1
|
Rangel-López A, Mata-Rocha M, Pérez-González OA, López-Romero R, López-Sánchez DM, Juárez-Méndez S, Villegas-Ruiz V, Méndez-Tenorio A, Mejía-Araguré JM, Orihuela-Rodríguez O, Álvarez-Aguilar C, Majluf-Cruz A, Amato D, Zavala-Vega S, Melchor-Doncel de la Torre S, Paniagua-Sierra R, Arellano-Galindo J. Gene Expression Profile of Cultured Human Coronary Arterial Endothelial Cells Exposed to Serum from Chronic Kidney Disease Patients: Role of MAPK Signaling Pathway. Int J Mol Sci 2025; 26:3732. [PMID: 40332370 PMCID: PMC12027878 DOI: 10.3390/ijms26083732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Patients with end-stage renal disease (ESRD) are at increased risk of cardiovascular disease (CVD), such as myocardial infarction (MI). Uremic toxins and endothelial dysfunction are central to this process. In this exploratory study, we used the Affymetrix GeneChip microarray to investigate the gene expression profile in uremic serum-induced human coronary arterial endothelial cells (HCAECs) from ESRD patients with and without MI (UWI and UWOI groups) as an approach to its underlying mechanism. We also explored which pathways are involved in this process. We found 100 differentially expressed genes (DEGs) among the conditions of interest by supervised principal component analysis and hierarchical cluster analysis. The expressions of four major DEGs were validated by quantitative RT-PCR. Pathway analysis and molecular network were used to analyze the interaction and expression patterns. Ten pathways were identified as the main enriched metabolic pathways according to the transcriptome profiling analysis, which were, among others, positive regulation of inflammatory response, positive regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) cascade, cardiac muscle cell development, highlighting positive regulation of mitogen-activated protein kinase (MAPK) activity (p = 0.00016). Up- and down-regulation of genes from HCAECs exposed to uremic serum could contribute to increased endothelial dysfunction and CVD in ESRD patients. Our study suggests that inflammation and the ERK-MAPK pathway are highly enriched in kidney disease patients with MI, suggesting their role in ESRD pathology. Further studies and approaches based on MAPK pathway interfering strategies are needed to confirm these data.
Collapse
Affiliation(s)
- Angélica Rangel-López
- Unidad de Investigación Médica en Enfermedades Nefrológicas, UMAE Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI (SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City 06720, Mexico;
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez-Secretaría de Salud (SS), Mexico City 06720, Mexico;
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, CMN SXXI IMSS, Mexico City 06720, Mexico;
| | - Oscar Alberto Pérez-González
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría-SS, Mexico City 04530, Mexico; (O.A.P.-G.); (S.J.-M.); (V.V.-R.)
| | - Ricardo López-Romero
- Unidad de Investigación en Biomedicina y Oncología Genómica, Hospital de Gineco-Pediatría 3A, IMSS, Mexico City 07760, Mexico;
| | - Dulce María López-Sánchez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, SS, Mexico City 14080, Mexico;
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Sergio Juárez-Méndez
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría-SS, Mexico City 04530, Mexico; (O.A.P.-G.); (S.J.-M.); (V.V.-R.)
| | - Vanessa Villegas-Ruiz
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría-SS, Mexico City 04530, Mexico; (O.A.P.-G.); (S.J.-M.); (V.V.-R.)
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Juan Manuel Mejía-Araguré
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, SS, Mexico City 14610, Mexico;
| | - Oscar Orihuela-Rodríguez
- Departamento Clínico de Cardiología-UMAE Hospital de Especialidades, CMN SXXI IMSS, Mexico City 06720, Mexico;
| | - Cleto Álvarez-Aguilar
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacán 58020, Mexico;
| | - Abraham Majluf-Cruz
- Unidad de Investigación Médica en Hemostasia, Trombosis y Aterogénesis, Hospital General Regional 1, IMSS, Mexico City 03103, Mexico;
| | - Dante Amato
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Clínico y Banco de Sangre, Instituto Nacional de Neurología y Neurocirugía, SS, Mexico City 14269, Mexico;
| | - Silvia Melchor-Doncel de la Torre
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez-Secretaría de Salud (SS), Mexico City 06720, Mexico;
| | - Ramón Paniagua-Sierra
- Unidad de Investigación Médica en Enfermedades Nefrológicas, UMAE Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI (SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City 06720, Mexico;
| | - José Arellano-Galindo
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez-Secretaría de Salud (SS), Mexico City 06720, Mexico;
| |
Collapse
|
2
|
Clouser PR, Riggs CL, Romney ALT, Podrabsky JE. Diapause and Anoxia-Induced Quiescence Are Unique States in Embryos of the Annual Killifish, Austrofundulus limnaeus. Biomolecules 2025; 15:515. [PMID: 40305273 PMCID: PMC12024583 DOI: 10.3390/biom15040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Diapause is a state of developmental and metabolic dormancy that precedes exposure to environmental stresses. Yet, diapausing embryos are typically stress-tolerant. Evidence suggests that diapausing embryos "prepare" for stress as part of a gene expression program as they enter dormancy. Here, we investigate if diapause II embryos of the annual killifish Austrofundulus limnaeus, which can survive for hundreds of days of anoxia, can mount a transcriptomic response to anoxic insult. Bulk RNAseq was used to characterize the transcriptomes of diapause II embryos exposed to normoxia, 4 h and 24 h anoxia, and 2 h and 24 h normoxic recovery from anoxia. Differential expression and gene ontology analyses were used to probe for pathways that may mitigate survival. Transcriptional factor analysis was used to predict potential mediators of this response. Diapausing embryos exhibited a robust transcriptomic response to anoxia and recovery that returns to near baseline conditions after 24 h. Anoxia induced an upregulation of genes involved in the integrated stress response, lipid metabolism, p38mapk kinase signaling, and apoptosis. Developmental and mitochondrial genes decreased. We conclude that diapause II embryos mount a robust transcriptomic stress response when faced with anoxic insult. This response is consistent with mediating expected challenges to cellular homeostasis in anoxia.
Collapse
Affiliation(s)
- Patrick R. Clouser
- Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97201, USA;
| | - Claire L. Riggs
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Amie L. T. Romney
- Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97201, USA;
| | - Jason E. Podrabsky
- Department of Biology, Center for Life in Extreme Environments, Portland State University, P.O. Box 751, Portland, OR 97201, USA;
| |
Collapse
|
3
|
Vagadia PP, Izquierdo-Ferrer J, Mazewski C, Blyth G, Beauchamp EM, Clutter MR, Stern CL, Mishra RK, Nahotko D, Small S, Eckerdt F, Platanias LC, Schiltz GE. Discovery of Potent and Selective MNK Kinase Inhibitors for the Treatment of Leukemia. J Med Chem 2025; 68:5824-5844. [PMID: 40033556 DOI: 10.1021/acs.jmedchem.4c03158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
MNK activity is regulated by the p38 and Erk MAPK pathways. Phosphorylation of MNK leads to its activation and binding to the eIF4G/eIF4E complex. MNK then phosphorylates eIF4E at Ser209, whose activation is associated with oncogene translation, leading to tumorigenesis. Given this important role for eIF4E in tumorigenesis, MNK inhibition with novel small molecule inhibitors could be a promising strategy to combat AML, which continues to be an area of unmet medical need. Here, we report the medicinal optimization of a series of novel inhibitors and their evaluation of their effects on eIF4E and leukemia cell viability. We discovered a class of ether-containing compounds with a high MNK1/2 selectivity. These MNK inhibitors show good potency in reducing cell viability and colony formation and have desirable pharmacokinetic properties. X-ray cocrystallization was accomplished to confirm the binding mode of our inhibitors and aid in future optimization.
Collapse
Affiliation(s)
- Purav P Vagadia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
| | - Gavin Blyth
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
| | - Elspeth M Beauchamp
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, United States
| | - Matthew R Clutter
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- High-Throughput Analysis Laboratory, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- The Integrated Molecular Structure Education and Research Center (IMSERC), Northwestern University, Evanston, Illinois 60208, United States
| | - Rama K Mishra
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Dominik Nahotko
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
| | - Sara Small
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, United States
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, United States
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
4
|
Chang H, Wang Y, Hui L, Diao Y, Ma P, Li X, Wang F. iTRAQ proteomic analysis of the anterior insula in morphine-induced conditioned place preference rats with high-frequency deep brain stimulation intervention. Addict Biol 2025; 30:e70014. [PMID: 39835462 PMCID: PMC11747870 DOI: 10.1111/adb.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/06/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Morphine dependence or addiction is a serious global public health and social problem, and traditional treatments are very limited. Deep brain stimulation (DBS) has emerged as a new potential treatment for drug addiction. Repeated use of morphine leads to neuroadaptive and molecular changes in the addiction-related brain regions. We have previously performed isobaric tags for relative and absolute quantitation (iTRAQ) labelling coupled with 2D-LC MS/MS in anterior insular samples from rats treated with saline control, morphine or morphine plus DBS, and the identified expression of eight proteins are altered by morphine and reversed by high-frequency DBS (HF-DBS). In this study, we analysed the proteomic data in more details. A total of 5575 proteins were identified. Relative to the saline group, the morphine group showed 14 down-regulated and three up-regulated proteins. There were 118 proteins increased and 87 proteins decreased between DBS implanted animals and morphine group. Several differentially expressed proteins were verified with parallel reaction monitoring (PRM) assay. Based on Gene Ontology enrichment an KEGG pathway analyses, the majority of these differentially expressed proteins (DEPs) were involved in protein metabolic process, G-protein coupled receptor signalling pathway, calcium-mediated signalling, neurotransmitter transport, dopaminergic synapse and mTOR signalling pathway. These data offer a comprehensive understanding of the proteomic changes associated with morphine addiction and DBS therapy in addicted animal models, which is important for the development of DBS interventions for drug addiction.
Collapse
Affiliation(s)
- Haigang Chang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Yaxiao Wang
- Department of UltrasoundThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Lei Hui
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Yuling Diao
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Pengju Ma
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Xiangsheng Li
- Department of NeurosurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
5
|
Li Q, Chen X, Su M, Guo YW, Jin X. A patent review of mitogen-activated protein kinase-interacting kinases (MNKs) modulators (2019-present). Expert Opin Ther Pat 2024:1-14. [PMID: 39708134 DOI: 10.1080/13543776.2024.2446225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION The mitogen-activated protein kinase interacting kinases (MNKs) modulate protein translation through the phosphorylation of eukaryotic initiation factor 4E (eIF4E) at serine 209, which is crucial for tumorigenesis but dispensable for normal development. MNKs are implicated in various pathological processes, including inflammation, obesity, cancer, etc. Thus, MNKs are considered as potential drug targets and the development of potent and selective MNK inhibitors is a current research focus. AREAS COVERED This review covers inhibitors of MNKs reported in patents published in the online databases of the World Intellectual Property Organization and European Patent Office from 2019 to 2024. This review provides a landscape of available inhibitors, including their chemical structures, activity, and stage of development. EXPERT OPINION In recent years, highly potent and selective inhibitors have been discovered and many of them show promising results in several preclinical cancer models. The majority of small-molecule inhibitors developed recently, similarly to the structure of eFT508 and ETC-206. Also, some new skeletons were disclosed and showed novel mechanisms, including non-traditional ATP competition and induced protein degradation by proteolysis targeting chimeras. Ongoing preclinical research and clinical trials will provide us more information on these new compounds and MNKs novel functions beyond cancer.
Collapse
Affiliation(s)
- Qiang Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Xiang Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Mingzhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Xin Jin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
6
|
Mars JC, Culjkovic-Kraljacic B, Borden KL. eIF4E orchestrates mRNA processing, RNA export and translation to modify specific protein production. Nucleus 2024; 15:2360196. [PMID: 38880976 PMCID: PMC11185188 DOI: 10.1080/19491034.2024.2360196] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Katherine L.B. Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Misra P, R P, Boruah D, Gambhirrao A, Godse R, Mk S, Gupta A, Vashum Y. The effects of miR-217 inhibitor and mimic in the progression of Kirsten rat sarcoma viral oncogene homologue driven cancers. Med J Armed Forces India 2024; 80:702-711. [PMID: 39990527 PMCID: PMC11842930 DOI: 10.1016/j.mjafi.2024.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2025] Open
Abstract
Background Kirsten rat sarcoma viral oncogene homologue (KRAS) is one of the most frequently mutated proto-oncogenes in approximately 90% of pancreatic ductal carcinoma (PDAC) and 45% of colorectal cancer (CC) cases. Studies in the past have identified microRNA-217 (miR-217) as a potential tumour-suppressing miRNA that is downregulated in various cancers. Using in silico prediction algorithms, several studies have identified miR-217 as a potential regulator of KRAS, and we investigated its role in PDAC and CC progression. Method The study was carried out in KRAS-driven cancer (KDC) cell lines PANC-1 (pancreatic cancer) and SW-480 (CC), which have mutant KRAS gene expression. The KDC cells are transfected with specific oligonucleotides for miR-217, anti-miR-217, and a negative control in serum-free media using lipofectamine. After fixing the IC50, using specific primers, gene expression studies were carried out by qPCR for KRAS downstream targets and genes associated with apoptosis and cell cycle. Anti-migration and anti-apoptotic effects were studied using the transwell migration assay and annexin-V/PI staining methods, and mitochondrial morphology was observed using a transmission electron microscope. Results The present study demonstrates that overexpression of miR-217 in KDC cells mitigates proliferation and migration and promotes cell cycle arrest and apoptosis of KDC cells via the MAPK/ERK signalling pathway. Besides, decreased miR-217 expression rescues KDC cells from the effects mediated by KRAS downstream signalling. Conclusion The outcome of the study indicates miR-217 suppresses tumour growth and promotes apoptosis in KDC and that these effects are associated with down regulation of MAPK/ERK signalling.
Collapse
Affiliation(s)
- Pratibha Misra
- Senior Advisor (Biochemistry), 151 Base Hospital, C/o 99 APO, India
| | - Palaniswamy R
- Scientist II, Multi-disciplinary Research Unit (MRU), Armed Forces Medical College, Pune, India
| | - Dibyajyoti Boruah
- Scientist ‘F’, Department of Pathology, Armed Forces Medical College, Pune, India
| | - Ankita Gambhirrao
- Scientist I, Multi-disciplinary Research Unit (MRU), Armed Forces Medical College, Pune, India
| | - Ruchira Godse
- Lab Assistant, Multi-disciplinary Research Unit (MRU), Armed Forces Medical College, Pune, India
| | - Sibin Mk
- Scientist ‘C’, Department of Biochemistry, Armed Forces Medical College, Pune, India
| | - Anurodh Gupta
- Professor & Head, Department of Biochemistry, Armed Forces Medical College, Pune, India
| | - Yaongamphi Vashum
- Scientist ‘C’, Department of Biochemistry, Armed Forces Medical College, Pune, India
| |
Collapse
|
8
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 PMCID: PMC11625621 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
9
|
Sharma S, Singh M, Chiranjivi AK, Dadwal A, Ahmed S, Asthana S, Das S. Structural insights into trypanosomatid Mnk kinase orthologues (kMnks) suggest altered mechanism in the kinase domain. Int J Biol Macromol 2024; 277:134428. [PMID: 39097052 DOI: 10.1016/j.ijbiomac.2024.134428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Mitogen-activated protein kinase (MAPK) interacting protein kinases (Mnk1 and Mnk2) mediated phosphorylation of the eukaryotic initiation factor eIF4E is an important translation initiation control, in Mnk-mediated oncogenic activity and other disease conditions. Thus, Mnk kinases are an important target for therapy. Trypanosomatids are a class of kinetoplastids, some of which are protozoan parasites and cause diseases in humans. While protein translation initiation is well understood in eukaryotes and prokaryotes, there is a lack of sufficient structural information of this process in trypanosomatids. Here, we report that trypanosomatids have one orthologue of Mnk kinase with low overall sequence homology but high homology in the kinase domain and an additional C-terminal domain containing putative calmodulin binding site(s). We show that while many of the domains and motifs are conserved, homology modeling/structure prediction, docking analysis and molecular dynamics simulation studies suggest that trypanosomatid kMnk kinases, kinase domains are present in DFG-in conformation as opposed to the auto-inhibited DFD-out conformation of un-phosphorylated human Mnk1. Furthermore, we observed that several regulatory features are different in trypanosomatid kMnk kinases. Our study indicates that mechanism and regulation in the kinase domain of trypanosomatid kMnks are likely to be altered, and that they can be important drug targets.
Collapse
Affiliation(s)
- Shilpa Sharma
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | - Mrityunjay Singh
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | | | - Anica Dadwal
- Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | - Shubbir Ahmed
- Centralized Core Research Facility (CCRF), All India Institute of Medical Science (AIIMS), New Delhi 110029, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India.
| | - Supratik Das
- Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India.
| |
Collapse
|
10
|
Gong Q, Ali T, Hu Y, Gao R, Mou S, Luo Y, Yang C, Li A, Li T, Hao LL, He L, Yu X, Li S. RIPK1 inhibition mitigates neuroinflammation and rescues depressive-like behaviors in a mouse model of LPS-induced depression. Cell Commun Signal 2024; 22:427. [PMID: 39223674 PMCID: PMC11367892 DOI: 10.1186/s12964-024-01796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Depression is often linked to inflammation in the brain. Researchers have been exploring ways to reduce this inflammation to improve depression symptoms. One potential target is a protein called RIPK1, which is known to contribute to brain inflammation. However, it's unclear how RIPK1 influences depression. Our study aims to determine whether RIPK1 inhibition could alleviate neuroinflammation-associated depression and elucidate its underlying mechanisms. METHODS To investigate our research objectives, we established a neuroinflammation mouse model by administering LPS. Behavioral and biochemical assessments were conducted on these mice. The findings were subsequently validated through in vitro experiments. RESULTS Using LPS-induced depression models, we investigated RIPK1's role, observing depressive-like behaviors accompanied by elevated cytokines, IBA-1, GFAP levels, and increased inflammatory signaling molecules and NO/H2O2. Remarkably, Necrostatin (Nec-1 S), a RIPK1 inhibitor, mitigated these changes. We further found altered expression and phosphorylation of eIF4E, PI3K/AKT/mTOR, and synaptic proteins in hippocampal tissues, BV2, and N2a cells post-LPS treatment, which Nec-1 S also ameliorated. Importantly, eIF4E inhibition reversed some of the beneficial effects of Nec-1 S, suggesting a complex interaction between RIPK1 and eIF4E in LPS-induced neuroinflammation. Moreover, citronellol, a RIPK1 agonist, significantly altered eIF4E phosphorylation, indicating RIPK1's potential upstream regulatory role in eIF4E and its contribution to neuroinflammation-associated depression. CONCLUSION These findings propose RIPK1 as a pivotal mediator in regulating neuroinflammation and neural plasticity, highlighting its significance as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Qichao Gong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yue Hu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ruyan Gao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shengnan Mou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanhua Luo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Canyu Yang
- College of Forensic Medicine, Institute of Forensic Injury, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, China
| | - Axiang Li
- College of Forensic Medicine, Institute of Forensic Injury, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, China
| | - Tao Li
- College of Forensic Medicine, Institute of Forensic Injury, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, China
| | - Liang Liang Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-Qiao Road, Chengdu, P.R. China
| | - Liufang He
- Department of Neonatology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518190, China.
| | - Xiaoming Yu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Walker NM, Ibuki Y, McLinden AP, Misumi K, Mitchell DC, Kleer GG, Lock AM, Vittal R, Sonenberg N, Garner AL, Lama VN. MNK-driven eIF4E phosphorylation regulates the fibrogenic transformation of mesenchymal cells and chronic lung allograft dysfunction. J Clin Invest 2024; 134:e168393. [PMID: 39145446 PMCID: PMC11324311 DOI: 10.1172/jci168393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/25/2024] [Indexed: 08/16/2024] Open
Abstract
Tissue fibrosis remains unamenable to meaningful therapeutic interventions and is the primary cause of chronic graft failure after organ transplantation. Eukaryotic translation initiation factor (eIF4E), a key translational regulator, serves as convergent target of multiple upstream profibrotic signaling pathways that contribute to mesenchymal cell (MC) activation. Here, we investigate the role of MAP kinase-interacting serine/threonine kinase-induced (MNK-induced) direct phosphorylation of eIF4E at serine 209 (Ser209) in maintaining fibrotic transformation of MCs and determine the contribution of the MNK/eIF4E pathway to the pathogenesis of chronic lung allograft dysfunction (CLAD). MCs from patients with CLAD demonstrated constitutively higher eIF4E phosphorylation at Ser209, and eIF4E phospho-Ser209 was found to be critical in regulating key fibrogenic protein autotaxin, leading to sustained β-catenin activation and profibrotic functions of CLAD MCs. MNK1 signaling was upregulated in CLAD MCs, and genetic or pharmacologic targeting of MNK1 activity inhibited eIF4E phospho-Ser209 and profibrotic functions of CLAD MCs in vitro. Treatment with an MNK1/2 inhibitor (eFT-508) abrogated allograft fibrosis in an orthotopic murine lung-transplant model. Together these studies identify what we believe is a previously unrecognized MNK/eIF4E/ATX/β-catenin signaling pathway of fibrotic transformation of MCs and present the first evidence, to our knowledge, for the utility of MNK inhibitors in fibrosis.
Collapse
Affiliation(s)
- Natalie M. Walker
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuta Ibuki
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - A. Patrick McLinden
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Keizo Misumi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dylan C. Mitchell
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabriel G. Kleer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison M. Lock
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ragini Vittal
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nahum Sonenberg
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | - Amanda L. Garner
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Vibha N. Lama
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Lou YL, Xie DL, Huang XH, Zheng MM, Chen N, Xu JR. The role of MNK1-mTORC1 pathway in modulating macrophage responses to Vibrio vulnificus infection. Microbiol Spectr 2024; 12:e0334023. [PMID: 38980024 PMCID: PMC11302032 DOI: 10.1128/spectrum.03340-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Vibrio vulnificus (Vv) is known to cause life-threatening infections, particularly septicemia. These patients often exhibit elevated levels of pro-inflammatory cytokines. While it is established that mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) contributes to the production of pro-inflammatory cytokines, the role of MNK in macrophages during Vv infection remains unclear. In this study, we investigate the impact of MNK on macrophages. We demonstrate that the inhibition of MNK in J774A.1 cells, when treated with lipopolysaccharide or Vv, resulted in decreased production of tumor necrosis factor alpha and interleukin-6, without affecting their transcription. Interestingly, treatment with MNK inhibitor CGP57380 led to enhanced phosphorylation of MNK1 but decreased phosphorylation of eIF4E. Moreover, MNK1 knockout cells exhibited an increased capacity for phagocytosis and clearance of Vv, with more acidic phagosomes than the parental cells. Notably, CGP57380 did not impact phagocytosis, bacterial clearance, or phagosome acidification in Vv-infected J774A.1 cells. Considering the reported association between MNK and mammalian target of rapamycin complex 1 (mTORC1) activation, we investigated the mTORC1 signaling in MNK1 knockout cells infected with Vv. Our results revealed that attenuation of the mTORC1 signaling in these cells and treatment with the mTORC1 inhibitor rapamycin significantly enhanced bacterial clearance in J774A.1 cells following Vv infection. In summary, our findings suggest that MNK promotes the Vv-induced cytokine production in J774A.1 cells without affecting their transcription levels. MNK1 appears to impair the phagocytosis, bacterial clearance, and phagosome acidification in Vv-infected J774A.1 cells through the MNK1-mTORC1 signaling pathway rather than the MNK1-eIF4E signaling pathway. Our findings highlight the importance of the MNK1-mTORC1 pathway in modulating macrophage responses to Vv infection. IMPORTANCE Mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) plays a role in promoting the production of tumor necrosis factor alpha and interleukin-6 in macrophages during Vibrio vulnificus (Vv) infection. Inhibition or knockout of MNK1 in J774A.1 cells resulted in reduced cytokine production without affecting their transcription levels. MNK1 also impairs phagocytosis, bacterial clearance, and phagosome acidification in Vv-infected cells through the MNK1-mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. The findings highlight the importance of the MNK1-mTORC1 pathway in modulating macrophage responses to Vv infection.
Collapse
Affiliation(s)
- Yong-Liang Lou
- Department of Immunology and Pathogenic Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, China
- The School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, China
| | - Dan-Li Xie
- The School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, China
| | - Xian-Hui Huang
- The School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, China
| | - Meng-Meng Zheng
- The School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, China
- Scientific Research Center, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Na Chen
- The School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Laboratory Medicine, The First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Ji-Ru Xu
- Department of Immunology and Pathogenic Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, China
| |
Collapse
|
13
|
Yuan X, Guan D, Chen C, Guo S, Wu H, Bu H, Yang CY, Wang M, Zhou J, Zhang H. Development of an Imidazopyridazine-Based MNK1/2 Inhibitor for the Treatment of Lymphoma. J Med Chem 2024; 67:5437-5457. [PMID: 38564512 DOI: 10.1021/acs.jmedchem.3c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The mitogen-activated protein kinase-interacting protein kinases (MNKs) are the only kinases known to phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which plays a significant role in cap-dependent translation. Dysregulation of the MNK/eIF4E axis has been found in various solid tumors and hematological malignancies, including diffuse large B-cell lymphoma (DLBCL). Herein, structure-activity relationship studies and docking models determined that 20j exhibits excellent MNK1/2 inhibitory activity, stability, and hERG safety. 20j exhibits strong and broad antiproliferative activity against different cancer cell lines, especially GCB-DLBCL DOHH2. 20j suppresses the phosphorylation of eIF4E in Hela cells (IC50 = 90.5 nM) and downregulates the phosphorylation of eIF4E and 4E-BP1 in A549 cells. In vivo studies first revealed that ibrutinib enhances the antitumor effect of 20j without side effects in a DOHH2 xenograft model. This study provided a solid foundation for the future development of a MNK inhibitor for GCB-DLBCL treatment.
Collapse
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Chao Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Shi Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hanshu Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
14
|
Xu Y, Xin J, Sun Y, Wang X, Sun L, Zhao F, Niu C, Liu S. Mechanisms of Sepsis-Induced Acute Lung Injury and Advancements of Natural Small Molecules in Its Treatment. Pharmaceuticals (Basel) 2024; 17:472. [PMID: 38675431 PMCID: PMC11054595 DOI: 10.3390/ph17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI), characterized by widespread lung dysfunction, is associated with significant morbidity and mortality due to the lack of effective pharmacological treatments available clinically. Small-molecule compounds derived from natural products represent an innovative source and have demonstrated therapeutic potential against sepsis-induced ALI. These natural small molecules may provide a promising alternative treatment option for sepsis-induced ALI. This review aims to summarize the pathogenesis of sepsis and potential therapeutic targets. It assembles critical updates (from 2014 to 2024) on natural small molecules with therapeutic potential against sepsis-induced ALI, detailing their sources, structures, effects, and mechanisms of action.
Collapse
Affiliation(s)
- Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| |
Collapse
|
15
|
Franco-Enzástiga Ú, Natarajan K, David ET, Patel K, Ravirala A, Price TJ. Vinorelbine causes a neuropathic pain-like state in mice via STING and MNK1 signaling associated with type I interferon induction. iScience 2024; 27:108808. [PMID: 38303713 PMCID: PMC10831286 DOI: 10.1016/j.isci.2024.108808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Type I interferons (IFNs) increase the excitability of dorsal root ganglia (DRGs) neurons via MNK-eIF4E signaling to promote pain sensitization in mice. Activation of stimulator of interferon response cGAMP interactor 1 (STING) signaling is pivotal for type I IFN induction. We hypothesized that vinorelbine, a chemotherapeutic and activator of STING, would cause a neuropathic pain-like state in mice via STING signaling in DRG neurons associated with IFN production. Vinorelbine caused tactile allodynia and grimacing in wild-type (WT) mice and increased p-IRF3, type I IFNs, and p-eIF4E in peripheral nerves. Supporting our hypothesis, vinorelbine failed to induce IRF3-IFNs-MNK-eIF4E in StingGt/Gt mice and, subsequently, failed to cause pain. The vinorelbine-elicited increase of p-eIF4E was not observed in Mknk1-/- (MNK1 knockout) mice in peripheral nerves consistent with the attenuated pro-nociceptive effect of vinorelbine in these mice. Our findings show that activation of STING signaling in the periphery causes a neuropathic pain-like state through type I IFN signaling to DRG nociceptors.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Eric T. David
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Krish Patel
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Abhira Ravirala
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
16
|
Huang T, Chen C, Du J, Zheng Z, Ye S, Fang S, Liu K. A tRF-5a fragment that regulates radiation resistance of colorectal cancer cells by targeting MKNK1. J Cell Mol Med 2023; 27:4021-4033. [PMID: 37864471 PMCID: PMC10747413 DOI: 10.1111/jcmm.17982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023] Open
Abstract
Radiotherapy serves as a crucial strategy in the treatment of colorectal cancer (CRC). However, its efficacy is often hindered by the challenge of radiation resistance. Although the literature suggests that some tRNA-derived small RNAs (tsRNAs) are associated with various cancers, studies reporting the relationship of tsRNAs with cancer cell radiosensitivity have not been published yet. In our study, we utilized tsRNAs sequencing to predict differentially expressed tsRNAs in two CRC cells and their radioresistant cells, and 10 tsRNAs with significant differences in expression were validated by qPCR. The target genes of tRF-16-7X9PN5D were predicted and verified by the bioinformatics, dual-luciferase reporter gene assay and western blotting analyses. Wound healing, colony formation, transwell invasion and CCK-8 assays were performed to detect the effects of tRF-16-7X9PN5D on cell function and radiosensitivity. Western blotting evaluated the relationship between tRF-16-7X9PN5D and the MKNK-eIF4E axis. Our findings demonstrated that tRF-16-7X9PN5D expression was substantially downregulated in radioresistant CRC cells. Furthermore, tRF-16-7X9PN5D could promote CRC cells' ability to proliferate, migrate, invade and obtain radiation resistance by targeting MKNK1. Finally, tRF-16-7X9PN5D could regulate eIF4E phosphorylation via MKNK1. This investigation indicated that tRF-16-7X9PN5D has an essential regulatory role in the radiation resistance of CRC by directly targeting MKNK1, and may be a new pathway for regulating the CRC radiosensitivity.
Collapse
Affiliation(s)
- Tianyi Huang
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Chujia Chen
- Health Science CenterNingbo UniversityNingboZhejiangChina
| | - Juan Du
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Zhen Zheng
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Shuang Ye
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Shuai Fang
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboZhejiangChina
| | - Kaitai Liu
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| |
Collapse
|
17
|
Li S, Chen JS, Li X, Bai X, Shi D. MNK, mTOR or eIF4E-selecting the best anti-tumor target for blocking translation initiation. Eur J Med Chem 2023; 260:115781. [PMID: 37669595 DOI: 10.1016/j.ejmech.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Jia-Shu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
18
|
Assouline S, Gasiorek J, Bergeron J, Lambert C, Culjkovic-Kraljacic B, Cocolakis E, Zakaria C, Szlachtycz D, Yee K, Borden KLB. Molecular targeting of the UDP-glucuronosyltransferase enzymes in high-eukaryotic translation initiation factor 4E refractory/relapsed acute myeloid leukemia patients: a randomized phase II trial of vismodegib, ribavirin with or without decitabine. Haematologica 2023; 108:2946-2958. [PMID: 36951168 PMCID: PMC10620574 DOI: 10.3324/haematol.2023.282791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
Drug resistance underpins poor outcomes in many malignancies including refractory and relapsed acute myeloid leukemia (R/R AML). Glucuronidation is a common mechanism of drug inactivation impacting many AML therapies, e.g., cytarabine, decitabine, azacytidine and venetoclax. In AML cells, the capacity for glucuronidation arises from increased production of the UDP-glucuronosyltransferase 1A (UGT1A) enzymes. UGT1A elevation was first observed in AML patients who relapsed after response to ribavirin, a drug used to target the eukaryotic translation initiation factor eIF4E, and subsequently in patients who relapsed on cytarabine. UGT1A elevation resulted from increased expression of the sonic-hedgehog transcription factor GLI1. Vismodegib inhibited GLI1, decreased UGT1A levels, reduced glucuronidation of ribavirin and cytarabine, and re-sensitized cells to these drugs. Here, we examined if UGT1A protein levels, and thus glucuronidation activity, were targetable in humans and if this corresponded to clinical response. We conducted a phase II trial using vismodegib with ribavirin, with or without decitabine, in largely heavily pre-treated patients with high-eIF4E AML. Pre-therapy molecular assessment of patients' blasts indicated highly elevated UGT1A levels relative to healthy volunteers. Among patients with partial response, blast response or prolonged stable disease, vismodegib reduced UGT1A levels, which corresponded to effective targeting of eIF4E by ribavirin. In all, our studies are the first to demonstrate that UGT1A protein, and thus glucuronidation, are targetable in humans. These studies pave the way for the development of therapies that impair glucuronidation, one of the most common drug deactivation modalities. Clinicaltrials.gov: NCT02073838.
Collapse
Affiliation(s)
- Sarit Assouline
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2.
| | - Jadwiga Gasiorek
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec
| | - Julie Bergeron
- CEMTL installation Maisonneuve Rosemont, 5415 boul. de l'Assomption, Montreal H1T 2M4
| | - Caroline Lambert
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec
| | - Eftihia Cocolakis
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2
| | - Chadi Zakaria
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2
| | - David Szlachtycz
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2
| | - Karen Yee
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, Toronto, Ontario
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec.
| |
Collapse
|
19
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
20
|
Jiang E, Dinesh A, Jadhav S, Miller RA, Garcia GG. Canagliflozin shares common mTOR and MAPK signaling mechanisms with other lifespan extension treatments. Life Sci 2023; 328:121904. [PMID: 37406767 PMCID: PMC11351721 DOI: 10.1016/j.lfs.2023.121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Long-lived mouse models and treatments that extend lifespan, such as Rapamycin, acarbose and 17α- -estradiol, lead to reduction in mTORC1 activity, declines in cap-dependent translation and increases in cap-independent translation. In addition, these treatments reduce the MEK-ERK-MNK (ERK1-2) signaling cascade, leading to reduction in eIF4E phosphorylation, which also regulates mRNA translation. Here, we report that Canagliflozin, a drug that extends lifespan only in male mice reduces mTORC1 and ERK1-2 signaling in male mice only. The data suggest reduction in mTORC1 and ERK pathways are common mechanisms shared by both genetic and pharmacological models of slowed aging in mice. Our data also reveal a significant sexual dimorphism in the ERK1-2 signaling pathway which might help to explain why some drugs can extend lifespan in males but have no effects in female mice.
Collapse
Affiliation(s)
- Eric Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Arjun Dinesh
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Sohan Jadhav
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, USA; University of Michigan Geriatrics Center, Ann Arbor, MI 48109, USA
| | - Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, USA.
| |
Collapse
|
21
|
Zhao R, Chen Y, Wang D, Zhang C, Song H, Ni G. Role of irisin in bone diseases. Front Endocrinol (Lausanne) 2023; 14:1212892. [PMID: 37600697 PMCID: PMC10436578 DOI: 10.3389/fendo.2023.1212892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Bone diseases are common among middle-aged and elderly people, and harm to activities of daily living (ADL) and quality of life (QOL) for patients. It is crucial to search for key regulatory factors associated with the development of bone diseases and explore potential therapeutic targets for bone diseases. Irisin is a novel myokine that has been discovered in recent years. Accumulating evidence indicates that irisin has beneficial effects in the treatment of various diseases such as metabolic, cardiovascular and neurological disorders, especially bone-related diseases. Recent studies had shown that irisin plays the role in various bone diseases such as osteoarthritis, osteoporosis and other bone diseases, suggesting that irisin may be a potential molecule for the prevention and treatment of bone diseases. Therefore, in this review, by consulting the related domestic and international literature of irisin and bone diseases, we summarized the specific regulatory mechanisms of irisin in various bone diseases, and provided a systematic theoretical basis for its application in the diagnosis and treatment of the bone diseases.
Collapse
Affiliation(s)
- Ruobing Zhao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yan Chen
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Henan Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Miller RA, Li X, Garcia G. Aging Rate Indicators: Speedometers for Aging Research in Mice. AGING BIOLOGY 2023; 1:10.59368/agingbio.20230003. [PMID: 37694163 PMCID: PMC10486275 DOI: 10.59368/agingbio.20230003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
A "biomarker of aging" is conceptualized as an index of how far an individual has moved along the path from youth to old age. In contrast, an aging rate indicator (ARI) represents a measure of speed, rather than distance, that is, a measure of how rapidly the individual is moving toward the phenotypic changes typical of old age. This essay presents and reviews recent data suggesting common characteristics of slow-aging mice, whether the slowed aging is caused by a mutant allele, the calorie restriction diet, or drugs that slow aging and extend mean and maximal lifespan. Some of the candidate ARIs, shared by nine varieties of slow-aging mice, are physiological changes seen in fat, fat-associated macrophages, muscle, liver, brain, and plasma. Others are molecular measurements, reflecting activity of mTORC1, selective mRNA translation, or each of six MAP kinases in two distinct MAPK cascades in liver, muscle, or kidney. Changes in ARIs are notable in young adult mice after 8 months of drug or diet exposure, are detectable in mutant mice at least as early as 4-6 months of age, and persist until at least 18-22 months. Many of the candidate ARIs are thought to play an influential role in cognition, inflammation, exercise responses, and control of metabolic rate, and are thus plausible as modulators of age-related physiological and neurological illnesses. In principle, screening for drugs that induce alterations in ARIs in normal young adult mice might facilitate the search for preventive medicines that can retard aging and late-life illnesses in mice or in human populations.
Collapse
Affiliation(s)
- Richard A. Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Xinna Li
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - Gonzalo Garcia
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Fernandez A, Monsen PJ, Platanias LC, Schiltz GE. Medicinal chemistry approaches to target the MNK-eIF4E axis in cancer. RSC Med Chem 2023; 14:1060-1087. [PMID: 37360400 PMCID: PMC10285747 DOI: 10.1039/d3md00121k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Aberrant translation of proteins that promote cell proliferation is an essential factor that defines oncogenic processes and cancer. The process for ribosomal translation of proteins from mRNA requires an essential initiation step which is controlled by the protein eIF4E, which binds the RNA 5'-cap and forms the eIF4F complex that subsequently translates protein. Typically, eIF4E is activated by phosphorylation on Ser209 by MNK1 and MNK2 kinases. Substantial work has shown that eIF4E and MNK1/2 are dysregulated in many cancers and this axis has therefore become an active area of interest for developing new cancer therapeutics. This review summarizes and discusses recent work to develop small molecules that target different steps in the MNK-eIF4E axis as potential cancer therapeutics. The aim of this review is to cover the breadth of different molecular approaches being taken and the medicinal chemistry basis for their optimization and testing as new cancer therapeutics.
Collapse
Affiliation(s)
- Ann Fernandez
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Paige J Monsen
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago IL 60611 USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center Chicago IL 60612 USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine Chicago IL 60611 USA
| |
Collapse
|
24
|
Franco-Enzástiga Ú, Natarajan K, David ET, Patel KJ, Ravirala A, Price TJ. Vinorelbine causes a neuropathic pain-like state in mice via STING and MNK1 signaling associated with type I interferon induction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543579. [PMID: 37333411 PMCID: PMC10274710 DOI: 10.1101/2023.06.03.543579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Type I interferons (IFNs) increase the excitability of dorsal root ganglion (DRG) neurons via activation of MNK-eIF4E translation signaling to promote pain sensitization in mice. Activation of STING signaling is a key component of type I IFN induction. Manipulation of STING signaling is an active area of investigation in cancer and other therapeutic areas. Vinorelbine is a chemotherapeutic that activates STING and has been shown to cause pain and neuropathy in oncology clinical trials in patients. There are conflicting reports on whether STING signaling promotes or inhibits pain in mice. We hypothesized that vinorelbine would cause a neuropathic pain-like state in mice via STING and signaling pathways in DRG neurons associated with type I IFN induction. Vinorelbine (10 mg/kg, i.v.) induced tactile allodynia and grimacing in WT male and female mice and increased p-IRF3 and type I IFN protein in peripheral nerves. In support of our hypothesis, vinorelbine-mediated pain was absent in male and female StingGt/Gt mice. Vinorelbine also failed to induce IRF3 and type I IFN signaling in these mice. Since type I IFNs engage translational control via MNK1-eIF4E in DRG nociceptors, we assessed vinorelbine-mediated p-eIF4E changes. Vinorelbine increased p-eIF4E in DRG in WT animals but not in StingGt/Gt or Mknk1-/- (MNK1 KO) mice. Consistent with these biochemical findings, vinorelbine had an attenuated pro-nociceptive effect in male and female MNK1 KO mice. Our findings support the conclusion that activation of STING signaling in the peripheral nervous system causes a neuropathic pain-like state that is mediated by type I IFN signaling to DRG nociceptors.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Eric T. David
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Krish J. Patel
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Abhira Ravirala
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
25
|
Patil S, Chalkiadaki K, Mergiya TF, Krimbacher K, Amorim IS, Akerkar S, Gkogkas CG, Bramham CR. eIF4E phosphorylation recruits β-catenin to mRNA cap and promotes Wnt pathway translation in dentate gyrus LTP maintenance. iScience 2023; 26:106649. [PMID: 37250335 PMCID: PMC10214474 DOI: 10.1016/j.isci.2023.106649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
The mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), is crucial for translation and regulated by Ser209 phosphorylation. However, the biochemical and physiological role of eIF4E phosphorylation in translational control of long-term synaptic plasticity is unknown. We demonstrate that phospho-ablated Eif4eS209A Knockin mice are profoundly impaired in dentate gyrus LTP maintenance in vivo, whereas basal perforant path-evoked transmission and LTP induction are intact. mRNA cap-pulldown assays show that phosphorylation is required for synaptic activity-induced removal of translational repressors from eIF4E, allowing initiation complex formation. Using ribosome profiling, we identified selective, phospho-eIF4E-dependent translation of the Wnt signaling pathway in LTP. Surprisingly, the canonical Wnt effector, β-catenin, was massively recruited to the eIF4E cap complex following LTP induction in wild-type, but not Eif4eS209A, mice. These results demonstrate a critical role for activity-evoked eIF4E phosphorylation in dentate gyrus LTP maintenance, remodeling of the mRNA cap-binding complex, and specific translation of the Wnt pathway.
Collapse
Affiliation(s)
- Sudarshan Patil
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Tadiwos F. Mergiya
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Konstanze Krimbacher
- Center for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Inês S. Amorim
- Center for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Shreeram Akerkar
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Christos G. Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Clive R. Bramham
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| |
Collapse
|
26
|
Chalkiadaki K, Hooshmandi M, Lach G, Statoulla E, Simbriger K, Amorim IS, Kouloulia S, Zafeiri M, Pothos P, Bonneil É, Gantois I, Popic J, Kim SH, Wong C, Cao R, Komiyama NH, Atlasi Y, Jafarnejad SM, Khoutorsky A, Gkogkas CG. Mnk1/2 kinases regulate memory and autism-related behaviours via Syngap1. Brain 2023; 146:2175-2190. [PMID: 36315645 PMCID: PMC10411928 DOI: 10.1093/brain/awac398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/03/2022] [Accepted: 10/01/2022] [Indexed: 11/14/2022] Open
Abstract
MAPK interacting protein kinases 1 and 2 (Mnk1/2) regulate a plethora of functions, presumably via phosphorylation of their best characterized substrate, eukaryotic translation initiation factor 4E (eIF4E) on Ser209. Here, we show that, whereas deletion of Mnk1/2 (Mnk double knockout) impairs synaptic plasticity and memory in mice, ablation of phospho-eIF4E (Ser209) does not affect these processes, suggesting that Mnk1/2 possess additional downstream effectors in the brain. Translational profiling revealed only a small overlap between the Mnk1/2- and phospho-eIF4E(Ser209)-regulated translatome. We identified the synaptic Ras GTPase activating protein 1 (Syngap1), encoded by a syndromic autism gene, as a downstream target of Mnk1 because Syngap1 immunoprecipitated with Mnk1 and showed reduced phosphorylation (S788) in Mnk double knockout mice. Knockdown of Syngap1 reversed memory deficits in Mnk double knockout mice and pharmacological inhibition of Mnks rescued autism-related phenotypes in Syngap1+/- mice. Thus, Syngap1 is a downstream effector of Mnk1, and the Mnks-Syngap1 axis regulates memory formation and autism-related behaviours.
Collapse
Affiliation(s)
- Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
- Centre for Discovery Brain Sciences and The Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Mehdi Hooshmandi
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montréal H3A 0G1, Canada
| | - Gilliard Lach
- Centre for Discovery Brain Sciences and The Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Elpida Statoulla
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Konstanze Simbriger
- Centre for Discovery Brain Sciences and The Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Ines S Amorim
- Centre for Discovery Brain Sciences and The Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Stella Kouloulia
- Centre for Discovery Brain Sciences and The Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Maria Zafeiri
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Panagiotis Pothos
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Station Centreville, Montréal H3C 3J7, Canada
| | - Ilse Gantois
- Goodman Cancer Institute and Biochemistry Department, McGill University, Montréal H3A 1A3, Canada
| | - Jelena Popic
- Goodman Cancer Institute and Biochemistry Department, McGill University, Montréal H3A 1A3, Canada
| | - Sung-Hoon Kim
- Goodman Cancer Institute and Biochemistry Department, McGill University, Montréal H3A 1A3, Canada
| | - Calvin Wong
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montréal H3A 0G1, Canada
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Noboru H Komiyama
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Arkady Khoutorsky
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montréal H3A 0G1, Canada
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| |
Collapse
|
27
|
Shiers S, Sahn JJ, Price TJ. MNK1 and MNK2 Expression in the Human Dorsal Root and Trigeminal Ganglion. Neuroscience 2023; 515:96-107. [PMID: 36764601 DOI: 10.1016/j.neuroscience.2023.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Mitogen activated protein kinase interacting kinases (MNK) 1 and 2 are serine/threonine protein kinases that play an important role in translation of mRNAs through their phosphorylation of the RNA 5'-cap binding protein, eukaryotic translation initiation factor (eIF) 4E. These kinases are downstream targets for mitogen activated protein kinases (MAPKs), extracellular activity regulated protein kinase (ERK) and p38. MNKs have been implicated in the sensitization of peripheral nociceptors of the dorsal root and trigeminal ganglion (DRG and TG) using transgenic mouse lines and through the use of specific inhibitors of MNK1 and MNK2. While specific knockout of the Mknk1 gene suggests that it is the key isoform for regulation of nociceptor excitability and nociceptive behaviors in mice, both MKNK1 and MKNK2 genes are expressed in the DRG and TG of mice and humans based on RNA sequencing experiments. Single cell sequencing in mice suggests that Mknk1 and Mknk2 may be expressed in different populations of nociceptors. We sought to characterize mRNA expression in human DRG and TG (N = 3 ganglia for both DRG and TG) for both MNK1 and MNK2. Our results show that both genes are expressed by nearly all neurons in both human ganglia with expression in other cell types as well. Our findings provide evidence that MNK1 and MNK2 are expressed by human nociceptors of males and females and suggest that efforts to pharmacologically target MNKs for pain would likely be translatable due its conserved expression in both species.
Collapse
Affiliation(s)
- Stephanie Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | | | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
28
|
Johansen VBI, Snieckute G, Vind AC, Blasius M, Bekker-Jensen S. Computational and Functional Analysis of Structural Features in the ZAKα Kinase. Cells 2023; 12:cells12060969. [PMID: 36980309 PMCID: PMC10047201 DOI: 10.3390/cells12060969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The kinase ZAKα acts as the proximal sensor of translational impairment and ribotoxic stress, which results in the activation of the MAP kinases p38 and JNK. Despite recent insights into the functions and binding partners of individual protein domains in ZAKα, the mechanisms by which ZAKα binds ribosomes and becomes activated have remained elusive. Here, we highlight a short, thrice-repeated, and positively charged peptide motif as critical for the ribotoxic stress-sensing function of the Sensor (S) domain of ZAKα. We use this insight to demonstrate that the mutation of the SAM domain uncouples ZAKα activity from ribosome binding. Finally, we use 3D structural comparison to identify and functionally characterize an additional folded domain in ZAKα with structural homology to YEATS domains. These insights allow us to formulate a model for ribosome-templated ZAKα activation based on the re-organization of interactions between modular protein domains. In sum, our work both advances our understanding of the protein domains and 3D architecture of the ZAKα kinase and furthers our understanding of how the ribotoxic stress response is activated.
Collapse
Affiliation(s)
- Valdemar Brimnes Ingemann Johansen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
29
|
Regulation of germline proteostasis by HSF1 and insulin/IGF-1 signaling. Biochem Soc Trans 2023; 51:501-512. [PMID: 36892215 DOI: 10.1042/bst20220616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Protein homeostasis (proteostasis) is essential for cellular function and organismal health and requires the concerted actions of protein synthesis, folding, transport, and turnover. In sexually reproducing organisms, the immortal germline lineage passes genetic information across generations. Accumulating evidence indicates the importance of proteome integrity for germ cells as genome stability. As gametogenesis involves very active protein synthesis and is highly energy-demanding, it has unique requirements for proteostasis regulation and is sensitive to stress and nutrient availability. The heat shock factor 1 (HSF1), a key transcriptional regulator of cellular response to cytosolic and nuclear protein misfolding has evolutionarily conserved roles in germline development. Similarly, insulin/insulin-like growth factor-1 (IGF-1) signaling, a major nutrient-sensing pathway, impacts many aspects of gametogenesis. Here, we focus on HSF1 and IIS to review insights into their roles in germline proteostasis and discuss the implications on gamete quality control during stress and aging.
Collapse
|
30
|
Kochavi A, Lovecchio D, Faller WJ, Agami R. Proteome diversification by mRNA translation in cancer. Mol Cell 2023; 83:469-480. [PMID: 36521491 DOI: 10.1016/j.molcel.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis and is well known to be altered by oncogenes to promote cancer development. This distorted mRNA translation is accompanied by the vulnerability of cancer to inhibitors of key mRNA translation components. Novel studies also suggest that these alternations could be utilized for immunotherapy. Ribosome heterogeneity and alternative responses to nutrient shortages, which aid cancer growth and spread, are proposed to elicit aberrant protein production but may also result in previously unidentified therapeutic targets, such as the presentation of cancer-specific peptides at the surface of cancer cells (neoepitopes). This review will assess the driving forces in tRNA and ribosome function that underlie proteome diversification due to alterations in mRNA translation in cancer cells.
Collapse
Affiliation(s)
- Adva Kochavi
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Domenica Lovecchio
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands; Erasmus MC, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
31
|
Mäkinen S, Datta N, Rangarajan S, Nguyen YH, Olkkonen VM, Latva-Rasku A, Nuutila P, Laakso M, Koistinen HA. Finnish-specific AKT2 gene variant leads to impaired insulin signalling in myotubes. J Mol Endocrinol 2023; 70:JME-21-0285. [PMID: 36409629 PMCID: PMC9874976 DOI: 10.1530/jme-21-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Finnish-specific gene variant p.P50T/AKT2 (minor allele frequency (MAF) = 1.1%) is associated with insulin resistance and increased predisposition to type 2 diabetes. Here, we have investigated in vitro the impact of the gene variant on glucose metabolism and intracellular signalling in human primary skeletal muscle cells, which were established from 14 male p.P50T/AKT2 variant carriers and 14 controls. Insulin-stimulated glucose uptake and glucose incorporation into glycogen were detected with 2-[1,2-3H]-deoxy-D-glucose and D-[14C]-glucose, respectively, and the rate of glycolysis was measured with a Seahorse XFe96 analyzer. Insulin signalling was investigated with Western blotting. The binding of variant and control AKT2-PH domains to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) was assayed using PIP StripsTM Membranes. Protein tyrosine kinase and serine-threonine kinase assays were performed using the PamGene® kinome profiling system. Insulin-stimulated glucose uptake and glycogen synthesis in myotubes in vitro were not significantly affected by the genotype. However, the insulin-stimulated glycolytic rate was impaired in variant myotubes. Western blot analysis showed that insulin-stimulated phosphorylation of AKT-Thr308, AS160-Thr642 and GSK3β-Ser9 was reduced in variant myotubes compared to controls. The binding of variant AKT2-PH domain to PI(3,4,5)P3 was reduced as compared to the control protein. PamGene® kinome profiling revealed multiple differentially phosphorylated kinase substrates, e.g. calmodulin, between the genotypes. Further in silico upstream kinase analysis predicted a large-scale impairment in activities of kinases participating, for example, in intracellular signal transduction, protein translation and cell cycle events. In conclusion, myotubes from p.P50T/AKT2 variant carriers show multiple signalling alterations which may contribute to predisposition to insulin resistance and T2D in the carriers of this signalling variant.
Collapse
Affiliation(s)
- Selina Mäkinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu, Helsinki, Finland
| | - Neeta Datta
- Minerva Foundation Institute for Medical Research, Tukholmankatu, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu, Helsinki, Finland
| | - Savithri Rangarajan
- Pam Gene International B.V., Wolvenhoek, BJ ´s-Hertogenbosch, The Netherlands
| | - Yen H Nguyen
- Minerva Foundation Institute for Medical Research, Tukholmankatu, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, Haartmaninkatu, University of Helsinki, Helsinki, Finland
| | - Aino Latva-Rasku
- Turku PET Centre, University of Turku, Kiinamyllynkatu, Turku, Finland
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Kiinamyllynkatu, Turku, Finland
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu, Turku, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Puijonlaaksontie, Kuopio, Finland
| | - Heikki A Koistinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu, Helsinki, Finland
- Correspondence should be addressed to H A Koistinen:
| |
Collapse
|
32
|
Shiers S, Sahn JJ, Price TJ. MNK1 and MNK2 expression in the human dorsal root and trigeminal ganglion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522773. [PMID: 36711529 PMCID: PMC9881964 DOI: 10.1101/2023.01.04.522773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitogen activated protein kinase interacting kinases (MNK) 1 and 2 are serine/threonine protein kinases that play an important role in translation of mRNAs through their phosphorylation of the RNA 5’-cap binding protein, eukaryotic translation initiation factor (eIF) 4E. These kinases are downstream targets for mitogen activated protein kinases (MAPKs), extracellular activity regulated protein kinase (ERK) and p38. MNKs have been implicated in the sensitization of peripheral nociceptors of the dorsal root and trigeminal ganglion (DRG and TG) using transgenic mouse lines and through the use of specific inhibitors of MNK1 and MNK2. While specific knockout of the Mknk1 gene suggests that it is the key isoform for regulation of nociceptor excitability and nociceptive behaviors in mice, both MKNK1 and MKNK2 genes are expressed in the DRG and TG of mice and humans based on RNA sequencing experiments. Single cell sequencing in mice suggests that Mknk1 and Mknk2 may be expressed in different populations of nociceptors. We sought to characterize mRNA expression in human DRG and TG for both MNK1 and MNK2. Our results show that both genes are expressed by nearly all neurons in both human ganglia with expression in other cell types as well. Our findings provide evidence that MNK1 and MNK2 are expressed by human nociceptors and suggest that efforts to pharmacologically target MNKs for pain would likely be translatable due its conserved expression in both species.
Collapse
Affiliation(s)
- Stephanie Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | | | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
33
|
Mazewski C, Platanias LC. MNK Proteins as Therapeutic Targets in Leukemia. Onco Targets Ther 2023; 16:283-295. [PMID: 37113687 PMCID: PMC10128080 DOI: 10.2147/ott.s370874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In leukemia, resistance to therapy is a major concern for survival. MAPK-interacting kinases (MNKs) have been identified as important activators of oncogenic-related signaling and may be mediators of resistance. Recent studies in leukemia models, especially acute myeloid leukemia (AML), have focused on targeting MNKs together with other inhibitors or treating chemotherapy-resistant cells with MNK inhibitors. The preclinical demonstrations of the efficacy of MNK inhibitors in these combination formats would suggest a promising potential for use in clinical trials. Optimizing MNK inhibitors and testing in leukemia models is actively being pursued and may have important implications for the future. These studies are furthering the understanding of the mechanisms of MNKs in cancer which could translate to clinical studies.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Correspondence: Candice Mazewski; Leonidas C Platanias, Email ;
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
34
|
Guo X, Chen S, Wang X, Liu X. Immune-related pulmonary toxicities of checkpoint inhibitors in non-small cell lung cancer: Diagnosis, mechanism, and treatment strategies. Front Immunol 2023; 14:1138483. [PMID: 37081866 PMCID: PMC10110908 DOI: 10.3389/fimmu.2023.1138483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) therapy based on programmed cell death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) has changed the treatment paradigm of advanced non-small cell lung cancer (NSCLC) and improved the survival expectancy of patients. However, it also leads to immune-related adverse events (iRAEs), which result in multiple organ damage. Among them, the most common one with the highest mortality in NSCLC patients treated with ICI is checkpoint inhibitor pneumonitis (CIP). The respiratory signs of CIP are highly coincident and overlap with those in primary lung cancer, which causes difficulties in detecting, diagnosing, managing, and treating. In clinical management, patients with serious CIP should receive immunosuppressive treatment and even discontinue immunotherapy, which impairs the clinical benefits of ICIs and potentially results in tumor recrudesce. Therefore, accurate diagnosis, detailedly dissecting the pathogenesis, and developing reasonable treatment strategies for CIP are essential to prolong patient survival and expand the application of ICI. Herein, we first summarized the diagnosis strategies of CIP in NSCLC, including the classical radiology examination and the rising serological test, pathology test, and artificial intelligence aids. Then, we dissected the potential pathogenic mechanisms of CIP, including disordered T cell subsets, the increase of autoantibodies, cross-antigens reactivity, and the potential role of other immune cells. Moreover, we explored therapeutic approaches beyond first-line steroid therapy and future direction based on targeted signaling pathways. Finally, we discussed the current impediments, future trends, and challenges in fighting ICI-related pneumonitis.
Collapse
|
35
|
Hsu CM, Lin JJ, Su JH, Liu CI. 13-Acetoxysarcocrassolide induces apoptosis in human hepatocellular carcinoma cells through mitochondrial dysfunction and suppression of the PI3K/AKT/mTOR/p70S6K signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2276-2285. [PMID: 36416062 PMCID: PMC9704080 DOI: 10.1080/13880209.2022.2145489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT 13-Acetoxysarcocrasside, isolated from the Taiwanese soft coral Sarcophyton crassocaule Moser (Alcyoniidae), has biological activity and induces apoptosis in hepatocellular carcinoma cells. OBJECTIVE To elucidate the mechanisms underlying apoptosis induced by 13-acetoxysarcocrasside in HA22T and HepG2 hepatocellular carcinoma cells. MATERIAL AND METHODS MTT and morphology assays were employed to assess the anti-proliferative effects of 13-acetoxysarcocrasside (1-5 μM). TUNEL/DAPI staining and annexin V-fluorescein isothiocyanate/propidium iodide staining were used to detect apoptosis. Cells were treated with13-acetoxysarcocrassolide (0, 1, 2, and 4 μM) for 24 h, and the mechanism of cells apoptotic was detected by western blotting. Cells treated with DMSO were the control. RESULTS Survival of the cells decreased with the addition of 13-acetoxysarcocrassolide, and at 4 μM cell survival was inhibited by approximately 40%. After treatment of cells with 13-acetoxysarcocrassolide, the incidence of early/late apoptosis to be 0.3%/0.5%∼5.4%/22.7% for HA22T cells, in the HePG2 cells were 0.6%/0.2%∼14.4%/23.7%. Western blotting analysis showed that the expression of Bax, Bad, cleaved caspase 3, cleaved caspase 9, cleaved-PARP-1, cytochrome c, and p-4EBP1 increased with an increasing concentration of 13-acetoxysarcocrasside (0, 1, 2, and 4 μM), whereas that of Bcl-2, Bcl-xL, Mcl-1, p-Bad, p-PI3K, p-AKT, p-mTOR, p-70S6K, p-S6, p-eIF4E, and p-eIF4B decreased. DISCUSSION AND CONCLUSIONS Apoptosis induced by 13-acetoxysarcocrassolide in HA22T and HepG2 cells is mediated by mitochondrial dysfunction and inactivation of the PI3K/AKT/mTOR/p70S6K pathway. The potential of 13-acetoxysarcocrassolide as a chemotherapeutic agent should be further assessed for use in human hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Chang-Min Hsu
- Antai Medical Care Corporation, Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
| | - Jen-Jie Lin
- Department of Research & Development, Yu Jun Biotechnology Co., Ltd, Pingtung, Taiwan
| | - Jui-Hsin Su
- Department of Science Education, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Chih-I Liu
- Department of Nursing, Meiho University, Pingtung, Taiwan
| |
Collapse
|
36
|
Yousif LI, Tanja AA, de Boer RA, Teske AJ, Meijers WC. The role of immune checkpoints in cardiovascular disease. Front Pharmacol 2022; 13:989431. [PMID: 36263134 PMCID: PMC9574006 DOI: 10.3389/fphar.2022.989431] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) are monoclonal antibodies which bind to immune checkpoints (IC) and their ligands to prevent inhibition of T-cell activation by tumor cells. Currently, multiple ICI are approved targeting Cytotoxic T-lymphocyte antigen 4 (CTLA-4), Programmed Death Protein 1 (PD-1) and its ligand PD-L1, and Lymphocyte-activation gene 3 (LAG-3). This therapy has provided potent anti-tumor effects and improved prognosis for many cancer patients. However, due to systemic effects, patients can develop immune related adverse events (irAE), including possible life threatening cardiovascular irAE, like atherosclerosis, myocarditis and cardiomyopathy. Inhibition of vascular IC is associated with increased atherosclerotic burden and plaque instability. IC protect against atherosclerosis by inhibiting T-cell activity and cytokine production, promoting regulatory T-cell differentiation and inducing T-cell exhaustion. In addition, PD-L1 on endothelial cells might promote plaque stability by reducing apoptosis and increasing expression of tight junction molecules. In the heart, IC downregulate the immune response to protect against cardiac injury by reducing T-cell activity and migration. Here, inhibition of IC could induce life-threatening T-cell-mediated-myocarditis. One proposed purpose behind lymphocyte infiltration is reaction to cardiac antigens, caused by decreased self-tolerance, and thereby increased autoimmunity because of IC inhibition. In addition, there are several reports of ICI-mediated cardiomyopathy with immunoglobulin G expression on cardiomyocytes, indicating an autoimmune response. IC are mostly known due to their cardiotoxicity. However, t his review compiles current knowledge on mechanisms behind IC function in cardiovascular disease with the aim of providing an overview of possible therapeutic targets in prevention or treatment of cardiovascular irAEs.
Collapse
Affiliation(s)
- Laura I. Yousif
- Department of Experimental Cardiology, University Medical Center Groningen, Groningen, Netherlands
| | - Anniek A. Tanja
- Graduate School of Life Science, Utrecht University, Utrecht, Netherlands
| | - Rudolf A. de Boer
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Arco J. Teske
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Wouter C. Meijers
- Department of Experimental Cardiology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
37
|
Design, Synthesis and Evaluation of Novel Phorbazole C Derivatives as MNK Inhibitors through Virtual High-Throughput Screening. Mar Drugs 2022; 20:md20070429. [PMID: 35877722 PMCID: PMC9319845 DOI: 10.3390/md20070429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E at Ser209 to control the translation of certain mRNAs and regulate the process of cell proliferation, cell migration and invasion, etc. Development of MNK inhibitors would be an effective treatment for related diseases. We used the MarineChem3D database to identify hit compounds targeting the protein MNK1 and MNK2 through high-throughput screening. Compounds from the phorbazole family showed good interactions with MNK1, and phorbazole C was selected as our hit compound. By analyzing the binding mode, we designed and synthesized 29 derivatives and evaluated their activity against MNKs, of which, six compounds showed good inhibition to MNKs. We also confirmed three interactions between this kind of compound and MNK1, which are vital for the activity. In conclusion, we report series of novel MNK inhibitors inspired from marine natural products and their relative structure–activity relationship. This will provide important information for further developing MNK inhibitors based on this kind of structure.
Collapse
|
38
|
Adamson AL, Jeffus D, Davis A, Greengrove E. Epstein-Barr virus lytic replication activates and is dependent upon MAPK-interacting kinase 1/2 in a cell-type dependent manner. Virology 2022; 572:72-85. [DOI: 10.1016/j.virol.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/17/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
|
39
|
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022; 11:cells11081325. [PMID: 35456004 PMCID: PMC9029738 DOI: 10.3390/cells11081325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absence of the Fragile X Mental Retardation Protein (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.
Collapse
Affiliation(s)
- Claudio D’Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Jitse Broos
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - Thierry Torfs
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Correspondence: ; Tel.: +0032-(0)-32-652-657
| |
Collapse
|
40
|
Nikou SA, Zhou C, Griffiths JS, Kotowicz NK, Coleman BM, Green MJ, Moyes DL, Gaffen SL, Naglik JR, Parker PJ. The Candida albicans toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways. Sci Signal 2022; 15:eabj6915. [PMID: 35380879 PMCID: PMC7612652 DOI: 10.1126/scisignal.abj6915] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fungal pathogen Candida albicans secretes the peptide toxin candidalysin, which damages epithelial cells and drives an innate inflammatory response mediated by the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) pathways and the transcription factor c-Fos. In cultured oral epithelial cells, candidalysin activated the MAPK p38, which resulted in heat shock protein 27 (Hsp27) activation, IL-6 release, and EGFR phosphorylation without affecting the induction of c-Fos. p38 activation was not triggered by EGFR but by two nonredundant pathways involving MAPK kinases (MKKs) and the kinase Src, which differentially controlled p38 signaling outputs. Whereas MKKs mainly promoted p38-dependent release of IL-6, Src promoted p38-mediated phosphorylation of EGFR in a ligand-independent fashion. In parallel, candidalysin also activated the EGFR-ERK pathway in a ligand-dependent manner, resulting in c-Fos activation and release of the neutrophil-activating chemokines G-CSF and GM-CSF. In mice, early clearance events of oral C. albicans infection required p38 but not c-Fos. These findings delineate how candidalysin activates the pathways downstream of the MAPKs p38 and ERK that differentially contribute to immune activation during C. albicans infection.
Collapse
Affiliation(s)
- Spyridoula-Angeliki Nikou
- Protein Phosphorylation Lab, The Francis Crick Institute; London, UK
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Chunsheng Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - James S. Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Natalia K. Kotowicz
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Bianca M. Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - Mary J. Green
- Experimental Histopathology Lab, The Francis Crick Institute; London, UK
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, USA
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London; London, UK
| | - Peter J. Parker
- Protein Phosphorylation Lab, The Francis Crick Institute; London, UK
- School of Cancer and Pharmaceutical Sciences, New Hunt’s House, King’s College London; London, UK
| |
Collapse
|
41
|
Pham TN, Spaulding C, Shields MA, Metropulos AE, Shah DN, Khalafalla MG, Principe DR, Bentrem DJ, Munshi HG. Inhibiting MNK kinases promotes macrophage immunosuppressive phenotype to limit CD8+ T cell anti-tumor immunity. JCI Insight 2022; 7:152731. [PMID: 35380995 PMCID: PMC9090262 DOI: 10.1172/jci.insight.152731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
To elicit effective anti-tumor responses, CD8+ T cells need to infiltrate tumors and sustain their effector function within the immunosuppressive tumor microenvironment. Here we evaluate the role of MNK kinase activity in regulating CD8+ T cell infiltration and anti-tumor activity in pancreatic and thyroid tumors. We first show that human pancreatic and thyroid tumors with increased MNK kinase activity are associated with decreased infiltration by CD8+ T cells. We then show that while MNK inhibitors increase CD8+ T cells in these tumors, they induce a T cell exhaustion phenotype in the tumor microenvironment. Mechanistically, we show that the exhaustion phenotype is not caused by upregulation of PD-L1 but by tumor-associated macrophages (TAMs) becoming more immunosuppressive following MNK inhibitor treatment. Reversal of CD8+ T cell exhaustion by an anti-PD-1 antibody or TAM depletion synergizes with MNK inhibitors to control tumor growth and prolong animal survival. Importantly, we show in ex vivo human pancreatic tumor slice cultures that MNK inhibitors increase the expression of markers associated with immunosuppressive TAMs. Together, these findings demonstrate a previously unknown role of MNK kinases in modulating a pro-tumoral phenotype in macrophages and identify combination regimens involving MNK inhibitors to enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Thao Nd Pham
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Mario A Shields
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Anastasia E Metropulos
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Dhavan N Shah
- Department of Surgery, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Mahmoud G Khalafalla
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, United States of America
| | - David J Bentrem
- Department of Surgery, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| |
Collapse
|
42
|
Chithelen J, Franke H, Länder N, Grafen A, Schneider-Schaulies J. The Sphingolipid Inhibitors Ceranib-2 and SKI-II Reduce Measles Virus Replication in Primary Human Lymphocytes: Effects on mTORC1 Downstream Signaling. Front Physiol 2022; 13:856143. [PMID: 35370781 PMCID: PMC8968423 DOI: 10.3389/fphys.2022.856143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/28/2022] [Indexed: 11/14/2022] Open
Abstract
The bioactive sphingolipids ceramide and sphingosine-1-phosphate (S1P) are involved in the regulation of cell homeostasis and activity ranging from apoptosis to proliferation. We recently described that the two compounds ceranib-2 (inhibiting acid ceramidase) and SKI-II [inhibiting the sphingosine kinases 1 and − 2 (SphK1/2)] reduce mTORC1 activity and measles virus (MV) replication in human primary peripheral blood lymphocytes (PBL) by about one log step. We now further investigated whether mTORC1 downstream signaling and viral protein expression may be affected by ceranib-2 and/or SKI-II. Western blot analyses showed that in uninfected cells the phosphorylation of the eukaryotic initiation factor 4E (eIF4E) was reduced by both inhibitors. Interestingly, MV infection led to an increase of rpS6 protein levels and phosphorylation of eIF4E. Treatment with both inhibitors reduced the rpS6 protein expression, and in addition, SKI-II reduced rpS6 phosphorylation. The phosphorylation of eIF4E was slightly reduced by both inhibitors. In addition, SKI-II led to reduced levels of IKK in MV-infected cells. Both inhibitors reduced the expression of viral proteins and the titers of newly synthesized MV by approximately one log step. As expected, SKI-II and rapamycin reduced also the virally encoded GFP expression; however, ceranib-2 astonishingly led to increased levels of GFP fluorescence. Our findings suggest that the inhibitors ceranib-2 and SKI-II act via differential mechanisms on MV replication. The observed effects on mTORC1 downstream signaling, predominantly the reduction of rpS6 levels by both inhibitors, may affect the translational capacity of the cells and contribute to the antiviral effect in human primary PBL.
Collapse
|
43
|
Gil CH, Chakraborty D, Vieira CP, Prasain N, Calzi SL, Fortmann SD, Hu P, Banno K, Jamal M, Huang C, Sielski MS, Lin Y, Huang X, Dupont MD, Floyd JL, Prasad R, Longhini ALF, McGill TJ, Chung HM, Murphy MP, Kotton DN, Boulton ME, Yoder MC, Grant MB. Specific mesoderm subset derived from human pluripotent stem cells ameliorates microvascular pathology in type 2 diabetic mice. SCIENCE ADVANCES 2022; 8:eabm5559. [PMID: 35245116 PMCID: PMC8896785 DOI: 10.1126/sciadv.abm5559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) were differentiated into a specific mesoderm subset characterized by KDR+CD56+APLNR+ (KNA+) expression. KNA+ cells had high clonal proliferative potential and specification into endothelial colony-forming cell (ECFCs) phenotype. KNA+ cells differentiated into perfused blood vessels when implanted subcutaneously into the flank of nonobese diabetic/severe combined immunodeficient mice and when injected into the vitreous of type 2 diabetic mice (db/db mice). Transcriptomic analysis showed that differentiation of hiPSCs derived from diabetics into KNA+ cells was sufficient to change baseline differences in gene expression caused by the diabetic status and reprogram diabetic cells to a pattern similar to KNA+ cells derived from nondiabetic hiPSCs. Proteomic array studies performed on retinas of db/db mice injected with either control or diabetic donor-derived KNA+ cells showed correction of aberrant signaling in db/db retinas toward normal healthy retina. These data provide "proof of principle" that KNA+ cells restore perfusion and correct vascular dysfunction in db/db mice.
Collapse
Affiliation(s)
- Chang-Hyun Gil
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dibyendu Chakraborty
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Cristiano P. Vieira
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Nutan Prasain
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Astellas Institute for Regenerative Medicine (AIRM), Westborough, MA 01581, USA
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Seth D. Fortmann
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
- Medical Scientist Training Program (MSTP), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ping Hu
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Kimihiko Banno
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Mohamed Jamal
- Center for Regenerative Medicine, Pulmonary Center, and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Endodontics, Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 00000, UAE
| | - Chao Huang
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Micheli S. Sielski
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Yang Lin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xinxin Huang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Zhongshan-Xuhui Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 310104, China
| | - Mariana D. Dupont
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Jason L. Floyd
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Ana Leda F. Longhini
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Trevor J. McGill
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Pulmonary Center, and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| |
Collapse
|
44
|
Ran F, Liu Y, Xu Z, Meng C, Yang D, Qian J, Deng X, Zhang Y, Ling Y. Recent development of BTK-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2022; 233:114232. [PMID: 35247756 DOI: 10.1016/j.ejmech.2022.114232] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a promising target in the treatment of various cancers. Despite the early success of BTK inhibitors in the clinic, these single-target drug therapies have limitations in their clinical applications, such as drug resistance. Several alternative strategies have been developed, including the use of dual inhibitors, to maximize the therapeutic potential of anticancer drugs. In this review, we highlight the scientific background and theoretical basis for developing BTK-based dual inhibitors, as well as the status of these agents in preclinical and clinical studies, and discuss further options in this field. We posit that these advances in BTK-based dual inhibitors confirm their feasibility for the treatment of refractory tumors, including those with drug resistance, and provide a framework for future drug design in this field. Accordingly, we anticipate increasingly rapid progress in the development of novel potent dual inhibitors and advanced clinical research on BTK-based dual inhibitors.
Collapse
Affiliation(s)
- Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yun Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Dezhi Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Xuexian Deng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|
45
|
Jafari Nivlouei S, Soltani M, Shirani E, Salimpour MR, Travasso R, Carvalho J. A multiscale cell-based model of tumor growth for chemotherapy assessment and tumor-targeted therapy through a 3D computational approach. Cell Prolif 2022; 55:e13187. [PMID: 35132721 PMCID: PMC8891571 DOI: 10.1111/cpr.13187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Computational modeling of biological systems is a powerful tool to clarify diverse processes contributing to cancer. The aim is to clarify the complex biochemical and mechanical interactions between cells, the relevance of intracellular signaling pathways in tumor progression and related events to the cancer treatments, which are largely ignored in previous studies. MATERIALS AND METHODS A three-dimensional multiscale cell-based model is developed, covering multiple time and spatial scales, including intracellular, cellular, and extracellular processes. The model generates a realistic representation of the processes involved from an implementation of the signaling transduction network. RESULTS Considering a benign tumor development, results are in good agreement with the experimental ones, which identify three different phases in tumor growth. Simulating tumor vascular growth, results predict a highly vascularized tumor morphology in a lobulated form, a consequence of cells' motile behavior. A novel systematic study of chemotherapy intervention, in combination with targeted therapy, is presented to address the capability of the model to evaluate typical clinical protocols. The model also performs a dose comparison study in order to optimize treatment efficacy and surveys the effect of chemotherapy initiation delays and different regimens. CONCLUSIONS Results not only provide detailed insights into tumor progression, but also support suggestions for clinical implementation. This is a major step toward the goal of predicting the effects of not only traditional chemotherapy but also tumor-targeted therapies.
Collapse
Affiliation(s)
- Sahar Jafari Nivlouei
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran.,Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.,Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.,Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.,Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran.,Department of Mechanical Engineering, Foolad Institute of Technology, Fooladshahr, Iran
| | | | - Rui Travasso
- Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| | - João Carvalho
- Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
46
|
Chen BR, Wei TW, Tang CP, Sun JT, Shan TK, Fan Y, Yang TT, Li YF, Ma Y, Wang SB, Wang ZM, Wang H, Shi JZ, Liu L, Chen JW, Zhou LH, Du C, Sun R, Wang QM, Wang LS. MNK2-eIF4E axis promotes cardiac repair in the infarcted mouse heart by activating cyclin D1. J Mol Cell Cardiol 2022; 166:91-106. [DOI: 10.1016/j.yjmcc.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2022]
|
47
|
Wink L, Miller RA, Garcia GG. Rapamycin, Acarbose and 17α-estradiol share common mechanisms regulating the MAPK pathways involved in intracellular signaling and inflammation. Immun Ageing 2022; 19:8. [PMID: 35105357 PMCID: PMC8805398 DOI: 10.1186/s12979-022-00264-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Rapamycin (Rapa), acarbose (ACA), and 17α-estradiol (17aE2, males only) have health benefits that increase lifespan of mice. Little is known about how these three agents alter the network of pathways downstream of insulin/IGF1 signals as well as inflammatory/stress responses. RESULTS ACA, Rapa, and 17aE2 (in males, but not in females) oppose age-related increases in the MEK1- ERK1/2-MNK1/2 cascade, and thus reduce phosphorylation of eIF4E, a key component of cap-dependent translation. In parallel, these treatments (in both sexes) reduce age-related increases in the MEK3-p38MAPK-MK2 pathway, to decrease levels of the acute phase response proteins involved in inflammation. CONCLUSION Each of three drugs converges on the regulation of both the ERK1/2 signaling pathway and the p38-MAPK pathway. The changes induced by treatments in ERK1/2 signaling are seen in both sexes, but the 17aE2 effects are male-specific, consistent with the effects on lifespan. However, the inhibition of age-dependent p38MAPK pathways and acute phase responses is triggered in both sexes by all three drugs, suggesting new approaches to prevention or reversal of age-related inflammatory changes in a clinical setting independent of lifespan effects.
Collapse
Affiliation(s)
- Lily Wink
- grid.214458.e0000000086837370Department of Chemistry, University of Michigan College of Literature Science and The Arts, Ann Arbor, USA
| | - Richard A. Miller
- grid.214458.e0000000086837370Department of Pathology, University of Michigan School of Medicine, Ann Arbor, USA ,grid.214458.e0000000086837370University of Michigan Geriatrics Center, Room 3005 BSRB, Box 2200, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | - Gonzalo G. Garcia
- grid.214458.e0000000086837370Department of Pathology, University of Michigan School of Medicine, Ann Arbor, USA
| |
Collapse
|
48
|
Henderson Berg MH, Del Rincón SV, Miller WH. Potential therapies for immune-related adverse events associated with immune checkpoint inhibition: from monoclonal antibodies to kinase inhibition. J Immunother Cancer 2022; 10:jitc-2021-003551. [PMID: 35086945 PMCID: PMC8796266 DOI: 10.1136/jitc-2021-003551] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
The therapeutic benefits of immune checkpoint inhibitors (ICIs), which enable antitumor immune responses, can be tempered by unwanted immune-related adverse events (irAEs). Treatment recommendations stratified by irAE phenotype and immunohistopathological findings have only recently been proposed and are often based on those used in primary autoimmune diseases, including targeting of specific proinflammatory cytokines with monoclonal antibodies. Increasing evidence supports the use of such antibody-based strategies as effective steroid-sparing treatments, although the therapies themselves may be associated with additional drug toxicities and reduced ICI efficacy. Kinases are key contributors to the adaptive and innate responses that drive primary autoimmune diseases and irAEs. The janus kinase/signal transducer and activator of transcription, Bruton’s tyrosine kinase, and mitogen-activated protein kinase-interacting serine/threonine protein kinases 1 and 2 pathways are also critical to tumor progression and have important roles in cells of the tumor microenvironment. Herein, we review the histopathological, biological, and clinical evidence to support specific monoclonal antibodies and kinase inhibition as management strategies for irAEs.
Collapse
Affiliation(s)
- Meagan-Helen Henderson Berg
- Division of Dermatology, McGill University, Montreal, Québec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Québec, Canada.,Cancer Axis, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Sonia Victoria Del Rincón
- Division of Experimental Medicine, McGill University, Montreal, Québec, Canada .,Cancer Axis, Lady Davis Institute for Medical Research, Montreal, Québec, Canada.,Department of Oncology, Jewish General Hospital and McGill University, Montreal, Québec, Canada.,Centre for Translational Research, McGill University, Montreal, Québec, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, McGill University, Montreal, Québec, Canada .,Cancer Axis, Lady Davis Institute for Medical Research, Montreal, Québec, Canada.,Department of Oncology, Jewish General Hospital and McGill University, Montreal, Québec, Canada.,Centre for Translational Research, McGill University, Montreal, Québec, Canada.,Rossy Cancer Network, McGill University, Montreal, Québec, Canada
| |
Collapse
|
49
|
Pandey G, Kuykendall AT, Reuther GW. JAK2 inhibitor persistence in MPN: uncovering a central role of ERK activation. Blood Cancer J 2022; 12:13. [PMID: 35082276 PMCID: PMC8792018 DOI: 10.1038/s41408-022-00609-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
The Philadelphia chromosome negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are driven by hyper activation of the JAK2 tyrosine kinase, the result of mutations in three MPN driving genes: JAK2, MPL, and CALR. While the anti-inflammatory effects of JAK2 inhibitors can provide improved quality of life for many MPN patients, the upfront and persistent survival of disease-driving cells in MPN patients undergoing JAK2 inhibitor therapy thwarts potential for remission. Early studies indicated JAK2 inhibitor therapy induces heterodimeric complex formation of JAK2 with other JAK family members leading to sustained JAK2-dependent signaling. Recent work has described novel cell intrinsic details as well as cell extrinsic mechanisms that may contribute to why JAK2 inhibition may be ineffective at targeting MPN driving cells. Diverse experimental strategies aimed at uncovering mechanistic details that contribute to JAK2 inhibitor persistence have each highlighted the role of MEK/ERK activation. These approaches include, among others, phosphoproteomic analyses of JAK2 signaling as well as detailed assessment of JAK2 inhibition in mouse models of MPN. In this focused review, we highlight these and other studies that collectively suggest targeting MEK/ERK in combination with JAK2 inhibition has the potential to improve the efficacy of JAK2 inhibitors in MPN patients. As MPN patients patiently wait for improved therapies, such studies should further strengthen optimism that pre-clinical research is continuing to uncover mechanistic insights regarding the ineffectiveness of JAK2 inhibitors, which may lead to development of improved therapeutic strategies.
Collapse
Affiliation(s)
- Garima Pandey
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Gary W Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
50
|
Mars JC, Ghram M, Culjkovic-Kraljacic B, Borden KLB. The Cap-Binding Complex CBC and the Eukaryotic Translation Factor eIF4E: Co-Conspirators in Cap-Dependent RNA Maturation and Translation. Cancers (Basel) 2021; 13:6185. [PMID: 34944805 PMCID: PMC8699206 DOI: 10.3390/cancers13246185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5' end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy.
Collapse
Affiliation(s)
- Jean-Clement Mars
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Mehdi Ghram
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| |
Collapse
|