1
|
Rodella G, Préat V, Gallez B, Malfanti A. Design Strategies for Hyaluronic Acid-based Drug Delivery Systems in Cancer Immunotherapy. J Control Release 2025; 383:113784. [PMID: 40294800 DOI: 10.1016/j.jconrel.2025.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Despite its robust therapeutic potential, cancer immunotherapy has provided little progress towards improved survival rates for patients bearing immunologically refractory tumors. The implementation of advanced drug delivery systems represents a powerful means of improving cancer immunotherapy by relieving immunosuppression and promoting immune response; however, the overall impact of these systems on immunotherapy currently remains modest. Hyaluronic acid represents a widely used polymer in drug delivery; meanwhile, recent studies linking hyaluronic acid to the immune system make this polymer an attractive component in the design of next-generation cancer immunotherapies. Herein, we review our current understanding of the immunological properties of hyaluronic acid and discuss them in the context of bioactive functions and immune-related interactions with receptors, immune, and cancer cells. We analyze the potential of hyaluronic acid as a component in advanced drug delivery systems, highlighting strategies for the design of more effective vaccines and cancer chemo-immunotherapies. Finally, we discuss critical considerations to facilitate design and clinical translation to overcome existing challenges and maximize therapeutic potential.
Collapse
Affiliation(s)
- Giulia Rodella
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Bernard Gallez
- UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium.
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; Departement of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
2
|
Rodgers B, Cannes do Nascimento N, Cox A, Bailey TW, Sivasankar MP, Schaser AJ. Molecular changes, histopathology, and ultrasonic vocalization acoustic profiles of systemically dehydrated rats. PLoS One 2025; 20:e0322187. [PMID: 40261870 PMCID: PMC12013907 DOI: 10.1371/journal.pone.0322187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Systemic hydration is known to promote optimal functioning of bodily systems-including the vocal folds. The impact of systemic dehydration on the biology of the vocal folds and the downstream effects of dehydration on voice output are not well understood. An in vivo rat model of systemic dehydration was employed to investigate vocal fold gene expression, histological changes, and acoustic changes in vocalization. Ultrasonic vocalizations (USVs) were recorded every day for 5 days (baseline), in male and female Long-Evans rats (N = 36, ages: 3-4 months) using an anticipatory reward paradigm. Next, rats were dehydrated (N = 18) using a published water-restriction model for 5 days or euhydrated (N = 18) and provided ad libitum access to water for 5 days. USVs were recorded daily during the dehydration/euhydration period. The USV variables were averaged at baseline and following dehydration/euhydration for individual animals, and the difference between these time periods was used for statistical analysis. USV analysis included total USV count, complexity ratio, duration (s), frequency range (kHz), and maximum intensity (dB). At the end of dehydration/euhydration, animals were euthanized, and kidney and vocal fold tissue samples were dissected and processed for histology and gene expression analysis. Compared to euhydrated rats, dehydrated male and female rats had significantly up-regulated gene expression of kidney renin (male p = 0.047; female p = 0.018), indicating physiologic dehydration. There were no statistically significant differences in the USV acoustic profile or histopathology between the two groups. Differential expression (p < 0.05) of several genes related to extracellular matrix remodeling, inflammatory responses, and water ion transport in the vocal folds was present. Our results indicate that mild systemic dehydration impacts gene expression in the vocal fold mucosa; however, these gene expression changes are not evident in the acoustic profile of vocalizations.
Collapse
Affiliation(s)
- Brooke Rodgers
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Naila Cannes do Nascimento
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
| | - Taylor W. Bailey
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - M. Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Allison J. Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
3
|
Pashkina E, Bykova M, Berishvili M, Lazarev Y, Kozlov V. Hyaluronic Acid-Based Drug Delivery Systems for Cancer Therapy. Cells 2025; 14:61. [PMID: 39851489 PMCID: PMC11764402 DOI: 10.3390/cells14020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
In recent years, hyaluronic acid (HA) has attracted increasing attention as a promising biomaterial for the development of drug delivery systems. Due to its unique properties, such as high biocompatibility, low toxicity, and modifiability, HA is becoming a basis for the creation of targeted drug delivery systems, especially in the field of oncology. Receptors for HA overexpressed in subpopulations of cancer cells, and one of them, CD44, is recognized as a molecular marker for cancer stem cells. This review examines the role of HA and its receptors in health and tumors and analyzes existing HA-based delivery systems and their use in various types of cancer. The development of new HA-based drug delivery systems will bring new opportunities and challenges to anti-cancer therapy.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Maria Bykova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
| | - Maria Berishvili
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
| | - Yaroslav Lazarev
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk, Russia
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Kang W, Ha Y, Jung Y, Lee H, Park T. Nerol mitigates dexamethasone-induced skin aging by activating the Nrf2 signaling pathway in human dermal fibroblasts. Life Sci 2024; 356:123034. [PMID: 39236900 DOI: 10.1016/j.lfs.2024.123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Collagen and hyaluronic acid are essential components of the dermis that collaborate to maintain skin elasticity and hydration due to their unique biochemical properties and interactions within the extracellular matrix. Prolonged exposure to glucocorticoids can induce skin aging, which manifests as diminished collagen content and hyaluronic acid levels in the dermis. Nerol, a monoterpene alcohol found in essential oils, was examined in this study for its potential to counteract glucocorticoid-induced skin aging and the underlying mechanism behind its effects. Our findings reveal that non-toxic concentrations of nerol treatment can reinstate collagen content and hyaluronic acid levels in human dermal fibroblasts treated with dexamethasone. Mechanistically, nerol mitigates dexamethasone-induced oxidative stress by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The protective effects of nerol were significantly abrogated when the Nrf2 pathway was inhibited using the specific inhibitor ML385. In conclusion, nerol protects human dermal fibroblasts against glucocorticoid-induced skin aging by ameliorating oxidative stress via activation of the Nrf2 pathway, thereby highlighting its potential as a therapeutic agent for preventing and treating glucocorticoid-induced skin aging.
Collapse
Affiliation(s)
- Wesuk Kang
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yoojeong Ha
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yearim Jung
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyunbin Lee
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Fink SP, Triggs-Raine B. Genetic Deficiencies of Hyaluronan Degradation. Cells 2024; 13:1203. [PMID: 39056785 PMCID: PMC11275217 DOI: 10.3390/cells13141203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) is a large polysaccharide that is broadly distributed and highly abundant in the soft connective tissues and embryos of vertebrates. The constitutive turnover of HA is very high, estimated at 5 g per day in an average (70 kg) adult human, but HA turnover must also be tightly regulated in some processes. Six genes encoding homologues to bee venom hyaluronidase (HYAL1, HYAL2, HYAL3, HYAL4, HYAL6P/HYALP1, SPAM1/PH20), as well as genes encoding two unrelated G8-domain-containing proteins demonstrated to be involved in HA degradation (CEMIP/KIAA1199, CEMIP2/TMEM2), have been identified in humans. Of these, only deficiencies in HYAL1, HYAL2, HYAL3 and CEMIP have been identified as the cause or putative cause of human genetic disorders. The phenotypes of these disorders have been vital in determining the biological roles of these enzymes but there is much that is still not understood. Deficiencies in these HA-degrading proteins have been created in mice and/or other model organisms where phenotypes could be analyzed and probed to expand our understanding of HA degradation and function. This review will describe what has been found in human and animal models of hyaluronidase deficiency and discuss how this has advanced our understanding of HA's role in health and disease.
Collapse
Affiliation(s)
- Stephen P. Fink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Barbara Triggs-Raine
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
6
|
Jokelainen O, Rintala TJ, Fortino V, Pasonen-Seppänen S, Sironen R, Nykopp TK. Differential expression analysis identifies a prognostically significant extracellular matrix-enriched gene signature in hyaluronan-positive clear cell renal cell carcinoma. Sci Rep 2024; 14:10626. [PMID: 38724670 PMCID: PMC11082176 DOI: 10.1038/s41598-024-61426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.
Collapse
Affiliation(s)
- Otto Jokelainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Teemu J Rintala
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Reijo Sironen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Timo K Nykopp
- Department of Surgery, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Surgery, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Lagunas-Rangel FA. Naked mole-rat hyaluronan. Biochimie 2024; 220:58-66. [PMID: 38158036 DOI: 10.1016/j.biochi.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Naked mole rats (NMRs) are renowned for their exceptional longevity and remarkable maintenance of health throughout their lifetime. Their subterranean lifestyle has led to adaptations that have resulted in elevated levels of a very high molecular weight hyaluronan in their tissues. Hyaluronan, a glycosaminoglycan, is a key component of the extracellular matrix, which plays a critical role in maintaining tissue structure and regulating cell signaling pathways. This phenomenon in NMRs is attributed to a higher processing and production capacity by some of their hyaluronan synthases, along with lower degradation by certain hyaluronidases. Furthermore, this adaptation indirectly confers several advantages to NMRs, such as the preservation of skin elasticity and youthful appearance, accelerated wound healing, protection against oxidative stress, and resistance to conditions such as cancer and arthritis, largely attributable to CD44 signaling and other intricate mechanisms. Thus, the main objective of this study was to conduct a comprehensive study of the distinctive features of NMR hyaluronan, particularly emphasizing the currently known molecular mechanisms that contribute to its beneficial properties. Furthermore, this research delves into the potential applications of NMR hyaluronan in both cosmetic and therapeutic fields, as well as the challenges involved.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
8
|
Zhao Y, Zheng Z, Zhang Z, Xu Y, Hillpot E, Lin YS, Zakusilo FT, Lu JY, Ablaeva J, Biashad SA, Miller RA, Nevo E, Seluanov A, Gorbunova V. Evolution of high-molecular-mass hyaluronic acid is associated with subterranean lifestyle. Nat Commun 2023; 14:8054. [PMID: 38052795 PMCID: PMC10698142 DOI: 10.1038/s41467-023-43623-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Hyaluronic acid is a major component of extracellular matrix which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (Heterocephalus glaber) contains abundant high-molecular-mass hyaluronic acid in its tissues, which contributes to this species' cancer resistance and possibly to its longevity. Here we report that abundant high-molecular-mass hyaluronic acid is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These subterranean mammalian species accumulate abundant high-molecular-mass hyaluronic acid by regulating the expression of genes involved in hyaluronic acid degradation and synthesis and contain unique mutations in these genes. The abundant high-molecular-mass hyaluronic acid may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic conditions. Our work suggests that high-molecular-mass hyaluronic acid has evolved with subterranean lifestyle.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 301158, China
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Yandong Xu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 301158, China
| | - Eric Hillpot
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Yifei S Lin
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Frances T Zakusilo
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Seyed Ali Biashad
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, 14627, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, 14627, USA.
| |
Collapse
|
9
|
Zheng S, An S, Luo Y, Vithran DTA, Yang S, Lu B, Deng Z, Li Y. HYBID in osteoarthritis: Potential target for disease progression. Biomed Pharmacother 2023; 165:115043. [PMID: 37364478 DOI: 10.1016/j.biopha.2023.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis.
Collapse
Affiliation(s)
- Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Luo
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Djandan Tadum Arthur Vithran
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaoqu Yang
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Narita T, Tobisawa Y, Bobkov A, Jackson M, Ohyama C, Irie F, Yamaguchi Y. TMEM2 is a bona fide hyaluronidase possessing intrinsic catalytic activity. J Biol Chem 2023; 299:105120. [PMID: 37527776 PMCID: PMC10474455 DOI: 10.1016/j.jbc.2023.105120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023] Open
Abstract
Transmembrane protein 2 (TMEM2) was originally identified as a membrane-anchored protein of unknown function. We previously demonstrated that TMEM2 can degrade hyaluronan (HA). Furthermore, we showed that induced global knockout of Tmem2 in adult mice results in rapid accumulation of incompletely degraded HA in bodily fluids and organs, supporting the identity of TMEM2 as a cell surface hyaluronidase. In spite of these advances, no direct evidence has been presented to demonstrate the intrinsic hyaluronidase activity of TMEM2. Here, we directly establish the catalytic activity of TMEM2. The ectodomain of TMEM2 (TMEM2ECD) was expressed as a His-tagged soluble protein and purified by affinity and size-exclusion chromatography. Both human and mouse TMEM2ECD robustly degrade fluorescein-labeled HA into 5 to 10 kDa fragments. TMEM2ECD exhibits this HA-degrading activity irrespective of the species of TMEM2 origin and the position of epitope tag insertion. The HA-degrading activity of TMEM2ECD is more potent than that of HYAL2, a hyaluronidase which, like TMEM2, has been implicated in cell surface HA degradation. Finally, we show that TMEM2ECD can degrade not only fluorescein-labeled HA but also native high-molecular weight HA. In addition to these core findings, our study reveals hitherto unrecognized confounding factors, such as the quality of reagents and the choice of assay systems, that could lead to erroneous conclusions regarding the catalytic activity of TMEM2. In conclusion, our results demonstrate that TMEM2 is a legitimate functional hyaluronidase. Our findings also raise cautions regarding the choice of reagents and methods for performing degradation assays for hyaluronidases.
Collapse
Affiliation(s)
- Takuma Narita
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Yuki Tobisawa
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA; Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Andrey Bobkov
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Michael Jackson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumitoshi Irie
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
11
|
Tarullo SE, He Y, Daughters C, Knutson TP, Henzler CM, Price MA, Shanley R, Witschen P, Tolg C, Kaspar RE, Hallstrom C, Gittsovich L, Sulciner ML, Zhang X, Forster CL, Lange CA, Shats O, Desler M, Cowan KH, Yee D, Schwertfeger KL, Turley EA, McCarthy JB, Nelson AC. Receptor for hyaluronan-mediated motility (RHAMM) defines an invasive niche associated with tumor progression and predicts poor outcomes in breast cancer patients. J Pathol 2023; 260:289-303. [PMID: 37186300 PMCID: PMC10417882 DOI: 10.1002/path.6082] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Breast cancer invasion and metastasis result from a complex interplay between tumor cells and the tumor microenvironment (TME). Key oncogenic changes in the TME include aberrant synthesis, processing, and signaling of hyaluronan (HA). Hyaluronan-mediated motility receptor (RHAMM, CD168; HMMR) is an HA receptor enabling tumor cells to sense and respond to this aberrant TME during breast cancer progression. Previous studies have associated RHAMM expression with breast tumor progression; however, cause and effect mechanisms are incompletely established. Focused gene expression analysis of an internal breast cancer patient cohort confirmed that increased RHAMM expression correlates with aggressive clinicopathological features. To probe mechanisms, we developed a novel 27-gene RHAMM-related signature (RRS) by intersecting differentially expressed genes in lymph node (LN)-positive patient cases with the transcriptome of a RHAMM-dependent model of cell transformation, which we validated in an independent cohort. We demonstrate that the RRS predicts for poor survival and is enriched for cell cycle and TME-interaction pathways. Further analyses using CRISPR/Cas9-generated RHAMM-/- breast cancer cells provided direct evidence that RHAMM promotes invasion in vitro and in vivo. Immunohistochemistry studies highlighted heterogeneous RHAMM protein expression, and spatial transcriptomics associated the RRS with RHAMM-high microanatomic foci. We conclude that RHAMM upregulation leads to the formation of 'invasive niches', which are enriched in RRS-related pathways that drive invasion and could be targeted to limit invasive progression and improve patient outcomes. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sarah E Tarullo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yuyu He
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Claire Daughters
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Todd P Knutson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Christine M Henzler
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Matthew A Price
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ryan Shanley
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Patrice Witschen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Cornelia Tolg
- London Health Sciences Center, Western University, Ontario, Canada
| | - Rachael E Kaspar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Hallstrom
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Lyubov Gittsovich
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Megan L Sulciner
- School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Xihong Zhang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Colleen L Forster
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Oleg Shats
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michelle Desler
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kenneth H Cowan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eva A Turley
- London Health Sciences Center, Western University, Ontario, Canada
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Chen Q, Peng Q, Cai J, Liu Y, Lu X, Xiong W, Zeng Z, Li G, Li X, Li X, Xiang B, Yi M, Chen P. Super Enhancer Driven Hyaluronan Synthase 3 Promotes Malignant Progression of Nasopharyngeal Carcinoma. J Cancer 2023; 14:1751-1762. [PMID: 37476195 PMCID: PMC10355197 DOI: 10.7150/jca.83954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 07/22/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor of the head and neck with high metastatic and invasive nature. Super enhancers (SEs) control the expression of cell identity genes and oncogenes during tumorigenesis. As a glycosaminoglycan in the tumor microenvironment, hyaluronan (HA) is associated with cancer development. High expression of hyaluronan synthase 3 (HAS3) resulted in HA deposition, which promoted the growth of cancer cell. However, its role in NPC development remains elusive. We demonstrated that the levels of HAS3 mRNA or protein were increased in NPC cell lines. Transcription of HAS3 is associated with SE. Disruption of SE by bromodomain containing 4 (BRD4) inhibitor JQ1 resulted in downregulation of HAS3 and inhibition of cell proliferation and invasiveness in NPC cells. Inhibition of HA synthesis by HAS inhibitor 4-MU suppressed cell growth and invasion of NPC cells, whereas HA treatment exerted opposite effects. Genetically silencing HAS3 in HK1 and FaDu NPC cells attenuated cell proliferation and mobility, while re-expression of HAS3 enhanced malignant potential of CNE1 and CNE2 NPC cells. Furthermore, loss of HAS3 impaired metastatic potential of HK1 cells in nude mice. Mechanistically, inhibition of HA synthesis by chemical inhibitor or silencing HAS3 led to reduction of the levels of phosphorylation of EGFR, AKT, and ERK proteins. In contrast, exogenous HA treatment or forced expression of HAS3 activated EGFR/AKT/ERK signaling cascade. This study suggested that HAS3 is driven by SE and overexpressed in NPC. High expression of HAS3 promotes the malignant features of NPC via activation of EGFR/AKT/ERK signaling pathway.
Collapse
Affiliation(s)
- Quanzhu Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008 Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078 Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Qian Peng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008 Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078 Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Jing Cai
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha 410000 Hunan, China
| | - Ying Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008 Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078 Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Xingxing Lu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008 Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078 Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Wei Xiong
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008 Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078 Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Zhaoyang Zeng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008 Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078 Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Guiyuan Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008 Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078 Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Xiaoling Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008 Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078 Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Bo Xiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008 Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078 Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013 Hunan, China
| | - Mei Yi
- Department of Dermatology; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008 Hunan, China
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 Hunan, China
| |
Collapse
|
13
|
Zhang G, Gao Y, Zhao Z, Pyykko I, Zou J. Low-Molecular-Weight Hyaluronic Acid Contributes to Noise-Induced Cochlear Inflammation. Audiol Neurootol 2023; 28:380-393. [PMID: 37231777 DOI: 10.1159/000530280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 03/16/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Our previous work indicated that the activation of the Toll-like receptor (TLR) 4 signaling pathway contributed to noise-induced cochlear inflammation. Previous studies have reported that low-molecular-weight hyaluronic acid (LMW-HA) accumulates during aseptic trauma and promotes inflammation by activating the TLR4 signaling pathway. We hypothesized that LMW-HA or enzymes synthesizing or degrading HA might be involved in noise-induced cochlear inflammation. METHODS The present study included two arms. The first arm was the noise exposure study, in which TLR4, proinflammatory cytokines, HA, hyaluronic acid synthases (HASs), and hyaluronidases (HYALs) in the cochlea as well as auditory brainstem response (ABR) thresholds were measured before and after noise exposure. The second arm was analysis of HA delivery-induced reactions, in which control solution, high-molecular-weight HA (HMW-HA), or LMW-HA was delivered into the cochlea by cochleostomy or intratympanic injection. Then, the ABR threshold and cochlear inflammation were measured. RESULTS After noise exposure, the expression of TLR4, proinflammatory cytokines, HAS1, and HAS3 in the cochlea significantly increased over the 3rd to 7th day post-noise exposure (PE3, PE7). The expression of HYAL2 and HYAL3 dramatically decreased immediately after noise exposure, gradually increased thereafter to levels significantly greater than the preexposure level on PE3, and then rapidly returned to the preexposure level on PE7. The expression of HA, HAS2, and HYAL1 in the cochlea remained unchanged after exposure. After cochleostomy or intratympanic injection, both the hearing threshold shifts and the expression of TLR4, TNF-α, and IL-1β in the cochleae of the LMW-HA group were obviously greater than those of the control group and HMW-HA group. The expression of proinflammatory cytokines in the LMW-HA and control groups on the 7th day (D7) after cochleostomy tended to increase compared to that on the 3rd day (D3), whereas levels in the HMW-HA group tended to decrease on D7 compared to D3. CONCLUSION HAS1, HAS3, HYAL2, and HYAL3 in the cochlea are involved in acoustic trauma-induced cochlear inflammation through the potential proinflammatory function of LMW-HA.
Collapse
Affiliation(s)
- Guoping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Centre for Otolaryngology-Head and Neck Surgery of the Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yiling Gao
- Department of Otolaryngology-Head and Neck Surgery, Centre for Otolaryngology-Head and Neck Surgery of the Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department of Otolaryngology-Head and Neck Surgery, Shidong Hospital, Shanghai, China
| | - Zhen Zhao
- Department of Otolaryngology-Head and Neck Surgery, Centre for Otolaryngology-Head and Neck Surgery of the Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ilmari Pyykko
- Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jing Zou
- Department of Otolaryngology-Head and Neck Surgery, Centre for Otolaryngology-Head and Neck Surgery of the Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department for Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Zhao Y, Zheng Z, Zhang Z, Hillpot E, Lin YS, Zakusilo FT, Lu JY, Ablaeva J, Miller RA, Nevo E, Seluanov A, Gorbunova V. Evolution of High-Molecular-Mass Hyaluronic Acid is Associated with Subterranean Lifestyle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539764. [PMID: 37215017 PMCID: PMC10197608 DOI: 10.1101/2023.05.08.539764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hyaluronic acid (HA) is a major component of extracellular matrix (ECM) which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (NMR, Heterocephalus glaber ) contains abundant high-molecular-mass HA (HMM-HA) in its tissues, which contributes to this species' cancer resistance and possibly longevity. Here we report that abundant HMM-HA is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These species accumulate abundant HMM-HA by regulating the expression of genes involved in HA degradation and synthesis and contain unique mutations in these genes. The abundant high molecular weight HA may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic subterranean environment. HMM-HA may also be coopted to confer cancer resistance and longevity to subterranean mammals. Our work suggests that HMM-HA has evolved with subterranean lifestyle.
Collapse
|
15
|
Lu Y, Zhang W, Zhou L, Xiong Y, Liu Q, Shi X, Tian J. The moisturizing effect of Capparis spinosa fruit extract targeting filaggrin synthesis and degradation. J Cosmet Dermatol 2023; 22:651-660. [PMID: 36221990 DOI: 10.1111/jocd.15461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Small molecular natural products, such as betaine, have unique moisturizing advantages. Capparis spinosa L. fruit is rich in quaternary ammonium alkaloids such as betaine and stachydrine. However, few studies investigated its efficacy and mechanism on human skin. OBJECTIVE Polysaccharides-free C. spinosa fruit extract (CS) was obtained to study its moisturizing effect and mechanisms focusing on filaggrin (FLG) synthesis and degradation. METHODS The clinical moisturizing test was carried out on human arms, calves, and faces after CS treatment for 0.5-6 h. The change in the level of FLG, caspase 14, loricrin, and transglutaminase 5 (TGM 5) was measured by immunofluorescence after CS treatment for 4 and 24 h in a reconstructed epidermis model. Also, the content of pyrrolidone carboxylic acid (PCA) in the stratum corneum was tested by high-performance liquid chromatography (HPLC) both in the epidermis model and human calves. RESULTS Compared with glycerin (positive control), 5% CS showed a strong skin hydration effect on arms and calves when applied for 0.5-6 h. Also, the face hydration increased at 0.5 and 4 h. In addition, 3% CS applied to the recombinant epidermis model under low humidity promoted the immunodetected levels of caspase 14 and PCA content but reduced the levels of FLG at 4 h, however, the levels of FLG, loricrin, and TGM 5 were promoted at 24 h. Meanwhile, CS treatment for 4 h in human calves increased the PCA content in the stratum corneum by 29.9%. CONCLUSIONS Topical application of CS on human skin showed an instant and long-lasting increase in skin hydration by regulating the FLG network. It promoted FLG degradation to form PCA at 4 h both in vivo and in vitro, increasing FLG synthesis after 24 h, potentially reforming the FLG monomer reservoir to alleviate the skin's dry condition.
Collapse
Affiliation(s)
- Yina Lu
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Wenhuan Zhang
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Lidan Zhou
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Yue Xiong
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Qing Liu
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Xuemei Shi
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| | - Jun Tian
- Research and Development Center, Shanghai JAKA Biotech. Co. LTD, Shanghai, China
| |
Collapse
|
16
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
17
|
Fachel FNS, Frâncio L, Poletto É, Schuh RS, Teixeira HF, Giugliani R, Baldo G, Matte U. Gene editing strategies to treat lysosomal disorders: The example of mucopolysaccharidoses. Adv Drug Deliv Rev 2022; 191:114616. [PMID: 36356930 DOI: 10.1016/j.addr.2022.114616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Lysosomal storage disorders are a group of progressive multisystemic hereditary diseases with a combined incidence of 1:4,800. Here we review the clinical and molecular characteristics of these diseases, with a special focus on Mucopolysaccharidoses, caused primarily by the lysosomal storage of glycosaminoglycans. Different gene editing techniques can be used to ameliorate their symptoms, using both viral and nonviral delivery methods. Whereas these are still being tested in animal models, early results of phase I/II clinical trials of gene therapy show how this technology may impact the future treatment of these diseases. Hurdles related to specific hard-to-reach organs, such as the central nervous system, heart, joints, and the eye must be tackled. Finally, the regulatory framework necessary to advance into clinical practice is also discussed.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Lariane Frâncio
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil
| | - Édina Poletto
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Fisiologia, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Printz MA, Sugarman BJ, Paladini RD, Jorge MC, Wang Y, Kang DW, Maneval DC, LaBarre MJ. Risk Factors, Hyaluronidase Expression, and Clinical Immunogenicity of Recombinant Human Hyaluronidase PH20, an Enzyme Enabling Subcutaneous Drug Administration. AAPS J 2022; 24:110. [PMID: 36266598 DOI: 10.1208/s12248-022-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Multiple FDA-approved and clinical-development stage therapeutics include recombinant human hyaluronidase PH20 (rHuPH20) to facilitate subcutaneous administration. As rHuPH20-reactive antibodies potentially interact with endogenous PH20, we investigated rHuPH20 immunogenicity risk through hyaluronidase tissue expression, predicted B cell epitopes, CD4+ T cell stimulation indices and related these to observed clinical immunogenicity profiles from 18 clinical studies. Endogenous hyaluronidase PH20 expression in humans/mice was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR), quantitative RT-PCR, and deep RNA-Seq. rHuPH20 potential T cell epitopes were evaluated in silico and confirmed in vitro. Potential B cell epitopes were predicted for rHuPH20 sequence in silico, and binding of polyclonal antibodies from various species tested on a rHuPH20 peptide microarray. Clinical immunogenicity data were collected from 2643 subjects. From 57 human adult and fetal tissues previously screened by RT-PCR, 22 tissue types were analyzed by deep RNA-Seq. Hyaluronidase PH20 messenger RNA expression was detected in adult human testes. In silico analyses of the rHuPH20 sequence revealed nine T cell epitope clusters with immunogenic potential, one cluster was homologous to human leukocyte antigen. rHuPH20 induced T cell activation in 6-10% of peripheral blood mononuclear cell donors. Fifteen epitopes in the rHuPH20 sequence had the potential to cross-react with B cells. The cumulative treatment-induced incidence of anti-rHuPH20 antibodies across clinical studies was 8.8%. Hyaluronidase PH20 expression occurs primarily in adult testes. Low CD4+ T cell activation and B cell cross-reactivity by rHuPH20 suggest weak rHuPH20 immunogenicity potential. Restricted expression patterns of endogenous PH20 indicate low immunogenicity risk of subcutaneous rHuPH20.
Collapse
Affiliation(s)
- Marie A Printz
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Rd, San Diego, California, 92121, USA.
| | - Barry J Sugarman
- Formerly with Halozyme Therapeutics, Inc., San Diego, California, USA
| | | | - Michael C Jorge
- Formerly with Halozyme Therapeutics, Inc., San Diego, California, USA
| | - Yan Wang
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Rd, San Diego, California, 92121, USA
| | - David W Kang
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Rd, San Diego, California, 92121, USA
| | - Daniel C Maneval
- Formerly with Halozyme Therapeutics, Inc., San Diego, California, USA
| | - Michael J LaBarre
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Rd, San Diego, California, 92121, USA
| |
Collapse
|
19
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
20
|
Riecks J, Parnigoni A, Győrffy B, Kiesel L, Passi A, Vigetti D, Götte M. The hyaluronan-related genes HAS2, HYAL1-4, PH20 and HYALP1 are associated with prognosis, cell viability and spheroid formation capacity in ovarian cancer. J Cancer Res Clin Oncol 2022; 148:3399-3419. [PMID: 35767191 PMCID: PMC9587083 DOI: 10.1007/s00432-022-04127-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Purpose Hyaluronan modulates tumour progression, including cell adhesion, cohesion, proliferation and invasion, and the cancer stem cell phenotype. In ovarian cancer, high levels of stromal hyaluronan are associated with poor prognosis. In this work, hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-4, PH-20, HYALP1) were examined with regard to different levels of gene expression and its influence on ovarian cancer patients’ survival. The impact of a siRNA depletion of HAS2 was investigated in vitro. Methods Using the Kaplan–Meier Plotter tool, we investigated the influence of hyaluronic synthases and hyaluronidases on the survival of a collective of 1435 ovarian cancer patients. Differences in gene expression between normal (n = 46) and cancerous (n = 744) ovarian tissue were examined using the TNMplot database. Following an evaluation of hyaluronan-related gene expression in the ATCC ovarian cancer panel, we studied SKOV3 and SW 626 ovarian cancer cells subjected to HAS2 siRNA or control siRNA treatment in terms of HAS1-3, HYAL2 and HYAL3 mRNA expression. We investigated the ability to form spheroids using the Hanging Drop method and the response to chemotherapy at different concentrations using the MTT Assay. By STRING analysis, interactions within the enzymes of the hyaluronic acid system and with binding partners were visualized. Results HAS1, HYAL1 and HYAL4 mRNA expression is significantly upregulated, whereas HAS2, HYAL2 and HYAL3 mRNA expression is significantly downregulated in ovarian cancer tissue compared to controls. HAS2 improves cell viability, the capability to form tumour spheroids and has a negative prognostic value regarding overall survival. Lower HAS2 expression and high expression of HYAL2 and HYAL3 favours the survival of ovarian cancer patients. HAS2 knockdown cells and control cells showed a moderate response to combinatorial in vitro chemotherapy with taxol and cisplatin. Conclusion In conclusion, our study shows that the hyaluronic acid system has a relevant influence on the survival of ovarian cancer patients and could therefore be considered as a possible prognostic factor.
Collapse
Affiliation(s)
- Jette Riecks
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
| | - Arianna Parnigoni
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
- TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany.
| |
Collapse
|
21
|
Wiesinger AM, Bigger B, Giugliani R, Scarpa M, Moser T, Lampe C, Kampmann C, Lagler FB. The Inflammation in the Cytopathology of Patients With Mucopolysaccharidoses- Immunomodulatory Drugs as an Approach to Therapy. Front Pharmacol 2022; 13:863667. [PMID: 35645812 PMCID: PMC9136158 DOI: 10.3389/fphar.2022.863667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/31/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSDs), characterized by the accumulation of glycosaminoglycans (GAGs). GAG storage-induced inflammatory processes are a driver of cytopathology in MPS and pharmacological immunomodulation can bring improvements in brain, cartilage and bone pathology in rodent models. This manuscript reviews current knowledge with regard to inflammation in MPS patients and provides hypotheses for the therapeutic use of immunomodulators in MPS. Thus, we aim to set the foundation for a rational repurposing of the discussed molecules to minimize the clinical unmet needs still remaining despite enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Anna-Maria Wiesinger
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- *Correspondence: Anna-Maria Wiesinger,
| | - Brian Bigger
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Roberto Giugliani
- Department of Genetics, Medical Genetics Service and Biodiscovery Laboratory, HCPA, UFRGS, Porto Alegre, Brazil
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christina Lampe
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Department of Child and Adolescent Medicine, Center of Rare Diseases, University Hospitals Giessen/Marburg, Giessen, Germany
| | - Christoph Kampmann
- Department of Pediatric Cardiology, University Hospital Mainz, Mainz, Germany
| | - Florian B. Lagler
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
| |
Collapse
|
22
|
|
23
|
Lierova A, Kasparova J, Filipova A, Cizkova J, Pekarova L, Korecka L, Mannova N, Bilkova Z, Sinkorova Z. Hyaluronic Acid: Known for Almost a Century, but Still in Vogue. Pharmaceutics 2022; 14:838. [PMID: 35456670 PMCID: PMC9029726 DOI: 10.3390/pharmaceutics14040838] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA) has a special position among glycosaminoglycans. As a major component of the extracellular matrix (ECM). This simple, unbranched polysaccharide is involved in the regulation of various biological cell processes, whether under physiological conditions or in cases of cell damage. This review summarizes the history of this molecule's study, its distinctive metabolic pathway in the body, its unique properties, and current information regarding its interaction partners. Our main goal, however, is to intensively investigate whether this relatively simple polymer may find applications in protecting against ionizing radiation (IR) or for therapy in cases of radiation-induced damage. After exposure to IR, acute and belated damage develops in each tissue depending upon the dose received and the cellular composition of a given organ. A common feature of all organ damage is a distinct change in composition and structure of the ECM. In particular, the important role of HA was shown in lung tissue and the variability of this flexible molecule in the complex mechanism of radiation-induced lung injuries. Moreover, HA is also involved in intermediating cell behavior during morphogenesis and in tissue repair during inflammation, injury, and would healing. The possibility of using the HA polymer to affect or treat radiation tissue damage may point to the missing gaps in the responsible mechanisms in the onset of this disease. Therefore, in this article, we will also focus on obtaining answers from current knowledge and the results of studies as to whether hyaluronic acid can also find application in radiation science.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lenka Pekarova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Nikola Mannova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| |
Collapse
|
24
|
Fasham J, Lin S, Ghosh P, Radio FC, Farrow EG, Thiffault I, Kussman J, Zhou D, Hemming R, Zahka K, Chioza BA, Rawlins LE, Wenger OK, Gunning AC, Pizzi S, Onesimo R, Zampino G, Barker E, Osawa N, Rodriguez MC, Neuhann TM, Zackai EH, Keena B, Capasso J, Levin AV, Bhoj E, Li D, Hakonarson H, Wentzensen IM, Jackson A, Chandler KE, Coban-Akdemir ZH, Posey JE, Banka S, Lupski JR, Sheppard SE, Tartaglia M, Triggs-Raine B, Crosby AH, Baple EL. Elucidating the clinical spectrum and molecular basis of HYAL2 deficiency. Genet Med 2022; 24:631-644. [PMID: 34906488 PMCID: PMC9933146 DOI: 10.1016/j.gim.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE We previously defined biallelic HYAL2 variants causing a novel disorder in 2 families, involving orofacial clefting, facial dysmorphism, congenital heart disease, and ocular abnormalities, with Hyal2 knockout mice displaying similar phenotypes. In this study, we better define the phenotype and pathologic disease mechanism. METHODS Clinical and genomic investigations were undertaken alongside molecular studies, including immunoblotting and immunofluorescence analyses of variant/wild-type human HYAL2 expressed in mouse fibroblasts, and in silico modeling of putative pathogenic variants. RESULTS Ten newly identified individuals with this condition were investigated, and they were associated with 9 novel pathogenic variants. Clinical studies defined genotype-phenotype correlations and confirmed a recognizable craniofacial phenotype in addition to myopia, cleft lip/palate, and congenital cardiac anomalies as the most consistent manifestations of the condition. In silico modeling of missense variants identified likely deleterious effects on protein folding. Consistent with this, functional studies indicated that these variants cause protein instability and a concomitant cell surface absence of HYAL2 protein. CONCLUSION These studies confirm an association between HYAL2 alterations and syndromic cleft lip/palate, provide experimental evidence for the pathogenicity of missense alleles, enable further insights into the pathomolecular basis of the disease, and delineate the core and variable clinical outcomes of the condition.
Collapse
Affiliation(s)
- James Fasham
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Siying Lin
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Promita Ghosh
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù (Bambino Gesù Pediatric Hospital), IRCCS, Rome, Italy
| | - Emily G Farrow
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO
| | | | - Jennifer Kussman
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO
| | - Dihong Zhou
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO
| | - Rick Hemming
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kenneth Zahka
- Pediatric Cardiology, Cleveland Clinic, Cleveland, OH
| | - Barry A Chioza
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Lettie E Rawlins
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Olivia K Wenger
- New Leaf Center, Clinic for Special Children, Mount Eaton, OH
| | - Adam C Gunning
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù (Bambino Gesù Pediatric Hospital), IRCCS, Rome, Italy
| | - Roberta Onesimo
- Center for Rare Disease and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli (Gemelli University Hospital), IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Disease and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli (Gemelli University Hospital), IRCCS, Rome, Italy
| | - Emily Barker
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Natasha Osawa
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Megan Christine Rodriguez
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Beth Keena
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jenina Capasso
- Golisano Children's Hospital and Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Alex V Levin
- Golisano Children's Hospital and Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Dong Li
- Golisano Children's Hospital and Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Adam Jackson
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Sarah E Sheppard
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù (Bambino Gesù Pediatric Hospital), IRCCS, Rome, Italy.
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, Rax Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Andrew H Crosby
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom.
| | - Emma L Baple
- Medical Research, Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom.
| |
Collapse
|
25
|
Tolg C, Messam BJA, McCarthy JB, Nelson AC, Turley EA. Hyaluronan Functions in Wound Repair That Are Captured to Fuel Breast Cancer Progression. Biomolecules 2021; 11:1551. [PMID: 34827550 PMCID: PMC8615562 DOI: 10.3390/biom11111551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Signaling from an actively remodeling extracellular matrix (ECM) has emerged as a critical factor in regulating both the repair of tissue injuries and the progression of diseases such as metastatic cancer. Hyaluronan (HA) is a major component of the ECM that normally functions in tissue injury to sequentially promote then suppress inflammation and fibrosis, a duality in which is featured, and regulated in, wound repair. These essential response-to-injury functions of HA in the microenvironment are hijacked by tumor cells for invasion and avoidance of immune detection. In this review, we first discuss the numerous size-dependent functions of HA and emphasize the multifunctional nature of two of its receptors (CD44 and RHAMM) in regulating the signaling duality of HA in excisional wound healing. This is followed by a discussion of how HA metabolism is de-regulated in malignant progression and how targeting HA might be used to better manage breast cancer progression.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada;
| | - Britney Jodi-Ann Messam
- Department Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - James Benjamin McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Andrew Cook Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Eva Ann Turley
- London Regional Cancer Program, Lawson Health Research Institute, Department Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
26
|
Kuroda Y, Higashi H. Regulation of hyaluronan production by β2 adrenergic receptor signaling. Biochem Biophys Res Commun 2021; 575:50-55. [PMID: 34455221 DOI: 10.1016/j.bbrc.2021.08.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hyaluronan (HA), the main component of the extracellular matrix, is involved in tissue elasticity and cell scaffolding, and in progression of conditions such as cancer, inflammation and wound healing. Signaling by G protein coupled receptor (GPCR) activation increases expression of hyaluronan synthase (HAS) and HA production. The β2 adrenergic receptor (β2AR) is a catecholamine-liganded GPCR that is involved in cancer progression and wound healing. Since HA and β2AR are involved in a common pathology, we investigated whether β2AR signaling regulates HA production. METHODS After stimulating β2AR-expressing cells with a β agonist, the amount of HA in the culture medium was measured and HAS expression was examined by real-time PCR. A variety of signaling molecule inhibitors were used to identify signaling pathways that alter HAS expression. RESULTS β2AR activation increased HA production and enhanced HAS2 expression. The increase in HAS2 expression by β2AR activation occurred via the Gs - adenylyl cyclase - PKA - CREB signal transduction pathway. CONCLUSIONS Downstream signal transduction by β2AR activation increased HA production by enhancing transcription of the HAS2 gene. This study suggests that β2AR is a GPCR that regulates HA production, and that stimulation with a catecholamine (β2 agonist) can regulate HA production. GENERAL SIGNIFICANCE β2AR may function through regulation of HA production in cancer progression and wound healing.
Collapse
Affiliation(s)
- Yoshiyuki Kuroda
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Hideyoshi Higashi
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
27
|
Marinho A, Nunes C, Reis S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021; 11:1518. [PMID: 34680150 PMCID: PMC8533685 DOI: 10.3390/biom11101518] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023] Open
Abstract
Hyaluronic acid (HA) is a natural polymer, produced endogenously by the human body, which has unique physicochemical and biological properties, exhibiting desirable biocompatibility and biodegradability. Therefore, it has been widely studied for possible applications in the area of inflammatory diseases. Although exogenous HA has been described as unable to restore or replace the properties and activities of endogenous HA, it can still provide satisfactory pain relief. This review aims to discuss the advances that have been achieved in the treatment of inflammatory diseases using hyaluronic acid as a key ingredient, essentially focusing on studies carried out between the years 2017 and 2021.
Collapse
Affiliation(s)
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (A.M.); (S.R.)
| | | |
Collapse
|
28
|
Yamamoto T, Suzuki S, Fujii T, Mima Y, Watanabe K, Matsumoto M, Nakamura M, Fujita N. Efficacy of hyaluronic acid on intervertebral disc inflammation: An in vitro study using notochordal cell lines and human disc cells. J Orthop Res 2021; 39:2197-2208. [PMID: 33251629 DOI: 10.1002/jor.24933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 02/04/2023]
Abstract
Hyaluronic acid (HA) is widely recognized as a therapeutic target and currently used in medicine. However, HA metabolism during intervertebral disc degeneration (IVDD) has not been completely elucidated. This study aimed to evaluate the efficacy of HA on intervertebral disc (IVD) inflammation and identify the main molecules modulating HA degradation in IVDs. To assess HA function in IVD cells in vitro, we treated human disc cells and U-CH1-N cells, a notochordal nucleus pulposus cell line, with HA or hyaluronidase. Real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis showed that tumor necrosis factor alpha (TNF-α)-mediated induction of the expression of TNF-α and cyclooxygenase-2 (COX2) was clearly neutralized by HA treatment, and the expression of TNF-α and COX2 was significantly induced by hyaluronidase treatment in both cell types. Additionally, Western blot analysis showed that hyaluronidase-induced phosphorylation of p38 and Erk1/2, and that TNF-α-mediated phosphorylation of p38 and Erk1/2 was clearly reduced by HA addition. In degenerating human IVD samples, immunohistochemistry for hyaluronidase showed that the expression of hyaluronidases including HYAL1, HYAL2, and cell migration-inducing protein (CEMIP) tended to increase in accordance with IVDD. In particular, HYAL1 showed statistically significant differences. In vitro study also confirmed a similar phenomenon that TNF-α treatment increased both messenger RNA and protein expression in both cell types. Our results demonstrated that HA could potentially suppress IVDD by regulating p38 and Erk1/2 pathways, and that the expression of HYAL1 was correlated with IVDD progression. These findings indicated that HYAL1 would be a potential molecular target for suppressing IVDD by controlling HA metabolism.
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Fujii
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan.,Department of Orthopaedic Surgery, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Yuichiro Mima
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan.,Department of Orthopaedic Surgery, Kawasaki Municipal Hospital, Kanagawa, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan.,Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
29
|
RHAMM Is a Multifunctional Protein That Regulates Cancer Progression. Int J Mol Sci 2021; 22:ijms221910313. [PMID: 34638654 PMCID: PMC8508827 DOI: 10.3390/ijms221910313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Collapse
|
30
|
Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis. Nat Commun 2021; 12:4829. [PMID: 34376643 PMCID: PMC8355239 DOI: 10.1038/s41467-021-25025-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma hyaluronan (HA) increases systemically in type 2 diabetes (T2D) and the HA synthesis inhibitor, 4-Methylumbelliferone, has been proposed to treat the disease. However, HA is also implicated in normal physiology. Therefore, we generated a Hyaluronan Synthase 2 transgenic mouse line, driven by a tet-response element promoter to understand the role of HA in systemic metabolism. To our surprise, adipocyte-specific overproduction of HA leads to smaller adipocytes and protects mice from high-fat-high-sucrose-diet-induced obesity and glucose intolerance. Adipocytes also have more free glycerol that can be released upon beta3 adrenergic stimulation. Improvements in glucose tolerance were not linked to increased plasma HA. Instead, an HA-driven systemic substrate redistribution and adipose tissue-liver crosstalk contributes to the systemic glucose improvements. In summary, we demonstrate an unexpected improvement in glucose metabolism as a consequence of HA overproduction in adipose tissue, which argues against the use of systemic HA synthesis inhibitors to treat obesity and T2D.
Collapse
|
31
|
Bissinger S, Hage C, Wagner V, Maser IP, Brand V, Schmittnaegel M, Jegg AM, Cannarile M, Watson C, Klaman I, Rieder N, González Loyola A, Petrova TV, Cassier PA, Gomez-Roca C, Sibaud V, De Palma M, Hoves S, Ries CH. Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition. Sci Transl Med 2021; 13:13/598/eabd4550. [PMID: 34135110 DOI: 10.1126/scitranslmed.abd4550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) blockade abates tumor-associated macrophage (TAM) infiltrates and provides marked clinical benefits in diffuse-type tenosynovial giant cell tumors. However, facial edema is a common adverse event associated with TAM elimination in patients. In this study, we examined molecular and cellular events associated with edema formation in mice and human patients with cancer treated with a CSF1R blocking antibody. Extended antibody treatment of mice caused marked body weight gain, an indicator of enhanced body fluid retention. This was associated with an increase of extracellular matrix-remodeling metalloproteinases (MMPs), namely MMP2 and MMP3, and enhanced deposition of hyaluronan (HA) and proteoglycans, leading to skin thickening. Discontinuation of anti-CSF1R treatment or blockade of MMP activity restored unaltered body weight and normal skin morphology in the mice. In patients, edema developed at doses well below the established optimal biological dose for emactuzumab, a CSF1R dimerization inhibitor. Patients who developed edema in response to emactuzumab had elevated HA in peripheral blood. Our findings indicate that an early increase of peripheral HA can serve as a pharmacodynamic marker for edema development and suggest potential interventions based on MMP inhibition for relieving periorbital edema in patients treated with CSF1R inhibitors.
Collapse
Affiliation(s)
- Stefan Bissinger
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany.
| | - Carina Hage
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Vinona Wagner
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Ilona-Petra Maser
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Verena Brand
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Martina Schmittnaegel
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.,Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Anna-Maria Jegg
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Michael Cannarile
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | | | - Irina Klaman
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Natascha Rieder
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Alejandra González Loyola
- Department of Oncology, University of Lausanne (UNIL) and Ludwig Institute for Cancer Research Lausanne (LICR), 1066 Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne (UNIL) and Ludwig Institute for Cancer Research Lausanne (LICR), 1066 Epalinges, Switzerland
| | | | - Carlos Gomez-Roca
- Institut Claudius Regaud/Institut Universitaire du Cancer, Toulouse Oncopole, 31300 Toulouse, France
| | - Vincent Sibaud
- Institut Claudius Regaud/Institut Universitaire du Cancer, Toulouse Oncopole, 31300 Toulouse, France
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sabine Hoves
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany
| | - Carola H Ries
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, 82377 Penzberg, Germany.
| |
Collapse
|
32
|
Del Marmol D, Holtze S, Kichler N, Sahm A, Bihin B, Bourguignon V, Dogné S, Szafranski K, Hildebrandt TB, Flamion B. Abundance and size of hyaluronan in naked mole-rat tissues and plasma. Sci Rep 2021; 11:7951. [PMID: 33846452 PMCID: PMC8041917 DOI: 10.1038/s41598-021-86967-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Large amounts of ultra-high molecular weight hyaluronan (HA) have been described as the main cause of cancer resistance in naked mole-rats (Heterocephalus glaber, NMR). Our work examined HA metabolism in these rodents more closely. HA was localized and quantified using HA binding proteins. Its molecular weight was determined using size exclusion chromatography and gel electrophoresis, HA family gene expression using RNAseq analysis, and hyaluronidase activity using zymography. Guinea pigs (Cavia porcellus) and mice (Mus musculus) were used as controls for some experiments. We found that HA localization was similar in NMR, guinea pig, and mouse tissues but NMR had larger amounts and higher molecular weight (maximum, around 2.5 MDa) of HA in serum and almost all tissues tested. We could not find ultra-high molecular weight HA (≥ 4 MDa) in NMR samples, in contrast to previous descriptions. Hyaluronidase-1 had lower expression and activity in NMR than mouse lymph nodes. RNAseq results showed that, among HA family genes, Tnfaip6 and hyaluronidase-3 (Hyal3) were systematically overexpressed in NMR tissues. In conclusion, NMR samples, contrary to expectations, do not harbor ultra-high molecular weight HA, although its amount and average molecular weight are higher in NMR than in guinea pig tissues and serum. Although hyaluronidase expression and activity are lower in NMR than mouse lymph nodes, this not sufficient to explain the presence of high molecular weight HA. A different activity of the NMR HA synthases remains possible. These characteristics, together with extremely high Hyal3 and Tnfaip6 expression, may provide the NMR with a bespoke, and perhaps protective, HA metabolism.
Collapse
Affiliation(s)
- Delphine Del Marmol
- Molecular Physiology Research Unit (URPhyM), NARILIS, University of Namur, Namur, Belgium.
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Nadia Kichler
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Benoit Bihin
- Unit of Methodology and Didactic in Biology (UMDB), NARILIS, University of Namur, Namur, Belgium
| | - Virginie Bourguignon
- Molecular Physiology Research Unit (URPhyM), NARILIS, University of Namur, Namur, Belgium
| | - Sophie Dogné
- Molecular Physiology Research Unit (URPhyM), NARILIS, University of Namur, Namur, Belgium
| | - Karol Szafranski
- Core Facility Life Science Computing, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Thomas Bernd Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Bruno Flamion
- Molecular Physiology Research Unit (URPhyM), NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
33
|
Kaul A, Short WD, Wang X, Keswani SG. Hyaluronidases in Human Diseases. Int J Mol Sci 2021; 22:ijms22063204. [PMID: 33809827 PMCID: PMC8004219 DOI: 10.3390/ijms22063204] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
With the burgeoning interest in hyaluronic acid (HA) in recent years, hyaluronidases (HYALs) have come to light for their role in regulating catabolism of HA and its molecular weight (MW) distribution in various tissues. Of the six hyaluronidase-like gene sequences in the human genome, HYALs 1 and 2 are of particular significance because they are the primary hyaluronidases active in human somatic tissue. Perhaps more importantly, for the sake of this review, they cleave anti-inflammatory and anti-fibrotic high-molecular-weight HA into pro-inflammatory and pro-fibrotic oligosaccharides. With this, HYALs regulate HA degradation and thus the development and progression of various diseases. Given the dearth of literature focusing specifically on HYALs in the past decade, this review seeks to expound their role in human diseases of the skin, heart, kidneys, and more. The review will delve into the molecular mechanisms and pathways of HYALs and discuss current and potential future therapeutic benefits of HYALs as a clinical treatment.
Collapse
Affiliation(s)
- Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Walker D. Short
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (X.W.); (S.G.K.); Tel.: +832-824-0469 (X.W.); +832-822-3135 (S.G.K.); Fax: +832-825-3141 (X.W.); +832-825-3141 (S.G.K.)
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX 77030, USA; (A.K.); (W.D.S.)
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (X.W.); (S.G.K.); Tel.: +832-824-0469 (X.W.); +832-822-3135 (S.G.K.); Fax: +832-825-3141 (X.W.); +832-825-3141 (S.G.K.)
| |
Collapse
|
34
|
Cahill TJ, Sun X, Ravaud C, Villa Del Campo C, Klaourakis K, Lupu IE, Lord AM, Browne C, Jacobsen SEW, Greaves DR, Jackson DG, Cowley SA, James W, Choudhury RP, Vieira JM, Riley PR. Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development 2021; 148:dev194563. [PMID: 33462113 PMCID: PMC7875498 DOI: 10.1242/dev.194563] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/26/2020] [Indexed: 12/31/2022]
Abstract
Macrophages are components of the innate immune system with key roles in tissue inflammation and repair. It is now evident that macrophages also support organogenesis, but few studies have characterized their identity, ontogeny and function during heart development. Here, we show that the distribution and prevalence of resident macrophages in the subepicardial compartment of the developing heart coincides with the emergence of new lymphatics, and that macrophages interact closely with the nascent lymphatic capillaries. Consequently, global macrophage deficiency led to extensive vessel disruption, with mutant hearts exhibiting shortened and mis-patterned lymphatics. The origin of cardiac macrophages was linked to the yolk sac and foetal liver. Moreover, the Cx3cr1+ myeloid lineage was found to play essential functions in the remodelling of the lymphatic endothelium. Mechanistically, macrophage hyaluronan was required for lymphatic sprouting by mediating direct macrophage-lymphatic endothelial cell interactions. Together, these findings reveal insight into the role of macrophages as indispensable mediators of lymphatic growth during the development of the mammalian cardiac vasculature.
Collapse
Affiliation(s)
- Thomas J Cahill
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Xin Sun
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Christophe Ravaud
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Cristina Villa Del Campo
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Konstantinos Klaourakis
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Irina-Elena Lupu
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Allegra M Lord
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-14186, Sweden
| | - Cathy Browne
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Sten Eirik W Jacobsen
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-14186, Sweden
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Sally A Cowley
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| | - Paul R Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- British Heart Foundation - Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
35
|
Tamargo-Gómez I, Fernández ÁF, Mariño G. Pathogenic Single Nucleotide Polymorphisms on Autophagy-Related Genes. Int J Mol Sci 2020; 21:ijms21218196. [PMID: 33147747 PMCID: PMC7672651 DOI: 10.3390/ijms21218196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Álvaro F. Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| |
Collapse
|
36
|
Weigel PH. Systemic Glycosaminoglycan Clearance by HARE/Stabilin-2 Activates Intracellular Signaling. Cells 2020; 9:E2366. [PMID: 33126404 PMCID: PMC7694162 DOI: 10.3390/cells9112366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Scavenger receptors perform essential functions, critical to maintaining mammalian physiologic homeostasis by continuously clearing vast numbers of biomolecules from blood, interstitial fluid and lymph. Stabilin-2 (Stab2) and the Hyaluronic Acid Receptor for Endocytosis (HARE), a proteolytic isoform of Stab2, are important scavenger receptors responsible for the specific binding and internalization (leading to degradation) of 22 discrete molecules, macromolecular complexes and cell types. One-third of these ligands are glycosaminoglycans (GAGs). Full-length Stab2, but not HARE, mediates efficient phagocytosis of apoptotic cells and bacteria via binding to target surface ligands. HARE, the C-terminal half of Stab2, mediates endocytosis of all the known soluble ligands. HA was the first ligand identified, in 1981, prior to receptor purification or cloning. Seven other GAG ligands were subsequently identified: heparin, dermatan sulfate, chondroitin and chondroitin sulfates A, C, D and E. Synthetic dextran sulfate is also a GAG mimic and ligand. HARE signaling during HA endocytosis was first discovered in 2008, and we now know that activation of HARE/Stab2 signaling is stimulated by receptor-mediated endocytosis or phagocytosis of many, but not all, of its ligands. This review focuses on the HARE-mediated GAG activation of intracellular signaling, particularly the Extracellular Signal-Regulated Kinase 1/2 pathway.
Collapse
Affiliation(s)
- Paul H Weigel
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
37
|
Li C, Cao Z, Li W, Liu R, Chen Y, Song Y, Liu G, Song Z, Liu Z, Lu C, Liu Y. A review on the wide range applications of hyaluronic acid as a promising rejuvenating biomacromolecule in the treatments of bone related diseases. Int J Biol Macromol 2020; 165:1264-1275. [PMID: 33039536 DOI: 10.1016/j.ijbiomac.2020.09.255] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022]
Abstract
Hyaluronic acid (HA) is a multifunctional high molecular weight polysaccharide produced by synoviocytes, fibroblasts, and chondrocytes, and is naturally found in many tissues and fluids, and more abundantly in articular cartilage and synovial fluid. Naturally occurring HA is thought to participate in many biological processes, such as regulation of cell adhesion and cell motility, manipulation of cell differentiation and proliferation, and providing mechanical properties to tissues (Girish and Kemparaju, 2007). Due to its excellent physicochemical properties such as high viscosity, elasticity, biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity, HA based formulations have a wide range of applications and serves as a promising rejuvenating biomacromolecule in biomedical applications. In recent decades, HA is currently a popular topic, and has been widely used in bone related diseases for its remarkable efficacy in articular cartilage lubrication, analgesia, anti-inflammation, immunomodulatory, chondroprotection, anti-cancer and etc. Moreover, the safety and tolerability of HA based formulations have also been well-documented for treatment of various types of bone related diseases (Chen et al., 2018). This review gives a deep understanding on the special benefits and provides a mechanism-based rationale for the use of HA in bone related diseases conditions with special reference to osteoarthritis (OA), rheumatoid arthritis (RA), bone metastatic cancers.
Collapse
Affiliation(s)
- Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhiqian Song
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhenli Liu
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
38
|
Huth S, Huth L, Marquardt Y, Fietkau K, Dahl E, Esser PR, Martin SF, Heise R, Merk HF, Baron JM. Inter-α-Trypsin Inhibitor Heavy Chain 5 (ITIH5) Is a Natural Stabilizer of Hyaluronan That Modulates Biological Processes in the Skin. Skin Pharmacol Physiol 2020; 33:198-206. [PMID: 32799206 DOI: 10.1159/000509371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hyaluronan (HA) is a major component of the skin that exerts a variety of biological functions. Inter-α-trypsin inhibitor heavy chain (ITIH) proteins comprise a family of hyaladherins of which ITIH5 has recently been described in skin, where it plays a functional role in skin morphology and inflammatory skin diseases including allergic contact dermatitis (ACD). OBJECTIVE The current study focused on the ITIH5-HA interaction and its potential clinical and functional impact in extracellular matrix (ECM) stabilization. METHODS Studying the molecular effects of ITIH5 in skin, we established skin models comprising murine skin cells of Itih5 knockout mice and corresponding wild-type controls. In addition, human dermal fibroblasts with an ITIH5 knockdown as well as a murine recombinant Itih5 protein were established to examine the interaction between ITIH5 and HA using in vitro adhesion and HA degradation assays. To understand more precisely the role of ITIH5 in inflammatory skin diseases such as ACD, we generated ITIH5 knockout cells of the KeratinoSens® cell line. RESULTS Using murine skin models, ITIH5 knockdown fibroblasts, and a reactive oxygen species (ROS)-mediated HA degradation assay, we proved that ITIH5 binds to HA, thereby acting as a stabilizer of HA. Moreover, microarray profiling revealed the impact of ITIH5 on biological processes such as skin development and ECM homeostasis. Performing the in vitro KeratinoSens skin sensitization assay, we detected that ITIH5 decreases the sensitizing potential of moderate and strong contact sensitizers. CONCLUSION Taken together, our experiments revealed that ITIH5 forms complexes with HA, thereby on the one hand stabilizing HA and facilitating the formation of ECM structures and on the other hand modulating inflammatory responses.
Collapse
Affiliation(s)
- Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany,
| | - Laura Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katharina Fietkau
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Molecular Oncology Group, Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Philipp R Esser
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ruth Heise
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Hans F Merk
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
39
|
Hearing Loss in Mucopolysaccharidoses: Current Knowledge and Future Directions. Diagnostics (Basel) 2020; 10:diagnostics10080554. [PMID: 32759694 PMCID: PMC7460463 DOI: 10.3390/diagnostics10080554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 01/03/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a deficiency of one of the enzymes involved in the degradation of glycosaminoglycans. Hearing loss is a common clinical presentation in MPS. This paper reviews the literature on hearing loss for each of the seven recognized subtypes of MPS. Hearing loss was found to be common in MPS I, II, III, IVA, VI, and VII, and absent from MPS IVB and MPS IX. MPS VI presents primarily with conductive hearing loss, while the other subtypes (MPS I, MPS II, MPS III, MPS IVA, and MPS VII) can present with any type of hearing loss (conductive, sensorineural, or mixed hearing loss). The sensorineural component develops as the disease progresses, but there is no consensus on the etiology of the sensorineural component. Enzyme replacement therapy (ERT) is the most common therapy utilized for MPS, but the effects of ERT on hearing function have been inconclusive. This review highlights a need for more comprehensive and multidisciplinary research on hearing function that includes behavioral testing, objective testing, and temporal bone imaging. This information would allow for better understanding of the progression and etiology of hearing loss. Owing to the prevalence of hearing loss in MPS, early diagnosis of hearing loss and annual comprehensive audiological evaluations are recommended.
Collapse
|
40
|
Zoccolillo M, Moia C, Comincini S, Cittaro D, Lazarevic D, Pisani KA, Wit JM, Bozzola M. Identification of novel genetic variants associated with short stature in a Baka Pygmies population. Hum Genet 2020; 139:1471-1483. [PMID: 32583022 PMCID: PMC7519921 DOI: 10.1007/s00439-020-02191-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022]
Abstract
Human growth is a complex trait determined by genetic factors in combination with external stimuli, including environment, nutrition and hormonal status. In the past, several genome-wide association studies (GWAS) have collectively identified hundreds of genetic variants having a putative effect on determining adult height in different worldwide populations. Theoretically, a valuable approach to better understand the mechanisms of complex traits as adult height is to study a population exhibiting extreme stature phenotypes, such as African Baka Pygmies. After phenotypic characterization, we sequenced the whole exomes of a cohort of Baka Pygmies and their non-Pygmies Bantu neighbors to highlight genetic variants associated with the reduced stature. Whole exome data analysis revealed 29 single nucleotide polymorphisms (SNPs) significantly associated with the reduced height in the Baka group. Among these variants, we focused on SNP rs7629425, located in the 5′-UTR of the Hyaluronidase-2 (HYAL2) gene. The frequency of the alternative allele was significantly increased compared to African and non-African populations. In vitro luciferase assay showed significant differences in transcription modulation by rs7629425 C/T alleles. In conclusion, our results suggested that the HYAL2 gene variants may play a role in the etiology of short stature in Baka Pygmies population.
Collapse
Affiliation(s)
- Matteo Zoccolillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Moia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Università Degli Studi Di Pavia, Pavia, Italy
| | - Sergio Comincini
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Università Degli Studi Di Pavia, Pavia, Italy
| | - Davide Cittaro
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Karen A Pisani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jan M Wit
- Pediatrics, Leiden University Medical Center, 2300 RC, Leiden, Netherlands
| | - Mauro Bozzola
- University of Pavia, and Onlus Il Bambino E Il Suo Pediatra, Via XX Settembre 28, Galliate, 28066, Novara, Italy.
| |
Collapse
|
41
|
Kadel D, Zhang Y, Sun HR, Zhao Y, Dong QZ, Qin LX. Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy. Cell Biol Toxicol 2019; 35:407-421. [PMID: 30680600 PMCID: PMC6881418 DOI: 10.1007/s10565-019-09461-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
The goal of cancer eradication has been overshadowed despite the continuous improvement in research and generation of novel cancer therapeutic drugs. One of the undeniable existing problems is drug resistance due to which the paradigm of killing all cancer cells is ineffective. Tumor microenvironment plays a crucial role in inducing drug resistance besides cancer development and progression. Recently, many efforts have been devoted to understand the role of tumor microenvironment in cancer drug resistance as it provides the shelter, nutrition, and paracrine niche for cancer cells. Cancer-associated fibroblasts (CAFs), one major component of tumor microenvironment, reside in symbiotic relationship with cancer cells, supporting them to survive from cancer drugs. The present review summarizes the recent understandings in the role of CAFs in drug resistance in various tumors. Acknowledging the fact that drug resistance depends not only upon cancer cells but also upon the microenvironment niche could guide us to formulate novel cancer drugs and provide the optimal cancer treatment.
Collapse
Affiliation(s)
- Dhruba Kadel
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Yu Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Hao-Ran Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Yue Zhao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China.
- Institute of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis institute, Fudan University, Shanghai, 200040, China.
- Institute of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
42
|
Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol 2019; 78-79:1-10. [PMID: 30802498 DOI: 10.1016/j.matbio.2019.02.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Cell-matrix interactions are fundamental to many developmental, homeostatic, immune and pathologic processes. Hyaluronan (HA), a critical component of the extracellular matrix (ECM) that regulates normal structural integrity and development, also regulates tissue responses during injury, repair, and regeneration. Though simple in its primary structure, HA regulates biological responses in a highly complex manner with balanced contributions from its molecular size and concentration, synthesis versus enzymatic and/or oxidative-nitrative fragmentation, interactions with key HA binding proteins and cell associated receptors, and its cell context-specific signaling. This review highlights the different, but inter-related factors that dictate the biological activity of HA and introduces the overarching themes that weave throughout this special issue of Matrix Biology on hyaluronan.
Collapse
|
43
|
Fujimoto K, Hasebe T, Kajita M, Ishizuya-Oka A. Expression of hyaluronan synthases upregulated by thyroid hormone is involved in intestinal stem cell development during Xenopus laevis metamorphosis. Dev Genes Evol 2018; 228:267-273. [PMID: 30430240 DOI: 10.1007/s00427-018-0623-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023]
Abstract
During amphibian intestinal remodeling, thyroid hormone (TH) induces adult stem cells, which newly generate the absorptive epithelium analogous to the mammalian one. We have previously shown that hyaluronan (HA) is newly synthesized and plays an essential role in the development of the stem cells via its major receptor CD44 in the Xenopus laevis intestine. We here focused on HA synthase (HAS) and examined how the expression of HAS family genes is regulated during natural and TH-induced metamorphosis. Our quantitative RT-PCR analysis indicated that the mRNA expression of HAS2 and HAS3, but not that of HAS1 and HAS-rs, a unique Xenopus HAS-related sequence, is upregulated concomitantly with the development of adult epithelial primordia consisting of the stem/progenitor cells during the metamorphic climax. In addition, our in situ hybridization analysis indicated that the HAS3 mRNA is specifically expressed in the adult epithelial primordia, whereas HAS2 mRNA is expressed in both the adult epithelial primordia and nearby connective tissue cells during this period. Furthermore, by treating X. laevis tadpoles with 4-methylumbelliferone, a HA synthesis inhibitor, we have experimentally shown that inhibition of HA synthesis leads to suppression of TH-upregulated expression of leucine-rich repeat-containing G protein-coupled 5 (LGR5), an intestinal stem cell marker, CD44, HAS2, HAS3, and gelatinase A in vivo. These findings suggest that HA newly synthesized by HAS2 and/or HAS3 is required for intestinal stem cell development through a positive feedback loop and is involved in the formation of the stem cell niche during metamorphosis.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Mitsuko Kajita
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan.
| |
Collapse
|
44
|
Fede C, Angelini A, Stern R, Macchi V, Porzionato A, Ruggieri P, De Caro R, Stecco C. Quantification of hyaluronan in human fasciae: variations with function and anatomical site. J Anat 2018; 233:552-556. [PMID: 30040133 DOI: 10.1111/joa.12866] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2018] [Indexed: 11/30/2022] Open
Abstract
Recently, alterations in fascial gliding-like movement have been invoked as critical in the etiology of myofascial pain. Various methods have been attempted for the relief of this major and debilitating clinical problem. Paramount have been attempts to restore correct gliding between fascial layers and the movement over bone, joint, and muscular structures. One of the key elements that underlies such fascial movement is hyaluronan. However, until now, the precise content of hyaluronan within fasciae has been unknown. This study quantifies for the first time the hyaluronan content of human fascial samples obtained from a variety of anatomic sites. Here, we demonstrate that the average amount varies according to anatomic site, and according to the different kinds of sliding properties of the particular fascia. For example, the fascia lata has 35 μg of hyaluronan per gram of tissue, similar to that of the rectus sheath (29 μg g-1 ). However, the types of fascia adherent to muscle contain far less hyaluronan: 6 μg g-1 in the fascia overlying the trapezius and deltoid muscles. In the fascia that surrounds joints, the hyaluronan increases to 90 μg g-1 , such as in the retinacula of the ankle, where greater degrees of movement occur. Surprisingly, no significant differences were detected at any site as a function of age or sex (P-value > 0.05, t-test) with the sole exception of the plantar fascia. This work can provide a better understanding of the role of hyaluronan in fascia. It will facilitate a better comprehension of the modulation of the hyaluronan-rich layer that occurs in relation to the various conditions that affect fascia, and the diverse factors that underlie the attendant pathologies.
Collapse
Affiliation(s)
- C Fede
- Department of Neuroscience, University of Padua, Padua, Italy
| | - A Angelini
- Department of Surgery, Oncology and Gastroenterology DiSCOG, Orthopedic Clinic, University of Padua, Padua, Italy
| | - R Stern
- Division of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, New York, NY, USA
| | - V Macchi
- Department of Neuroscience, University of Padua, Padua, Italy
| | - A Porzionato
- Department of Neuroscience, University of Padua, Padua, Italy
| | - P Ruggieri
- Department of Surgery, Oncology and Gastroenterology DiSCOG, Orthopedic Clinic, University of Padua, Padua, Italy
| | - R De Caro
- Department of Neuroscience, University of Padua, Padua, Italy
| | - C Stecco
- Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
45
|
McCarthy JB, El-Ashry D, Turley EA. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression. Front Cell Dev Biol 2018; 6:48. [PMID: 29868579 PMCID: PMC5951929 DOI: 10.3389/fcell.2018.00048] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA) in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM) and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA). Cancer-associated fibroblasts (CAFs) are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT). The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs) also form heterotypic clusters with circulating tumor cells (CTC), which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.
Collapse
Affiliation(s)
- James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Eva A Turley
- London Regional Cancer Program, Department of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
46
|
The pericellular hyaluronan of articular chondrocytes. Matrix Biol 2018; 78-79:32-46. [PMID: 29425696 DOI: 10.1016/j.matbio.2018.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/01/2023]
Abstract
The story of hyaluronan in articular cartilage, pericellular hyaluronan in particular, essentially is also the story of aggrecan. Without properly tethered aggrecan, the load bearing function of cartilage is compromised. The anchorage of aggrecan to the cell surface only occurs due to the binding of aggrecan to hyaluronan-with hyaluronan tethered either to a hyaluronan synthase or by multivalent binding to CD44. In this review, details of hyaluronan synthesis are discussed including how HAS2 production of hyaluronan is necessary for normal chondrocyte development and matrix assembly, how an abundance or deficit of pericellular hyaluronan alters chondrocyte metabolism, and whether hyaluronan size matters or changes with aging or disease. The biomechanical role and matrix assembly function of hyaluronan in addition to the functions of hyaluronidases are discussed. The turnover of hyaluronan is considered including mechanisms by which its turnover, at least in part, is mediated by endocytosis by chondrocytes and regulated by aggrecan degradation. Differences between turnover and clearance of newly synthesized hyaluronan and aggrecan versus the half-life of hyaluronan remaining within the inter-territorial matrix of cartilage are discussed. The release of neutral pH-acting hyaluronidase activity remains one unanswered question concerning the loss of cartilage hyaluronan in osteoarthritis. Signaling events driven by changes in hyaluronan-chondrocyte interactions may involve a chaperone function of CD44 with other receptors/cofactors as well as the changes in hyaluronan production functioning as a metabolic rheostat.
Collapse
|
47
|
Li C, Ma Y, Zhang K, Gu J, Tang F, Chen S, Cao L, Li S, Jin Y. Aberrant transcriptional networks in step-wise neurogenesis of paroxysmal kinesigenic dyskinesia-induced pluripotent stem cells. Oncotarget 2018; 7:53611-53627. [PMID: 27449084 PMCID: PMC5288209 DOI: 10.18632/oncotarget.10680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is an episodic movement disorder with autosomal-dominant inheritance and marked variability in clinical manifestations. Proline-rich transmembrane protein 2 (PRRT2) has been identified as a causative gene of PKD, but the molecular mechanism underlying the pathogenesis of PKD still remains a mystery. The phenotypes and transcriptional patterns of the PKD disease need further clarification. Here, we report the generation and neural differentiation of iPSC lines from two familial PKD patients with c.487C>T (p. Gln163X) and c.573dupT (p. Gly192Trpfs*8) PRRT2 mutations, respectively. Notably, an extremely lower efficiency in neural conversion from PKD-iPSCs than control-iPSCs is observed by a step-wise neural differentiation method of dual inhibition of SMAD signaling. Moreover, we show the high expression level of PRRT2 throughout the human brain and the expression pattern of PRRT2 in other human tissues for the first time. To gain molecular insight into the development of the disease, we conduct global gene expression profiling of PKD cells at four different stages of neural induction and identify altered gene expression patterns, which peculiarly reflect dysregulated neural transcriptome signatures and a differentiation tendency to mesodermal development, in comparison to control-iPSCs. Additionally, functional and signaling pathway analyses indicate significantly different cell fate determination between PKD-iPSCs and control-iPSCs. Together, the establishment of PKD-specific in vitro models and the illustration of transcriptome features in PKD cells would certainly help us with better understanding of the defects in neural conversion as well as further investigations in the pathogenesis of the PKD disease.
Collapse
Affiliation(s)
- Chun Li
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Ma
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kunshan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fan Tang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Center for The Excellence in Molecular and Cell Sciences, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Cao
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Center for The Excellence in Molecular and Cell Sciences, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
48
|
Avenoso A, D'Ascola A, Scuruchi M, Mandraffino G, Calatroni A, Saitta A, Campo S, Campo GM. Hyaluronan in the experimental injury of the cartilage: biochemical action and protective effects. Inflamm Res 2018; 67:5-20. [PMID: 28803264 DOI: 10.1007/s00011-017-1084-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Our knowledge of extracellular matrix (ECM) structure and function has increased enormously over the last decade or so. There is evidence demonstrating that ECM provides signals affecting cell adhesion, shape, migration, proliferation, survival, and differentiation. ECM presents many domains that become active after proteolytic cleavage. These active ECM fragments are called matrikines which play different roles; in particular, they may act as potent inflammatory mediators during cartilage injury. FINDINGS A major component of the ECM that undergoes dynamic regulation during cartilage damage and inflammation is the non-sulphated glycosaminoglycan (GAG) hyaluronan (HA). In this contest, HA is the most studied because of its different activity due to the different polymerization state. In vivo evidences have shown that low molecular weight HA exerts pro-inflammatory action, while high molecular weight HA possesses anti-inflammatory properties. Therefore, the beneficial HA effects on arthritis are not only limited to its viscosity and lubricant action on the joints, but it is especially due to a specific and effective anti-inflammatory activity. Several in vitro experimental investigations demonstrated that HA treatment may regulate different biochemical pathways involved during the cartilage damage. Emerging reports are suggesting that the ability to recognize receptors both for the HA degraded fragments, whether for the high-polymerized native HA involve interaction with integrins, toll-like receptors (TLRs), and the cluster determinant (CD44). The activation of these receptors induced by small HA fragments, via the nuclear factor kappa-light-chain enhancer of activated B cell (NF-kB) mediation, directly or other different pathways, produces the transcription of a large number of damaging intermediates that lead to cartilage erosion. CONCLUSIONS This review briefly summarizes a number of findings of the recent studies focused on the protective effects of HA, at the different polymerization states, on experimental arthritis in vitro both in animal and human cultured chondrocytes.
Collapse
Affiliation(s)
- Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy
| | - Alberto Calatroni
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy.
| |
Collapse
|
49
|
Chowdhury B, Xiang B, Liu M, Hemming R, Dolinsky VW, Triggs-Raine B. Hyaluronidase 2 Deficiency Causes Increased Mesenchymal Cells, Congenital Heart Defects, and Heart Failure. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.116.001598. [PMID: 28196902 PMCID: PMC5331876 DOI: 10.1161/circgenetics.116.001598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. Background— Hyaluronan (HA) is required for endothelial-to-mesenchymal transition and normal heart development in the mouse. Heart abnormalities in hyaluronidase 2 (HYAL2)–deficient (Hyal2−/−) mice and humans suggested removal of HA is also important for normal heart development. We have performed longitudinal studies of heart structure and function in Hyal2−/− mice to determine when, and how, HYAL2 deficiency leads to these abnormalities. Methods and Results— Echocardiography revealed atrial enlargement, atrial tissue masses, and valvular thickening at 4 weeks of age, as well as diastolic dysfunction that progressed with age, in Hyal2−/− mice. These abnormalities were associated with increased HA, vimentin-positive cells, and fibrosis in Hyal2−/− compared with control mice. Based on the severity of heart dysfunction, acute and chronic groups of Hyal2−/− mice that died at an average of 12 and 25 weeks respectively, were defined. Increased HA levels and mesenchymal cells, but not vascular endothelial growth factor in Hyal2−/− embryonic hearts, suggest that HYAL2 is important to inhibit endothelial-to-mesenchymal transition. Consistent with this, in wild-type embryos, HYAL2 and HA were readily detected, and HA levels decreased with age. Conclusions— These data demonstrate that disruption of normal HA catabolism in Hyal2−/− mice causes increased HA, which may promote endothelial-to-mesenchymal transition and proliferation of mesenchymal cells. Excess endothelial-to-mesenchymal transition, resulting in increased mesenchymal cells, is the likely cause of morphological heart abnormalities in both humans and mice. In mice, these abnormalities result in progressive and severe diastolic dysfunction, culminating in heart failure.
Collapse
Affiliation(s)
- Biswajit Chowdhury
- From the Department of Biochemistry and Medical Genetics (B.C., M.L., R.H., B.T.-R.), Department of Pharmacology and Therapeutics (B.X., V.W.D.), and Department of Obstetrics and Gynecology (M.L.), University of Manitoba, Winnipeg, Canada; and The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada (V.W.D., B.T.-R.)
| | - Bo Xiang
- From the Department of Biochemistry and Medical Genetics (B.C., M.L., R.H., B.T.-R.), Department of Pharmacology and Therapeutics (B.X., V.W.D.), and Department of Obstetrics and Gynecology (M.L.), University of Manitoba, Winnipeg, Canada; and The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada (V.W.D., B.T.-R.)
| | - Michelle Liu
- From the Department of Biochemistry and Medical Genetics (B.C., M.L., R.H., B.T.-R.), Department of Pharmacology and Therapeutics (B.X., V.W.D.), and Department of Obstetrics and Gynecology (M.L.), University of Manitoba, Winnipeg, Canada; and The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada (V.W.D., B.T.-R.)
| | - Richard Hemming
- From the Department of Biochemistry and Medical Genetics (B.C., M.L., R.H., B.T.-R.), Department of Pharmacology and Therapeutics (B.X., V.W.D.), and Department of Obstetrics and Gynecology (M.L.), University of Manitoba, Winnipeg, Canada; and The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada (V.W.D., B.T.-R.)
| | - Vernon W Dolinsky
- From the Department of Biochemistry and Medical Genetics (B.C., M.L., R.H., B.T.-R.), Department of Pharmacology and Therapeutics (B.X., V.W.D.), and Department of Obstetrics and Gynecology (M.L.), University of Manitoba, Winnipeg, Canada; and The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada (V.W.D., B.T.-R.)
| | - Barbara Triggs-Raine
- From the Department of Biochemistry and Medical Genetics (B.C., M.L., R.H., B.T.-R.), Department of Pharmacology and Therapeutics (B.X., V.W.D.), and Department of Obstetrics and Gynecology (M.L.), University of Manitoba, Winnipeg, Canada; and The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada (V.W.D., B.T.-R.).
| |
Collapse
|
50
|
Bohaumilitzky L, Huber AK, Stork EM, Wengert S, Woelfl F, Boehm H. A Trickster in Disguise: Hyaluronan's Ambivalent Roles in the Matrix. Front Oncol 2017; 7:242. [PMID: 29062810 PMCID: PMC5640889 DOI: 10.3389/fonc.2017.00242] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023] Open
Abstract
Hyaluronan (HA) is a simple but diverse glycosaminoglycan. It plays a major role in aging, cellular senescence, cancer, and tissue homeostasis. In which way HA affects the surrounding tissues greatly depends on the molecular weight of HA. Whereas high molecular weight HA is associated with homeostasis and protective effects, HA fragments tend to be linked to the pathologic state. Furthermore, the interaction of HA with its binding partners, the hyaladherins, such as CD44, is essential for sustaining tissue integrity and is likewise related to cancer. The naked mole rat, a rodent species, possesses a special form of very high molecular weight (vHMW) HA, which is associated with the extraordinary cancer resistance and longevity of those animals. This review addresses HA and its diverse facets: from HA synthesis to degradation, from oligomeric HA to vHMW-HA and from its beneficial properties to the involvement in pathologies. We further discuss the functions of HA in the naked mole rat and compare them to human conditions. Though intensively researched, this simple polymer bears some secrets that may hold the key for a better understanding of cellular processes and the development of diseases, such as cancer.
Collapse
Affiliation(s)
- Lena Bohaumilitzky
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Ann-Kathrin Huber
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Eva Maria Stork
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Simon Wengert
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Franziska Woelfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Heike Boehm
- CSF Biomaterials, Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|