DOI: 10.1016/j.leukres.2015.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/23/2015] [Accepted: 07/26/2015] [Indexed: 11/25/2022]
|
24
|
Rudant J, Orsi L, Bonaventure A, Goujon-Bellec S, Baruchel A, Petit A, Bertrand Y, Nelken B, Pasquet M, Michel G, Saumet L, Chastagner P, Ducassou S, Réguerre Y, Hémon D, Clavel J. ARID5B, IKZF1 and non-genetic factors in the etiology of childhood acute lymphoblastic leukemia: the ESCALE study. PLoS One 2015; 10:e0121348. [PMID: 25806972 PMCID: PMC4373901 DOI: 10.1371/journal.pone.0121348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/30/2015] [Indexed: 01/18/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified that frequent polymorphisms in ARID5B and IKZF1, two genes involved in lymphoid differentiation, increase the risk of childhood acute lymphoblastic leukemia (ALL). These findings markedly modified the current field of research on the etiology of ALL. In this new context, the present exploratory study investigated the possible interactions between these at-risk alleles and the non-genetic suspected ALL risk factors that were of sufficient prevalence in the French ESCALE study: maternal use of home insecticides during pregnancy, preconception paternal smoking, and some proxies for early immune modulation, i.e. breastfeeding, history of common infections before age one year, and birth order. The analyses were based on 434 ALL cases and 442 controls of European origin, drawn from the nationwide population-based case-control study ESCALE. Information on non-genetic factors was obtained by standardized telephone interview. Interactions between rs10740055 in ARID5B or rs4132601 in IKZF1 and each of the suspected non-genetic factors were tested, with the SNPs coded as counts of minor alleles (trend variable). Statistical interactions were observed between rs4132601 and maternal insecticide use (p = 0.012), breastfeeding p = 0.017) and repeated early common infections (p = 0.0070), with allelic odds ratios (OR) which were only increased among the children not exposed to insecticides (OR = 1.8, 95%CI: 1.3, 2.4), those who had been breastfed (OR = 1.8, 95%CI: 1.3, 2.5) and those who had had repeated early common infections (OR = 2.4, 95%CI: 1.5, 3.8). The allelic ORs were close to one among children exposed to insecticides, who had not been breastfed and who had had no or few common infections. Repeated early common infections interacted with rs10740055 (p = 0.018) in the case-only design. Further studies are needed to evaluate whether these observations of a modification of the effect of the at-risk alleles by non-genetic factors are chance findings or reflect true underlying mechanisms.
Collapse
Affiliation(s)
- Jérémie Rudant
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
- French National Registry of Childhood Hematopoietic Malignancies (RNHE), Villejuif, France
- * E-mail:
| | - Laurent Orsi
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
| | - Audrey Bonaventure
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
| | - Stéphanie Goujon-Bellec
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
- French National Registry of Childhood Hematopoietic Malignancies (RNHE), Villejuif, France
| | - André Baruchel
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
- Université Paris Diderot-Paris 7, Sorbonne Paris Cité, Paris, France
| | - Arnaud Petit
- Assistance Publique-Hôpitaux de Paris, HUEP, Hôpital Trousseau, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S_938, Paris, France
| | - Yves Bertrand
- Institut d’Hémato-Oncologie Pédiatrique, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Brigitte Nelken
- Pôle Enfant, CHRU, Lille, France
- Université Lille Nord de France, Lille, France
| | - Marlène Pasquet
- Hématologie pédiatrique, CHU Toulouse, INSERM U1037, Equipe 16, CRCT, Oncopôle, Toulouse, France
| | - Gérard Michel
- Department of Pediatric Hematology and Oncology, Timone Enfants Hospital, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Laure Saumet
- Hôpital Arnaud de Villeneuve, Montpellier, France
| | | | | | | | - Denis Hémon
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
| | - Jacqueline Clavel
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
- French National Registry of Childhood Hematopoietic Malignancies (RNHE), Villejuif, France
| |
Collapse
|
25
|
de Almeida CR, Hendriks RW, Stadhouders R. Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Adv Immunol 2015; 128:183-271. [DOI: 10.1016/bs.ai.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
B cell transcription factors: Potential new therapeutic targets for SLE. Clin Immunol 2014; 152:140-51. [DOI: 10.1016/j.clim.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
|
27
|
Nagpal K, Watanabe KS, Tsao BP, Tsokos GC. Transcription factor Ikaros represses protein phosphatase 2A (PP2A) expression through an intronic binding site. J Biol Chem 2014; 289:13751-7. [PMID: 24692537 DOI: 10.1074/jbc.m114.558197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a highly conserved and ubiquitous serine/threonine phosphatase. We have shown previously that PP2A expression is increased in T cells of systemic lupus erythematosus patients and that this increased expression and activity of PP2A plays a central role in the molecular pathogenesis of systemic lupus erythematosus. Although the control of PP2A expression has been the focus of many studies, many aspects of its regulation still remain poorly understood. In this study, we describe a novel mechanism of PP2A regulation. We propose that the transcription factor Ikaros binds to a variant site in the first intron of PP2A and modulates its expression. Exogenous expression of Ikaros leads to reduced levels of PP2Ac message as well as protein. Conversely, siRNA-enabled silencing of Ikaros enhances the expression of PP2A, suggesting that Ikaros acts as a suppressor of PP2A expression. A ChIP analysis further proved that Ikaros is recruited to this site in T cells. We also attempted to delineate the mechanism of Ikaros-mediated PP2Ac gene suppression. We show that Ikaros-mediated suppression of PP2A expression is at least partially dependent on the recruitment of the histone deacetylase HDAC1 to this intronic site. We conclude that the transcription factor Ikaros can regulate the expression of PP2A by binding to a site in the first intron and modulating chromatin modifications at this site via recruitment of HDAC1.
Collapse
Affiliation(s)
- Kamalpreet Nagpal
- From the Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Katsue Sunahori Watanabe
- From the Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Betty P Tsao
- the Division of Rheumatology, University of California Los Angeles, Los Angeles, California 90095
| | - George C Tsokos
- From the Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
28
|
Epstein-Barr virus utilizes Ikaros in regulating its latent-lytic switch in B cells. J Virol 2014; 88:4811-27. [PMID: 24522918 DOI: 10.1128/jvi.03706-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Ikaros is a zinc finger DNA-binding protein that regulates chromatin remodeling and the expression of genes involved in the cell cycle, apoptosis, and Notch signaling. It is a master regulator of lymphocyte differentiation and functions as a tumor suppressor in acute lymphoblastic leukemia. Nevertheless, no previous reports described effects of Ikaros on the life cycle of any human lymphotropic virus. Here, we demonstrate that full-length Ikaros (IK-1) functions as a major factor in the maintenance of viral latency in Epstein-Barr virus (EBV)-positive Burkitt's lymphoma Sal and MutuI cell lines. Either silencing of Ikaros expression by small hairpin RNA (shRNA) knockdown or ectopic expression of a non-DNA-binding isoform induced lytic gene expression. These effects synergized with other lytic inducers of EBV, including transforming growth factor β (TGF-β) and the hypoxia mimic desferrioxamine. Data from chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) and ChIP-sequencing (ChIP-seq) analyses indicated that Ikaros did not bind to either of the EBV immediate early genes BZLF1 and BRLF1. Rather, Ikaros affected the expression of Oct-2 and Bcl-6, other transcription factors that directly inhibit EBV reactivation and plasma cell differentiation, respectively. IK-1 also complexed with the EBV immediate early R protein in coimmunoprecipitation assays and partially colocalized with R within cells. The presence of R alleviated IK-1-mediated transcriptional repression, with IK-1 then cooperating with Z and R to enhance lytic gene expression. Thus, we conclude that Ikaros plays distinct roles at different stages of EBV's life cycle: it contributes to maintaining latency via indirect mechanisms, and it may also synergize with Z and R to enhance lytic replication through direct association with R and/or R-induced alterations in Ikaros' functional activities via cellular signaling pathways. IMPORTANCE This is the first report showing that the cellular protein Ikaros, a known master regulator of hematopoiesis and critical tumor suppressor in acute lymphoblastic leukemia, also plays important roles in the life cycle of Epstein-Barr virus in B cells.
Collapse
|
29
|
Linabery AM, Blommer CN, Spector LG, Davies SM, Robison LL, Ross JA. ARID5B and IKZF1 variants, selected demographic factors, and childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Leuk Res 2013; 37:936-42. [PMID: 23692655 DOI: 10.1016/j.leukres.2013.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/12/2013] [Accepted: 04/18/2013] [Indexed: 02/06/2023]
Abstract
Interactions between common germline variants in ARID5B and IKZF1 and other known childhood acute lymphoblastic leukemia (ALL) risk factors were queried using biospecimens and data from 770 ALL cases and 384 controls. Case-control comparisons revealed dose-dependent associations between ARID5B rs10821936, ARID5B rs10994982, and IKZF1 rs11978267 and childhood ALL overall, and B lineage and B lineage hyperdiploid ALL examined separately (all allelic odds ratios ≥1.33, Ptrend≤0.001). No heterogeneity was observed between ORs for males and females (all Pinteraction≥0.48). Likewise, no significant genotype-birth weight interactions were detected (all Pinteraction≥0.12) among cases. These results indicate similar ALL risk across strata of known risk factors.
Collapse
Affiliation(s)
- Amy M Linabery
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Tijchon E, Havinga J, van Leeuwen FN, Scheijen B. B-lineage transcription factors and cooperating gene lesions required for leukemia development. Leukemia 2012; 27:541-52. [PMID: 23047478 DOI: 10.1038/leu.2012.293] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Differentiation of hematopoietic stem cells into B lymphocytes requires the concerted action of specific transcription factors, such as RUNX1, IKZF1, E2A, EBF1 and PAX5. As key determinants of normal B-cell development, B-lineage transcription factors are frequently deregulated in hematological malignancies, such as B-cell precursor acute lymphoblastic leukemia (BCP-ALL), and affected by either chromosomal translocations, gene deletions or point mutations. However, genetic aberrations in this developmental pathway are generally insufficient to induce BCP-ALL, and often complemented by genetic defects in cytokine receptors and tyrosine kinases (IL-7Rα, CRLF2, JAK2 and c-ABL1), transcriptional cofactors (TBL1XR1, CBP and BTG1), as well as the regulatory pathways that mediate cell-cycle control (pRB and INK4A/B). Here we provide a detailed overview of the genetic pathways that interact with these B-lineage specification factors, and describe how mutations affecting these master regulators together with cooperating lesions drive leukemia development.
Collapse
Affiliation(s)
- E Tijchon
- Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
31
|
|
32
|
Dovat S. Ikaros in hematopoiesis and leukemia. World J Biol Chem 2011; 2:105-7. [PMID: 21765974 PMCID: PMC3135855 DOI: 10.4331/wjbc.v2.i6.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/10/2011] [Accepted: 06/17/2011] [Indexed: 02/05/2023] Open
Abstract
Ikaros is a gene whose activity is essential for normal hematopoiesis. Ikaros acts as a master regulator of lymphoid and myeloid development as well as a tumor suppressor. In cells, Ikaros regulates gene expression via chromatin remodeling. During the past 15 years tremendous advances have been made in understanding the role of Ikaros in hematopoiesis and leukemogenesis. In this Topic Highlights series of reviews, several groups of international experts in this field summarize the experimental data that is shaping the emerging picture of Ikaros function at the biochemical and cellular levels. The articles provide detailed analyses of recent scientific advancements and present models that will serve as a basis for future studies aimed at developing a better understanding of normal hematopoiesis and hematological malignancies and at accelerating the application of this knowledge in clinical practice.
Collapse
Affiliation(s)
- Sinisa Dovat
- Sinisa Dovat, Department of Pediatrics, Pennsylvania State University, College of Medicine, Hershey, PA 17033-0850, United States
| |
Collapse
|