1
|
Zhang Y, Chen Z, Xiao Y, Wu T, Yang H, Liu Y, Zhou R, Xiong Y, Xiong Y, Yang X, Zhou J, Zhou H, Zhang W, Shu Y, Li X, Guo F, Yin J, Liao S, Li Q, Zhu P. Effects of Compound Probiotics on Pharmacokinetics of Cytochrome 450 Probe Drugs in Rats. Drug Metab Dispos 2024; 52:1297-1312. [PMID: 39214665 DOI: 10.1124/dmd.124.001837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Compound probiotics have been widely used and commonly coadministered with other drugs for treating various chronic illnesses, yet their effects on drug pharmacokinetics remain underexplored. This study elucidated the impact of VSL#3 on the metabolism of probe drugs for cytochrome P450 enzymes (P450s), specifically omeprazole, tolbutamide, midazolam, metoprolol, phenacetin, and chlorzoxazone. Male Wistar rats were administered drinking water containing VSL#3 or not for 14 days and then intragastrically administered a P450 probe cocktail; this was done to investigate the host P450's metabolic phenotype. Stool, liver/jejunum, and serum samples were collected for 16S ribosomal RNA sequencing, RNA sequencing, and bile acid profiling. The results indicated significant differences in both α and β diversity of intestinal microbial composition between the probiotic and vehicle groups in rats. In the probiotic group, the bioavailability of omeprazole increased by 269.9%, whereas those of tolbutamide and chlorpropamide decreased by 28.1% and 27.4%, respectively. The liver and jejunum exhibited 1417 and 4004 differentially expressed genes, respectively, between the two groups. In the probiotic group, most of P450 genes were upregulated in the liver but downregulated in the jejunum. The expression of genes encoding metabolic enzymes and drug transporters also changed. The serum-conjugated bile acids in the probiotic group were significantly reduced. Shorter duodenal villi and longer ileal villi were found in the probiotic group. In summary, VSL#3 administration altered the gut microbiota, host drug-processing gene expression, and intestinal structure in rats, which could be reasons for pharmacokinetic changes. SIGNIFICANCE STATEMENT: This study focused on the effects of the probiotic VSL#3 on the pharmacokinetic profile of cytochrome P450 probe drugs and the expression of host drug metabolism genes. Compared with previous studies, the present study provides a comprehensive explanation for the host drug metabolism profile modified by probiotics, combined here with the bile acid profile and histopathological analysis.
Collapse
Affiliation(s)
- Yanjuan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Zhi Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yayi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Tianyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Haijun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Rong Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Xuechun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Jian Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Yan Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Xiong Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Fugang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Jianhui Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Shang Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); National Clinical Research Center for Geriatric Disorders, Changsha, China (Y.Z., Y.X., T.W., H.Y., Y.L., R.Z., Yal.X., Yan.X., X.Y., J.Z., H.Z., W.Z., Q.L., P.Z.); Department of Hypertension, Xingsha Hospital, Changsha, China (Z.C., F.G., J.Y., S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland (Y.S.); and Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China (X.L.)
| |
Collapse
|
2
|
Dang Y, He X, Liu X, Wang Y, Geng S, Cheng Y, Ma H, Zhao X. Causal associations between constipation and pan-cancer: a bidirectional Mendelian randomization study. Front Oncol 2024; 14:1428003. [PMID: 39346734 PMCID: PMC11427234 DOI: 10.3389/fonc.2024.1428003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Objective Observational studies have suggested a potential association between constipation and several cancers. However, the causal relationship between constipation and cancer remains unclear. The purpose of this study is to explore the potential causal relationship between constipation and pan-cancer using Mendelian Randomization (MR) methods. Methods We performed a bidirectional MR analysis using publicly available summary data from Genome-Wide Association Studies (GWAS) statistics. The Inverse Variance Weighted (IVW) method was used as the main analysis method. We also used four MR methods: MR-Egger, Weighted Median, MR-PRESSO and MR.RAPS. Simultaneously, MR-Egger regression, Cochran's Q test and MR-PRESSO Global test were used to estimate the pleiotropy and heterogeneity of SNPs. In addition, we performed "leave-one-out" analyses" to avoid bias caused by horizontal pleiotropy of individual SNPs. Results MR analysis revealed a potential causal association between constipation and the risk of colorectal cancer (CRC) [IVW (OR= 1.0021 (1.0003, 1.0039), P= 0.0234)], lung cancer (LC) [IVW (OR=1.0955 (1.0134, 1.1843), P=0.0218)], Oral cavity and pharyngeal cancer (OPC) [IVW (OR=1.4068 (1.0070, 1.9652), P=0.0454)], and Pancreatic cancer (PC) [IVW (OR=1.5580 (1.0659, 2.2773), P=0.0221)]. In addition, we explored causal relationships between constipation and 12 other types of cancers, including gastric cancer, esophageal cancer, skin melanoma and so on. All five methods yielded no evidence of a causal association between constipation and the risk of these cancer types. In the reverse MR analysis, there was no evidence of a causal association between cancer and the risk of constipation for all five methods. Conclusion Our bidirectional MR study suggests a potential relationship between constipation and an increased risk of CRC, LC OPC and PC. The underlying mechanisms behind these associations will need to be explored in future experimental studies.
Collapse
Affiliation(s)
- Yongze Dang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyu He
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoxiao Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuchen Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shangyi Geng
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yutong Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongbing Ma
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xixi Zhao
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Chojnacki J, Popławski T, Kaczka A, Romanowska N, Chojnacki C, Gąsiorowska A. Assessment of Urinary Dopamine and Serotonin Metabolites in Relation to Dysbiosis Indicators in Patients with Functional Constipation. Nutrients 2024; 16:2981. [PMID: 39275296 PMCID: PMC11397005 DOI: 10.3390/nu16172981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND The causes of functional constipation (FC) in adults are unclear, but changes in the gut microbiome may play an important role. The present study aimed to assess the relationship between urinary metabolites of dopamine and serotonin and some dysbiosis indicators in patients with FC. The study included 40 healthy women and 40 women with FC aged 21-46 years. METHODS Urinary levels of homovanillic acid (HVA), 5-hydoxyindoleacetic acid (5-HIAA), p-hydroxyphenylacetic acid (PhAc), and 3-indoxyl sulfate, as final metabolites of dopamine, serotonin, and indole pathway, respectively, were determined using the LC-Ms/Ms method. However, hydrogen-methane and ammonia breath tests were performed. The GA-map Dysbiosis Test was used to identify and characterize the dysbiosis index (DI). RESULTS In patients with FC, the DI was significantly higher than in the control group: 4.05 ± 0.53 vs. 1.52 ± 0.81 points (p < 0.001), but the number of many types of bacteria varied among individuals. The levels of HVA were higher, while 5-HIAA levels were lower in patients. Moreover, the HVA/5-HIAA ratio had a positive correlation with DI as well as with the severity of symptoms. CONCLUSIONS In patients with functional constipation, the balance in dopamine and serotonin secretion is disturbed, which is associated with changes in the gut microbiome.
Collapse
Affiliation(s)
- Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Tomasz Popławski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Aleksandra Kaczka
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Natalia Romanowska
- Department of Gastroenterology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Anita Gąsiorowska
- Department of Gastroenterology, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
4
|
He N, Sheng K, Li G, Zhang S. The causal relationship between gut microbiota and constipation: a two-sample Mendelian randomization study. BMC Gastroenterol 2024; 24:271. [PMID: 39160466 PMCID: PMC11331768 DOI: 10.1186/s12876-024-03306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Constipation is one of the most common gastrointestinal disorders afflicting the population, with recent observational studies implicating dysfunction of the gut microbiota in constipation. Despite observational studies indicating a relationship, a clear causality remains unclear. This study aims to use two-sample Mendelian randomization (MR) to establish a clearer causal relationship between the two. METHODS A two-sample Mendelian randomization (MR) study was performed using the gut microbiota summary Genome-Wide Association Studies (GWAS) statistics from MiBioGen consortium (n = 13,266) and constipation GWAS summary statistics from the IEU OpenGWAS database. The causality between gut microbiota and constipation is primarily analyzed using the inverse-variance weighted (IVW) method and reinforced by an additional four methods, including MR-Egger, Weighted Median, Simple Mode, and Weighted Mode. Finally, funnel plot, heterogeneity test, horizontal pleiotropy test, and leave-one-out test were used to evaluate the reliability of MR results. RESULTS IVW estimates suggested that the bacterial species Anaerotruncus, Butyricimonas, and Hungatella were causally associated with constipation. The odds ratio (OR) values of Anaerotruncus, Butyricimonas, and Hungatella were 1.08 (95% CI = 1.02-1.13; P = 0.007), 1.07 (95% CI = 1.01-1.13; P = 0.015), 1.03 (95% CI = 1.00-1.06; P = 0.037) respectively. Meanwhile, Ruminiclostridium 9 and Intestinibacter have been shown to be associated with a reduced risk of constipation. The OR of Ruminiclostridium 9 = 0.75(95% CI = 0.73-0.78, P < 0.001 and Intestinibacter of OR = 0.89 (95% CI = 0.86-0.93, P < 0.001). Furthermore, validation by funnel plot, heterogeneity test, and horizontal pleiotropy test showed that MR results were reliable. CONCLUSION This is the first Mendelian randomization study to explore the causalities between specific gut microbiota taxa and constipation, and as such may be useful in providing insights into the unclear pathology of constipation which can in turn aid in the search for prevention and treatment.
Collapse
Affiliation(s)
- Nan He
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, PR China.
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, 610075, Sichuan, PR China.
| | - Kai Sheng
- Shriners Hospital for Children, Montreal, QC, Canada
| | - Guangzhao Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, PR China
| | - Shenghuan Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, PR China
| |
Collapse
|
5
|
Zhang G, Wang S, Ma P, Wang T, Sun X, Zhang X, Li H, Pan J. Association of habitual sleep duration with abnormal bowel symptoms: a cross-sectional study of the 2005-2010 national health and nutrition examination survey. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:125. [PMID: 39152480 PMCID: PMC11330150 DOI: 10.1186/s41043-024-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Nowadays, few studies have examined the relationships between sleep duration and abnormal gut health. In this study, we used data from the National Health and Nutrition Examination Survey (NHANES) to investigate the correlations between habitual sleep duration and abnormal bowel symptoms in adults. METHODS This study included 11,533 participants aged ≥ 20 years from the NHANES conducted during 2005-2010. Chronic constipation and chronic diarrhea were defined based on the Bristol Stool Form Scale (BSFS) and frequency of bowel movements. Sleep duration was assessed based on the self-report questionnaire and classified into three groups: short sleep duration (< 7 h), normal sleep duration (7-9 h), and long sleep duration (> 9 h). Weighted data were calculated according to analytical guidelines. Logistic regression models and restricted cubic spline curves (RCS) were used to assess and describe the association between sleep duration and chronic diarrhea and constipation. Univariate and stratified analyses were also performed. RESULTS There were 949 (7.27%) adults aged 20 years and older with chronic diarrhea and 1120 (8.94%) adults with constipation among the 11,533 individuals. A positive association was found between short sleep duration and chronic constipation, with a multivariate-adjusted OR of 1.32 (95% CI: 1.05-1.66). Additionally, long sleep duration was significantly associated with an increased risk of chronic diarrhea (OR: 1.75, 95% CI: 1.08-2.84, P = 0.026). The RCS models revealed a statistically significant nonlinear association (P for non-linearity < 0.05) between sleep duration and chronic diarrhea. Furthermore, obesity was found to modify the association between sleep duration and chronic diarrhea and constipation (p for interaction = 0.044). CONCLUSIONS This study suggests that both long and short sleep durations are associated with a higher risk of chronic diarrhea and constipation in the general population. Furthermore, a non-linear association between sleep duration and these conditions persists even after adjusting for case complexities.
Collapse
Affiliation(s)
- Guimei Zhang
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Sisi Wang
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Ping Ma
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Tuzhi Wang
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Xizhe Sun
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Xiaotao Zhang
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Hongyao Li
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Jiyang Pan
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China.
| |
Collapse
|
6
|
Gorecka-Mazur A, Krygowska-Wajs A, Furgala A, Li J, Misselwitz B, Pietraszko W, Kwinta B, Yilmaz B. Associations between gut microbiota characteristics and non-motor symptoms following pharmacological and surgical treatments in Parkinson's disease patients. Neurogastroenterol Motil 2024; 36:e14846. [PMID: 38873926 DOI: 10.1111/nmo.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The gut microbiota has been implicated in Parkinson's disease (PD), with alterations observed in microbial composition and reduced microbial species richness, which may influence gastrointestinal symptoms in PD patients. It remains to be determined whether the severity of gastrointestinal symptoms correlates with microbiota variations in PD patients treated pharmacologically or with subthalamic nucleus deep brain stimulation (STN-DBS) therapy. This study aims to explore how these treatments affect gut microbiota and gastrointestinal symptoms in PD, identifying specific microbial differences associated with each treatment modality. METHODS A total of 42 individuals diagnosed with PD, along with 38 age-matched household control participants, contributed stool samples for microbiota characterization. Differences in the gut microbiota across various groups of PD patients and their households were identified through comprehensive sequencing of the 16S rRNA gene amplicon sequencing. KEY RESULTS Differences in microbial communities were observed between PD patients and controls, as well as between PD patients receiving pharmacological treatment and those with STN-DBS. Pharmacologically treated advanced PD patients have higher gastrointestinal dysfunctions. Gut microbiota profile linked to STN-DBS and reduced levodopa consumption, characterized by its anti-inflammatory properties, might play a role in diminishing gastrointestinal dysfunction relative to only pharmacological treatments. CONCLUSIONS & INFERENCES Advanced PD patients on medication exhibit more gastrointestinal issues, despite relatively stable microbial diversity, indicating a complex interaction between gut microbiota, PD progression, and treatment effects. An imbalanced gut-brain axis, particularly due to reduced butyrate production, may lead to constipation by affecting the enteric nervous system, which emphasizes the need to incorporate gut microbiome insights into treatment strategies.
Collapse
Affiliation(s)
| | - Anna Krygowska-Wajs
- Department of Neurology, Medical College, Jagiellonian University, Kraków, Poland
| | - Agata Furgala
- Department of Pathophysiology, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Jiaqi Li
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Wojciech Pietraszko
- Department of Neurosurgery and Neurotraumatology, Medical College, Jagiellonian University, Kraków, Poland
| | - Borys Kwinta
- Department of Neurosurgery and Neurotraumatology, Medical College, Jagiellonian University, Kraków, Poland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Feng C, Gao G, Wu K, Weng X. Causal relationship between gut microbiota and constipation: a bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1438778. [PMID: 39086647 PMCID: PMC11288903 DOI: 10.3389/fmicb.2024.1438778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Background Constipation is a prevalent gastrointestinal disorder affecting approximately 15% of the global population, leading to significant healthcare burdens. Emerging evidence suggests that gut microbiota plays a pivotal role in the pathogenesis of constipation, although causality remains uncertain due to potential confounding factors in observational studies. This study aims to clarify the causal relationships between gut microbiota and constipation using a bidirectional Mendelian Randomization (MR) approach, which helps to overcome confounding issues and reverse causality. Methods Utilizing data from genome-wide association studies (GWAS) from the MiBioGen consortium and other sources, we identified genetic variants as instrumental variables (IVs) for 196 bacterial traits and constipation. These IVs were rigorously selected based on their association with the traits and absence of linkage with confounding factors. We applied several MR methods, including Inverse Variance Weighted (IVW), MR Egger, and MR-PRESSO, to examine the causal effects in both directions. Results Our analysis revealed a significant causal relationship where specific bacterial taxa such as Coprococcus1 (OR = 0.798, 95%CI: 0.711-0.896, p < 0.001), Coprococcus3 (OR = 0.851, 95%CI: 0.740-0.979, p = 0.024), Desulfovibrio (OR = 0.902, 95%CI: 0.817-0.996, p = 0.041), Flavonifractor (OR = 0.823, 95%CI: 0.708-0.957, p < 0.001), and Lachnospiraceae UCG004, whereas others including Ruminococcaceae UCG005 (OR = 1.127, 95%CI: 1.008-1.261, p = 0.036), Eubacterium nodatum group (OR = 1.080, 95%CI: 1.018-1.145, p = 0.025), Butyricimonas (OR = 1.118, 95%CI: 1.014-1.233, p = 0.002), and Bacteroidetes (OR = 1.274, 95%CI: 1.014-1.233, p < 0.001) increase constipation risk. In the reverse MR analysis, constipation was found to influence the abundance of certain taxa, including Family XIII, Porphyromonadaceae, Proteobacteria, Lentisphaeria, Veillonellaceae, Victivallaceae, Catenibacterium, Sellimonas, and Victivallales, indicating a bidirectional relationship. Sensitivity analyses confirmed the robustness of these findings, with no evidence of heterogeneity or horizontal pleiotropy. Conclusion The relationship between our study gut microbiota and constipation interacts at the genetic level, which gut microbiota can influence the onset of constipation, and constipation can alter the gut microbiota. Coprococcus1, Coprococcus3, Desulfovibrio, Flavonifractor and Lachnospiraceae UCG004 play a protective role against constipation, while Ruminococcaceae UCG005, Eubacterium nodatum group, Butyricimonas, and Bacteroidetes are associated with an increased risk. In addition, constipation correlates positively with the abundance of Family XIII, Porphyromonadaceae and Proteobacteria, while negatively with Lentisphaeria, Veillonellaceae, Victivallaceae, Catenibacterium, Sellimonas, and Victivallales.
Collapse
Affiliation(s)
- Cuncheng Feng
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guanzhuang Gao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Kai Wu
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoqi Weng
- Department of Gastrointestinal Surgery, Tongxiang First People's Hospital, Tongxiang, China
| |
Collapse
|
8
|
Cai T, Dong Y, Feng Z, Cai B. Ameliorative effects of the mixed aqueous extract of Aurantii Fructus Immaturus and Magnoliae Officinalis Cortex on loperamide-induced STC mice. Heliyon 2024; 10:e33705. [PMID: 39040398 PMCID: PMC11261063 DOI: 10.1016/j.heliyon.2024.e33705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Aurantii fructus immaturus (AFI) and Magnoliae Officinalis Cortex (MOC) have been used to treat constipation in China for thousands of years. In this study, a mouse model of slow transit constipation (STC) was established by gavage of loperamide at a dose of 10 mg/kg bw/day for seven days. Seventy-two mice were randomly allocated to six groups (control, STC model, 3 g/kg AFI + MOC, 6 g/kg AFI + MOC, 12 g/kg AFI + MOC, and mosapride). A mixed aqueous extract of AFI and MOC was administered to the STC mice at the corresponding doses from the first day of modelling. Body weight, faecal water content, gastrointestinal transit time, and intestinal propulsion rate were evaluated. Serum levels of neurotransmitters and gastrointestinal hormones, colonic expression of aquaporins (AQP), and interstitial cells of Cajal (ICC) were assessed using ELISA, immunohistochemistry, and Western blot analysis. The abundance and diversity of the gut microbiota were analysed by 16S rRNA gene sequencing. The mixed aqueous extract significantly increased faecal water content and intestinal propulsion rate and shortened gastrointestinal transit time in STC mice. Furthermore, the administration of AFI and MOC significantly decreased serum vasoactive intestinal peptide (VIP), nitric oxide (NO), and somatostatin (SS) levels and increased serum motilin (MTL) levels in STC mice. The protein expression levels of AQP3 and AQP4 in the colon tissue of STC mice significantly decreased following AFI + MOC treatment, whereas those of AQP9 significantly increased. Moreover, the AFI + MOC treatment led to an increase in the number and functionality of ICCs. In addition, the relative abundances of Ruminococcus and Oscillospira increased in response to the administration of AFI + MOC in STC mice. In conclusion, the mixed aqueous extract of AFI and MOC promoted defaecation and increased intestinal mobility in STC mice. Its mechanisms of action involve modulatory effects on neurotransmitters, gastrointestinal hormones, AQPs, and ICCs. AFI + MOC treatment also improved the diversity and abundance of the gut microbiota in STC mice, particularly short-chain fatty acid-producing bacteria, which may play an important role in its beneficial effect on constipation.
Collapse
Affiliation(s)
- Ting Cai
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, 214000, China
| | - Yun Dong
- Department of Pathology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
| | - Zeyu Feng
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
| | - Bin Cai
- Department of Anorectal Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
| |
Collapse
|
9
|
Lan W, Yang H, Zhong Z, Luo C, Huang Q, Liu W, Yang J, Xiang H, Tang Y, Chen T. Bifidobacterium animalis subsp. lactis LPL-RH improves postoperative gastrointestinal symptoms and nutrition indexes by regulating the gut microbiota in patients with valvular heart disease: a randomized controlled trial. Food Funct 2024; 15:7605-7618. [PMID: 38938120 DOI: 10.1039/d4fo01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Gastrointestinal symptoms constitute a frequent complication in postoperative patients with valvular heart disease (VHD), impacting their postoperative recovery. Probiotics contribute to regulating human gut microbiota balance and alleviating postoperative gastrointestinal symptoms. Our objective involved assessing the potential of Bifidobacterium animalis subsp. lactis LPL-RH to alleviate postoperative gastrointestinal symptoms and expedite patient recovery. Adult patients diagnosed with VHD scheduled for valve surgery were enrolled. 110 patients were randomly divided into two groups and received LPL-RH or a placebo for 14 days. Gastrointestinal symptoms were evaluated using the Gastrointestinal Symptoms Questionnaire. An analysis of the time to recovery of bowel function and various postoperative variables was conducted in both study groups. Variations in the intestinal microbiota were detected via 16S rRNA sequencing. The study was completed by 105 participants, with 53 in the probiotic group and 52 in the placebo group. Compared to the placebo group, LPL-RH significantly reduced the total gastrointestinal symptom score after surgery (p = 0.004). Additionally, LPL-RH was found to significantly reduce abdominal pain (p = 0.001), bloating (p = 0.018), and constipation (p = 0.022) symptom scores. Furthermore, LPL-RH dramatically shortened the time to recovery of bowel function (p = 0.017). Moreover, LPL-RH administration significantly enhanced patients' postoperative nutrition indexes (red blood cell counts, hemoglobin level, p < 0.05). Microbiome analysis showed that the composition and diversity of the postoperative intestinal microbiota differed between the probiotic and placebo groups. No adverse incidents associated with probiotics were documented, emphasizing their safety. This study initially discovered that oral B. animalis subsp. lactis LPL-RH can assist in regulating intestinal microbiota balance, alleviating gastrointestinal symptoms, promoting intestinal function recovery, and enhancing nutrition indexes in patients with VHD after surgery. Regulating the intestinal microbiota may represent a potential mechanism for LPL-RH to exert clinical benefits.
Collapse
Affiliation(s)
- Wanqi Lan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Heng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhiwang Zhong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao Luo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qin Huang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wu Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Juesheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Haiyan Xiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Tingtao Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Gawey BJ, Mars RA, Kashyap PC. The role of the gut microbiome in disorders of gut-brain interaction. FEBS J 2024. [PMID: 38922780 DOI: 10.1111/febs.17200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Disorders of Gut-Brain Interaction (DGBI) are widely prevalent and commonly encountered in gastroenterology practice. While several peripheral and central mechanisms have been implicated in the pathogenesis of DGBI, a recent body of work suggests an important role for the gut microbiome. In this review, we highlight how gut microbiota and their metabolites affect physiologic changes underlying symptoms in DGBI, with a particular focus on their mechanistic influence on GI transit, visceral sensitivity, intestinal barrier function and secretion, and CNS processing. This review emphasizes the complexity of local and distant effects of microbial metabolites on physiological function, influenced by factors such as metabolite concentration, duration of metabolite exposure, receptor location, host genetics, and underlying disease state. Large-scale in vitro work has elucidated interactions between host receptors and the microbial metabolome but there is a need for future research to integrate such preclinical findings with clinical studies. The development of novel, targeted therapeutic strategies for DGBI hinges on a deeper understanding of these metabolite-host interactions, offering exciting possibilities for the future of treatment of DGBI.
Collapse
Affiliation(s)
- Brent J Gawey
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ruben A Mars
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Sato K, Hara-Chikuma M, Yasui M, Inoue J, Kim YG. Sufficient water intake maintains the gut microbiota and immune homeostasis and promotes pathogen elimination. iScience 2024; 27:109903. [PMID: 38799550 PMCID: PMC11126815 DOI: 10.1016/j.isci.2024.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Water is the most abundant substance in the human body and plays a pivotal role in various bodily functions. While underhydration is associated with the incidence of certain diseases, the specific role of water in gut function remains largely unexplored. Here, we show that water restriction disrupts gut homeostasis, which is accompanied by a bloom of gut microbes and decreased numbers of immune cells, especially Th17 cells, within the colon. These microbial and immunological changes in the gut are associated with an impaired ability to eliminate the enteric pathogen Citrobacter rodentium. Moreover, aquaporin 3, a water channel protein, is required for the maintenance of Th17 cell function and differentiation. Taken together, adequate water intake is critical for maintaining bacterial and immunological homeostasis in the gut, thereby enhancing host defenses against enteric pathogens.
Collapse
Affiliation(s)
- Kensuke Sato
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Joe Inoue
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
12
|
Hu X, Feng J, Lu J, Pang R, Zhang A, Liu J, Gou X, Bai X, Wang J, Chang C, Yin J, Wang Y, Xiao H, Wang Q, Cheng H, Chang Y, Wang W. Effects of exoskeleton-assisted walking on bowel function in motor-complete spinal cord injury patients: involvement of the brain-gut axis, a pilot study. Front Neurosci 2024; 18:1395671. [PMID: 38952922 PMCID: PMC11215087 DOI: 10.3389/fnins.2024.1395671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Evidence has demonstrated that exoskeleton robots can improve intestinal function in patients with spinal cord injury (SCI). However, the underlying mechanisms remain unelucidated. This study investigated the effects of exoskeleton-assisted walking (EAW) on intestinal function and intestinal flora structure in T2-L1 motor complete paraplegia patients. The results showed that five participants in the EAW group and three in the conventional group reported improvements in at least one bowel management index, including an increased frequency of bowel evacuations, less time spent on bowel management per day, and less external assistance (manual digital stimulation, medication, and enema usage). After 8 weeks of training, the amount of glycerol used in the EAW group decreased significantly (p <0.05). The EAW group showed an increasing trend in the neurogenic bowel dysfunction (NBD) score after 8 weeks of training, while the conventional group showed a worsening trend. Patients who received the EAW intervention exhibited a decreased abundance of Bacteroidetes and Verrucomicrobia, while Firmicutes, Proteobacteria, and Actinobacteria were upregulated. In addition, there were decreases in the abundances of Bacteroides, Prevotella, Parabacteroides, Akkermansia, Blautia, Ruminococcus 2, and Megamonas. In contrast, Ruminococcus 1, Ruminococcaceae UCG002, Faecalibacterium, Dialister, Ralstonia, Escherichia-Shigella, and Bifidobacterium showed upregulation among the top 15 genera. The abundance of Ralstonia was significantly higher in the EAW group than in the conventional group, and Dialister increased significantly in EAW individuals at 8 weeks. This study suggests that EAW can improve intestinal function of SCI patients in a limited way, and may be associated with changes in the abundance of intestinal flora, especially an increase in beneficial bacteria. In the future, we need to further understand the changes in microbial groups caused by EAW training and all related impact mechanisms, especially intestinal flora metabolites. Clinical trial registration: https://www.chictr.org.cn/.
Collapse
Affiliation(s)
- Xiaomin Hu
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Jing Feng
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiachun Lu
- Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiang Gou
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Xingang Bai
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cong Chang
- Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Jie Yin
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yunyun Wang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hua Xiao
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Qian Wang
- Care Alliance Jinchen Rehabilitation Hospital of Chengdu, Chengdu, China
| | - Hong Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Youjun Chang
- Sichuan Provincial Rehabilitation Hospital, Affiliated Rehabilitation Hospital of Chengdu University of T.C.M., Chengdu, China
| | - Wenchun Wang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
13
|
Maeta A, Katsukawa M, Hayase Y, Takahashi K. Relationship Between the Frequency of Bowel Movements and Fecal Bacteroides in Japanese Women. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:345-350. [PMID: 38512409 DOI: 10.1007/s11130-024-01168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
The intestinal microbiota is involved in many diseases, such as constipation, obesity, and inflammatory bowel disease. To determine the associations between the gut microbiome and the frequency of bowel movements, we performed cross-sectional correlation analysis at the baseline and longitudinal correlation analysis after the intervention. Forty-three women were enrolled in this study. All participants ingested soymilk-okara powder (15 g) daily for 12 weeks. They recorded the ingested okara powder amounts and their frequency of bowel movements during the entire 12 weeks of the intervention. The fecal microbiota percentages were measured at baseline and after 12 weeks of intervention. Two women who did not completely record the frequency of bowel movements were excluded. In the cross-sectional correlation analysis at the baseline, there was a significant positive correlation between the relative abundance of the Bacteroides genus in the feces and the frequency of bowel movements per week (R = 0.429, p = 0.005) and a significant negative correlation between the relative abundance of Clostridium cluster XI in the feces and the frequency of bowel movements per week (R = -0.315, p = 0.045). Moreover, in the longitudinal correlation analysis, the difference in the relative abundance of Bacteroides genus in feces between the baseline and after the intervention significantly correlated with the changes in the frequency of bowel movements per week (R = 0.492, p = 0.001). Therefore, it was suggested that there was a relationship between the gut relative abundance of the Bacteroides genus and the frequency of bowel movements.
Collapse
Affiliation(s)
- Akihiro Maeta
- Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan.
| | - Masahiro Katsukawa
- Product Development Division, Kikkoman Food Products Company, 250, Noda, Noda, Chiba, 278-0037, Japan
| | - Yaeko Hayase
- Product Development Division, Kikkoman Food Products Company, 250, Noda, Noda, Chiba, 278-0037, Japan
| | - Kyoko Takahashi
- Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan.
| |
Collapse
|
14
|
Fan Q, Xia C, Zeng X, Wu Z, Guo Y, Du Q, Tu M, Liu X, Pan D. Effect and potential mechanism of nitrite reductase B on nitrite degradation by Limosilactobacillus fermentum RC4. Curr Res Food Sci 2024; 8:100749. [PMID: 38694558 PMCID: PMC11061237 DOI: 10.1016/j.crfs.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
Nitrite has the potential risk of hypoxic poisoning or cancer in pickled food. In our previous study, Limosilactobacillus fermentum (L. fermentum) RC4 is effective in nitrite degradation by producing nitrite reductase B (NirB). To investigate the detailed mechanism from the genome, response, and regulation of NirB, the whole-genome sequence of L. fermentum RC4 was analyzed, the L. fermentum-EGFP-nirB with enhanced green fluorescent protein (EGFP) labeled the nitrite reductase large subunit nirB, and the recombined L. fermentum-NirB with overexpression NirB strain was conducted. The key genes within the dominant metabolism pathways may be involved in stress tolerance to regulate the degrading process. The green fluorescence density of EGFP indicated that NirB activity has a threshold and peaked under 300 mg/L nitrite concentration. NirB overexpressed in L. fermentum RC4 boosted the enzyme activity by 39.6% and the degradation rate by 10.5%, when fermented in 300 mg/L for 40 h, compared to the control group. RNA-seq detected 248 differential genes mainly enriched in carbohydrate, amino acid, and energy metabolism. The ackA gene for pyruvate metabolism and the mtnN gene for cysteine metabolism were up-regulated. NirB regulates these genes to produce acid and improve stress resistance for L. fermentum RC4 to accelerate nitrite degradation.
Collapse
Affiliation(s)
- Qing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Chaoran Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xinanbei Liu
- College of Resources and Environment, Baoshan University, Baoshan, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Huai Y, Fan Q, Dong Y, Li X, Hu J, Liu L, Chen Y, Yin P. Efficacy and mechanism of acupuncture for functional constipation in older adults: study protocol for a randomized controlled trial. Front Neurol 2024; 15:1341861. [PMID: 38685950 PMCID: PMC11056592 DOI: 10.3389/fneur.2024.1341861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Functional constipation (FC) is a common functional gastrointestinal disorder in clinical practice, with the prevalence of which increasing with age. With the increasing aging of the population worldwide, this problem is bound to become more prominent. Acupuncture is effective and recommended for the treatment of FC. However, little is known about how acupuncture affects the gut microbiota and inflammatory cytokines and thus improves gut function. Meanwhile, there are few high-quality clinical trials specifically focusing on acupuncture in treating FC in older people. The objective of this study is to assess the efficacy and safety of acupuncture in treating FC in older people. Additionally, the research aims to explore the mechanism of action of acupuncture in treating FC in older people by affecting intestinal microbiota and inflammation cytokines. Methods and analysis This study is designed as a single-center, randomized, sham-controlled clinical trial. A total of 98 eligible FC patients will be randomized in a 1:1 ratio into an acupuncture group and a sham acupuncture group. Both groups will receive 24 treatments over 8 weeks with a 12-week follow-up. The primary outcome of the study is the treatment response rate, which is the proportion of participants with ≥3 mean weekly Complete Spontaneous Bowel Movements (CSBMs) over weeks 3-8. The secondary outcomes will include the proportion of participants with ≥3 mean weekly CSBMs during other assessment periods; the percentage of patients with ≥1 increase in mean weekly CSBMs from baseline; the average changes in CSBMs; Patient Assessment of Constipation-Symptoms (PAC-SYM), Bristol Stool Scale, Patient Assessment of Constipation Quality of Life Questionnaire (PAC-QOL), Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS) and weekly usage of emergency bowel medications. Adverse events will be recorded throughout the study. Data for the outcomes will be collected at Week 0 (baseline), Week 4 (the intervention period), Week 8 (the post-treatment), Week 12 (the follow-up period) and Week 20 (the follow-up period). In addition, changes in intestinal microbiota will be analyzed using 16S rRNA high-throughput detection, and the concentration of relevant inflammatory cytokines in serum will be measured by ELISA based on blood samples. The intention-to-treat analysis will be performed in this study.Clinical trial registration: [https://www.chictr.org.cn/], identifier [ChiCTR2300070735].
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuelai Chen
- Sleep Medicine Center, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Yin
- Sleep Medicine Center, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Chen Q, Chen D, Gao X, Jiang Y, Yu T, Jiang L, Tang Y. Association between fecal short-chain fatty acid levels and constipation severity in subjects with slow transit constipation. Eur J Gastroenterol Hepatol 2024; 36:394-403. [PMID: 38417059 DOI: 10.1097/meg.0000000000002734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
OBJECTIVE We measured the fecal levels of short-chain fatty acids (SCFAs) in subjects with slow transit constipation (STC) and assessed the correlation between SCFA levels and disease severity as well as quality of life. METHODS We isolated the supernatant from fecal samples of healthy and STC subjects and measured the SCFA levels. To assess the correlation between fecal SCFA levels and disease severity as well as quality of life, we used the Constipation Scoring System, Patient Assessment of Constipation Symptoms, and Patient Assessment of Constipation Quality of Life questionnaires. RESULTS 16 STC subjects and 16 healthy controls were enrolled. STC subjects had lower SCFA levels, but the difference was not statistically significant (475.85 ± 251.68 vs. 639.77 ± 213.97 µg/ml, P = 0.056). Additionally, STC subjects had lower acetic and propionic acid levels (149.06 ± 88.54 vs. 261.33 ± 109.75 µg/ml and 100.60 ± 60.62 vs. 157.34 ± 66.37 µg/ml, respectively, P < 0.05) and higher isobutyric and isovaleric acid levels (27.21 ± 15.06 vs. 18.16 ± 8.65 µg/ml and 31.78 ± 18.81 vs. 16.90 ± 10.05 µg/ml, respectively, P < 0.05). At 252.21 µg/ml acetic acid, the specificity and sensitivity to distinguish healthy from STC subjects were 93.7% and 56.3%, respectively. In STC subjects, there were significant negative correlations between acetic and propionic acid levels and Constipation Scoring System scores. CONCLUSION Fecal SCFA, acetic acid, and propionic acid levels decreased in STC subjects. There were significant negative correlations between the levels of the two acids and constipation severity.
Collapse
Affiliation(s)
- Qi Chen
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Sun D, Yu J, Zhan Y, Cheng X, Zhang J, Li Y, Li Q, Xiong Y, Liu W. Lacidophilin tablets alleviate constipation through regulation of intestinal microflora by promoting the colonization of Akkermansia sps. Sci Rep 2024; 14:7152. [PMID: 38531966 DOI: 10.1038/s41598-024-57732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Constipation is a major health problem worldwide that requires effective and safe treatment options. Increasing evidence indicates that disturbances in gut microbiota may be a risk factor for constipation. Administration of lacidophilin tablets shows promising therapeutic potential in the treatment of inflammatory bowel disease owing to their immunomodulatory properties and regulation of the gut microbiota. The focus of this study was on investigating the ability of lacidophilin tablets to relieve constipation by modulating the gut microbiome. Rats with loperamide hydrochloride induced constipation were treated with lacidophilin tablets via intragastric administration for ten days. The laxative effect of lacidophilin tablets was then evaluated by investigating the regulation of intestinal microflora and the possible underlying molecular mechanism. Our results reveal that treatment with lacidophilin tablets increased the intestinal advancement rate, fecal moisture content, and colonic AQP3 protein expression. It also improved colonic microflora structure in the colonic contents of model rats mainly by increasing Akkermansia muciniphila and decreasing Clostridium_sensu_stricto_1. Transcriptome analysis indicated that treatment with lacidophilin tablets maintains the immune response in the intestine and promotes recovery of the intestinal mechanical barrier in the constipation model. Our study shows that lacidophilin tablets improve constipation, possibly by promoting Akkermansia colonization and by modulating the intestinal immune response.
Collapse
Affiliation(s)
- Denglong Sun
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Jingting Yu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Yang Zhan
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Xiaoying Cheng
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Jingwen Zhang
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Yingmeng Li
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Qiong Li
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yanxia Xiong
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China.
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China.
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China.
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China.
| |
Collapse
|
18
|
Rosa D, Zablah RA, Vazquez-Frias R. Unraveling the complexity of Disorders of the Gut-Brain Interaction: the gut microbiota connection in children. Front Pediatr 2024; 11:1283389. [PMID: 38433954 PMCID: PMC10904537 DOI: 10.3389/fped.2023.1283389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/27/2023] [Indexed: 03/05/2024] Open
Abstract
"Disorders of Gut-Brain Interaction (DGBIs)," formerly referred to as "Functional Gastrointestinal Disorders (FGIDs)," encompass a prevalent array of chronic or recurring gastrointestinal symptoms that notably impact the quality of life for affected children and their families. Recent studies have elucidated the intricate pathophysiology of DGBIs, underscoring their correlation with gut microbiota. This review seeks to explore the present comprehension of the gut microbiota's role in DGBI development. While other factors can contribute to DGBIs, the gut microbiota prominently influences the onset and progression of these conditions. According to the Rome IV diagnostic criteria, DGBI prevalence is approximately 40% worldwide. The Rome Foundation has diligently worked for nearly three decades to refine our comprehension of DGBIs. By centering on the gut microbiota, this review sheds light on potential therapeutic interventions for DGBIs, potentially enhancing the quality of life for pediatric patients and their families.
Collapse
Affiliation(s)
- Dimas Rosa
- Grupo de Investigación del Caribe y Centroamérica para la Microbiota, Probióticos y Prebióticos, GICCAMPP, la Romana, Dominican Republic
| | - Roberto Arturo Zablah
- Grupo de Investigación del Caribe y Centroamérica para la Microbiota, Probióticos y Prebióticos, GICCAMPP, la Romana, Dominican Republic
- Servicio de Gastroenterología y Endoscopia Digestiva, Hospital de Niños “Benjamín Bloom”, San Salvador, El Salvador
| | - Rodrigo Vazquez-Frias
- Grupo de Investigación del Caribe y Centroamérica para la Microbiota, Probióticos y Prebióticos, GICCAMPP, la Romana, Dominican Republic
- Departamento de Gastroenterología y Nutrición Pediátrica, Instituto Nacional de Salud Hospital Infantil de México Federico Gómez, Ciudad de México, México
| |
Collapse
|
19
|
Bettinger JJ, Friedman BC. Opioids and Immunosuppression: Clinical Evidence, Mechanisms of Action, and Potential Therapies. Palliat Med Rep 2024; 5:70-80. [PMID: 38435086 PMCID: PMC10908329 DOI: 10.1089/pmr.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 03/05/2024] Open
Abstract
Background In addition to the more well-known adverse effects of opioids, such as constipation, mounting evidence supports underlying immunosuppressive effects as well. Methods In this study, we provide a narrative review of preclinical and clinical evidence of opioid suppression of the immune system as well as possible considerations for therapies. Results In vitro and animal studies have shown clear effects of opioids on inflammatory cytokine expression, immune cell activity, and pathogen susceptibility. Observational data in humans have so far supported preclinical findings, with multiple reports of increased rates of infections in various settings of opioid use. However, the extent to which this risk is due to the impact of opioids on the immune system compared with other risk factors associated with opioid use remains uncertain. Considering the data showing immunosuppression and increased risk of infection with opioid use, measures are needed to mitigate this risk in patients who require ongoing treatment with opioids. In preclinical studies, administration of opioid receptor antagonists blocked the immunomodulatory effects of opioids. Conclusions As selective antagonists of peripheral opioid receptors, peripherally acting mu-opioid receptor (MOR) antagonists may be able to protect against immune impairment while still allowing for opioid analgesia. Future research is warranted to further investigate the relationship between opioids and infection risk as well as the potential application of peripherally acting MOR antagonists to counteract these risks.
Collapse
Affiliation(s)
- Jeffrey J. Bettinger
- Pain Management, Saratoga Hospital Medical Group, Saratoga Springs, New York, USA
| | - Bruce C. Friedman
- JM Still Burn Center, Doctors Hospital of Augusta, Augusta, Georgia, USA
| |
Collapse
|
20
|
Ye XY, Chen JY, Wu LH, Luo DP, Ye XH, Wu LQ, He XX. Washed microbiota transplantation improves symptoms and intestinal barrier function in patients with functional bowel disorders: a propensity-score matching analysis. BMC Gastroenterol 2024; 24:45. [PMID: 38262980 PMCID: PMC10804514 DOI: 10.1186/s12876-024-03131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Alterations in the intestinal microbiota may play a role in the pathogenesis of functional bowel disorders (FBDs). Probiotics are widely used to improve intestinal dysbacteriosis in FBDs. In the context of FBDs, washed microbiota transplantation (WMT) appear to be a promising therapeutic option. We aimed to compare probiotics with WMT by using a propensity-score matching analysis (PSMA). METHODS We conducted a retrospective investigation of 103 patients with FBDs, including irritable bowel syndrome (IBS), functional constipation (FC), functional diarrhea (FDr), functional abdominal bloating (FAB). Patients were divided into the WMT group or probiotics group (taking probiotics capsules). Data on the following parameters were matched for PSMA: age; sex; disease course; body mass index; anxiety; insomnia; tobacco smoking; alcohol consumption; and levels of D-lactate, diamine oxidase, and lipopolysaccharide. Intestinal barrier function (IBF) and symptoms were evaluated both before and after treatment initiation. Prognostic factors were assessed by Cox proportional hazards regression analysis. RESULTS PSMA identified in 34 matched pairs (11 IBS, 12 FC, 7 FDr, and 4 FAB in the probiotics group and 14 IBS, 13 FC, 5 FDr, and 2 FAB in the WMT group. Improvement of FBD symptoms was greater with WMT than probiotics (P = 0.002). The WMT group had significantly fewer patients with intestinal barrier damage than the probiotics group (38.2% vs. 67.6%, P = 0.041). This improvement of FBD with WMT was further reflected as a reduction in D-lactate levels (P = 0.031). Increased D-lactate levels which were identified as a prognostic factor for FBDs (HR = 0.248, 95%CI 0.093-0.666, P = 0.006) in multivariate Cox regression analysis. CONCLUSION WMT could improve symptoms and IBF in patients with FBDs. Increased D-lactate levels in patients with FBDs may predict a favorable response to WMT treatment.
Collapse
Affiliation(s)
- Xiao-Yan Ye
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, 510030, Guangzhou, Guangdong Province, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota -Targeted Therapies of Guangdong Province, 510030, Guangzhou, Guangdong Province, China
| | - Jun-Yi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, 510030, Guangzhou, Guangdong Province, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota -Targeted Therapies of Guangdong Province, 510030, Guangzhou, Guangdong Province, China
| | - Li-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, 510030, Guangzhou, Guangdong Province, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota -Targeted Therapies of Guangdong Province, 510030, Guangzhou, Guangdong Province, China
| | - Dan-Ping Luo
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, 510030, Guangzhou, Guangdong Province, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota -Targeted Therapies of Guangdong Province, 510030, Guangzhou, Guangdong Province, China
| | - Xiao-Huo Ye
- Department of Pharmacy, Heyuan Health School, 517000, Heyuan, Guangdong Province, China
| | - Li-Quan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, 510030, Guangzhou, Guangdong Province, China
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota -Targeted Therapies of Guangdong Province, 510030, Guangzhou, Guangdong Province, China
| | - Xing-Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, 510030, Guangzhou, Guangdong Province, China.
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota -Targeted Therapies of Guangdong Province, 510030, Guangzhou, Guangdong Province, China.
| |
Collapse
|
21
|
Yuan XY, Chen YS, Liu Z. Relationship among Parkinson's disease, constipation, microbes, and microbiological therapy. World J Gastroenterol 2024; 30:225-237. [PMID: 38314132 PMCID: PMC10835526 DOI: 10.3748/wjg.v30.i3.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
This comprehensive review elucidates the complex interplay between gut microbiota and constipation in Parkinson's disease (PD), a prevalent non-motor symptom contributing significantly to patients' morbidity. A marked alteration in the gut microbiota, predominantly an increase in the abundance of Proteobacteria and Bacteroidetes, is observed in PD-related constipation. Conventional treatments, although safe, have failed to effectively alleviate symptoms, thereby necessitating the development of novel therapeutic strategies. Microbiological interventions such as prebiotics, probiotics, and fecal microbiota transplantation (FMT) hold therapeutic potential. While prebiotics improve bowel movements, probiotics are effective in enhancing stool consistency and alleviating abdominal discomfort. FMT shows potential for significantly alleviating constipation symptoms by restoring gut microbiota balance in patients with PD. Despite promising developments, the causal relationship between changes in gut microbiota and PD-related constipation remains elusive, highlighting the need for further research in this expanding field.
Collapse
Affiliation(s)
- Xin-Yang Yuan
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Yu-Sen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Zhou Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| |
Collapse
|
22
|
Tanihiro R, Yuki M, Sasai M, Haseda A, Kagami-Katsuyama H, Hirota T, Honma N, Nishihira J. Effects of Prebiotic Yeast Mannan on Gut Health and Sleep Quality in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2023; 16:141. [PMID: 38201970 PMCID: PMC10780920 DOI: 10.3390/nu16010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Human gut health is closely related to sleep. We aimed to evaluate the efficacy of yeast mannan (YM) in improving bowel habits and sleep quality, along with metabolomics in fecal samples. A total of 40 healthy adults (age range, 22-64 years) with discomfort in defecation were enrolled and randomly allocated to receive either YM (n = 20; 1.1 g/day) or placebo (n = 20) for four weeks. Participants recorded their defecation habits throughout the test periods. Sleep electroencephalogram (EEG) recording using an EEG device and fecal sampling were performed pre- and post-treatment. The YM group significantly increased defecation frequency and stool volumes compared to the placebo group. After 4 weeks of treatment, the non-REM sleep stage 3 (N3) duration in the YM group was significantly higher than that in the placebo group. YM ingestion significantly lengthened total time in bed (TIB) and significantly shortened N3 latency compared to placebo intake during the trial. The metabolomics analysis found a total of 20 metabolite differences between the YM and placebo groups. As a result of stepwise linear regression, changes in fecal propionate and gamma-aminobutyric acid (GABA) levels were identified as the primary factors explaining changes in TIB and N3 latency, respectively. Our findings suggest that the prebiotic YM could be beneficial to gut health and sleep quality.
Collapse
Affiliation(s)
- Reiko Tanihiro
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Masahiro Yuki
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Masaki Sasai
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Akane Haseda
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| | - Hiroyo Kagami-Katsuyama
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| | - Tatsuhiko Hirota
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., Moriya 302-0106, Japan; (M.Y.); (M.S.); (T.H.)
| | - Naoyuki Honma
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-8585, Japan (J.N.)
| |
Collapse
|
23
|
Chang S, Guo Q, Du G, Tang J, Liu B, Shao K, Zhao X. Probiotic-loaded edible films made from proteins, polysaccharides, and prebiotics as a quality factor for minimally processed fruits and vegetables: A review. Int J Biol Macromol 2023; 253:127226. [PMID: 37802455 DOI: 10.1016/j.ijbiomac.2023.127226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Minimally processed fruits and vegetables (MPFVs) are gaining popularity in households because of their freshness, convenience, and rapid consumption, all of which align with today's busy lifestyles. However, their exposure of large surface areas during peeling and slicing can result in contamination by foodborne pathogens and spoilage bacteria, posing potential food safety concerns. In addition, enzymatic browning of MPFVs can significantly reduce their consumer appeal. Therefore, it is necessary to adopt certain methods to protect MPFVs. Recent studies have shown that utilizing biopolymer-based edible films containing probiotics is a promising approach to preserving MPFVs. These active food packaging films exhibit barrier function, antioxidant function, and antimicrobial function while protecting the viability of probiotics, which is essential to maintain the nutritional value and quality of MPFVs. This paper reviews microbial contamination in MPFVs and the preparation of probiotic-loaded edible films with common polysaccharides (alginate, gellan gum, and starch), proteins (zein, gelatin, and whey protein isolate), prebiotics (oligofructose, inulin, and fructooligosaccharides). It also explores the potential application of probiotic-loaded biopolymer films/coatings on MPFVs, and finally examines the practical application requirements from a consumer perspective.
Collapse
Affiliation(s)
- Shuaidan Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qi Guo
- Henan Agr Univ, Coll Food Sci & Technol, Zhengzhou 450002, China
| | - Gengan Du
- Henan Univ Technol, Sch Food & Strateg Reserv, Zhengzhou 450001, China
| | - Jiayao Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, Indiana 47405, United States
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
24
|
Yang C, Hu T, Xue X, Su X, Zhang X, Fan Y, Shen X, Dong X. Multi-omics analysis of fecal microbiota transplantation's impact on functional constipation and comorbid depression and anxiety. BMC Microbiol 2023; 23:389. [PMID: 38057705 PMCID: PMC10701952 DOI: 10.1186/s12866-023-03123-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Depression and anxiety are common comorbid diseases of constipation. Fecal microbiota transplantation (FMT) significantly relieves gastrointestinal-related symptoms, but its impact on psychiatric symptoms remains uncharted. METHODS We collected fecal and serum samples before and after FMT from 4 functional constipation patients with psychiatric symptoms and corresponding donor stool samples. We categorized the samples into two groups: before FMT (Fb) and after FMT (Fa). Parameters associated with constipation, depression, and anxiety symptoms were evaluated. Metagenomics and targeted neurotransmitter metabolomics were performed to investigate the gut microbiota and metabolites. 5-hydroxytryptamine (5-HT) biosynthesis was detected in patients' fecal supernatants exposed to the QGP-1 cell model in vitro. RESULTS Our study demonstrated that patient's constipation, depression, and anxiety were improved after FMT intervention. At the genus level, relative abundance of g_Bacteroides and g_Klebsiella decreased in the Fa group, while g_Lactobacillus, and g_Selenomonas content increased in the same group. These observations suggest a potential involvement of these genera in the pathogenesis of constipation with psychiatric symptoms. Metabolomics analysis showed that FMT intervention decreased serum 5-HT levels. Additionally, we found that species, including s_Klebsiella sp. 1_1_55, s_Odoribacter splanchnicus, and s_Ruminococcus gnavus CAG:126, were positively correlated with 5-HT levels. In contrast, s_Acetobacterium bakii, s_Enterococcus hermanniensis, s_Prevotella falsenii, s_Propionispira arboris, s_Schwartzia succinivorans, s_Selenomonas artemidis, and s_Selenomonas sp. FC4001 were negatively correlated with 5-HT levels. Furthermore, we observed that patients' fecal supernatants increased 5-HT biosynthesis in QGP-1 cells. CONCLUSION FMT can relieve patients' constipation, depression, and anxiety symptoms by reshaping gut microbiota. The 5-HT level was associated with an altered abundance of specific bacteria or metabolites. This study provides specific evidence for FMT intervention in constipation patients with psychiatric symptoms.
Collapse
Affiliation(s)
- Chuanli Yang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Tianjiao Hu
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Xue
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaohu Su
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuan Zhang
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yunhe Fan
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China.
| | - Xiushan Dong
- Department of General Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
25
|
Dey K, Sheth M, Anand S, Archana G, Raval S. Daily consumption of galactooligosaccharide gummies ameliorates constipation symptoms, gut dysbiosis, degree of depression and quality of life among sedentary university teaching staff: A double-blind randomized placebo control clinical trial. Indian J Gastroenterol 2023; 42:839-848. [PMID: 37751049 DOI: 10.1007/s12664-023-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/18/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Functional constipation affects approximately 10% of the Indian population and may reduce the quality of life (QOL) and increase gut dysbiosis. PURPOSE OF STUDY: The study aimed at assessing the impact of galactooligosaccharide (GOS) gummy supplementation on gut health, depression status and QOL of constipated subjects. METHODS A double-blind placebo control clinical trial (CTRI/2021/10/037474) was conducted on sedentary constipated adults (n = 35), who were split into an experimental group (n = 17) and a control group (n = 18), supplemented with 10 g GOS and sugar gummies, respectively, for 30 days. Relative abundance of fecal gut microbes, including Bifidobacterium, Lactobacillus, Clostridium and Bacteroides and phyla Bacteroidetes and Firmicutes using real-time polymerase chain reaction and short-chain fatty acids, was analyzed pre and post supplementation. Constipation profile was studied using Rome IV criteria and the Bristol stool chart. Depression status was studied using the Becks Depression Inventory. The QOL was assessed using patient assessment of constipation. RESULTS GOS gummy supplementation increased Bifidobacterium and Lactobacillus by 1230% and 322%, respectively, (p < 0.001; p < 0.01) with reduced Clostridium by 63%, phylum Firmicutes by 73% and Bacteroidetes by 85% (p < 0.01). The GOS-supplemented group demonstrated a higher F/B ratio (4.2) indicating improved gut health (p < 0.01) with reduced gut dysbiosis and constipation severity. GOS gummies enhanced acetic acid and butyric acid levels compared to the control group (p < 0.01; p < 0.001). Post supplementation, there was 40% reduction in depression (p < 0.01) and 22% improvement in QOL (p < 0.05). CONCLUSIONS This research validates the predicted beneficial benefits of short-term GOS consumption on constipation profile, gut microflora, depression status and quality of life of constipated subjects.
Collapse
Affiliation(s)
- Kankona Dey
- Department of Food and Nutrition, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India.
| | - Mini Sheth
- Department of Food and Nutrition, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Shankar Anand
- Syri Research Private Ltd., Vadodara, 391 740, India
| | - G Archana
- Department of Microbiology and Biotechnology Center, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Shivani Raval
- Department of Microbiology and Biotechnology Center, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| |
Collapse
|
26
|
Essmat N, Karádi DÁ, Zádor F, Király K, Fürst S, Al-Khrasani M. Insights into the Current and Possible Future Use of Opioid Antagonists in Relation to Opioid-Induced Constipation and Dysbiosis. Molecules 2023; 28:7766. [PMID: 38067494 PMCID: PMC10708112 DOI: 10.3390/molecules28237766] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Opioid receptor agonists, particularly those that activate µ-opioid receptors (MORs), are essential analgesic agents for acute or chronic mild to severe pain treatment. However, their use has raised concerns including, among others, intestinal dysbiosis. In addition, growing data on constipation-evoked intestinal dysbiosis have been reported. Opioid-induced constipation (OIC) creates an obstacle to continuing treatment with opioid analgesics. When non-opioid therapies fail to overcome the OIC, opioid antagonists with peripheral, fast first-pass metabolism, and gastrointestinal localized effects remain the drug of choice for OIC, which are discussed here. At first glance, their use seems to only be restricted to constipation, however, recent data on OIC-related dysbiosis and its contribution to the appearance of several opioid side effects has garnered a great of attention from researchers. Peripheral MORs have also been considered as a future target for opioid analgesics with limited central side effects. The properties of MOR antagonists counteracting OIC, and with limited influence on central and possibly peripheral MOR-mediated antinociception, will be highlighted. A new concept is also proposed for developing gut-selective MOR antagonists to treat or restore OIC while keeping peripheral antinociception unaffected. The impact of opioid antagonists on OIC in relation to changes in the gut microbiome is included.
Collapse
Affiliation(s)
- Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Dávid Árpád Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| |
Collapse
|
27
|
Zhang T, Liu W, Lu H, Cheng T, Wang L, Wang G, Zhang H, Chen W. Lactic acid bacteria in relieving constipation: mechanism, clinical application, challenge, and opportunity. Crit Rev Food Sci Nutr 2023:1-24. [PMID: 37971876 DOI: 10.1080/10408398.2023.2278155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Constipation is a prevalent gastrointestinal symptom that can considerably affect a patients' quality of life. Although several drugs have been used to treat constipation, they are associated with high costs, side effects, and low universality. Therefore, alternative intervention strategies are urgently needed. Traditional lactic acid bacteria (LAB), such as Bifidobacterium and Lactobacillus, play a vital role in regulating intestinal microecology and have demonstrated favorable effects in constipation; however, a comprehensive review of their constipation relief mechanisms is limited. This review summarizes the pathogenesis of constipation and the relationship between intestinal motility and gut microbiota, elucidates the possible mechanism by which LAB alleviates of constipation through a systematic summary of animal and clinical research, and highlights the challenges and applications of LAB in the treatment of constipation. Our review can improve our understanding of constipation, and advance targeted microecological therapeutic agents, such as LAB.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenxu Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huimin Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ting Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Yuan Y, Lu Y, Zhang Z, Cheng W, Yan K, Zheng Y, Jin Y, Liu Z. Characteristics of the Cajal interstitial cells and intestinal microbiota in children with refractory constipation. Microb Pathog 2023; 184:106373. [PMID: 37769855 DOI: 10.1016/j.micpath.2023.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Children with refractory constipation experience intense and persistent symptoms that greatly diminish their quality of life. However, the underlying pathophysiological mechanism responsible for this condition remains uncertain. Our objective was to evaluate characteristics of colonic motor patterns and interstitial cells of Cajal (ICCs) to refractory constipation children, as well as intestinal microbiota compositions. METHODS Colonic manometry (CM) was conducted on a cohort of 30 patients with refractory constipation to assess colonic motility, and 7 of them underwent full-thickness colon biopsy specimens. Another 5 colonic specimens from nonconstipation patients were collected to identify the ICCs by immunohistochemistry. Fecal samples from 14 children diagnosed with refractory constipation and subjecting 28 age-matched healthy children to analysis using high-throughput sequencing of 16S rRNA. RESULTS According to CM results, dividing 30 children with refractory constipation into 2 groups: normal group (n = 10) and dysmotility group (n = 20). Dysmotility subjects showed lower colonic motility. Antegrade propagating pressure waves, retrograde propagating pressure waves, and periodic colonic motor activity were common in normal subjects and rare in dysmotility subjects (32.7 ± 8.9 vs 20.7 ± 13.0/17 h, P < 0.05, 11.5 ± 2.3 vs 9.6 ± 2.3/17 h, P < 0.05, and 5.2 ± 8.9 vs 3.5 ± 6.8 cpm, P < 0.005, respectively), whereas periodic rectal motor activity was more common in dysmotility subjects (3.4 ± 4.8 vs 3.0 ± 3.1 cpm, P < 0.05). Dysmotility subjects exhibited a significantly greater number of preprandial simultaneous pressure waves compared to the normal subjects (32.3 ± 25.0 vs 23.6 ± 13.2/1 h, P < 0.005). Dysmotility subjects displayed a notable decrease in postprandial count of antegrade propagating pressure waves and high amplitude propagating pressure waves when compared to normal subjects (3.9 ± 2.9 vs 6.9 ± 3.5/1 h and 2.3 ± 1.5 vs 5.4 ± 2.9/1 h, respectively, P < 0.05). The number, distribution, and morphology of ICCs were markedly altered in refractory constipation compared children to the controls (P < 0.05). Children diagnosed with refractory constipation displayed a distinct dissimilarity in composition of their intestinal microbiota comparing with control group (P < 0.005). In genus level, Bacteroidetes represented 34.34% and 43.78% in the refractory constipation and control groups, respectively. Faecalibacterium accounted for 3.35% and 12.56%, respectively (P < 0.005). Furthermore, the relative abundances of Faecalibacterium (P < 0.005), Lachnospira (P < 0.05), and Haemophilus (P < 0.05) significantly decreased, whereas those of Parabacteroides (P < 0.05), Alistipes (P < 0.005), Prevotella_2 (P < 0.005), [Ruminococcus]_torques_group (P < 0.005), Barnesiella (P < 0.05), Ruminococcaceae_UCG-002 (P < 0.005), and Christensensenellaceae_R-7_group (P < 0.05) were markedly increased in children with refractory constipation. CONCLUSIONS Dysmotility subjects showed lower colonic motility and an impaired postprandial colonic response. The decreased number and abnormal morphology of colonic ICCs may contribute to the pathogenesis of refractory constipation. Children with refractory constipation exhibited significant variations in microbiota composition across various taxonomic levels compared to the healthy control group. Our findings contribute valuable insights into pathophysiological mechanism underlying refractory constipation and provide evidence to support the exploration of novel therapeutic strategies for affected children.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yan Lu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhihua Zhang
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Weixia Cheng
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Kunlong Yan
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yucan Zheng
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yu Jin
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhifeng Liu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
29
|
Iancu MA, Profir M, Roşu OA, Ionescu RF, Cretoiu SM, Gaspar BS. Revisiting the Intestinal Microbiome and Its Role in Diarrhea and Constipation. Microorganisms 2023; 11:2177. [PMID: 37764021 PMCID: PMC10538221 DOI: 10.3390/microorganisms11092177] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota represents a community of microorganisms (bacteria, fungi, archaea, viruses, and protozoa) that colonize the gut and are responsible for gut mucosal structural integrity and immune and metabolic homeostasis. The relationship between the gut microbiome and human health has been intensively researched in the past years. It is now widely recognized that gut microbial composition is highly responsible for the general health of the host. Among the diseases that have been linked to an altered gut microbial population are diarrheal illnesses and functional constipation. The capacity of probiotics to modulate the gut microbiome population, strengthen the intestinal barrier, and modulate the immune system together with their antioxidant properties have encouraged the research of probiotic therapy in many gastrointestinal afflictions. Dietary and lifestyle changes and the use of probiotics seem to play an important role in easing constipation and effectively alleviating diarrhea by suppressing the germs involved. This review aims to describe how probiotic bacteria and the use of specific strains could interfere and bring benefits as an associated treatment for diarrhea and constipation.
Collapse
Affiliation(s)
- Mihaela Adela Iancu
- Department of Family Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Ruxandra Florentina Ionescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Cardiology I, “Dr. Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
30
|
García-Santos JA, Nieto-Ruiz A, García-Ricobaraza M, Cerdó T, Campoy C. Impact of Probiotics on the Prevention and Treatment of Gastrointestinal Diseases in the Pediatric Population. Int J Mol Sci 2023; 24:9427. [PMID: 37298377 PMCID: PMC10253478 DOI: 10.3390/ijms24119427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the high prevalence of gastrointestinal disorders (GIDs) in infants and children, especially those categorized as functional GIDs (FGIDs), insufficient knowledge about their pathophysiology has limited both symptomatic diagnosis and the development of optimal therapies. Recent advances in the field of probiotics have made their potential use as an interesting therapeutic and preventive strategy against these disorders possible, but further efforts are still needed. In fact, there is great controversy surrounding this topic, generated by the high variety of potential probiotics strains with plausible therapeutic utility, the lack of consensus in their use as well as the few comparative studies available on probiotics that record their efficacy. Taking into account these limitations, and in the absence of clear guidelines about the dose and timeframe for successful probiotic therapy, our review aimed to evaluate current studies on potential use of probiotics for the prevention and treatment of the most common FGIDs and GIDs in the pediatric population. Furthermore, matters referring to know major action pathways and key safety recommendations for probiotic administration proposed by major pediatric health agencies shall also be discussed.
Collapse
Affiliation(s)
- José Antonio García-Santos
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (J.A.G.-S.); (A.N.-R.); (M.G.-R.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Avda del Conocimiento 19, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs-GRANADA), Health Sciences Technological Park, Avda. de Madrid 15, 18012 Granada, Spain
| | - Ana Nieto-Ruiz
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (J.A.G.-S.); (A.N.-R.); (M.G.-R.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Avda del Conocimiento 19, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs-GRANADA), Health Sciences Technological Park, Avda. de Madrid 15, 18012 Granada, Spain
| | - María García-Ricobaraza
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (J.A.G.-S.); (A.N.-R.); (M.G.-R.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Avda del Conocimiento 19, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs-GRANADA), Health Sciences Technological Park, Avda. de Madrid 15, 18012 Granada, Spain
| | - Tomás Cerdó
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (J.A.G.-S.); (A.N.-R.); (M.G.-R.)
- Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), Av. Menéndez Pidal, s/n, 14004 Córdoba, Spain
- Centre for Rheumatology Research, Division of Medicine, University College London, Gower Street, London WC1E 6BT, UK
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain; (J.A.G.-S.); (A.N.-R.); (M.G.-R.)
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Avda del Conocimiento 19, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs-GRANADA), Health Sciences Technological Park, Avda. de Madrid 15, 18012 Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada’s Node, Carlos III Health Institute, Avda. Monforte de Lemos 5, 28028 Madrid, Spain
| |
Collapse
|
31
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
32
|
Jin H, Park J, Li R, Ji GE, Johnston TV, Choe D, Park SH, Park MS, Ku S. A randomized, double-blind, controlled human study: The efficacy of exopolysaccharides in milk fermented by Weissella confusa VP30 (VP30-EPS) to ameliorate functional constipation. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
33
|
Ma T, Yang N, Xie Y, Li Y, Xiao Q, Li Q, Jin H, Zheng L, Sun Z, Zuo K, Kwok LY, Zhang H, Lu N, Liu W. Effect of the probiotic strain, Lactiplantibacillus plantarum P9, on chronic constipation: a randomized, double-blind, placebo-controlled study. Pharmacol Res 2023; 191:106755. [PMID: 37019193 DOI: 10.1016/j.phrs.2023.106755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Chronic constipation (CC) is a common gastrointestinal condition associated with intestinal inflammation, and the condition considerably impairs patients' quality of life. We conducted a large-scale 42-day randomized, double-blind, placebo-controlled trial to investigate the effect of probiotics in alleviating CC. 163 patients diagnosed with CC (following Rome IV criteria) were randomly divided into probiotic (n = 78; received Lactiplantibacillus plantarum P9 [P9]; 1×1011 CFU/day) and placebo (n = 85; received placebo material) groups. Ingesting P9 significantly improved the weekly mean frequency of complete spontaneous bowel movements (CSBMs) and spontaneous bowel movements (SBMs), while significantly reducing the level of worries and concerns (WO; P < 0.05). Comparing with the placebo group, P9 group was significantly enriched in potentially beneficial bacteria (Lactiplantibacillus plantarum and Ruminococcus_B gnavus), while depriving of several bacterial and phage taxa (Oscillospiraceae sp., Lachnospiraceae sp., and Herelleviridae; P < 0.05). Interesting significant correlations were also observed between some clinical parameters and subjects' gut microbiome, including: negative correlation between Oscillospiraceae sp. and SBMs; positive correlation between WO and Oscillospiraceae sp., Lachnospiraceae sp. Additionally, P9 group had significantly (P < 0.05) more predicted gut microbial bioactive potential involved in the metabolism of amino acids (L-asparagine, L-pipecolinic), short-/medium-chain fatty acids (valeric acid and caprylic acid). Furthermore, several metabolites (p-cresol, methylamine, trimethylamine) related to the intestinal barrier and transit decreased significantly after P9 administration (P < 0.05). In short, the constipation relief effect of P9 intervention was accompanied by desirable changes in the fecal metagenome and metabolome. Our findings support the notion of applying probiotics in managing CC.
Collapse
|
34
|
Sumida K, Pierre JF, Yuzefpolskaya M, Colombo PC, Demmer RT, Kovesdy CP. Gut Microbiota-Targeted Interventions in the Management of Chronic Kidney Disease. Semin Nephrol 2023; 43:151408. [PMID: 37619529 PMCID: PMC10783887 DOI: 10.1016/j.semnephrol.2023.151408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Recent advances in microbiome research have informed the potential role of the gut microbiota in the regulation of metabolic, cardiovascular, and renal systems, and, when altered, in the pathogenesis of various cardiometabolic disorders, including chronic kidney disease (CKD). The improved understanding of gut dysbiosis in cardiometabolic pathologies in turn has led to a vigorous quest for developing therapeutic strategies. These therapeutic strategies aim to investigate whether interventions targeting gut dysbiosis can shift the microbiota toward eubiosis and if these shifts, in turn, translate into improvements in (or prevention of) CKD and its related complications, such as premature cardiovascular disease. Existing evidence suggests that multiple interventions (eg, plant-based diets; prebiotic, probiotic, and synbiotic supplementation; constipation treatment; fecal microbiota transplantation; and intestinal dialysis) might result in favorable modulation of the gut microbiota in patients with CKD, and thereby potentially contribute to improving clinical outcomes in these patients. In this review, we summarize the current understanding of the characteristics and roles of the gut microbiota in CKD and discuss the potential of emerging gut microbiota-targeted interventions in the management of CKD.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN.
| | - Joseph F Pierre
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI
| | - Melana Yuzefpolskaya
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Columbia University, New York, NY
| | - Paolo C Colombo
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Columbia University, New York, NY
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
35
|
Araújo MM, Botelho PB. Probiotics, prebiotics, and synbiotics in chronic constipation: Outstanding aspects to be considered for the current evidence. Front Nutr 2022; 9:935830. [PMID: 36570175 PMCID: PMC9773270 DOI: 10.3389/fnut.2022.935830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
This integrative aimed to evaluate the effects and the potential mechanism of action of prebiotics, probiotics, and synbiotics on constipation-associated gastrointestinal symptoms and to identify issues that still need to be answered. A literature search was performed in the PubMed database. Animal models (n = 23) and clinical trials (n = 39) were included. In animal studies, prebiotic, probiotic, and synbiotic supplementation showed a decreased colonic transit time (CTT) and an increase in the number and water content of feces. In humans, inulin is shown to be the most promising prebiotic, while B. lactis and L. casei Shirota probiotics were shown to increase defecation frequency, the latter strain being more effective in improving stool consistency and constipation symptoms. Overall, synbiotics seem to reduce CTT, increase defecation frequency, and improve stool consistency with a controversial effect on the improvement of constipation symptoms. Moreover, some aspects of probiotic use in constipation-related outcomes remain unanswered, such as the best dose, duration, time of consumption (before, during, or after meals), and matrices, as well as their effect and mechanisms on the regulation of inflammation in patients with constipation, on polymorphisms associated with constipation, and on the management of constipation via 5-HT. Thus, more high-quality randomized control trials (RCTs) evaluating these lacking aspects are necessary to provide safe conclusions about their effectiveness in managing intestinal constipation.
Collapse
|
36
|
Kim JE, Roh YJ, Choi YJ, Lee SJ, Jin YJ, Song HJ, Seol AY, Son HJ, Hong JT, Hwang DY. Dysbiosis of Fecal Microbiota in Tg2576 Mice for Alzheimer's Disease during Pathological Constipation. Int J Mol Sci 2022; 23:ijms232314928. [PMID: 36499254 PMCID: PMC9736912 DOI: 10.3390/ijms232314928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Tg2576 transgenic mice for Alzheimer's disease (AD) exhibited significant phenotypes for neuropathological constipation, but no research has been conducted on the association of the fecal microbiota with dysbiosis. The correlation between fecal microbiota composition and neuropathological constipation in Tg2576 mice was investigated by examining the profile of fecal microbiota and fecal microbiota transplantation (FMT) in 9-10-month-old Tg2576 mice with the AD phenotypes and constipation. Several constipation phenotypes, including stool parameters, colon length, and histopathological structures, were observed prominently in Tg2576 mice compared to the wild-type (WT) mice. The fecal microbiota of Tg2576 mice showed decreases in Bacteroidetes and increases in the Firmicutes and Proteobacteria populations at the phylum level. The FMT study showed that stool parameters, including weight, water content, and morphology, decreased remarkably in the FMT group transplanted with a fecal suspension of Tg2576 mice (TgFMT) compared to the FMT group transplanted with a fecal suspension of WT mice (WFMT). The distribution of myenteric neurons and the interstitial cells of Cajal (ICC), as well as the enteric nervous system (ENS) function, remained lower in the TgFMT group. These results suggest that the neuropathological constipation phenotypes of Tg2576 mice may be tightly linked to the dysbiosis of the fecal microbiota.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu-Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yun-Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Su-Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You-Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee-Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - A-Yun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hong-Joo Son
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Jin-Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju 28644, Republic of Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
- Correspondence: ; Tel.: +82-55-350-5388
| |
Collapse
|
37
|
Interaction between the Gut Microbiota and Intestinal Motility. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3240573. [DOI: 10.1155/2022/3240573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
The gut microbiota is the largest symbiotic ecosystem with the host and has been proven to play an important role in maintaining the stability of the intestinal environment. The imbalance of the gut microbiota is caused by the imbalance between the symbiotic microbiota and the pathogenic microbiota. The commensal microbiome regulates intestinal motility, while the pathogenic microbiome causes intestinal motility disorder, resulting in disease development. Intestinal motility is a relatively general term, and its meaning may include intestinal muscle contraction, intestinal wall biomechanics, intestinal compliance, and transmission. The role of intestinal microecology and intestinal motility are interrelated, intestinal flora disorder mediates intestinal motility, and abnormal intestinal motility affects colonization of the intestinal flora. In this review, we briefly outlined the interaction between gut microbiota and intestinal motility and provided a reference for future studies.
Collapse
|
38
|
Kong L, Huang Y, Zeng X, Ye C, Wu Z, Guo Y, Pan D. Effects of galactosyltransferase on EPS biosynthesis and freeze-drying resistance of Lactobacillus acidophilus NCFM. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100145. [PMID: 36573108 PMCID: PMC9789326 DOI: 10.1016/j.fochms.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Galactosyltransferase (GalT) is an important enzyme in synthesizing exopolysaccharide (EPS), the major polymer of biofilms protecting cells from severe conditions. However, the contribution to, and regulatory mechanism of GalT, in stressor resistance are still unclear. Herein, we successfully overexpressed GalT in Lactobacillus acidophilus NCFM by genetic engineering. The GalT activity and freeze-drying survival rate of the recombinant strain were significantly enhanced. The EPS yield also increased by 17.8%, indicating a positive relationship between freeze-drying resistance and EPS. RNA-Seq revealed that GalT could regulate the flux of the membrane transport system, pivotal sugar-related metabolic pathways, and promote quorum sensing to facilitate EPS biosynthesis, which enhanced freeze-drying resistance. The findings concretely prove that the mechanism of GalT regulating EPS biosynthesis plays an important role in protecting lactic acid bacteria from freeze-drying stress.
Collapse
Key Words
- BP, biological process
- CC, cellular component
- DEG, differentially expressed gene
- ELISA, enzyme linked immunosorbent assay
- EPS, exopolysaccharideS
- Exopolysaccharide
- FT-IR, Fourier transform infrared spectroscopy
- Freeze-drying
- GO, gene ontology
- GalT, galactosyltransferase
- Galactosyltransferase
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LAB, lactic acid bacteria
- LB, Luria-Bertani
- MF, molecular function
- MRS, de Man, Rogosa and Sharpe
- NCBI, National Center for Biotechnology Information GenBank
- Overexpression
- PCR, polymerase chain reaction
- PEP, phosphoenolpyruvate
- PTS, phosphotransferase system
- QS, quorum sensing
- RT-qPCR, real-time quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Lingyu Kong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yuze Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China,Corresponding author at: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.
| | - Congyan Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
39
|
Arslan NÇ, Gündoğdu A, Tunali V, Topgül OH, Beyazgül D, Nalbantoğlu ÖU. Efficacy of AI-Assisted Personalized Microbiome Modulation by Diet in Functional Constipation: A Randomized Controlled Trial. J Clin Med 2022; 11:jcm11226612. [PMID: 36431088 PMCID: PMC9698233 DOI: 10.3390/jcm11226612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Background: Currently, medications and behavioral modifications have limited success in the treatment of functional constipation (FC). An individualized diet based on microbiome analysis may improve symptoms in FC. In the present study, we aimed to investigate the impacts of microbiome modulation on chronic constipation. Methods: Between December 2020−December 2021, 50 patients fulfilling the Rome IV criteria for functional constipation were randomized into two groups. The control group received sodium picosulfate plus conventional treatments (i.e., laxatives, enemas, increased fiber, and fluid intake). The study group underwent microbiome analysis and received an individualized diet with the assistance of a soft computing system (Enbiosis Biotechnology®, Sariyer, Istanbul). Differences in patient assessment constipation−quality of life (PAC-QoL) scores and complete bowel movements per week (CBMpW) were compared between groups after 6-weeks of intervention. Results: The mean age of the overall cohort (n = 45) was 31.5 ± 10.2 years, with 88.9% female predominance. The customized diet developed for subjects in the study arm resulted in a 2.5-fold increase in CBMpW after 6-weeks (1.7 vs. 4.3). The proportion of the study group patients with CBMpW > 3 was 83% at the end of the study, and the satisfaction score was increased 4-fold from the baseline (3.1 to 10.7 points). More than 50% improvement in PAC-QoL scores was observed in 88% of the study cohort compared to 40% in the control group (p = 0.001). Conclusion: The AI-assisted customized diet based on individual microbiome analysis performed significantly better compared to conventional therapy based on patient-reported outcomes in the treatment of functional constipation.
Collapse
Affiliation(s)
- Naciye Çiğdem Arslan
- Department of General Surgery, School of Medicine, Medipol University, Istanbul 34214, Turkey
| | - Aycan Gündoğdu
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Turkey
| | - Varol Tunali
- Department of Emergency Medicine, Eşrefpaşa Municipality Hospital, Izmir 35170, Turkey
- Department of Parasitology, Faculty of Medicine, Celal Bayar University, Manisa 45040, Turkey
- Correspondence:
| | - Oğuzhan Hakan Topgül
- Department of General Surgery, School of Medicine, Medipol University, Istanbul 34214, Turkey
| | | | - Özkan Ufuk Nalbantoğlu
- Department of Computer Engineering, Faculty of Engineering, Erciyes University, Kayseri 38280, Turkey
| |
Collapse
|
40
|
Gut microbiota: a new avenue to reveal pathological mechanisms of constipation. Appl Microbiol Biotechnol 2022; 106:6899-6913. [PMID: 36190540 DOI: 10.1007/s00253-022-12197-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
Constipation is very pervasive all over the world. It is a common multifactorial gastrointestinal disease, and its etiology and pathomechanism are not completely clear. Now, increasing evidence shows that intestinal flora is closely related to constipation. Intestinal flora is the largest microbiota in the human body and has powerful metabolic functions. Intestinal flora can produce a variety of metabolites, such as bile acids, short-chain fatty acids, tryptophan metabolites, and methane, which have important effects on intestinal motility and secretion. The host can also monitor the intestinal flora and regulate gut dysbacteriosis in constipation. To explore the relationship between intestinal flora and host, the combination of multiomics technology has become the powerful and effective method. Furthermore, the homeostasis restoration of intestinal flora also provides a new strategy for the treatment of constipation. This review aims to explore the interaction between intestinal flora and host in constipation, which contributes to disclose the pathogenesis of constipation and the development of novel drugs for the treatment of constipation from the perspective of intestinal flora. KEY POINTS: • This review highlights the regulation of gut microbiota on the intestinal motility and secretion of host. • The current review gives an insight into the role of the host on the recognition and regulation of intestinal ecology under constipation. • The article also introduces some novel methods of current gut microbiota research and gut microbiota-based constipation therapies.
Collapse
|
41
|
Andresen V, Becker G, Frieling T, Goebel-Stengel M, Gundling F, Herold A, Karaus M, Keller J, Kim M, Klose P, Krammer H, Kreis ME, Kuhlbusch-Zicklam R, Langhorst J, Layer P, Lenzen-Großimlinghaus R, Madisch A, Mönnikes H, Müller-Lissner S, Rubin D, Schemann M, Schwille-Kiuntke J, Stengel A, Storr M, van der Voort I, Voderholzer W, Wedel T, Wirz S, Witzigmann H, Pehl C. Aktualisierte S2k-Leitlinie chronische Obstipation der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie & Motilität (DGNM) – April 2022 – AWMF-Registriernummer: 021–019. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:1528-1572. [PMID: 36223785 DOI: 10.1055/a-1880-1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - G Becker
- Klinik für Palliativmedizin, Freiburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios-Klinikum Krefeld, Krefeld, Deutschland
| | | | - F Gundling
- Medizinische Klinik II (Gastroenterologie, Gastroenterologische Onkologie, Hepatologie, Diabetologie, Stoffwechsel, Infektiologie), Klinikum am Bruderwald, Bamberg, Deutschland
| | - A Herold
- Sozialstiftung Bamberg, End- und Dickdarm-Zentrum Mannheim, Mannheim, Deutschland
| | - M Karaus
- Abt. Innere Medizin, Evang. Krankenhaus Göttingen-Weende, Göttingen, Deutschland
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M Kim
- Klinik und Poliklinik für Allgemein-, Viszeral-, Transplantations-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) des Universitätsklinikums, Zentrum Operative Medizin (ZOM), Würzburg, Deutschland
| | - P Klose
- Universität Duisburg-Essen, Medizinische Fakultät, Essen, Deutschland
| | - H Krammer
- Sozialstiftung Bamberg, End- und Dickdarm-Zentrum Mannheim, Mannheim, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Knappschafts-Krankenhaus, Essen, Deutschland
| | - P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | | | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah-Oststadt-Heidehaus, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - D Rubin
- Klinik für Innere Medizin Schwerpunkt Gastroenterologie, DRK Kliniken Berlin Mitte, Berlin, Deutschland.,Klinik für Innere Medizin mit Schwerpunkt Gastroenterologie, Vivantes Klinikum Spandau, Spandau, Deutschland
| | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Freising, Deutschland
| | - J Schwille-Kiuntke
- Innere Medizin VI Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - A Stengel
- Medizinische Klinik mit Schwerpunkt Psychosomatik, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Starnberg, Deutschland
| | - I van der Voort
- Klinik für Innere Medizin Gastroenterologie und Diabetologie, Jüdisches Krankenhaus Berlin, Berlin, Deutschland
| | | | - T Wedel
- Anatomisches Institut, Universität Kiel, Kiel, Deutschland
| | - S Wirz
- Cura Krankenhaus Bad Honnef, Bad Honnef, Deutschland
| | - H Witzigmann
- Klinik für Allgemein- und Viszeralchirurgie, Krankenhaus Dresden-Friedrichstadt, Dresden, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang C, Bai X, Hu T, Xue X, Su X, Zhang X, Wu T, Zhang M, Shen X, Dong X. Integrated metagenomics and targeted-metabolomics analysis of the effects of phenylalanine on loperamide-induced constipation in rats. Front Microbiol 2022; 13:1018008. [PMID: 36246281 PMCID: PMC9561758 DOI: 10.3389/fmicb.2022.1018008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Functional constipation is a common functional gastrointestinal disease. In our previous study, we found that the gut microbiota structure was disordered and the level of phenylalanine (Phe) in serum was decreased in constipated women. We conducted the present study to elucidate the role of Phe in remodeling the composition of gut microbiota and the relationship between gut microbiota and serum metabolites. Here, we demonstrated that Phe treatment significantly enhanced intestinal motility, suppressed inflammatory responses, and prevented intestinal barrier damage in rats with loperamide (Lop)-induced constipation. By metagenomic sequencing, the disbalanced gut microbial profile was analyzed in constipated rats. Phe treatment reversed changes in the abundance of several gut bacteria at the phylum, genus, and species levels. Further, we observed distinct metabolic patterns in constipated rats through targeted metabolomics and identified constipation-related gut microbial species linked to changes in circulating neurotransmitter metabolites. The abundances of species s_Lactobacillus murinus, s_Enterococcus italicus, s_Lactobacillus animalis, s_Lactobacillus apodemi, s_Enterococcus faecalis, and s_Lactobacillus backii were positively correlated with L-asparagine, L-Glutamic acid, Putrescine, and Spermidine levels. The abundances of s_Lactobacillus johnsonii and s_Butyricimonas virosa were negatively correlated with L-asparagine, L-Glutamic acid, Putrescine, and Spermidine levels. Taken together, our findings suggest that Phe can ameliorate the development of Lop-induced constipation in rats by remodeling the gut microbial community structure and changing metabolite levels.
Collapse
Affiliation(s)
- Chuanli Yang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xinshu Bai
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tianjiao Hu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xin Xue
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaohu Su
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuan Zhang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Teng Wu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingxia Zhang
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- *Correspondence: Xiaobing Shen,
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Xiushan Dong,
| |
Collapse
|
43
|
Association of abnormal bowel health with major chronic diseases and risk of mortality. Ann Epidemiol 2022; 75:39-46. [PMID: 36116757 DOI: 10.1016/j.annepidem.2022.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE We aimed to explore the association of chronic constipation and diarrhea with major chronic diseases including cancer, cardiovascular disease (CVD), and diabetes, as well as with mortality risk. In addition, we characterized the interrelationship of inflammation with abnormal bowel health, major chronic diseases, and mortality. METHODS Demographic characteristics, physical and laboratory examinations were collected from the National Health and Nutrition Examination Survey (NHANES) database 2005-2010. Chronic constipation or diarrhea was diagnosed by the shape and frequency of defecation. The number of samples used for the cancer, CVD, diabetes, and mortality analyses were 11,217, 11,168, 11,555, and 14,316, respectively. Logistic regression was used to analyze the association among abnormal bowel health, major chronic diseases, dietary inflammatory index (DII), and C-reactive protein (CRP). A Cox proportional hazard regression was performed to assess risk of all-cause mortality, and the Fine and Gray models were subsequently employed to calculate the cancer and CVD mortality risks. RESULTS There were statistically positive associations of chronic diarrhea or constipation with breast and colon cancer, CVD, risks of all-cause mortality, and CVD mortality. Particularly in participants younger than 60, in addition to the positive correlations of chronic diarrhea with three major chronic diseases and all-cause mortality risk, chronic constipation also contributed to an elevated risk of CVD mortality. With respect to inflammation markers, an increased DII or CRP level was significantly associated with a higher prevalence of abnormal bowel health and major chronic diseases, and a higher mortality risk. CONCLUSIONS Participants with abnormal bowel health were more likely linked to breast cancer, colon cancer, CVD, and risks of all-cause and CVD mortality. Moreover, inflammation may have a potential role in associations among abnormal bowel health, major chronic diseases and mortality. However, these findings need to be confirmed by further prospective studies.
Collapse
|
44
|
Liu QH, Ke X, Xiao C. Current Applications of Fecal Microbiota Transplantation in Functional Constipation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7931730. [PMID: 35873640 PMCID: PMC9300281 DOI: 10.1155/2022/7931730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Functional constipation (FC) is a common condition that would be hard to treat in clinical practice with a prevalence incidence in the population. Pharmacotherapy is a common treatment modality. However, clinical effects are limited and patients continue to suffer from it. In recent years, with the gradual increase in research on gut microbiota, it is understood that dysbiosis of the gut microbiota is importantly associated with the development of constipation. Recent studies have shown that fecal microbiota transplantation (FMT) is an effective method for restoring gut microbiota, as well as being efficacious in the treatment of FC. This mini review explains the characteristics of gut microbiota in FC patients, the mechanism of action of FMT, treatment modalities, current efficacy, and related problems. The purpose is to provide research directions and references for the future applications of FMT in FC.
Collapse
Affiliation(s)
- Qi-Hong Liu
- The Second People's Hospital Affiliated to Fujian University of Chinese Medicine, Fuzhou 350003, China
- Fujian Clinical Medical Research Centre of Chinese Medicine for Spleen and Stomach, Fuzhou 350003, China
| | - Xiao Ke
- The Second People's Hospital Affiliated to Fujian University of Chinese Medicine, Fuzhou 350003, China
- Fujian Clinical Medical Research Centre of Chinese Medicine for Spleen and Stomach, Fuzhou 350003, China
| | - Cenxin Xiao
- The Second People's Hospital Affiliated to Fujian University of Chinese Medicine, Fuzhou 350003, China
| |
Collapse
|
45
|
Odukanmi A, Ajala OA, Olaleye SB. Short-term acute constipation and not short-term acute diarrhea altered cardiovascular variables in male Wistar rats. Niger J Physiol Sci 2022; 37:43-48. [PMID: 35947838 DOI: 10.54548/njps.v37i1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Gastrointestinal dysmotility is a substantial public health challenge globally. Based on previous findings in developed countries, it has been observed that there is an association between diarrhea, constipation, and some cardiovascular variables. This study investigated the effects of experimentally-induced short-term acute constipation and short-term acute diarrhea on certain cardiovascular variables in rats. Thirty (30) male Wistar rats (150 -180 g) were divided into three groups; Control, Diarrhoea, and Constipation. The experiment was carried out in 2 phases, the period after induction and the recovery period, and 5 animals per group were used for each phase. The control group received an equivalent amount of distilled water while Diarrhoea and the Constipation group were induced by oral administration of 2ml Castor oil and administration of Loperamide (3mg/kg, b.d, orally x 3 days), respectively. Cardiovascular variables were assessed using the Edan Scientific® Electrocardiography and Heart Rate Variability machine. Recovery was allowed for 4 days after the onset of the procedure and cardiovascular parameters were reassessed. Post-induction Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Mean Arterial Pressure (MAP) and Heart Rate (HR) significantly increased in constipated rats (153.2 ± 2.9 mmHg; 109.0 ± 3.7 mmHg; 123.7 ± 3.2 mmHg; 123.4±5.6 bpm) when compared with the control values (95.5±4.8 mmHg; 61.2 ± 3.5 mmHg; 72.6 ± 3.6 mmHg; 72.3 ± 5.2 bpm), respectively. The recovery SBP, DBP, MAP, and Heart Rate in the constipated group remained significantly higher compared to the control. Diarrhea had no significant effect on the parameters determined in both post-induction and recovery phases. The electrical activities did not change in both experimental groups compared to the control. This study revealed increased SBP, DBP, MAP, and HR in short-term acute constipated rats but not so with short-term acute experimental diarrhea.
Collapse
Affiliation(s)
- Adeola Odukanmi
- Department of Physiology, College of Medicine, University of Ibadan. Ibadan, Nigeria.
| | | | | |
Collapse
|
46
|
Lu D, Pi Y, Ye H, Wu Y, Bai Y, Lian S, Han D, Ni D, Zou X, Zhao J, Zhang S, Kemp B, Soede N, Wang J. Consumption of Dietary Fiber with Different Physicochemical Properties during Late Pregnancy Alters the Gut Microbiota and Relieves Constipation in Sow Model. Nutrients 2022; 14:2511. [PMID: 35745241 PMCID: PMC9229973 DOI: 10.3390/nu14122511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Constipation is a common problem in sows and women during late pregnancy. Dietary fiber has potential in the regulation of intestinal microbiota, thereby promoting intestinal motility and reducing constipation. However, the effects of fibers with different physicochemical properties on intestinal microbe and constipation during late pregnancy have not been fully explored. In this study, a total of 80 sows were randomly allocated to control and one of three dietary fiber treatments from day 85 of gestation to delivery: LIG (lignocellulose), PRS (resistant starch), and KON (konjaku flour). Results showed that the defecation frequency and fecal consistency scores were highest in PRS. PRS and KON significantly increased the level of gut motility regulatory factors, 5-hydroxytryptamine (5-HT), motilin (MTL), and acetylcholinesterase (AChE) in serum. Moreover, PRS and KON promoted the IL-10 level and reduced the TNF-α level in serum. Furthermore, maternal PRS and KON supplementation significantly reduced the number of stillborn piglets. Microbial sequencing analysis showed that PRS and KON increased short-chain fatty acids (SCFAs)-producing genera Bacteroides and Parabacteroides and decreased the abundance of endotoxin-producing bacteria Desulfovibrio and Oscillibacter in feces. Moreover, the relative abundance of Turicibacter and the fecal butyrate concentration in PRS were the highest. Correlation analysis further revealed that the defecation frequency and serum 5-HT were positively correlated with Turicibacter and butyrate. In conclusion, PRS is the best fiber source for promoting gut motility, which was associated with increased levels of 5-HT under specific bacteria Turicibacter and butyrate stimulation, thereby relieving constipation. Our findings provide a reference for dietary fiber selection to improve intestinal motility in late pregnant mothers.
Collapse
Affiliation(s)
- Dongdong Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
- Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co., Ltd., Ganzhou 341000, China; (D.N.); (X.Z.)
| | - Hao Ye
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands; (H.Y.); (B.K.); (N.S.)
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Shuai Lian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Dongjiao Ni
- Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co., Ltd., Ganzhou 341000, China; (D.N.); (X.Z.)
| | - Xinhua Zou
- Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co., Ltd., Ganzhou 341000, China; (D.N.); (X.Z.)
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Shuai Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands; (H.Y.); (B.K.); (N.S.)
| | - Nicoline Soede
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands; (H.Y.); (B.K.); (N.S.)
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.L.); (Y.P.); (Y.W.); (Y.B.); (S.L.); (D.H.); (J.Z.); (S.Z.)
| |
Collapse
|
47
|
Rashed R, Valcheva R, Dieleman LA. Manipulation of Gut Microbiota as a Key Target for Crohn's Disease. Front Med (Lausanne) 2022; 9:887044. [PMID: 35783604 PMCID: PMC9244564 DOI: 10.3389/fmed.2022.887044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) sub-type characterized by transmural chronic inflammation of the gastrointestinal tract. Research indicates a complex CD etiology involving genetic predisposition and immune dysregulation in response to environmental triggers. The chronic mucosal inflammation has been associated with a dysregulated state, or dysbiosis, of the gut microbiome (bacteria), mycobiome (fungi), virome (bacteriophages and viruses), and archeaome (archaea) further affecting the interkingdom syntrophic relationships and host metabolism. Microbiota dysbiosis in CD is largely described by an increase in facultative anaerobic pathobionts at the expense of strict anaerobic Firmicutes, such as Faecalibacterium prausnitzii. In the mycobiome, reduced fungal diversity and fungal-bacteria interactions, along with a significantly increased abundance of Candida spp. and a decrease in Saccharomyces cerevisiae are well documented. Virome analysis also indicates a significant decrease in phage diversity, but an overall increase in phages infecting bacterial groups associated with intestinal inflammation. Finally, an increase in methanogenic archaea such as Methanosphaera stadtmanae exhibits high immunogenic potential and is associated with CD etiology. Common anti-inflammatory medications used in CD management (amino-salicylates, immunomodulators, and biologics) could also directly or indirectly affect the gut microbiome in CD. Other medications often used concomitantly in IBD, such as antibiotics, antidepressants, oral contraceptives, opioids, and proton pump inhibitors, have shown to alter the gut microbiota and account for increased susceptibility to disease onset or worsening of disease progression. In contrast, some environmental modifications through alternative therapies including fecal microbiota transplant (FMT), diet and dietary supplements with prebiotics, probiotics, and synbiotics have shown potential protective effects by reversing microbiota dysbiosis or by directly promoting beneficial microbes, together with minimal long-term adverse effects. In this review, we discuss the different approaches to modulating the global consortium of bacteria, fungi, viruses, and archaea in patients with CD through therapies that include antibiotics, probiotics, prebiotics, synbiotics, personalized diets, and FMT. We hope to provide evidence to encourage clinicians and researchers to incorporate these therapies into CD treatment options, along with making them aware of the limitations of these therapies, and indicate where more research is needed.
Collapse
|
48
|
Wang L, Chai M, Wang J, Yu Q, Wang G, Zhang H, Zhao J, Chen W. Bifidobacterium longum relieves constipation by regulating the intestinal barrier of mice. Food Funct 2022; 13:5037-5049. [PMID: 35394000 DOI: 10.1039/d1fo04151g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Constipation is a major health concern worldwide, requiring effective and safe treatment options. This study mainly focused on three species and nine strains of bifidobacteria from different sources to study their abilities to relieve constipation induced by loperamide in BALB/C mice. By monitoring constipation-related indicators, it was found that only Bifidobacterium longum (B. longum) relieved constipation, which indicated that bifidobacteria had inter-species differences in relieving constipation. Furthermore, through the detection of biological, chemical, mechanical, and immune barriers in mice, it was discovered that B. longum upregulates the relative abundance of 22 genera that were positively related to faecal water content, small intestinal propulsion rate, acetate, propionate, and intestinal mechanical barrier and negatively correlated with inflammatory factors, AQP8 and the time of first black stool and downregulates the relative abundance of Akkermansia. Furthermore, it increased the level of acetate in faeces and reduced the expression of AQP8 in the colon. This enhances intestinal motility and improves water and electrolyte metabolism. Meanwhile, it inhibited inflammation and prevented loperamide-induced intestinal barrier damage in constipated mice by upregulating occludin and downregulating IL-1β and TNF-α. In summary, B. longum relieved constipation by regulating the intestinal barrier in constipated mice.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Mao Chai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jialiang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qiangqing Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
49
|
Liu L, Du C, Liu Y, Gao L. Comparative Analysis of the Fecal Microbiota of Relict Gull ( Larus relictus) in Mu Us Desert (Hao Tongcha Nur) and Bojiang Haizi in Inner Mongolia, China. Front Vet Sci 2022; 9:860540. [PMID: 35464369 PMCID: PMC9018992 DOI: 10.3389/fvets.2022.860540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/04/2022] [Indexed: 01/06/2023] Open
Abstract
The gut microbiota contributes to host health by improving digestive efficiency and maintaining homeostasis. The relict gull (Larus relictus), a national first-class protected bird in China, is listed as vulnerable in the International Union for Conservation of Nature Red List. Here, 16S rRNA gene sequencing was performed to characterize and compare the community composition and diversity of the gut microbiota sampled from relict gulls in two breeding sites. In total, 418 operational taxonomic units (OUTs) were obtained and classified into 15 phyla and 228 genera. Alpha diversity analysis revealed no significant differences in community diversity among the two breeding sites. Beta diversity analyses showed that the microbial communities at the two sites were different. Six dominant phyla and fourteen dominant genera were identified. The most abundant bacterial genera had a significant relationship with the diet and living environment, and some bacterial genera were found to adapt to the plateau environment in which relict gulls live, which enables the relict gulls to use local resources effectively to accumulate energy. Simultaneously, a variety of highly abundant pathogenic bacteria were found, suggesting that these gulls may spread diseases among the local gull population. Certain measures should be taken to protect this species and to prevent the spread of diseases.
Collapse
Affiliation(s)
| | | | | | - Li Gao
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| |
Collapse
|
50
|
Jomehzadeh N, Amin M, Javaherizadeh H, Rashno M. MOLECULAR ASSESSMENT OF FECAL LACTOBACILLI POPULATIONS IN CHILDREN WITH FUNCTIONAL CONSTIPATION. ARQUIVOS DE GASTROENTEROLOGIA 2022; 59:244-250. [PMID: 35830036 DOI: 10.1590/s0004-2803.202202000-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Investigation of the gut-specific bacterial strains including lactobacilli is essential for understanding the bacterial etiology of constipation. OBJECTIVE This study aimed to compare the prevalence and quantity of intestinal lactobacilli in constipated children and healthy controls. METHODS Forty children fulfilling Rome IV criteria for functional constipation and 40 healthy controls were recruited. Fecal samples were analyzed using species-specific polymerase chain reaction followed by random amplified polymorphic DNA-PCR and quantitative real-time PCR. RESULTS Totally, seven different species of lactobacilli were detected. Out of 80 volunteers, 65 (81.3%) were culture and species-specific PCR positive from which 25 (38.46%) constipated children and 40 (61.54%) healthy subjects. The most prevalent species were L. paracasei 21 (32.3%) followed by L. plantarum 18 (27.7%) among both healthy and patient groups. Analysis of the RAPD dendrograms displayed that strains isolated from constipated and non-constipated children have similarity coefficients of more than 90%. The qPCR assays demonstrated constipated children had a lower amount of total lactobacilli population (per gram of feces) than healthy controls. CONCLUSION Our findings showed that the mere existence of various species of Lactobacillus in the gut does not enough to prevent some gastrointestinal disorders such as functional constipation, and their quantity plays a more important role.
Collapse
Affiliation(s)
- Nabi Jomehzadeh
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansour Amin
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hazhir Javaherizadeh
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|