1
|
Jacob G, Shimomura K, Hanai H, Akimori T, Ohori T, Tsujii A, Moriguchi Y, Nakamura N. Therapeutic potential of microRNA in meniscal repair and regeneration. Knee 2025; 55:18-23. [PMID: 40215926 DOI: 10.1016/j.knee.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/20/2025] [Accepted: 03/11/2025] [Indexed: 06/16/2025]
Abstract
BACKGROUND Managing meniscal injuries is challenging due to the complex nature of the tissue and its limited healing capacity. MicroRNAs (miRNAs) are key regulators of cellular processes, making them promising candidates for therapeutic interventions aimed at enhancing meniscal repair. This study explores the potential role of miRNAs in meniscal healing. METHODS A comprehensive literature search was conducted in July 2024 using the PubMed (MEDLINE) and EMBASE databases, without any date restrictions. Relevant studies involving the use of miRNAs in meniscal injury or repair were identified, and a narrative review was performed. RESULTS The search yielded three in-vitro studies and one animal study, with no clinical studies found. The identified studies suggest that miRNAs may enhance meniscal healing by promoting angiogenesis and reducing inflammation. CONCLUSIONS This review underscores the emerging potential of miRNA-based therapies for meniscal repair and regeneration. While progress has been made in understanding the mechanisms of action, several challenges remain before clinical application, including safety concerns, the need for standardized protocols, and the development of clinical-grade miRNA products.
Collapse
Affiliation(s)
- George Jacob
- Department of Orthopaedics, VPS Lakeshore Hospital, Cochin, Kerala, India; Avant Orthopaedics, Cochin, Kerala, India
| | - Kazunori Shimomura
- Department of Rehabilitation, Kansai University of Welfare Sciences, Osaka, Japan; Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hiroto Hanai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taro Akimori
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoki Ohori
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akira Tsujii
- Department of Sports Medical Biomechanics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yu Moriguchi
- Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Zhang J, Yin R, Xue Y, Qin R, Wang X, Wu S, Zhu J, Li YS, Zhang C, Wei Y. Advances in the study of epithelial mesenchymal transition in cancer progression: Role of miRNAs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:69-90. [PMID: 40185337 DOI: 10.1016/j.pbiomolbio.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Epithelial-mesenchymal transition (EMT) has been extensively studied for its roles in tumor metastasis, the generation and maintenance of cancer stem cells and treatment resistance. Epithelial mesenchymal plasticity allows cells to switch between various states within the epithelial-mesenchymal spectrum, resulting in a mixed epithelial/mesenchymal phenotypic profile. This plasticity underlies the acquisition of multiple malignant features during cancer progression and poses challenges for EMT in tumors. MicroRNAs (miRNAs) in the microenvironment affect numerous signaling processes through diverse mechanisms, influencing physiological activities. This paper reviews recent advances in EMT, the role of different hybrid states in tumor progression, and the important role of miRNAs in EMT. Furthermore, it explores the relationship between miRNA-based EMT therapies and their implications for clinical practice, discussing how ongoing developments may enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Jia Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| | - Yongwang Xue
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Rong Qin
- Department of Medical Oncology, Jiangsu University Affiliated People's Hospital, Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
| | - Xuequan Wang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shuming Wu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Jun Zhu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yan-Shuang Li
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Cai Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| |
Collapse
|
3
|
Goyal A, Afzal M, Goyal K, Ganesan S, Kumari M, Sunitha S, Dash A, Saini S, Rana M, Gupta G, Ali H, Wong LS, Kumarasamy V, Subramaniyan V. MSC-derived extracellular vesicles: Precision miRNA delivery for overcoming cancer therapy resistance. Regen Ther 2025; 29:303-318. [PMID: 40237010 PMCID: PMC11999318 DOI: 10.1016/j.reth.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer remains a prominent worldwide health concern, presenting existing therapies with frequent difficulties, including major toxicity, limited effectiveness, and treatment resistance emergence. These issues highlight the necessity for novel and enhanced remedies. Exosomes, tiny extracellular vesicles that facilitate intercellular communication, have attracted interest for their potential medicinal applications. Carrying a variety of molecules, including microRNAs, small interfering RNAs, long non-coding RNAs, proteins, lipids, and DNA, these vesicles are positioned as promising cancer treatment options. Current studies have increasingly investigated the capacity of microRNAs as a strategic approach for combating malignancy. Mesenchymal stem cells (MSC) are recognized for their aptitude to augment blood vessel formation, safeguard against cellular death, and modulate immune responses. Consequently, researchers examine exosomes derived from MSCs as a safer, non-cellular choice over therapies employing MSCs, which risk undesirable differentiation. The focus is shifting towards employing miRNA-encapsulated exosomes sourced from MSCs to target and heal cancerous cells selectively. However, the exact functions of miRNAs within MSC-derived exosomes in the context of cancer are still not fully understood. Additional exploration is necessary to clarify the role of these miRNAs in malignancy progression and to pinpoint viable therapeutic targets. This review offers a comprehensive examination of exosomes derived from mesenchymal stem cells, focusing on the encapsulation of miRNAs, methods for enhancing cellular uptake and stability, and their potential applications in cancer treatment. It also addresses the difficulties linked to this methodology and considers future avenues, including insights from current clinical oncology research.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - S. Sunitha
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aniruddh Dash
- Department of Orthopaedics IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
Shirzad S, Eterafi M, Karimi Z, Barazesh M. MicroRNAs involved in colorectal cancer, a rapid mini-systematic review. BMC Cancer 2025; 25:934. [PMID: 40413456 DOI: 10.1186/s12885-025-14343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) involves the uncontrolled proliferation of glandular epithelial cells in the colon or rectum. The high mortality rate associated with CRC has driven extensive research into innovative diagnostic and therapeutic strategies. Among these, microRNAs (miRNA) have gained attention for their crucial role in regulating various cellular processes that contribute to the initiation, progression, and metastasis of CRC. METHOD This systematic review aimed to assess the roles of various miRNAs in CRC by analyzing multiple studies. The PICO framework was followed to structure the study regarding miRNA involved in CRC development and progression compared to normal cases. The outcomes were measured according miRNAs impact on CRC progression, survival rates, and treatment response. Systematic review of studies published from 2000 to November 2023 were included. Data were collected from prominent databases, including Google Scholar, PubMed, ScienceDirect, Irandoc, SID, and Magiran, covering studies from 2000 to November 2023. Studies were managed using EndNote for citation management, and duplicates were removed. The remaining studies were evaluated based on predefined inclusion and exclusion criteria. RESULTS In our review, we categorized 28 miRNAs based on their potential tumor suppressor or oncogenic effects in CRC progression. Among them, 14 miRNAs were highlighted as important based on the assessment using TCGA data, with miR-200a also showing a significant effect on patient survival. CONCLUSION This study compiled and analyzed validated miRNAs associated with CRC progression. The findings suggest the potential of these miRNAs as non-invasive biomarkers, which may be used alone or in combination with traditional tumor markers for improved diagnostic and prognostic applications in CRC. This review contributes novel insights by updating the current understanding and offering a comprehensive evaluation of miRNAs in CRC.
Collapse
Affiliation(s)
- Sogol Shirzad
- Students Research Committee, Gerash University of Medical Sciences, Gerash, Iran
- Medical Biotechnology Group, Gerash University of Medical Sciences, Gerash, Iran
| | - Majid Eterafi
- Students Research Committee, Gerash University of Medical Sciences, Gerash, Iran
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Karimi
- Medical Biotechnology Group, Gerash University of Medical Sciences, Gerash, Iran.
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| | - Mahdi Barazesh
- Medical Biotechnology Group, Gerash University of Medical Sciences, Gerash, Iran
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
5
|
Kausar N. Machine learning and explainable artificial intelligence reveals the MicroRNAs associated with survival of head and neck squamous cell carcinoma patients. Comput Biol Chem 2025; 118:108503. [PMID: 40378655 DOI: 10.1016/j.compbiolchem.2025.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
Dysregulated microRNAs (miRNAs) play a significant role in cancer development and metastasis. In literature, miRNAs have been used for the survival prediction of different types of cancers using AI. Although AI is useful for diagnosis and prognosis prediction of cancer, however, a major criticism of incorporating it into medical fields is that it is essentially a mechanistically uninterpretable opaque "black box", and hence it may not have the required level of accountability, transparency, and reliability in decisions of cancer diagnosis and prognosis for their adoption in clinical settings. Therefore, there is need to develop intelligent models which may explain their prediction so that they may be reliably used by the clinicians. As dysregulated miRNAs are reported to cause cancer metastasis hence, they can play role in survival of patient. Therefore, there is needed to develop ML based techniques which may automatically indicate specific miRNAs involved in survival of patients. In this research, Machine Learning and Explainable AI (XAI) based models have been developed for survival prediction of Head and Neck Squamous Cell Carcinoma (HNSC) patients using miRNA sequences and clinical datasets. miRNAs dataset contains the data of 485 HNSC patients and clinical dataset contains data of 528 patients. The proposed XAI based model explains its prediction by showing the specific miRNA sequences involved in survival of the patients to demonstrate its reliability to be used by clinicians for therapeutic decisions. In this study, it has been shown that explainable ML can provide explicit knowledge of how models make their predictions, which is necessary for increasing the trust and adoption of innovative ML techniques in oncology and healthcare.
Collapse
Affiliation(s)
- Nabeela Kausar
- Department of Software Engineering and Artificial Intelligence, Iqra University, Islamabad, Pakistan.
| |
Collapse
|
6
|
Jelski W, Okrasinska S, Mroczko B. microRNAs as Biomarkers of Breast Cancer. Int J Mol Sci 2025; 26:4395. [PMID: 40362631 PMCID: PMC12072494 DOI: 10.3390/ijms26094395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Breast cancer (BC) is the most common type of cancer found in women. Detection of this cancer at an early stage is essential for effective treatment and a favorable prognosis. Potential early breast cancer biomarkers useful for diagnosing these tumors are microRNAs. These are small single-stranded RNA chains that can regulate the post-transcriptional expression of many different oncogenes. Cancer cells contain miRNAs that play a special role in the etiology of cancer development. The role of microRNAs in the initiation and development of breast cancer gives us great hope for the creation of molecular tools for early cancer detection. MicroRNAs are characterized by a high stability due to RNase, which protects them from degradation and enables their detection in various biological fluids. Researchers have described multiple serum microRNA signatures useful for detecting breast cancer. This review discusses the importance and potential usefulness of microRNAs in detecting breast cancer at an early stage, predicting the course of the disease, and assessing the effectiveness of treatment.
Collapse
Affiliation(s)
- Wojciech Jelski
- Department of Biochemical Diagnostics, Medical University, Waszyngtona 15 A, 15-269 Bialystok, Poland;
| | - Sylwia Okrasinska
- Department of Biochemical Diagnostics, University Hospital, Waszyngtona 15 A, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University, Waszyngtona 15 A, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University, Waszyngtona 15 A, 15-269 Bialystok, Poland
| |
Collapse
|
7
|
Raghani NR, Chorawala MR, Parekh K, Sharma A, Alsaidan OA, Alam P, Fareed M, Prajapati B. Exosomal miRNA-based theranostics in cervical cancer: bridging diagnostics and therapy. Med Oncol 2025; 42:193. [PMID: 40320487 DOI: 10.1007/s12032-025-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/28/2025] [Indexed: 06/01/2025]
Abstract
Cervical cancer (CC) remains a significant global health burden, particularly in low- and middle-income countries, where access to effective screening and treatment is limited. Despite advancements in conventional therapies, such as surgery, chemotherapy, and radiotherapy, challenges related to late-stage diagnosis, treatment resistance, and disease recurrence persist. The emergence of microRNAs (miRNAs) as key regulators of gene expression has revolutionized cancer diagnostics and therapeutics. Exosomal miRNAs, in particular, have garnered attention due to their stability, detectability in bodily fluids, and pivotal roles in tumor progression, metastasis, and immune modulation. This review provides a comprehensive overview of the role of exosomal miRNAs in the theranostic landscape of CC. We explore their involvement in disease pathogenesis, highlighting their potential as minimally invasive diagnostic biomarkers for early detection and disease monitoring. Furthermore, we examine their utility in therapeutic strategies, including miRNA-mediated drug delivery systems and miRNA-targeted interventions to overcome chemoresistance. Integrating exosomal miRNA profiling with current diagnostic modalities could enhance screening sensitivity and specificity, while miRNA-based therapies offer novel avenues to improve treatment efficacy. This review discusses recent advancements in miRNA research, current challenges in clinical translation, and future perspectives on leveraging exosomal miRNAs for personalized CC care.
Collapse
Affiliation(s)
- Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Kavya Parekh
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Anvesha Sharma
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, 72341, Sakaka, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 13713, Saudi Arabia
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Mahesana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
8
|
Zhang H, Yu Y, Qian C. Oligonucleotide-Based Modulation of Macrophage Polarization: Emerging Strategies in Immunotherapy. Immun Inflamm Dis 2025; 13:e70200. [PMID: 40325939 PMCID: PMC12053320 DOI: 10.1002/iid3.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 03/10/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Recent advances in immunotherapy have spotlighted macrophages as central mediators of disease treatment. Their polarization into pro‑inflammatory (M1) or anti‑inflammatory (M2) states critically influences outcomes in cancer, autoimmunity, and chronic inflammation. Oligonucleotides have emerged as highly specific, scalable, and cost‑effective agents for reprogramming macrophage phenotypes. OBJECTIVE To review oligonucleotide strategies-including ASOs, siRNAs, miRNA mimics/inhibitors, and aptamers-for directing macrophage polarization and their therapeutic implications. REVIEW SCOPE We examine key signaling pathways governing M1/M2 phenotypes, describe four classes of oligonucleotides and their mechanisms, and highlight representative preclinical and clinical applications. KEY INSIGHTS Agents such as AZD9150, MRX34, and AS1411 demonstrate macrophage reprogramming in cancer, inflammation, and infection models. Advances in ligand‑conjugated nanoparticles and chemical modifications improve delivery and stability, yet immunogenicity, off‑target effects, and formulation challenges remain significant barriers. FUTURE PERSPECTIVES Optimizing delivery platforms, enhancing molecular stability, and rigorous safety profiling are critical. Integration with emerging modalities-such as engineered CAR‑macrophages-will enable precise, disease‑specific interventions, and advance oligonucleotide‑guided macrophage modulation toward clinical translation.
Collapse
Affiliation(s)
- Hanfu Zhang
- National Key Laboratory of Immunity & Inflammation, Institute of ImmunologyNaval Medical UniversityShanghaiChina
- School of Molecular SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Institute of ImmunologyNaval Medical UniversityShanghaiChina
| | - Cheng Qian
- National Key Laboratory of Immunity & Inflammation, Institute of ImmunologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
9
|
Huang Y, Huang S, Li Q, Zhang H, Xiao W, Chen Y. miR-338-3p Targets SIRT6 to Inhibit Liver Cancer Malignancy and Paclitaxel Resistance. Drug Dev Res 2025; 86:e70089. [PMID: 40258128 DOI: 10.1002/ddr.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/14/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
For patients with liver cancer, a widespread and lethal tumor on a global scale, chemotherapy and immunotherapy are often the top choices. Paclitaxel, a widely administered chemotherapy drug, faces the dual issues of poor tumor response rates and the rapid onset of chemoresistance. This study delves into the functions of SIRT6 and miR-338-3p in malignancy and paclitaxel resistance of liver cancer cells. Bioinformatics and qRT-PCR were engaged to predict and examine expression profiles of SIRT6 and miR-338-3p in liver cancer tissues and cell lines. A paclitaxel-resistant cell line (MHCC97-PTX) was established for dissecting cellular responses to drug treatment. CCK-8 and colony formation tests measured cell vitality and proliferation, respectively. Flow cytometry assessed apoptotic cell death, and the paclitaxel IC50 values were derived for each group. We utilized online tools to predict miR-338-3p as an upstream regulator of SIRT6, and a dual-luciferase reporter assay verified their direct interaction. SIRT6 is abundantly expressed in liver cancer tissues and cells. SIRT6 knockdown decreased cell vitality and proliferation while promoting apoptosis and paclitaxel sensitivity. miR-338-3p, an upstream regulator of SIRT6 in liver cancer cells, binds to SIRT6 and downregulates its expression, modulating cell malignancy and drug resistance. The duo of miR-338-3p and SIRT6 can drive the aggressiveness and chemoresistance of liver cancer, emerging as hopeful candidates for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yiyuan Huang
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Sunhui Huang
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Quan Li
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Hongchang Zhang
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Xiao
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yunhui Chen
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
10
|
Tahtasakal R, Hamurcu Z, Oz AB, Balli M, Dana H, Gok M, Cinar V, Inanc M, Sener EF. miR-484 as an "OncomiR" in Breast Cancer Promotes Tumorigenesis by Suppressing Apoptosis Genes. Ann Surg Oncol 2025; 32:2994-3008. [PMID: 39692982 DOI: 10.1245/s10434-024-16656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE Breast cancer (BC) is one of the most common causes of death among females. Cancer cells escape from apoptosis, causing the cells to proliferate uncontrollably. MicroRNAs (miRNAs) are known to regulate apoptosis in cancer cells. OBJECTIVE This study aimed to determine the change in miR-484 in different BC cells and its relationship with the apoptosis pathway. METHODS In the study, tumor and healthy tissue samples adjacent to the tumor were collected from 42 patients (6 benign, 36 malignant). Tissue samples were classified according to tumor type, tumor histological grade, proliferation index, and molecular subtypes. Gene expression levels were determined by quantitative real-time polymerase chain reaction (qRT-PCR), and protein levels were determined using the Western Blot method. The results were analyzed using the delta-delta Ct method. RESULTS Findings showed that miR-484 expression levels were higher in malignant tumors than in benign tumors, and higher in tumor tissues than healthy tissues. Additionally, it was determined that as Ki-67 levels and histological grade and aggressiveness increased, miR-484 expression levels also increased. In tumor tissue compared with healthy adjacent tissue, there was an increase in BCL2 expression and a decrease in Casp3 and Casp9 expression. Therefore, a positive correlation was found between miR-484 expression and BCL2, and a negative correlation was found between CASP3 and CASP9 expression. CONCLUSION Our results show that miR-484 may play a roll as an onco-miR in BC. Increased miR-484 and BCL2, and decreased Casp3, in breast tumor tissues suggest that Casp9 expression may increase uncontrolled cell proliferation by suppressing apoptosis in BC cells and may contribute to tumor progression.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- MicroRNAs/genetics
- Apoptosis/genetics
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Middle Aged
- Prognosis
- Carcinogenesis/genetics
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Follow-Up Studies
- Caspase 3/genetics
- Caspase 3/metabolism
- Caspase 9/genetics
- Caspase 9/metabolism
- Case-Control Studies
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Adult
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Reyhan Tahtasakal
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Zuhal Hamurcu
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Abdullah Bahadir Oz
- Department of General Surgery, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Mustafa Balli
- General Surgery Clinic, Kayseri State Hospital, Kayseri, Türkiye
| | - Halime Dana
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Mustafa Gok
- Department of General Surgery, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Venhar Cinar
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Mevlude Inanc
- Department of Medical Oncology, Erciyes University Medical Faculty, Kayseri, Türkiye
| | - Elif Funda Sener
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Türkiye.
- Department of Medical Biology, Erciyes University Medical Faculty, Kayseri, Türkiye.
| |
Collapse
|
11
|
Corrêa CAP, Chagas PS, Baroni M, Andrade AF, de Paula Queiroz RG, Suazo VK, Veiga Cruzeiro GA, Fedatto PF, Antonio DSM, Brandalise SR, Yunes JA, Panepucci RA, Carlotti Junior CG, de Oliveira RS, Neder L, Tone LG, Valera ET, Scrideli CA. miR-512-3p as a Potential Biomarker of Poor Outcome in Pediatric Medulloblastoma. CEREBELLUM (LONDON, ENGLAND) 2025; 24:72. [PMID: 40128489 DOI: 10.1007/s12311-025-01812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
The tumorigenesis of medulloblastoma (MB), the most frequent malignant brain tumor in children, is not completely known. MicroRNA (miRNA) expression profiles have been associated with human cancers; however, the role played by miRNAs in pediatric MB has been poorly explored. Global miRNA expression in MB and non-neoplastic cerebellum samples was evaluated by microarray assay. Nine miRNAs (miR-31-5p, -329, -383, -433, -485-3p, -485-5p, -491, -512-3p, and 539-5p) in 51 pediatric MB and 7 pediatric non-neoplastic cerebellum samples were chosen for validation by qRT-PCR. The validated miRNAs were less expressed in the MB samples than in the non-neoplastic controls. In our cohort of patients, higher miR-512-3p expression was associated with incomplete degree of resection, classification as high risk, classification as group 4, and poor overall survival. In silico analysis in an independent cohort of MB patients identified that some of the miR-512-3p target genes were also correlated with prognostic features. Our results have shown that miR-512-3p could be associated with poor clinical outcomes in pediatric MB, suggesting that miR-512-3p is a potential biomarker of prognosis.
Collapse
Affiliation(s)
| | - Pablo Shimaoka Chagas
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mirella Baroni
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Rosane Gomes de Paula Queiroz
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
| | - Veridiana Kiill Suazo
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
| | | | - Paola Fernanda Fedatto
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
| | | | | | - José Andres Yunes
- Boldrini Children's Center, Laboratory of Molecular Biology, Campinas, Brazil
| | | | | | | | - Luciano Neder
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
| | - Carlos Alberto Scrideli
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil.
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, Brazil.
| |
Collapse
|
12
|
Sif S, Al Alawneh M. Aberrant miRNA expression and protein arginine methyltransferase 5 (PRMT5) in cancer: A review. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119923. [PMID: 39993609 DOI: 10.1016/j.bbamcr.2025.119923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
The search for important factors involved in triggering and promoting cancer cell growth and survival has led to the identification of key players, including transcription factors, chromatin remodelers, epigenetic modifying enzymes, signaling molecules, and miRNAs. However, the interplay and crosstalk between some of these factors and the impact they have on tumorigenesis remains largely unexplored. In this review, we focus on type II protein arginine methyltransferase 5 (PRMT5)-mediated epigenetic silencing and its regulatory tumor suppressor miRNAs, as well as the mechanisms by which circular PRMT5 RNA (circ-PRMT5) promotes cancer cell proliferation and survival.
Collapse
Affiliation(s)
- Saïd Sif
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| | - Majdi Al Alawneh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
13
|
Balaraman AK, Arockia Babu M, Afzal M, Sanghvi G, M M R, Gupta S, Rana M, Ali H, Goyal K, Subramaniyan V, Wong LS, Kumarasamy V. Exosome-based miRNA delivery: Transforming cancer treatment with mesenchymal stem cells. Regen Ther 2025; 28:558-572. [PMID: 40034540 PMCID: PMC11872554 DOI: 10.1016/j.reth.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Recently, increasing interest has been in utilizing mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially exosomes, as nanocarriers for miRNA delivery in cancer treatment. Due to such characteristics, nanocarriers are specific: biocompatible, low immunogenicity, and capable of spontaneous tumor accumulation. MSC-EVs were loaded with therapeutic miRNAs and minimized their susceptibility to degradation by protecting the miRNA from accessibility to degrading enzymes and providing targeted delivery of the miRNAs to the tumor cells to modulate oncogenic pathways. In vitro and in vivo experiments suggest that MSC-EVs loaded with miRNAs may inhibit tumor growth, prevent metastasis, and increase the effectiveness of chemotherapy and radiotherapy. However, these improvements present difficulties such as isolation, scalability, and stability of delivered miRNA during storage. Furthermore, the issues related to off-target effects, as well as immunogenicity, can be a focus. The mechanisms of miRNA loading into MSC-EVs, as well as their targeting efficiency and therapeutic potential, can be outlined in this manuscript. For the final part of the manuscript, the current advances in MSC-EV engineering and potential strategies for clinical application have been described. The findings of MSC-EVs imply that they present MSC-EVs as a second-generation tool for precise oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor, 63000, Malaysia
| | - M. Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP, 281406, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, School of Medical and Life Sciences, Sunway University Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Loehr AR, Timmerman DM, Liu M, Gillis AJM, Matthews M, Bloom JC, Nicholls PK, Page DC, Miller AD, Looijenga LHJ, Weiss RS. Analysis of a mouse germ cell tumor model establishes pluripotency-associated miRNAs as conserved serum biomarkers for germ cell cancer detection. Sci Rep 2025; 15:4452. [PMID: 39910147 PMCID: PMC11799207 DOI: 10.1038/s41598-025-88554-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
Malignant testicular germ cells tumors (TGCTs) are the most common solid cancers in young men. Current TGCT diagnostics include conventional serum protein markers, but these lack the sensitivity and specificity to serve as accurate markers across all TGCT subtypes. MicroRNAs (miRNAs) are small non-coding regulatory RNAs and informative biomarkers for several diseases. In humans, miRNAs of the miR-371-373 cluster are detectable in the serum of patients with malignant TGCTs and outperform existing serum protein markers for both initial diagnosis and subsequent disease monitoring. We previously developed a genetically engineered mouse model featuring malignant mixed TGCTs consisting of pluripotent embryonal carcinoma (EC) and differentiated teratoma that, like the corresponding human malignancies, originate in utero and are highly chemosensitive. Here, we report that miRNAs in the mouse miR-290-295 cluster, homologs of the human miR-371-373 cluster, were detectable in serum from mice with malignant TGCTs but not from tumor-free control mice or mice with benign teratomas. miR-291-293 were expressed and secreted specifically by pluripotent EC cells, and expression was lost following differentiation induced by the drug thioridazine. Notably, miR-291-293 levels were significantly higher in the serum of pregnant dams carrying tumor-bearing fetuses compared to that of control dams. These findings reveal that expression of the miR-290-295 and miR-371-373 clusters in mice and humans, respectively, is a conserved feature of malignant TGCTs, further validating the mouse model as representative of the human disease. These data also highlight the potential of serum miR-371-373 assays to improve patient outcomes through early TGCT detection, possibly even prenatally.
Collapse
Affiliation(s)
- Amanda R Loehr
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | - Michelle Liu
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Ad J M Gillis
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Melia Matthews
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | | - David C Page
- Whitehead Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Leendert H J Looijenga
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Pathology, University Medical Center, Utrecht, The Netherlands.
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
15
|
Sannigrahi A, De N, Bhunia D, Bhadra J. Peptide nucleic acids: Recent advancements and future opportunities in biomedical applications. Bioorg Chem 2025; 155:108146. [PMID: 39817998 DOI: 10.1016/j.bioorg.2025.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges. In Addition, we explore future perspectives and potential limitations of PNA-based technologies, highlighting the need for further research and development to fully realize their therapeutic and biotechnological potential.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Nayan De
- Institute for System Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Debmalya Bhunia
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| | - Jhuma Bhadra
- Department of Chemistry, Sarojini Naidu College for Women, Kolkata 700028, India.
| |
Collapse
|
16
|
Hoang Nguyen KH, Le NV, Nguyen PH, Nguyen HHT, Hoang DM, Huynh CD. Human immune system: Exploring diversity across individuals and populations. Heliyon 2025; 11:e41836. [PMID: 39911431 PMCID: PMC11795082 DOI: 10.1016/j.heliyon.2025.e41836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
The immune response is an intricate system that involves the complex connection of cellular and molecular components, each with distinct functional specialisations. It has a distinct capacity to adjust and mould the immune response in accordance with specific stimuli, influenced by both genetic and environmental factors. The presence of genetic diversity, particularly across different ethnic and racial groups, significantly contributes to the impact of incidence of diseases, disease susceptibility, autoimmune disorders, and cancer risks in specific regions and certain populations. Environmental factors, including geography and socioeconomic status, further modulate the variety of the immune system responses. These, in turn, affect the susceptibility to infectious diseases and development of autoimmune disorders. Despite the complexity of the relationship, there remains a gap in understanding the specificity of immune indices across races, immune reference ranges among populations, highlighting the need for deeper understanding of immune diversity for personalized approaches in diagnostics and therapeutics. This review systematically organizes these findings, with the goal of emphasizing the potential of targeted interventions to address health disparities and advance translational research, enabling a more comprehensive strategy. This approach promises significant advancements in identifying specific immunological conditions, focusing on personalized interventions, through both genetic and environmental factors.
Collapse
Affiliation(s)
| | - Nghi Vinh Le
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
| | | | - Hien Hau Thi Nguyen
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam
| | - Duy Mai Hoang
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
| | | |
Collapse
|
17
|
Subramanian C, McNamara K, Croslow SW, Tan Y, Hess D, Kiseljak-Vassiliades K, Wierman ME, Sweedler JV, Cohen MS. Novel repurposing of sulfasalazine for the treatment of adrenocortical carcinomas, probably through the SLC7A11/xCT-hsa-miR-92a-3p-OIP5-AS1 network pathway. Surgery 2025; 177:108832. [PMID: 39424480 DOI: 10.1016/j.surg.2024.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/04/2024] [Accepted: 07/13/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Recent multigenomic analysis of adrenocortical carcinomas (ACCs) identified SLC7A11/xCT as a novel biomarker. The Food and Drug Administration-approved anti-inflammatory drug, sulfasalazine (SAS), induces ferroptosis by blocking SLC7A11 expression. We hypothesize that SAS could be repurposed to target ACC cells. METHODS Expression of SLC7A11 and its association with ACC survival was analyzed using Gene Expression Profiling Interactive Analysis (GEPIA). The validated ACC cell lines NCI-H295R, ACC1, and ACC2 were grown in 2D culture. In vitro studies included the CellTiter-Glo assay to calculate viability, Western blot (WB) analysis for apoptosis and other target protein changes, reverse transcriptase polymerase chain reaction for steroidogenic enzyme changes, C11BODIPY for lipid peroxidation, and mass spectrometry for changes in lipids. RESULTS The Cancer Genome Atlas Program database analysis in GEPIA showed that SLC7A11 and linked long noncoding RNA OAP5-AS1 are highly expressed in ACC tumors versus normal adrenals (n = 77 vs 128; P < .05). This was associated with poor overall and disease-free survival with hazard ratios of 4.3 and 5.2 for SLC7A11 and 4.8 and 2.7 for OAP5-AS1, respectively. ACC cell line half-inhibitory maximum concentration values after 72-hour SAS treatment ranged from 412 nM (ACC1) to 799 nM (ACC2), and all showed cleavage of poly (ADP-ribose) polymerase, upregulation of p-Akt and p-ERK, and downregulation of GPX4 and SLC7A11 (P < .05) by WB analysis. Sphere formation, migration, and invasion assay showed inhibition, and lipid peroxidation using C11BODIPY, increase in intracellular iron, induction of oxidative stress, and significant upregulation of oxidized polyunsaturated fatty acid phospholipids (P < .05 each) by mass spectrometry suggests induction of ferroptosis. CONCLUSION SAS downregulates tSLC7A11 in ACCs, targets the Akt/ERK pathway and lipid metabolism, and induces cell death in vitro, warranting additional translational studies to define its therapeutic potential in ACC.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL
| | - Kelli McNamara
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL
| | - Seth W Croslow
- Department of Chemistry, University of Illinois Urbana-Champaign, Champaign, IL
| | - Yanqi Tan
- Department of Chemistry, University of Illinois Urbana-Champaign, Champaign, IL
| | - Daniel Hess
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois Urbana-Champaign, Champaign, IL
| | - Mark S Cohen
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL; Department of Surgery, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL.
| |
Collapse
|
18
|
Zhou K, Gao L, Ge P, Wang L, Liu L, Ye J, Xu H, Wang L, Song L. CgmiR307 involved in the regulation of Nrf2-dependent oxidative response in the Pacific oyster Crassostrea gigas under high-temperature stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105306. [PMID: 39710087 DOI: 10.1016/j.dci.2024.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
miRNA, a type of endogenous small non-coding RNA, is involved in the response to various environmental stresses through post-transcriptional regulation. In the present study, the role of CgmiR307 in the regulation of oxidative response under high-temperature stress by targeting CgNrf2 was investigated in the Pacific oyster Crassostrea gigas. The binding site of CgmiR307 were predicted at 1799-1818 bp in the 3'-UTR of CgNrf2, and the binding activity of CgmiR307 with the mRNA of CgNrf2 was further proved by the dual-luciferase reporter assay. The expression levels of CgmiR307 and CgNrf2 in gill were significantly higher than in other tissues, and exhibited significant fluctuations and variations after exposure to 28 °C. There was a significant reduction in the expression levels of CgSOD, and CgCAT in gill, as well as the activities of SOD, CAT, and T-AOC, while ROS and MDA contents significantly increased in CgNrf2-RNAi oysters. After CgmiR307 agomir injection and high-temperature stress, the expression levels of CgNrf2, CgSOD and CgCAT in gill, the activities of SOD and CAT and T-AOC decreased significantly, while ROS and MDA content significantly increased. After CgmiR307 antagomir injection and high-temperature stress, the changes in the parameters of oxidative response shown exactly the opposite trend. These results demonstrated that CgmiR307 was involved in the regulation of oxidative response by inhibiting the mRNA expression of CgNrf2 under high-temperature stress.
Collapse
Affiliation(s)
- Keli Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Pingan Ge
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Ling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiayu Ye
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Hairu Xu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
19
|
Schaeffer J, Belin S. Axon regeneration: an issue of translation. C R Biol 2024; 347:249-258. [PMID: 39665232 DOI: 10.5802/crbiol.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
In the mammalian central nervous system (CNS), adult neurons fail to regenerate spontaneously upon axon injury, which leads to a permanent and irreversible loss of neuronal functions. For more than 15 years, much effort was invested to unlock axon regrowth programs based on extensive transcriptomic characterization. However, it is now well described that mRNA and protein levels correlate only partially in cells, and that the transcription process (from DNA to mRNA) may not directly reflect protein expression. Conversely, the translation process (from mRNA to protein) provides an additional layer of gene regulation. This aspect has been overlooked in CNS regeneration. In this review, we discuss the limitations of transcriptomic approaches to promote CNS regeneration and we provide the rationale to investigate translational regulation in this context, and notably the regulatory role of the translational complex. Finally, we summarize our and others’ recent findings showing how variations in the translational complex composition regulate selective (mRNA-specific) translation, thereby controlling CNS axon regrowth.
Collapse
|
20
|
Hussen BM, Rasul MF, Faraj GSH, Abdullah SR, Sulaiman SH, Pourmoshtagh H, Taheri M. Role of microRNAs in neutrophil extracellular trap formation and prevention: Systematic narrative review. Mol Cell Probes 2024; 78:101986. [PMID: 39389272 DOI: 10.1016/j.mcp.2024.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Active neutrophils play a variety of roles in both innate and adaptive immune responses, and one of the most vital roles is the formation and release of neutrophil extracellular traps (NETs). NETs are created when neutrophils release their chromatin contents to get and eradicate pathogenic organisms essentially. While NET helps fight bacteria, viruses, parasites, and infections, it is also linked to asthma, atherosclerosis, and cancer metastasis. Thus, understanding the molecular mechanisms behind NETosis formation and its inhibition is crucial for developing safe and effective therapies. This systematic review aims to identify the list of miRNAs that are associated with the formation of NETosis and illustrate the mechanism of action by classifying them based on their expression site. Moreover, it summarizes the list of miRNAs that can be targeted therapeutically to reduce NETosis in various disorders. The current study entailed the searching of PubMed and Google Scholar for articles related to the research topic role of miRNAs in NETosis in all types of disorders. The search terms and phrases included "NETs," "neutrophil extracellular traps," "NETosis," "miRNA," "miR," and "micro-RNA." The search was limited to articles published in English since October 2024 in both databases. Following a review of 23 papers, 19 of them met the inclusion and exclusion criteria of this study. Four papers have been removed as they are duplicated or do not meet our criteria. According to the published articles till October 2024, there are 14 miRNAs involved in the molecular pathway of NETosis which are miR-155, miR-1696, miR-7, miR-223, miR-146a, miR-142a-3p, miR-3146, miR-505, miR-4512, miR-15b-5p, miR-16-5p, miR-26b-5p, miR-125a-3p and miR-378a-3p. Moreover, eight miRNAs have been identified as possible therapeutic targets for the suppression of NETosis based on in-vivo studies carried out in various organisms, which are miR-155, miR-146a, miR-1696, miR-223, miR-142a-3p, miR-3146, miR-4512, miR-16-5p. Different miRNAs that are expressed inside or outside of neutrophils can regulate and influence NETosis. Eight miRNAs have also been identified as potential therapeutic targets, which can be utilized to inhibit the molecular pathways associated with NETosis and prevent its negative effects, such as asthma, atherosclerosis, cancer metastasis, and cancer recurrence. However, further human-based research is necessary to completely understand the role of miRNAs in the development of NETosis in humans.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Seerwan Hamadameen Sulaiman
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hasan Pourmoshtagh
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
21
|
Kim HY, Kim JM, Shin YK. Granzyme mRNA-miRNA interaction and its implication to functional impact. Genes Genomics 2024; 46:1495-1506. [PMID: 39528794 DOI: 10.1007/s13258-024-01578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Granzyme activity can affect the processing and stability of miRNAs within target cells. They also could induce changes in miRNA expression that impact apoptotic signaling. Granzyme-induced apoptosis might result in changes to the miRNA profile, which can further influence the apoptosis and inflammation processes. OBJECTIVE The aim of this study was to bioinformatically analyze which miRNAs and transcription factors bind to the CDS and UTR regions of the granzyme family to regulate gene expression in relation to granzyme evolution and their association with human cancer diseases. METHODS The expression patterns of granzyme genes were analyzed in various human tissues. MiRNAs binding to the CDS and UTR of the granzyme family were examined, and the transcription factors binding to these miRNAs binding sites were also analyzed. Cytoscape program was used to visualize and analyze the networks of interactions between granzyme mRNA and miRNAs. Additionally, the evolutionary patterns of the granzyme family in relation to miRNAs and transcription factors binding were investigated. RESULTS Analysis of the expression patterns of the granzyme family in various human tissues shows that GZMA and GZMK are strongly expressed in lymph nodes. GZMB exhibits strong expression in the bone marrow, while GZMA is prominently expressed in the spleen. Twenty-two miRNAs bind to both GZMK and GZMB mRNA, while six miRNAs bind to both GZMK and GZMM mRNA. The only miRNA that binds to GZMK, GZMB, GZMM, and GZMA mRNA is hsa-miR-146a-5p. Transcription factors JUND, FOS, and JUN are distinctly interconnected with has-miR-5696 and GZMK. Association data between the granzyme family and cancers showed that various miRNAs were consistently implicated and exhibited either upregulation or downregulation. CONCLUSION Although the granzyme family possesses distinct genetic information, it shows relatively high expression levels in the lymph node, spleen, and bone marrow. Many miRNAs specifically regulate granzyme gene expression, and various transcription factors are involved. Analyzing the granzyme genes-miRNAs-transcription factors-related network will provide crucial insights into the mechanisms of cancer development and suppression.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Min Kim
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Jagannatha P, Tankka AT, Lorenz DA, Yu T, Yee BA, Brannan KW, Zhou CJ, Underwood JG, Yeo GW. Long-read Ribo-STAMP simultaneously measures transcription and translation with isoform resolution. Genome Res 2024; 34:2012-2024. [PMID: 38906680 PMCID: PMC11610582 DOI: 10.1101/gr.279176.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Transcription and translation are intertwined processes in which mRNA isoforms are crucial intermediaries. However, methodological limitations in analyzing translation at the mRNA isoform level have left gaps in our understanding of critical biological processes. To address these gaps, we developed an integrated computational and experimental framework called long-read Ribo-STAMP (LR-Ribo-STAMP) that capitalizes on advancements in long-read sequencing and RNA-base editing-mediated technologies to simultaneously profile translation and transcription at both the gene and mRNA isoform levels. We also developed the EditsC metric to quantify editing and leverage the single-molecule, full-length transcript information provided by long-read sequencing. Here, we report concordance between gene-level translation profiles obtained with long-read and short-read Ribo-STAMP. We show that LR-Ribo-STAMP successfully profiles translation of mRNA isoforms and links regulatory features, such as upstream open reading frames (uORFs), to translation measurements. We apply LR-Ribo-STAMP to discovering translational differences at both the gene and isoform levels in a triple-negative breast cancer cell line under normoxia and hypoxia and find that LR-Ribo-STAMP effectively delineates orthogonal transcriptional and translation shifts between conditions. We also discover regulatory elements that distinguish translational differences at the isoform level. We highlight GRK6, in which hypoxia is observed to increase expression and translation of a shorter mRNA isoform, giving rise to a truncated protein without the AGC Kinase domain. Overall, LR-Ribo-STAMP is an important advance in our repertoire of methods that measures mRNA translation with isoform sensitivity.
Collapse
Affiliation(s)
- Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California 92093, USA
| | - Alexandra T Tankka
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Daniel A Lorenz
- Sanford Laboratories for Innovative Medicine, La Jolla, California 92121, USA
| | - Tao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Kristopher W Brannan
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Cathy J Zhou
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA;
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California 92093, USA
- Sanford Laboratories for Innovative Medicine, La Jolla, California 92121, USA
| |
Collapse
|
23
|
Theotoki EI, Kakoulidis P, Velentzas AD, Nikolakopoulos KS, Angelis NV, Tsitsilonis OE, Anastasiadou E, Stravopodis DJ. TRBP2, a Major Component of the RNAi Machinery, Is Subjected to Cell Cycle-Dependent Regulation in Human Cancer Cells of Diverse Tissue Origin. Cancers (Basel) 2024; 16:3701. [PMID: 39518139 PMCID: PMC11545598 DOI: 10.3390/cancers16213701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Transactivation Response Element RNA-binding Protein (TRBP2) is a double-stranded RNA-binding protein widely known for its critical contribution to RNA interference (RNAi), a conserved mechanism of gene-expression regulation mediated through small non-coding RNA moieties (ncRNAs). Nevertheless, TRBP2 has also proved to be involved in other molecular pathways and biological processes, such as cell growth, organism development, spermatogenesis, and stress response. Mutations or aberrant expression of TRBP2 have been previously associated with diverse human pathologies, including Alzheimer's disease, cardiomyopathy, and cancer, with TRBP2 playing an essential role(s) in proliferation, invasion, and metastasis of tumor cells. METHODS Hence, the present study aims to investigate, via employment of advanced flow cytometry, immunofluorescence, cell transgenesis and bioinformatics technologies, new, still elusive, functions and properties of TRBP2, particularly regarding its cell cycle-specific control during cancer cell division. RESULTS We have identified a novel, mitosis-dependent regulation of TRBP2 protein expression, as clearly evidenced by the lack of its immunofluorescence-facilitated detection during mitotic phases, in several human cancer cell lines of different tissue origin. Notably, the obtained TRBP2-downregulation patterns seem to derive from molecular mechanisms that act independently of oncogenic activities (e.g., malignancy grade), metastatic capacities (e.g., low versus high), and mutational signatures (e.g., p53-/- or p53ΔΥ126) of cancer cells. CONCLUSIONS Taken together, we herein propose that TRBP2 serves as a novel cell cycle-dependent regulator, likely exerting mitosis-suppression functions, and, thus, its mitosis-specific downregulation can hold strong promise to be exploited for the efficient and successful prognosis, diagnosis, and (radio-/chemo-)therapy of diverse human malignancies, in the clinic.
Collapse
Affiliation(s)
- Eleni I. Theotoki
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
| | - Panos Kakoulidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Informatics and Telecommunications, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece
| | - Athanassios D. Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Konstantinos-Stylianos Nikolakopoulos
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Nikolaos V. Angelis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ourania E. Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Health Science, Higher Colleges of Technology (HCT), Academic City Campus, Dubai 17155, United Arab Emirates
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| |
Collapse
|
24
|
Saha E, Fanfani V, Mandros P, Ben Guebila M, Fischer J, Shutta KH, DeMeo DL, Lopes-Ramos CM, Quackenbush J. Bayesian inference of sample-specific coexpression networks. Genome Res 2024; 34:1397-1410. [PMID: 39134413 PMCID: PMC11529861 DOI: 10.1101/gr.279117.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Gene regulatory networks (GRNs) are effective tools for inferring complex interactions between molecules that regulate biological processes and hence can provide insights into drivers of biological systems. Inferring coexpression networks is a critical element of GRN inference, as the correlation between expression patterns may indicate that genes are coregulated by common factors. However, methods that estimate coexpression networks generally derive an aggregate network representing the mean regulatory properties of the population and so fail to fully capture population heterogeneity. Bayesian optimized networks obtained by assimilating omic data (BONOBO) is a scalable Bayesian model for deriving individual sample-specific coexpression matrices that recognizes variations in molecular interactions across individuals. For each sample, BONOBO assumes a Gaussian distribution on the log-transformed centered gene expression and a conjugate prior distribution on the sample-specific coexpression matrix constructed from all other samples in the data. Combining the sample-specific gene coexpression with the prior distribution, BONOBO yields a closed-form solution for the posterior distribution of the sample-specific coexpression matrices, thus allowing the analysis of large data sets. We demonstrate BONOBO's utility in several contexts, including analyzing gene regulation in yeast transcription factor knockout studies, the prognostic significance of miRNA-mRNA interaction in human breast cancer subtypes, and sex differences in gene regulation within human thyroid tissue. We find that BONOBO outperforms other methods that have been used for sample-specific coexpression network inference and provides insight into individual differences in the drivers of biological processes.
Collapse
Affiliation(s)
- Enakshi Saha
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Viola Fanfani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Panagiotis Mandros
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Jonas Fischer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Katherine H Shutta
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Camila M Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA;
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
25
|
Beylerli O, Ilyasova T, Shi H, Sufianov A. MicroRNAs in meningiomas: Potential biomarkers and therapeutic targets. Noncoding RNA Res 2024; 9:641-648. [PMID: 38577017 PMCID: PMC10987300 DOI: 10.1016/j.ncrna.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
Meningiomas, characterized primarily as benign intracranial or spinal tumors, present distinctive challenges due to their variable clinical behavior, with certain cases exhibiting aggressive features linked to elevated morbidity and mortality. Despite their prevalence, the underlying molecular mechanisms governing the initiation and progression of meningiomas remain insufficiently understood. MicroRNAs (miRNAs), small endogenous non-coding RNAs orchestrating post-transcriptional gene expression, have garnered substantial attention in this context. They emerge as pivotal biomarkers and potential therapeutic targets, offering innovative avenues for managing meningiomas. Recent research delves into the intricate mechanisms by which miRNAs contribute to meningioma pathogenesis, unraveling the molecular complexities of this enigmatic tumor. Meningiomas, originating from arachnoid meningothelial cells and known for their gradual growth, constitute a significant portion of intracranial tumors. The clinical challenge lies in comprehending their progression, particularly factors associated with brain invasion and heightened recurrence rates, which remain elusive. This comprehensive review underscores the pivotal role of miRNAs, accentuating their potential to advance our comprehension of meningioma biology. Furthermore, it suggests promising directions for developing diagnostic biomarkers and therapeutic interventions, holding the promise of markedly improved patient outcomes in the face of this intricate and variable disease.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Republic of Bashkortostan 450008, Ufa, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
26
|
Hassan M, Shahzadi S, Iqbal MS, Yaseeen Z, Kloczkowski A. Exploration of microRNAs as transcriptional regulator in mumps virus infection through computational studies. Sci Rep 2024; 14:18850. [PMID: 39143101 PMCID: PMC11324793 DOI: 10.1038/s41598-024-67717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Mumps is a common childhood infection caused by the mumps virus (MuV). Aseptic meningitis and encephalitis are usual symptoms of mumps together with orchitis and oophoritis that can arise in males and females, respectively. We have used computational tools: RNA22, miRanda and psRNATarget to predict the microRNA-mRNA binding sites to find the putative microRNAs playing role in the host response to mumps virus infection. Our computational studies indicate that hsa-mir-3155a is most likely involved in mumps infection. This was further investigated by the prediction of binding sites of hsa-mir-3155a to the MuV genome. Additionally, structure prediction using MC-Fold and MC-Sym, respectively has been applied to predict the 3D structures of miRNA and mRNA. The miRNA-mRNA interaction profile between has been confirmed through molecular docking simulation studies. Taken together, the putative miRNA (hsa_miR_6794_5p) has been found to be most likely involved in the regulation of transcriptional activity in the MuV infection.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Zainab Yaseeen
- Department of Biotechnology, Faculty of Science and Technology (FOST), University of Central Punjab, Johar Town, Lahore, Pakistan
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
27
|
Abou Madawi NA, Darwish ZE, Omar EM. Targeted gene therapy for cancer: the impact of microRNA multipotentiality. Med Oncol 2024; 41:214. [PMID: 39088082 PMCID: PMC11294399 DOI: 10.1007/s12032-024-02450-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Cancer is a life-threatening disease and its management is difficult due to its complex nature. Cancer is characterized by genomic instability and tumor-associated inflammation of the supporting stoma. With the advances in omics science, a treatment strategy for cancer has emerged, which is based on targeting cancer-driving molecules, known as targeted therapy. Gene therapy, a form of targeted therapy, is the introduction of nucleic acids into living cells to replace a defective gene, promote or repress gene expression to treat a disease. MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) that regulate gene expression and thus are involved in physiological processes like cell proliferation, differentiation, and cell death. miRNAs control the actions of many genes. They are deregulated in cancer and their abnormal expression influences genetic and epigenetic alterations inducing carcinogenesis. In this review, we will explain the role of miRNAs in normal and abnormal gene expression and their usefulness in monitoring cancer patients. Besides, we will discuss miRNA-based therapy as a method of gene therapy and its impact on the success of cancer management.
Collapse
Affiliation(s)
- Nourhan A Abou Madawi
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt.
| | - Zeinab E Darwish
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| | - Enas M Omar
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| |
Collapse
|
28
|
Qahwaji R, Ashankyty I, Sannan NS, Hazzazi MS, Basabrain AA, Mobashir M. Pharmacogenomics: A Genetic Approach to Drug Development and Therapy. Pharmaceuticals (Basel) 2024; 17:940. [PMID: 39065790 PMCID: PMC11279827 DOI: 10.3390/ph17070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The majority of the well-known pharmacogenomics research used in the medical sciences contributes to our understanding of medication interactions. It has a significant impact on treatment and drug development. The broad use of pharmacogenomics is required for the progress of therapy. The main focus is on how genes and an intricate gene system affect the body's reaction to medications. Novel biomarkers that help identify a patient group that is more or less likely to respond to a certain medication have been discovered as a result of recent developments in the field of clinical therapeutics. It aims to improve customized therapy by giving the appropriate drug at the right dose at the right time and making sure that the right prescriptions are issued. A combination of genetic, environmental, and patient variables that impact the pharmacokinetics and/or pharmacodynamics of medications results in interindividual variance in drug response. Drug development, illness susceptibility, and treatment efficacy are all impacted by pharmacogenomics. The purpose of this work is to give a review that might serve as a foundation for the creation of new pharmacogenomics applications, techniques, or strategies.
Collapse
Affiliation(s)
- Rowaid Qahwaji
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibraheem Ashankyty
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
| | - Naif S. Sannan
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Ar Rimayah, Riyadh 14611, Saudi Arabia;
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Mohannad S. Hazzazi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ammar A. Basabrain
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Mobashir
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
29
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Eftekhari M, Safari A, Najafi M. MicroRNAs targeted mTOR as therapeutic agents to improve radiotherapy outcome. Cancer Cell Int 2024; 24:233. [PMID: 38965615 PMCID: PMC11229485 DOI: 10.1186/s12935-024-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/22/2024] [Indexed: 07/06/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate genes and are involved in various biological processes, including cancer development. Researchers have been exploring the potential of miRNAs as therapeutic agents in cancer treatment. Specifically, targeting the mammalian target of the rapamycin (mTOR) pathway with miRNAs has shown promise in improving the effectiveness of radiotherapy (RT), a common cancer treatment. This review provides an overview of the current understanding of miRNAs targeting mTOR as therapeutic agents to enhance RT outcomes in cancer patients. It emphasizes the importance of understanding the specific miRNAs that target mTOR and their impact on radiosensitivity for personalized cancer treatment approaches. The review also discusses the role of mTOR in cell homeostasis, cell proliferation, and immune response, as well as its association with oncogenesis. It highlights the different ways in which miRNAs can potentially affect the mTOR pathway and their implications in immune-related diseases. Preclinical findings suggest that combining mTOR modulators with RT can inhibit tumor growth through anti-angiogenic and anti-vascular effects, but further research and clinical trials are needed to validate the efficacy and safety of using miRNAs targeting mTOR as therapeutic agents in combination with RT. Overall, this review provides a comprehensive understanding of the potential of miRNAs targeting mTOR to enhance RT efficacy in cancer treatment and emphasizes the need for further research to translate these findings into improved clinical outcomes.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Eftekhari
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Safari
- Department of Radiology, Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 71439-14693, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
30
|
Xie W, Wang Z, Wang J, Wang X, Guan H. Investigating the molecular mechanisms of microRNA‑409‑3p in tumor progression: Towards targeted therapeutics (Review). Int J Oncol 2024; 65:67. [PMID: 38757364 PMCID: PMC11155714 DOI: 10.3892/ijo.2024.5655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
MicroRNAs (miRNAs) are a group of non‑coding RNAs that exert master regulatory functions in post‑-transcriptional gene expression. Accumulating evidence shows that miRNAs can either promote or suppress tumorigenesis by regulating different target genes or pathways and may be involved in the occurrence of carcinoma. miR‑409‑3p is dysregulated in a variety of malignant cancers. It plays a fundamental role in numerous cellular biological processes, such as cell proliferation, apoptosis, migration, invasion, autophagy, angiogenesis and glycolysis. In addition, studies have shown that miR‑409‑3p is expected to become a non‑invasive biomarker. Identifying the molecular mechanisms underlying miR‑409‑3p‑mediated tumor progression will help investigate miR‑409‑3p‑based targeted therapy for human cancers. The present review comprehensively summarized the recently published literature on miR‑409‑3p, with a focus on the regulation and function of miR‑409‑3p in various types of cancer, and discussed the clinical implications of miR‑409‑3p, providing new insight for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhichao Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Junke Wang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiu Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hongzai Guan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
31
|
Osiriphan M, Insukhin C, Anuchapreeda S, Khamphikham P, Duangmano S. MicroRNA‑223 overexpression suppresses protein kinase C ε expression in human leukemia stem cell‑like KG‑1a cells. Mol Clin Oncol 2024; 21:48. [PMID: 38881704 PMCID: PMC11176719 DOI: 10.3892/mco.2024.2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/01/2024] [Indexed: 06/18/2024] Open
Abstract
MicroRNA-223 (miR-223) is dysregulated in various cancer types, including acute myeloid leukemia (AML). Despite this, there has been a lack of studies exploring the role of miR-223 in leukemic stem cells, particularly those involved in drug resistance, a major cause of chemotherapy failure in AML. The present study aimed to elucidate the impact of miR-223 on drug resistance in the leukemic stem-cell line, KG-1a. Two AML cell lines, KG-1 and KG-1a, differing in the proportion of CD34+CD38- cells, were assessed for doxorubicin (DOX) sensitivity using the Cell Counting Kit-8 assay. The expression levels of miR-223 and protein kinase C ε (PKCε) were evaluated via reverse transcription-quantitative PCR and western blot analysis. The association between miR-223 and its target, PKCε, was confirmed by luciferase activity assay. The effects of miR-223 overexpression and PKCε inhibition were also evaluated in KG-1a cells using miR-223 mimic and small interfering (si)RNA transfection, respectively. Daunorubicin was then used to assess drug sensitivity in the siRNA-transfected KG-1a cells. Compared with KG-1 cells, KG-1a cells displayed greater resistance to DOX, and had increased PKCε levels and decreased miR-223 expression. Overexpression of miR-223 led to PKCε protein downregulation in KG-1a cells, which was further confirmed by a luciferase assay demonstrating miR-223 targeting of PKCε. However, despite these effects, miR-223 overexpression and PKCε inhibition did not change drug sensitivity in KG-1a cells compared with negative control cells. In summary, the present study demonstrated that miR-223 could target and silence PKCε expression in KG-1a cells; however, the chemoresistance of KG-1a cells to anthracycline drugs may not be directly associated with the low expression of miR-223.
Collapse
Affiliation(s)
- Mallika Osiriphan
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Master's Degree Program in Medical Technology (under the Chiang Mai University Presidential Scholarship), Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Charapat Insukhin
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Pinyaphat Khamphikham
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| | - Suwit Duangmano
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
- Hematology and Health Technology Research Center, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Mueang Chiang Mai, Chiang Mai 50200, Thailand
| |
Collapse
|
32
|
Mohammad T, Zolotovskaia MA, Suntsova MV, Buzdin AA. Cancer fusion transcripts with human non-coding RNAs. Front Oncol 2024; 14:1415801. [PMID: 38919532 PMCID: PMC11196610 DOI: 10.3389/fonc.2024.1415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer chimeric, or fusion, transcripts are thought to most frequently appear due to chromosomal aberrations that combine moieties of unrelated normal genes. When being expressed, this results in chimeric RNAs having upstream and downstream parts relatively to the breakpoint position for the 5'- and 3'-fusion components, respectively. As many other types of cancer mutations, fusion genes can be of either driver or passenger type. The driver fusions may have pivotal roles in malignisation by regulating survival, growth, and proliferation of tumor cells, whereas the passenger fusions most likely have no specific function in cancer. The majority of research on fusion gene formation events is concentrated on identifying fusion proteins through chimeric transcripts. However, contemporary studies evidence that fusion events involving non-coding RNA (ncRNA) genes may also have strong oncogenic potential. In this review we highlight most frequent classes of ncRNAs fusions and summarize current understanding of their functional roles. In many cases, cancer ncRNA fusion can result in altered concentration of the non-coding RNA itself, or it can promote protein expression from the protein-coding fusion moiety. Differential splicing, in turn, can enrich the repertoire of cancer chimeric transcripts, e.g. as observed for the fusions of circular RNAs and long non-coding RNAs. These and other ncRNA fusions are being increasingly recognized as cancer biomarkers and even potential therapeutic targets. Finally, we discuss the use of ncRNA fusion genes in the context of cancer detection and therapy.
Collapse
Affiliation(s)
- Tharaa Mohammad
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
| | - Marianna A. Zolotovskaia
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Anton A. Buzdin
- Laboratory for Translational and Genomic Bioinformatics, Moscow Center for Advanced Studies, Moscow, Russia
- Department of Molecular Genetic Technologies, Laboratory of Bioinformatics, Endocrinology Research Center, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
33
|
Chen S, Yuan M, Chen H, Wu T, Wu T, Zhang D, Miao X, Shi J. MiR-34a-5p suppresses cutaneous squamous cell carcinoma progression by targeting SIRT6. Arch Dermatol Res 2024; 316:299. [PMID: 38819446 PMCID: PMC11143063 DOI: 10.1007/s00403-024-03106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a malignant tumor originating from epidermal or appendageal keratinocytes, with a rising incidence in recent years. Understanding the molecular mechanism driving its development is crucial. This study aims to investigate whether miR-34a-5p is involved in the pathogenesis of cSCC by targeting Sirtuin 6 (SIRT6).The expression levels of miR-34a-5p and SIRT6 were determined in 15 cSCC tissue specimens, 15 normal tissue specimens and cultured cells via real-time polymerase chain reaction (RT-qPCR). Pearson's correlation analysis was conducted to evaluate the relationship between miR-34a-5p and SIRT6 expression levels in cSCC tissues. A431 and SCL-1 cells were transfected with miR-34a-5p mimic, negative control or miR-34a-5p mimic together with recombinant plasmids containing SIRT6 gene. Cell counting kit-8, clone formation assay, wound healing assay, and flow cytometry were employed to assess the effects of these transfections on proliferation, migration, and apoptosis, respectively. The interaction between miR-34a-5p and SIRT6 was characterized using a dual-luciferase reporter assay.MiR-34a-5p expression was down-regulated in cSCC tissues significantly, while the SIRT6 expression was the opposite. A negative correlation was observed between the expression of miR-34a-5p and SIRT6 in cSCC tissues. Furthermore, overexpression of miR-34a-5p led to a significant reduction in the proliferation and migration abilities of A431 and SCL-1 cells, accompanied by an increase in apoptosis levels and a decrease in SIRT6 expression levels. MiR-34a-5p was identified as a direct target of SIRT6. Importantly, overexpression of SIRT6 effectively counteracted the inhibitory effect mediated by miR-34a-5p in cSCC cells.Our findings suggest that miR-34a-5p functions as a tumor suppressor in cSCC cells by targeting SIRT6.
Collapse
Affiliation(s)
- Sai Chen
- Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Muxing Yuan
- Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Hongxia Chen
- Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Tong Wu
- Affiliated Hospital 2 of Nantong University, Nantong, China
| | | | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xu Miao
- Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Jian Shi
- Affiliated Hospital 2 of Nantong University, Nantong, China.
| |
Collapse
|
34
|
Gharib E, Rejali L, Piroozkhah M, Zonoobi E, Nasrabadi PN, Arabsorkhi Z, Baghdar K, Shams E, Sadeghi A, Kuppen PJK, Salehi Z, Nazemalhosseini-Mojarad E. IL-2RG as a possible immunotherapeutic target in CRC predicting poor prognosis and regulated by miR-7-5p and miR-26b-5p. J Transl Med 2024; 22:439. [PMID: 38720389 PMCID: PMC11080123 DOI: 10.1186/s12967-024-05251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Despite advances in treatment strategies, colorectal cancer (CRC) continues to cause significant morbidity and mortality, with mounting evidence a close link between immune system dysfunctions issued. Interleukin-2 receptor gamma (IL-2RG) plays a pivotal role as a common subunit receptor in the IL-2 family cytokines and activates the JAK-STAT pathway. This study delves into the role of Interleukin-2 receptor gamma (IL-2RG) within the tumor microenvironment and investigates potential microRNAs (miRNAs) that directly inhibit IL-2RG, aiming to discern their impact on CRC clinical outcomes. Bioinformatics analysis revealed a significant upregulation of IL-2RG mRNA in TCGA-COAD samples and showed strong correlations with the infiltration of various lymphocytes. Single-cell analysis corroborated these findings, highlighting IL-2RG expression in critical immune cell subsets. To explore miRNA involvement in IL-2RG dysregulation, mRNA was isolated from the tumor tissues and lymphocytes of 258 CRC patients and 30 healthy controls, and IL-2RG was cloned into the pcDNA3.1/CT-GFP-TOPO vector. Human embryonic kidney cell lines (HEK-293T) were transfected with this construct. Our research involved a comprehensive analysis of miRPathDB, miRWalk, and Targetscan databases to identify the miRNAs associated with the 3' UTR of human IL-2RG. The human microRNA (miRNA) molecules, hsa-miR-7-5p and hsa-miR-26b-5p, have been identified as potent suppressors of IL-2RG expression in CRC patients. Specifically, the downregulation of hsa-miR-7-5p and hsa-miR-26b-5p has been shown to result in the upregulation of IL-2RG mRNA expression in these patients. Prognostic evaluation of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p, using TCGA-COAD data and patient samples, established that higher IL-2RG expression and lower expression of both miRNAs were associated with poorer outcomes. Additionally, this study identified several long non-coding RNAs (LncRNAs), such as ZFAS1, SOX21-AS1, SNHG11, SNHG16, SNHG1, DLX6-AS1, GAS5, SNHG6, and MALAT1, which may act as competing endogenous RNA molecules for IL2RG by sequestering shared hsa-miR-7-5p and hsa-miR-26b-5p. In summary, this investigation underscores the potential utility of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p as serum and tissue biomarkers for predicting CRC patient prognosis while also offering promise as targets for immunotherapy in CRC management.
Collapse
Affiliation(s)
- Ehsan Gharib
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Zonoobi
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Parinaz Nasri Nasrabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Arabsorkhi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghdar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman Street, Chamran Expressway, P.O. Box: 19857-17411, Tehran, Iran
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Nazemalhosseini-Mojarad
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman Street, Chamran Expressway, P.O. Box: 19857-17411, Tehran, Iran.
| |
Collapse
|
35
|
Lu Y, Chen H. Deuterium-Depleted Water in Cancer Therapy: A Systematic Review of Clinical and Experimental Trials. Nutrients 2024; 16:1397. [PMID: 38732643 PMCID: PMC11085166 DOI: 10.3390/nu16091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Chemotherapy exhibits numerous side effects in anti-tumour therapy. The clinical experiments indicated that deuterium-depleted water (DDW) monotherapy or in combination with chemotherapy was beneficial in inhibiting cancer development. To further understand the potential mechanism of DDW in cancer therapy, we performed a systematic review. The data from experiments published over the past 15 years were included. PubMed, Cochrane and Web of Science (January 2008 to November 2023) were systemically searched. Fifteen studies qualified for review, including fourteen in vivo and in vitro trials and one interventional trial. The results showed that DDW alone or in combination with chemotherapy effectively inhibited cancer progression in most experiments. The combination treatment enhances the therapeutic effect on cancer compared with chemotherapeutic monotherapy. The inhibitory role of DDW in tumours is through regulating the reactive oxygen species (ROS)-related genes in Kelch-like ECH-associated protein 1 (Keap 1) and Nuclear erythroid 2-related factor 2 (Nrf2) signalling pathways, further controlling ROS production. An abnormal amount of ROS can inhibit the tumour progression. More extensive randomized controlled trials should be conducted to evaluate the accurate effect of DDW in Keap1-Nrf2 signalling pathways.
Collapse
Affiliation(s)
- Yutong Lu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China;
| | - Hongping Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Bayi Road 461, Nanchang 330006, China
| |
Collapse
|
36
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
37
|
Chen S, Navickas A, Goodarzi H. Translational adaptation in breast cancer metastasis and emerging therapeutic opportunities. Trends Pharmacol Sci 2024; 45:304-318. [PMID: 38453522 DOI: 10.1016/j.tips.2024.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer's tendency to metastasize poses a critical barrier to effective treatment, making it a leading cause of mortality among women worldwide. A growing body of evidence is showing that translational adaptation is emerging as a key mechanism enabling cancer cells to thrive in the dynamic tumor microenvironment (TME). Here, we systematically summarize how breast cancer cells utilize translational adaptation to drive metastasis, highlighting the intricate regulation by specific translation machinery and mRNA attributes such as sequences and structures, along with the involvement of tRNAs and other trans-acting RNAs. We provide an overview of the latest findings and emerging concepts in this area, discussing their potential implications for therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Albertas Navickas
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
38
|
Bhat AA, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Ali H, Shahwan M, Almalki WH, Kazmi I, Alzarea SI, Dureja H, Singh SK, Dua K, Gupta G. Exploring ncRNA-mediated pathways in sepsis-induced pyroptosis. Pathol Res Pract 2024; 256:155224. [PMID: 38452584 DOI: 10.1016/j.prp.2024.155224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Sepsis, a potentially fatal illness caused by an improper host response to infection, remains a serious problem in the world of healthcare. In recent years, the role of ncRNA has emerged as a pivotal aspect in the intricate landscape of cellular regulation. The exploration of ncRNA-mediated regulatory networks reveals their profound influence on key molecular pathways orchestrating pyroptotic responses during septic conditions. Through a comprehensive analysis of current literature, we navigate the diverse classes of ncRNAs, including miRNAs, lncRNAs, and circRNAs, elucidating their roles as both facilitators and inhibitors in the modulation of pyroptotic processes. Furthermore, we highlight the potential diagnostic and therapeutic implications of targeting these ncRNAs in the context of sepsis, aiming to cover the method for novel and effective strategies to mitigate the devastating consequences of septic pathogenesis. As we unravel the complexities of this regulatory axis, a deeper understanding of the intricate crosstalk between ncRNAs and pyroptosis emerges, offering promising avenues for advancing our approach to sepsis intervention. The intricate pathophysiology of sepsis is examined in this review, which explores the dynamic interaction between ncRNAs and pyroptosis, a highly regulated kind of programmed cell death.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 3467, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 3469, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hairsh Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 3469, United Arab Emirates; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| |
Collapse
|
39
|
Kiel K, Król SK, Bronisz A, Godlewski J. MiR-128-3p - a gray eminence of the human central nervous system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102141. [PMID: 38419943 PMCID: PMC10899074 DOI: 10.1016/j.omtn.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.
Collapse
Affiliation(s)
- Klaudia Kiel
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Sylwia Katarzyna Król
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Jakub Godlewski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
40
|
Diener C, Keller A, Meese E. The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res 2024; 52:1544-1557. [PMID: 38033323 PMCID: PMC10899768 DOI: 10.1093/nar/gkad1142] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
MicroRNAs (miRNAs) play indispensable roles in posttranscriptional gene regulation. Their cellular regulatory impact is determined not solely by their sheer number, which likely amounts to >2000 individual miRNAs in human, than by the regulatory effectiveness of single miRNAs. Although, one begins to develop an understanding of the complex mechanisms underlying miRNA-target interactions (MTIs), the overall knowledge of MTI functionality is still rather patchy. In this critical review, we summarize key features of mammalian MTIs. We especially highlight latest insights on (i) the dynamic make-up of miRNA binding sites including non-canonical binding sites, (ii) the cooperativity between miRNA binding sites, (iii) the adaptivity of MTIs through sequence modifications, (iv) the bearing of intra-cellular miRNA localization changes and (v) the role of cell type and cell status specific miRNA interaction partners. The MTI biology is discussed against the background of state-of-the-art approaches with particular emphasis on experimental strategies for evaluating miRNA functionality.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| |
Collapse
|
41
|
Verma VK, Beevi SS, Nair RA, Kumar A, Kiran R, Alexander LE, Dinesh Kumar L. MicroRNA signatures differentiate types, grades, and stages of breast invasive ductal carcinoma (IDC): miRNA-target interacting signaling pathways. Cell Commun Signal 2024; 22:100. [PMID: 38326829 PMCID: PMC10851529 DOI: 10.1186/s12964-023-01452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Invasive ductal carcinoma (IDC) is the most common form of breast cancer which accounts for 85% of all breast cancer diagnoses. Non-invasive and early stages have a better prognosis than late-stage invasive cancer that has spread to lymph nodes. The involvement of microRNAs (miRNAs) in the initiation and progression of breast cancer holds great promise for the development of molecular tools for early diagnosis and prognosis. Therefore, developing a cost effective, quick and robust early detection protocol using miRNAs for breast cancer diagnosis is an imminent need that could strengthen the health care system to tackle this disease around the world. METHODS We have analyzed putative miRNAs signatures in 100 breast cancer samples using two independent high fidelity array systems. Unique and common miRNA signatures from both array systems were validated using stringent double-blind individual TaqMan assays and their expression pattern was confirmed with tissue microarrays and northern analysis. In silico analysis were carried out to find miRNA targets and were validated with q-PCR and immunoblotting. In addition, functional validation using antibody arrays was also carried out to confirm the oncotargets and their networking in different pathways. Similar profiling was carried out in Brca2/p53 double knock out mice models using rodent miRNA microarrays that revealed common signatures with human arrays which could be used for future in vivo functional validation. RESULTS Expression profile revealed 85% downregulated and 15% upregulated microRNAs in the patient samples of IDC. Among them, 439 miRNAs were associated with breast cancer, out of which 107 miRNAs qualified to be potential biomarkers for the stratification of different types, grades and stages of IDC after stringent validation. Functional validation of their putative targets revealed extensive miRNA network in different oncogenic pathways thus contributing to epithelial-mesenchymal transition (EMT) and cellular plasticity. CONCLUSION This study revealed potential biomarkers for the robust classification as well as rapid, cost effective and early detection of IDC of breast cancer. It not only confirmed the role of these miRNAs in cancer development but also revealed the oncogenic pathways involved in different progressive grades and stages thus suggesting a role in EMT and cellular plasticity during breast tumorigenesis per se and IDC in particular. Thus, our findings have provided newer insights into the miRNA signatures for the classification and early detection of IDC.
Collapse
Affiliation(s)
- Vinod Kumar Verma
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Syed Sultan Beevi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Rekha A Nair
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Aviral Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Ravi Kiran
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Liza Esther Alexander
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
42
|
Ogbodo AK, Mustafov D, Arora M, Lambrou GI, Braoudaki M, Siddiqui SS. Analysis of SIGLEC12 expression, immunomodulation and prognostic value in renal cancer using multiomic databases. Heliyon 2024; 10:e24286. [PMID: 38268823 PMCID: PMC10803920 DOI: 10.1016/j.heliyon.2024.e24286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Siglecs belong to a family of immune regulatory receptors predominantly found on hematopoietic cells. They interact with Sia, resulting in the activation or inhibition of the immune response. Previous reports have suggested that the SIGLEC12 gene, which encodes the Siglec-XII protein, is expressed in the epithelial tissues and upregulated in carcinomas. However, studies deciphering the role of Siglec-XII in renal cancer (RC) are still unavailable, and here we provide insights on this question. We conducted expression analysis using the Human Protein Atlas and UALCAN databases. The impact of SIGLEC12 on RC prognosis was determined using the KM plotter, and an assessment of immune infiltration with SIGLEC12 was performed using the TIMER database. GSEA was conducted to identify the pathways affected by SIGLEC12. Finally, using GeneMania, we identified Siglec-XII interacting proteins. Our findings indicated that macrophages express SIGLEC12 in the kidney. Furthermore, we hypothesize that Siglec-XII expression might be involved in the increase of primary RC, but this effect may not be dependent on the age of the patient. In the tumour microenvironment, oncogenic pathways appeared to be upregulated by SIGLEC12. Similarly, our analysis suggested that SIGLEC12-related kidney renal papillary cell carcinomas may be more suitable for targeted immunotherapy, such as CTLA-4 and PD-1/PD-L1 inhibitors. These preliminary results suggested that high expression of SIGLEC12 is associated with poor prognosis for RC. Future studies to assess its clinical utility are necessitated.
Collapse
Affiliation(s)
- Amobichukwu K. Ogbodo
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, United Kingdom
- #Current Address: Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, United Kingdom
| | - Denis Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, United Kingdom
- College of Health, Medicine, and Life Science, Brunel University London UB8 3PH, United Kingdom
| | - Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Paediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, United Kingdom
| | - Shoib S. Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, United Kingdom
| |
Collapse
|
43
|
Fontanella RA, Ghosh P, Pesapane A, Taktaz F, Puocci A, Franzese M, Feliciano MF, Tortorella G, Scisciola L, Sommella E, Ambrosino C, Paolisso G, Barbieri M. Tirzepatide prevents neurodegeneration through multiple molecular pathways. J Transl Med 2024; 22:114. [PMID: 38287296 PMCID: PMC10823712 DOI: 10.1186/s12967-024-04927-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Several evidence demonstrated that glucagon-like peptide 1 receptor agonists (GLP1-RAs) reduce the risk of dementia in type 2 diabetes patients by improving memory, learning, and overcoming cognitive impairment. In this study, we elucidated the molecular processes underlying the protective effect of Tirzepatide (TIR), a dual glucose-dependent insulinotropic polypeptide receptor agonist (GIP-RA)/ GLP-1RA, against learning and memory disorders. METHODS We investigated the effects of TIR on markers of neuronal growth (CREB and BDNF), apoptosis (BAX/Bcl2 ratio) differentiation (pAkt, MAP2, GAP43, and AGBL4), and insulin resistance (GLUT1, GLUT4, GLUT3 and SORBS1) in a neuroblastoma cell line (SHSY5Y) exposed to normal and high glucose concentration. The potential role on DNA methylation of genes involved in neuroprotection and epigenetic modulators of neuronal growth (miRNA 34a), apoptosis (miRNA 212), and differentiation (miRNA 29c) was also investigated. The cell proliferation was detected by measuring Ki-67 through flow cytometry. The data were analysed by SPSS IBM Version 23 or GraphPad Prism 7.0 software and expressed as the means ± SEM. Differences between the mean values were considered significant at a p-value of < 0.05. GraphPad Prism software was used for drawing figures. RESULTS For the first time, it was highlighted: (a) the role of TIR in the activation of the pAkt/CREB/BDNF pathway and the downstream signaling cascade; (b) TIR efficacy in neuroprotection; (c) TIR counteracting of hyperglycemia and insulin resistance-related effects at the neuronal level. CONCLUSIONS We demonstrated that TIR can ameliorate high glucose-induced neurodegeneration and overcome neuronal insulin resistance. Thus, this study provides new insight into the potential role of TIR in improving diabetes-related neuropathy.
Collapse
Affiliation(s)
- Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Federica Feliciano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Concetta Ambrosino
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
44
|
Rodrigues P, Bangali H, Hammoud A, Mustafa YF, Al-Hetty HRAK, Alkhafaji AT, Deorari MM, Al-Taee MM, Zabibah RS, Alsalamy A. COX 2-inhibitors; a thorough and updated survey into combinational therapies in cancers. Med Oncol 2024; 41:41. [PMID: 38165473 DOI: 10.1007/s12032-023-02256-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Cyclooxygenase (COX) enzymes are pivotal in inflammation and cancer development. COX-2, in particular, has been implicated in tumor growth, angiogenesis, and immune evasion. Recently, COX-2 inhibitors have arisen as potential therapeutic agents in cancer treatment. In addition, combining COX inhibitors with other treatment modalities has demonstrated the potential to improve therapeutic efficacy. This review aims to investigate the effects of COX inhibition, both alone and in combination with other methods, on signaling pathways and carcinogenesis in various cancers. In this study, a literature search of all major academic databases was conducted (PubMed, Scholar google), including the leading research on the mechanisms of COX-2, COX-2 inhibitors, monotherapy with COX-2 inhibitors, and combining COX-2-inhibitors with chemotherapeutic agents in tumors. The study encompasses preclinical and clinical evidence, highlighting the positive findings and the potential implications for clinical practice. According to preclinical studies, multiple signaling pathways implicated in tumor cell proliferation, survival, invasion, and metastasis can be suppressed by inhibiting COX. In addition, combining COX inhibitors with chemotherapy drugs, targeted therapies, immunotherapies, and miRNA-based approaches has enhanced anti-tumor activity. These results suggest that combination therapy has the potential to overcome resistance mechanisms and improve treatment outcomes. However, caution must be exercised when selecting and administering combination regimens. Not all combinations of COX-2 inhibitors with other drugs result in synergistic effects; some may even have unfavorable interactions. Therefore, personalized approaches that consider the specific characteristics of the cancer and the medications involved are crucial for optimizing therapeutic strategies. In conclusion, as monotherapy or combined with other methods, COX inhibition bears promise in modulating signaling pathways and inhibiting carcinogenesis in various cancers. Additional studies and well-designed clinical trials are required to completely elucidate the efficacy of COX inhibition and combination therapy in enhancing cancer treatment outcomes. This narrative review study provides a detailed summary of COX-2 monotherapy and combination targeted therapy in cancer treatment.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia.
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Mubarak Al-Abdullah, Kuwait.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | | | - Maha Medha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Rahman S Zabibah
- College of Medical Technique, the Islamic University, Najaf, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
45
|
Torun V, Degerli E, Cansaran-Duman D. Revealing the Molecular Signatures of miR-185-5p on Breast Cancer Cells Using Proteomic Analysis. Protein Pept Lett 2024; 31:681-695. [PMID: 39323334 DOI: 10.2174/0109298665322427240906060626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Breast cancer is a heterogeneous type of disease in which genetic and environmental factors play a crucial role. There are several types of treatment for breast cancer (BC) patients. However, the biggest problem in the treatment of breast cancer is the resistance that occurs during the treatment with chemotherapeutic agents. Usnic acid, a secondary metabolite of lichen, has been identified as a drug candidate molecule in cancer treatment. The determination of miRNA target proteins is essential for the understanding of molecular mechanisms of miRNA-related tumorigenesis. OBJECTIVES We determined that mir-185-5p has therapeutic potential at the miRNA level by applying usnic acid to BT-474 breast cancer cells in a previous study. Herein, we aimed to investigate the molecular mechanisms of miR-185-5p on BT-474 breast cancer cells using a proteomics approach. We explored the changes in the protein expression level of BT-474 breast cancer cells in response to the up-regulation of miR-185-5p after applying usnic acid as a novel candidate anti-- cancer drug molecule. METHODS We performed quantitative proteome analysis based on an LC-MS/MS assay, which was validated by western blotting. The differentially expressed proteins were analyzed using the latest data available in bioinformatics tools. The up-regulated expression of YWHAE, Cathepsin D, and the down-regulated levels of PAK-1 were demonstrated by western blot assay. RESULTS According to the results, 86 proteins showing >2-fold change were identified as differentially expressed between breast cancer and normal breast epithelial cells. The apoptosis pathway was the main clade containing most of the proteins regulated by miR-185-5p. The results indicate that miR-185-5p modulates apoptosis signaling pathways in BT-474 breast cancer cells. Breast cancer inhibition due to increased expression of YWHAE, Cathepsin D, and decreased expression of PAK-1 is likely to be mediated by inducing miR-185-5p mediated apoptosis. CONCLUSION In this study, the identification of miR-185-5p protein targets demonstrated the potential for the development of targeted therapy and the development of miRNA-based therapeutics and presented it as a biomarker for breast cancer diagnosis, prognosis, and treatment response. In this regard, proteome analyses provided an understanding of the molecular mechanism underlying the effect of miR-185-5p on breast cancer.
Collapse
Affiliation(s)
- Vildan Torun
- Ankara University, Biotechnology Institute, Keçiören, Ankara, Turkey
| | - Elif Degerli
- Ankara University, Biotechnology Institute, Keçiören, Ankara, Turkey
| | | |
Collapse
|
46
|
Ebrahimnezhad M, Natami M, Bakhtiari GH, Tabnak P, Ebrahimnezhad N, Yousefi B, Majidinia M. FOXO1, a tiny protein with intricate interactions: Promising therapeutic candidate in lung cancer. Biomed Pharmacother 2023; 169:115900. [PMID: 37981461 DOI: 10.1016/j.biopha.2023.115900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Nowadays, lung cancer is the most common cause of cancer-related deaths in both men and women globally. Despite the development of extremely efficient targeted agents, lung cancer progression and drug resistance remain serious clinical issues. Increasing knowledge of the molecular mechanisms underlying progression and drug resistance will enable the development of novel therapeutic methods. It has been revealed that transcription factors (TF) dysregulation, which results in considerable expression modifications of genes, is a generally prevalent phenomenon regarding human malignancies. The forkhead box O1 (FOXO1), a member of the forkhead transcription factor family with crucial roles in cell fate decisions, is suggested to play a pivotal role as a tumor suppressor in a variety of malignancies, especially in lung cancer. FOXO1 is involved in diverse cellular processes and also has clinical significance consisting of cell cycle arrest, apoptosis, DNA repair, oxidative stress, cancer prevention, treatment, and chemo/radioresistance. Based on the critical role of FOXO1, this transcription factor appears to be an appropriate target for future drug discovery in lung cancers. This review focused on the signaling pathways, and molecular mechanisms involved in FOXO1 regulation in lung cancer. We also discuss pharmacological compounds that are currently being administered for lung cancer treatment by affecting FOXO1 and also point out the essential role of FOXO1 in drug resistance. Future preclinical research should assess combination drug strategies to stimulate FOXO1 and its upstream regulators as potential strategies to treat resistant or advanced lung cancers.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Natami
- Department of Urology,Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhad
- Department of Microbiology, Faculty of Basic Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
47
|
Jang S, Lee H, Park J, Cha SR, Lee J, Park Y, Jang SH, Park JR, Hong SH, Yang SR. PTD-FGF2 Attenuates Elastase Induced Emphysema in Mice and Alveolar Epithelial Cell Injury. COPD 2023; 20:109-118. [PMID: 36882376 DOI: 10.1080/15412555.2023.2174842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Aberrant communication in alveolar epithelium is a major feature of inflammatory response for the airway remodeling leading to chronic obstructive pulmonary disease (COPD). In this study, we investigated the effect of protein transduction domains (PTD) conjugated Basic Fibroblast Growth Factor (FGF2) (PTD-FGF2) in response to cigarette smoke extract (CSE) in MLE-12 cells and porcine pancreatic elastase (PPE)-induced emphysematous mice. When PPE-induced mice were intraperitoneally treated with 0.1-0.5 mg/kg PTD-FGF2 or FGF2, the linear intercept, infiltration of inflammatory cells into alveoli and pro-inflammatory cytokines were significantly decreased. In western blot analysis, phosphorylated protein levels of c-Jun N-terminal Kinase 1/2 (JNK1/2), extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinases (MAPK) were decreased in PPE-induced mice treated PTD-FGF2. In MLE-12 cells, PTD-FGF2 treatment decreased reactive oxygen species (ROS) production and further decreased Interleukin-6 (IL-6) and IL-1b cytokines in response to CSE. In addition, phosphorylated protein levels of ERK1/2, JNK1/2 and p38 MAPK were reduced. We next determined microRNA expression in the isolated exosomes of MLE-12 cells. In reverse transcription-polymerase chain reaction (RT-PCR) analysis, level of let-7c miRNA was significantly increased while levels of miR-9 and miR-155 were decreased in response to CSE. These data suggest that PTD-FGF2 treatment plays a protective role in regulation of let-7c, miR-9 and miR-155 miRNA expressions and MAPK signaling pathways in CSE-induced MLE-12 cells and PPE-induced emphysematous mice.
Collapse
Affiliation(s)
- Soojin Jang
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Hanbyeol Lee
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jaehyun Park
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Sang-Ryul Cha
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jooyeon Lee
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Youngheon Park
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Sang Ho Jang
- Bioceltran Co., Ltd, Chuncheon, Republic of Korea
| | - Jeong-Ran Park
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Se-Ran Yang
- Department of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| |
Collapse
|
48
|
Saha E, Fanfani V, Mandros P, Ben-Guebila M, Fischer J, Hoff-Shutta K, Glass K, DeMeo DL, Lopes-Ramos C, Quackenbush J. Bayesian Optimized sample-specific Networks Obtained By Omics data (BONOBO). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567119. [PMID: 38014256 PMCID: PMC10680741 DOI: 10.1101/2023.11.16.567119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Gene regulatory networks (GRNs) are effective tools for inferring complex interactions between molecules that regulate biological processes and hence can provide insights into drivers of biological systems. Inferring co-expression networks is a critical element of GRN inference as the correlation between expression patterns may indicate that genes are coregulated by common factors. However, methods that estimate co-expression networks generally derive an aggregate network representing the mean regulatory properties of the population and so fail to fully capture population heterogeneity. To address these concerns, we introduce BONOBO (Bayesian Optimized Networks Obtained By assimilating Omics data), a scalable Bayesian model for deriving individual sample-specific co-expression networks by recognizing variations in molecular interactions across individuals. For every sample, BONOBO assumes a Gaussian distribution on the log-transformed centered gene expression and a conjugate prior distribution on the sample-specific co-expression matrix constructed from all other samples in the data. Combining the sample-specific gene expression with the prior distribution, BONOBO yields a closed-form solution for the posterior distribution of the sample-specific co-expression matrices, thus making the method extremely scalable. We demonstrate the utility of BONOBO in several contexts, including analyzing gene regulation in yeast transcription factor knockout studies, prognostic significance of miRNA-mRNA interaction in human breast cancer subtypes, and sex differences in gene regulation within human thyroid tissue. We find that BONOBO outperforms other sample-specific co-expression network inference methods and provides insight into individual differences in the drivers of biological processes.
Collapse
Affiliation(s)
- Enakshi Saha
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Viola Fanfani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Panagiotis Mandros
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Marouen Ben-Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jonas Fischer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Katherine Hoff-Shutta
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dawn Lisa DeMeo
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Camila Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
49
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
50
|
Mafi A, Mannani R, Khalilollah S, Hedayati N, Salami R, Rezaee M, Dehmordi RM, Ghorbanhosseini SS, Alimohammadi M, Akhavan-Sigari R. The Significant Role of microRNAs in Gliomas Angiogenesis: A Particular Focus on Molecular Mechanisms and Opportunities for Clinical Application. Cell Mol Neurobiol 2023; 43:3277-3299. [PMID: 37414973 PMCID: PMC11409989 DOI: 10.1007/s10571-023-01385-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with only 20-22 nucleic acids that inhibit gene transcription and translation by binding to mRNA. MiRNAs have a diverse set of target genes and can alter most physiological processes, including cell cycle checkpoints, cell survival, and cell death mechanisms, affecting the growth, development, and invasion of various cancers, including gliomas. So optimum management of miRNA expression is essential for preserving a normal biological environment. Due to their small size, stability, and capability of specifically targeting oncogenes, miRNAs have emerged as a promising marker and new biopharmaceutical targeted therapy for glioma patients. This review focuses on the most common miRNAs associated with gliomagenesis and development by controlling glioma-determining markers such as angiogenesis. We also summarized the recent research about miRNA effects on signaling pathways, their mechanistic role and cellular targets in the development of gliomas angiogenesis. Strategies for miRNA-based therapeutic targets, as well as limitations in clinical applications, are also discussed.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mannani
- Department of Surgery, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|