1
|
Yin CS, Minh Nguyen TT, Yi EJ, Zheng S, Bellere AD, Zheng Q, Jin X, Kim M, Park S, Oh S, Yi TH. Efficacy of probiotics in hair growth and dandruff control: A systematic review and meta-analysis. Heliyon 2024; 10:e29539. [PMID: 38698995 PMCID: PMC11064082 DOI: 10.1016/j.heliyon.2024.e29539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Background Probiotics are intellectually rewarding for the discovery of their potential as a source of functional food. Investigating the economic and beauty sector dynamics, this study conducted a comprehensive review of scholarly articles to evaluate the capacity of probiotics to promote hair growth and manage dandruff. Methods We used the PRISMA 2020 with Embase, Pubmed, ClinicalTrials.gov, Scopus, and ICTRP databases to investigate studies till May 2023. Meta-analyses utilizing the random effects model were used with odds ratios (OR) and standardized mean differences (SMD). Result Meta-analysis comprised eight randomized clinical trials and preclinical studies. Hair growth analysis found a non-significant improvement in hair count (SMD = 0.32, 95 % CI -0.10 to 0.75) and a significant effect on thickness (SMD = 0.92, 95 % CI 0.47 to 1.36). In preclinical studies, probiotics significantly induced hair follicle count (SMD = 3.24, 95 % CI 0.65 to 5.82) and skin thickness (SMD = 2.32, 95 % CI 0.47 to 4.17). VEGF levels increased significantly (SMD = 2.97, 95 % CI 0.80 to 5.13), while IGF-1 showed a non-significant inducement (SMD = 0.53, 95 % CI -4.40 to 5.45). For dandruff control, two studies demonstrated non-significant improvement in adherent dandruff (OR = 1.31, 95 % CI 0.13-13.65) and a significant increase in free dandruff (OR = 5.39, 95 % CI 1.50-19.43). Hair follicle count, VEGF, IGF-1, and adherent dandruff parameters were recorded with high heterogeneity. For the systematic review, probiotics have shown potential in improving hair growth and controlling dandruff through modulation of the immune pathway and gut-hair axis. The Wnt/β-catenin pathway, IGF-1 pathway, and VEGF are key molecular pathways in regulating hair follicle growth and maintenance. Conclusions This review found significant aspects exemplified by the properties of probiotics related to promoting hair growth and anti-dandruff effect, which serve as a roadmap for further in-depth studies to make it into pilot scales.
Collapse
Affiliation(s)
- Chang-Shik Yin
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
- Snowwhitefactory Co, Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul, 06032, Republic of Korea
| | - Shengdao Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
- Snowwhitefactory Co, Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul, 06032, Republic of Korea
| | - Arce Defeo Bellere
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Xiangji Jin
- Department of Pharmacology, School of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dong-daemun, Seoul, Republic of Korea
| | - Myeongju Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Sejic Park
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Sarang Oh
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
- Snowwhitefactory Co, Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul, 06032, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| |
Collapse
|
2
|
Dong Y, Xu C, Su G, Li Y, Yan B, Liu Y, Yin T, Mou S, Mei H. Clinical value of anoikis-related genes and molecular subtypes identification in bladder urothelial carcinoma and in vitro validation. Front Immunol 2023; 14:1122570. [PMID: 37275895 PMCID: PMC10232821 DOI: 10.3389/fimmu.2023.1122570] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Background Anoikis is a programmed cell death process that was proven to be associated with cancer. Uroepithelial carcinoma of the bladder (BLCA) is a malignant disease of the urinary tract and has a strong metastatic potential. To determine whether anoikis-associated genes can predict the prognosis of BLCA accurately, we evaluated the prognostic value of anoikis-associated genes in BLCA and constructed the best model to predict prognosis. Method The BLCA transcriptome data were downloaded from TCGA and GEO databases, and genes with differential expression were selected and then clustered using non-negative matrix factorization (NMF). The genes with the most correlation with anoikis were screened and identified using univariate Cox regression, lasso regression, and multivariate Cox regression. The GEO dataset was used for external validation. Nomograms were created based on risk characteristics in combination with clinical variants and the performance of the model was validated with receiver operating characteristic (ROC) curves. The immunotherapeutic significance of this risk score was assessed using the immune phenomenon score (IPS). IC50 values of predictive chemotherapeutic agents were calculated. Finally, we used RT-qPCR to determine the mRNA expression of four genes, CALR, FASN, CASP6, and RAD9A. Result We screened 406 tumor samples and 19 normal tissue samples from the TCGA database. Based on anoikis-associated genes, we classified patients into two subtypes (C1 and C2) using NMF method. Subsequently, nine core genes were screened by multiple methods after analysis, which were used to construct risk profiles. The design of nomograms based on risk profiles and clinical variables, ROC, and calibration curves confirmed that the model could well have the ability to predict the survival of BLCA patients at 1, 3, and 5 years. By predicting the IC50 values of chemotherapeutic drugs, it was learned that the high-risk group (HRG) was more susceptible to paclitaxel, gemcitabine, and cisplatin, and the low-risk group (LRG) was more susceptible to veriparib and afatinib. Conclusion In summary, the risk score of anoikis-associated genes can be applied as a predictor to predict the prognosis of BLCA in clinical practice.
Collapse
Affiliation(s)
- Ying Dong
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Key Laboratory of Medical Reprogramming Technology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Chaojie Xu
- Department of Urology, Peking University First Hospital, Institution of Urology, Peking University, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing, China
| | - Ganglin Su
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Yanfeng Li
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Key Laboratory of Medical Reprogramming Technology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Bing Yan
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Key Laboratory of Medical Reprogramming Technology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yuhan Liu
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Key Laboratory of Medical Reprogramming Technology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Tao Yin
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Key Laboratory of Medical Reprogramming Technology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shuanzhu Mou
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Key Laboratory of Medical Reprogramming Technology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hongbing Mei
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Key Laboratory of Medical Reprogramming Technology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
3
|
Doganlar O, Doganlar ZB, Erdogan S, Delen E. Antineoplastic multi-drug chemotherapy to sensitize tumors triggers multi-drug resistance and inhibits efficiency of maintenance treatment inglioblastoma cells. EXCLI JOURNAL 2023; 22:35-52. [PMID: 36660193 PMCID: PMC9837385 DOI: 10.17179/excli2022-5556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023]
Abstract
Combinations of the well-known antineoplastic agents 5-fluorouracil (5-Fu), cisplatin, and paclitaxel are employed to increase radiotherapy/immunotherapy efficacy against persistent and resistant tumors. However, data remains needed on the hormetic, chronic, and long-term side effects of these aggressive combination chemotherapies. Here we investigated cellular and molecular responses associated with these combined agents, and their potential to induce multi-drug resistance against the temozolomide (TMZ) and etoposide (EP) used in glioblastoma maintenance treatment. We analyzed resistance and survival signals in U87 MG cells using molecular probes, fluorescent staining, qRT-PCR, and immunoblot. Repeated treatment with combined 5-Fu, cisplatin, and paclitaxel induced cross-resistance against TMZ and EP. Resistant cells exhibited elevated gene/protein expression of MRP1/ABCC1, ABCC2, BRCP/ABCG2, and GST. Moreover, they managed oxidative stress, cell cycle, apoptosis, and autophagy signaling to ensure survival. In these groups TMZ and etoposide efficiency dramatically reduced. Our result suggests that combined high-dose treatments of classical antineoplastic agents to sensitize tumors may trigger multi-drug resistance and inhibit maintenance treatment. When deciding on antineoplastic combination therapy for persistent/resistant glioblastoma, we recommend analyzing the long-term hormetic and chronic effects on cross-resistance and multi-drug resistance in primary cell cultures from patients. See also the Graphical Abstract(Fig. 1).
Collapse
Affiliation(s)
- Oguzhan Doganlar
- Faculty of Medicine, Department of Medical Biology, Trakya University, Edirne, Turkiye
| | - Zeynep Banu Doganlar
- Faculty of Medicine, Department of Medical Biology, Trakya University, Edirne, Turkiye
| | - Suat Erdogan
- Faculty of Medicine, Department of Medical Biology, Trakya University, Edirne, Turkiye
| | - Emre Delen
- Faculty of Medicine, Department of Neurosurgery, Trakya University, Edirne, Turkiye
| |
Collapse
|
4
|
The Hallmarks of Glioblastoma: Heterogeneity, Intercellular Crosstalk and Molecular Signature of Invasiveness and Progression. Biomedicines 2022; 10:biomedicines10040806. [PMID: 35453557 PMCID: PMC9031586 DOI: 10.3390/biomedicines10040806] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
In 2021 the World Health Organization published the fifth and latest version of the Central Nervous System tumors classification, which incorporates and summarizes a long list of updates from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy work. Among the adult-type diffuse gliomas, glioblastoma represents most primary brain tumors in the neuro-oncology practice of adults. Despite massive efforts in the field of neuro-oncology diagnostics to ensure a proper taxonomy, the identification of glioblastoma-tumor subtypes is not accompanied by personalized therapies, and no improvements in terms of overall survival have been achieved so far, confirming the existence of open and unresolved issues. The aim of this review is to illustrate and elucidate the state of art regarding the foremost biological and molecular mechanisms that guide the beginning and the progression of this cancer, showing the salient features of tumor hallmarks in glioblastoma. Pathophysiology processes are discussed on molecular and cellular levels, highlighting the critical overlaps that are involved into the creation of a complex tumor microenvironment. The description of glioblastoma hallmarks shows how tumoral processes can be linked together, finding their involvement within distinct areas that are engaged for cancer-malignancy establishment and maintenance. The evidence presented provides the promising view that glioblastoma represents interconnected hallmarks that may led to a better understanding of tumor pathophysiology, therefore driving the development of new therapeutic strategies and approaches.
Collapse
|
5
|
Amini P, Amrovani M, Nassaj ZS, Ajorlou P, Pezeshgi A, Ghahrodizadehabyaneh B. Hypertension: Potential Player in Cardiovascular Disease Incidence in Preeclampsia. Cardiovasc Toxicol 2022; 22:391-403. [PMID: 35347585 DOI: 10.1007/s12012-022-09734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Preeclampsia (PE) is one of the complications, that threatens pregnant mothers during pregnancy. According to studies, it accounts for 3-7% of all pregnancies, and also is effective in preterm delivery. PE is the third leading cause of death in pregnant women. High blood pressure in PE can increase the risk of developing cardiovascular disease (CVD) in cited individuals, and is one of the leading causes of death in PE individuals. Atrial natriuretic peptide (ANP), Renin-Angiotensin system and nitric oxide (NO) are some of involved factors in regulating blood pressure. Therefore, by identifying the signaling pathways, that are used by these molecules to regulate and modulate blood pressure, appropriate treatment strategies can be provided to reduce blood pressure through target therapy in PE individuals; consequently, it can reduce CVD risk and mortality.
Collapse
Affiliation(s)
- Parya Amini
- Atherosclerosis Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Parisa Ajorlou
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Aiyoub Pezeshgi
- Internal Medicine Department, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | |
Collapse
|
6
|
The Wnt Signaling Pathway Inhibitors Improve the Therapeutic Activity of Glycolysis Modulators against Tongue Cancer Cells. Int J Mol Sci 2022; 23:ijms23031248. [PMID: 35163171 PMCID: PMC8835497 DOI: 10.3390/ijms23031248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/27/2022] Open
Abstract
Excessive glucose metabolism and disruptions in Wnt signaling are important molecular changes present in oral cancer cells. The aim of this study was to evaluate the effects of the combinatorial use of glycolysis and Wnt signaling inhibitors on viability, cytotoxicity, apoptosis induction, cell cycle distribution and the glycolytic activity of tongue carcinoma cells. CAL 27, SCC-25 and BICR 22 tongue cancer cell lines were used. Cells were treated with inhibitors of glycolysis (2-deoxyglucose and lonidamine) and of Wnt signaling (PRI-724 and IWP-O1). The effects of the compounds on cell viability and cytotoxicity were evaluated with MTS and CellTox Green tests, respectively. Apoptosis was evaluated by MitoPotential Dye staining and cell cycle distribution by staining with propidium iodide, followed by flow cytometric cell analysis. Glucose and lactate concentrations in a culture medium were evaluated luminometrically. Combinations of 2-deoxyglucose and lonidamine with Wnt pathway inhibitors were similarly effective in the impairment of oral cancer cells’ survival. However, the inhibition of the canonical Wnt pathway by PRI-724 was more beneficial, based on the glycolytic activity of the cells. The results point to the therapeutic potential of the combination of low concentrations of glycolytic modulators with Wnt pathway inhibitors in oral cancer cells.
Collapse
|
7
|
Vallée A, Lecarpentier Y, Vallée JN. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers (Basel) 2021; 13:cancers13215557. [PMID: 34771718 PMCID: PMC8582658 DOI: 10.3390/cancers13215557] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Recent studies have shown that cancer processes are involved under normoxic conditions. These findings completely change the way of approaching the study of the cancer process. In this review, we focus on the fact that, under normoxic conditions, the overstimulation of the WNT/β-catenin pathway leads to modifications in the tumor micro-environment and the activation of the Warburg effect, i.e., aerobic glycolysis, autophagy and glutaminolysis, which in turn participate in tumor growth. Abstract The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 Rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR, CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
8
|
Renault-Mahieux M, Vieillard V, Seguin J, Espeau P, Le DT, Lai-Kuen R, Mignet N, Paul M, Andrieux K. Co-Encapsulation of Fisetin and Cisplatin into Liposomes for Glioma Therapy: From Formulation to Cell Evaluation. Pharmaceutics 2021; 13:pharmaceutics13070970. [PMID: 34206986 PMCID: PMC8309049 DOI: 10.3390/pharmaceutics13070970] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Glioblastoma (GBM) is the most frequent cerebral tumor. It almost always relapses and there is no validated treatment for second-line GBM. We proposed the coencapsulation of fisetin and cisplatin into liposomes, aiming to (i) obtain a synergistic effect by combining the anti-angiogenic effect of fisetin with the cytotoxic effect of cisplatin, and (ii) administrate fisetin, highly insoluble in water. The design of a liposomal formulation able to encapsulate, retain and deliver both drugs appeared a challenge. (2) Methods: Liposomes with increasing ratios of cholesterol/DOPC were prepared and characterized in term of size, PDI and stability. The incorporation of fisetin was explored using DSC. The antiangiogneic and cytotoxic activities of the selected formulation were assayed in vitro. (3) Results: We successfully developed an optimized liposomal formulation incorporating both drugs, composed by DOPC/cholesterol/DODA-GLY-PEG2000 at a molar ratio of 75.3/20.8/3.9, with a diameter of 173 ± 8 nm (PDI = 0.12 ± 0.01) and a fisetin and cisplatin drug loading of 1.7 ± 0.3% and 0.8 ± 0.1%, respectively, with a relative stability over time. The maximum incorporation of fisetin into the bilayer was determined at 3.2% w/w. Then, the antiangiogenic activity of fisetin was maintained after encapsulation. The formulation showed an additive effect of cisplatin and fisetin on GBM cells; (4) Conclusions: The developed co-loaded formulation was able to retain the activity of fisetin, was effective against GBM cells and is promising for further in vivo experimentations.
Collapse
Affiliation(s)
- Morgane Renault-Mahieux
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
- Henri Mondor Hospital Group, Pharmacy Department, Assistance Publique—Hôpitaux de Paris (AP-HP), 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; (V.V.); (M.P.)
| | - Victoire Vieillard
- Henri Mondor Hospital Group, Pharmacy Department, Assistance Publique—Hôpitaux de Paris (AP-HP), 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; (V.V.); (M.P.)
| | - Johanne Seguin
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
| | - Philippe Espeau
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
| | - Dang Tri Le
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
| | - René Lai-Kuen
- UMS3612 Centre National de la Recherche Scientifique (CNRS), US25 Institut NATIONAL de la Santé et de la Recherche Médicale (INSERM), Plateforme Mutualisée de l’Institut du Médicament (P-MIM), Plateau Technique Imagerie Cellulaire et Moléculaire, Université de Paris, 75006 Paris, France;
| | - Nathalie Mignet
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
| | - Muriel Paul
- Henri Mondor Hospital Group, Pharmacy Department, Assistance Publique—Hôpitaux de Paris (AP-HP), 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; (V.V.); (M.P.)
| | - Karine Andrieux
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 4 Avenue de l’Observatoire, 75006 Paris, France; (M.R.-M.); (J.S.); (P.E.); (D.T.L.); (N.M.)
- Correspondence: ; Tel.: +33-(0)1-53-73-97-63
| |
Collapse
|
9
|
Vallée A, Lecarpentier Y, Vallée JN. Opposed Interplay between IDH1 Mutations and the WNT/β-Catenin Pathway: Added Information for Glioma Classification. Biomedicines 2021; 9:biomedicines9060619. [PMID: 34070746 PMCID: PMC8229353 DOI: 10.3390/biomedicines9060619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Gliomas are the main common primary intraparenchymal brain tumor in the central nervous system (CNS), with approximately 7% of the death caused by cancers. In the WHO 2016 classification, molecular dysregulations are part of the definition of particular brain tumor entities for the first time. Nevertheless, the underlying molecular mechanisms remain unclear. Several studies have shown that 75% to 80% of secondary glioblastoma (GBM) showed IDH1 mutations, whereas only 5% of primary GBM have IDH1 mutations. IDH1 mutations lead to better overall survival in gliomas patients. IDH1 mutations are associated with lower stimulation of the HIF-1α a, aerobic glycolysis and angiogenesis. The stimulation of HIF-1α and the process of angiogenesis appears to be activated only when hypoxia occurs in IDH1-mutated gliomas. In contrast, the observed upregulation of the canonical WNT/β-catenin pathway in gliomas is associated with proliferation, invasion, aggressive-ness and angiogenesis.. Molecular pathways of the malignancy process are involved in early stages of WNT/β-catenin pathway-activated-gliomas, and this even under normoxic conditions. IDH1 mutations lead to decreased activity of the WNT/β-catenin pathway and its enzymatic targets. The opposed interplay between IDH1 mutations and the canonical WNT/β-catenin pathway in gliomas could participate in better understanding of the observed evolution of different tumors and could reinforce the glioma classification.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80000 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
10
|
Giotta Lucifero A, Luzzi S, Brambilla I, Schena L, Mosconi M, Foiadelli T, Savasta S. Potential roads for reaching the summit: an overview on target therapies for high-grade gliomas. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:61-78. [PMID: 32608376 PMCID: PMC7975828 DOI: 10.23750/abm.v91i7-s.9956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
Background: The tailored targeting of specific oncogenes represents a new frontier in the treatment of high-grade glioma in the pursuit of innovative and personalized approaches. The present study consists in a wide-ranging overview of the target therapies and related translational challenges in neuro-oncology. Methods: A review of the literature on PubMed/MEDLINE on recent advances concerning the target therapies for treatment of central nervous system malignancies was carried out. In the Medical Subject Headings, the terms “Target Therapy”, “Target drug” and “Tailored Therapy” were combined with the terms “High-grade gliomas”, “Malignant brain tumor” and “Glioblastoma”. Articles published in the last five years were further sorted, based on the best match and relevance. The ClinicalTrials.gov website was used as a source of the main trials, where the search terms were “Central Nervous System Tumor”, “Malignant Brain Tumor”, “Brain Cancer”, “Brain Neoplasms” and “High-grade gliomas”. Results: A total of 137 relevant articles and 79 trials were selected. Target therapies entailed inhibitors of tyrosine kinases, PI3K/AKT/mTOR pathway, farnesyl transferase enzymes, p53 and pRB proteins, isocitrate dehydrogenases, histone deacetylases, integrins and proteasome complexes. The clinical trials mostly involved combined approaches. They were phase I, II, I/II and III in 33%, 42%, 16%, and 9% of the cases, respectively. Conclusion: Tyrosine kinase and angiogenesis inhibitors, in combination with standard of care, have shown most evidence of the effectiveness in glioblastoma. Resistance remains an issue. A deeper understanding of the molecular pathways involved in gliomagenesis is the key aspect on which the translational research is focusing, in order to optimize the target therapies of newly diagnosed and recurrent brain gliomas. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Lucia Schena
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
11
|
Alexandru O, Horescu C, Sevastre AS, Cioc CE, Baloi C, Oprita A, Dricu A. Receptor tyrosine kinase targeting in glioblastoma: performance, limitations and future approaches. Contemp Oncol (Pozn) 2020; 24:55-66. [PMID: 32514239 PMCID: PMC7265959 DOI: 10.5114/wo.2020.94726] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
From all central nervous system tumors, gliomas are the most common. Nowadays, researchers are looking for more efficient treatments for these tumors, as well as ways for early diagnosis. Receptor tyrosine kinases (RTKs) are major targets for oncology and the development of small-molecule RTK inhibitors has been proven successful in cancer treatment. Mutations or aberrant activation of the RTKs and their intracellular signaling pathways are linked to several malignant diseases, including glioblastoma. The progress in the understanding of malignant glioma evolution has led to RTK targeted therapies with high capacity to improve the therapeutic response while reducing toxicity. In this review, we present the most important RTKs (i.e. EGFR, IGFR, PDGFR and VEGFR) currently used for developing cancer therapeutics together with the potential of RTK-related drugs in glioblastoma treatment. Also, we focus on some therapeutic agents that are currently at different stages of research or even in clinical phases and proved to be suitable as re-purposing candidates for glioblastoma treatment.
Collapse
Affiliation(s)
- Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova and Clinical Hospital of Neuropsychiatry Craiova, Craiova, Romania
| | - Cristina Horescu
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ani-Simona Sevastre
- Unit of Pharmaceutical Technology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Catalina Elena Cioc
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Carina Baloi
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alexandru Oprita
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anica Dricu
- Unit of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
12
|
Clavreul A, Pourbaghi-Masouleh M, Roger E, Menei P. Nanocarriers and nonviral methods for delivering antiangiogenic factors for glioblastoma therapy: the story so far. Int J Nanomedicine 2019; 14:2497-2513. [PMID: 31040671 PMCID: PMC6461002 DOI: 10.2147/ijn.s194858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is an essential component of glioblastoma (GB) progression. The development of angiogenesis inhibitor therapy, including treatments targeting vascular endothelial growth factor (VEGF) in particular, raised new hopes for the treatment of GB, but no Phase III clinical trial to date has reported survival benefits relative to standard treatment. There are several possible reasons for this limited efficacy, including VEGF-independent angiogenesis, induction of tumor invasion, and inefficient antiangiogenic factor delivery to the tumor. Efforts have been made to overcome these limitations by identifying new angiogenesis inhibitors that target angiogenesis through different mechanisms of action without inducing tumor invasion, and through the development of viral and nonviral delivery methods to improve antiangiogenic activity. Herein, we describe the nonviral methods, including convection-enhanced delivery devices, implantable polymer devices, nanocarriers, and cellular vehicles, to deliver antiangiogenic factors. We focus on those evaluated in intracranial (orthotopic) animal models of GB, the most relevant models of this disease, as they reproduce the clinical scenario of tumor progression and therapy response encountered in GB patients.
Collapse
Affiliation(s)
- Anne Clavreul
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| | - Milad Pourbaghi-Masouleh
- CRCINA, INSERM, University of Nantes, University of Angers, Angers, France, .,Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emilie Roger
- MINT, INSERM 1066, CNRS 6021, University of Angers, Angers, France
| | - Philippe Menei
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| |
Collapse
|
13
|
Mitran B, Güler R, Roche FP, Lindström E, Selvaraju RK, Fleetwood F, Rinne SS, Claesson-Welsh L, Tolmachev V, Ståhl S, Orlova A, Löfblom J. Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: proof-of-principle in a murine model. Theranostics 2018; 8:4462-4476. [PMID: 30214632 PMCID: PMC6134937 DOI: 10.7150/thno.24395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/21/2018] [Indexed: 01/09/2023] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR2) is a key mediator of angiogenesis and therefore a promising therapeutic target in malignancies including glioblastoma multiforme (GBM). Molecular imaging of VEGFR2 expression may enable patient stratification for antiangiogenic therapy. The goal of the current study was to evaluate the capacity of the novel anti-VEGFR2 biparatopic affibody conjugate (ZVEGFR2-Bp2) for in vivo visualization of VEGFR2 expression in GBM. Methods: ZVEGFR2-Bp2 coupled to a NODAGA chelator was generated and radiolabeled with indium-111. The VEGFR2-expressing murine endothelial cell line MS1 was used to evaluate in vitro binding specificity and affinity, cellular processing and targeting specificity in mice. Further tumor targeting was studied in vivo in GL261 glioblastoma orthotopic tumors. Experimental imaging was performed. Results: [111In]In-NODAGA-ZVEGFR2-Bp2 bound specifically to VEGFR2 (KD=33±18 pM). VEGFR2-mediated accumulation was observed in liver, spleen and lungs. The tumor-to-organ ratios 2 h post injection for mice bearing MS1 tumors were approximately 11 for blood, 15 for muscles and 78 for brain. Intracranial GL261 glioblastoma was visualized using SPECT/CT. The activity uptake in tumors was significantly higher than in normal brain tissue. The tumor-to-cerebellum ratios after injection of 4 µg [111In]In-NODAGA-ZVEGFR2-Bp2 were significantly higher than the ratios observed for the 40 µg injected dose and for the non-VEGFR2 binding size-matched conjugate, demonstrating target specificity. Microautoradiography of cryosectioned CNS tissue was in good agreement with the SPECT/CT images. Conclusion: The anti-VEGFR2 affibody conjugate [111In]In-NODAGA-ZVEGFR2-Bp2 specifically targeted VEGFR2 in vivo and visualized its expression in a murine GBM orthotopic model. Tumor-to-blood ratios for [111In]In-NODAGA-ZVEGFR2-Bp2 were higher compared to other VEGFR2 imaging probes. [111In]In-NODAGA-ZVEGFR2-Bp2 appears to be a promising probe for in vivo noninvasive visualization of tumor angiogenesis in glioblastoma.
Collapse
|
14
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neurosci Bull 2018; 34:573-588. [PMID: 29582250 PMCID: PMC5960455 DOI: 10.1007/s12264-018-0219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France.
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
15
|
IDH1 mutation is associated with lower expression of VEGF but not microvessel formation in glioblastoma multiforme. Oncotarget 2018; 9:16462-16476. [PMID: 29662659 PMCID: PMC5893254 DOI: 10.18632/oncotarget.24536] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/10/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction Glioblastoma multiforme (GBM) represents the most malignant primary brain tumor characterized by pathological vascularization. Mutations in isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) were observed in GBM. We aimed to assess the intra-tumor hypoxia, angiogenesis and microvessel formation in GBM and to find their associations with IDH1 mutation status and patients prognosis. Methods 52 patients with a diagnosis of GBM were included into the study. IDH1 R132H mutation was assessed by RT-PCR from FFPE tumor samples obtained during surgery. The expression of markers of hypoxia (HIF2α), angiogenesis (VEGF), tumor microvascularity (CD31, CD34, vWF, CD105), and proliferation (Ki-67) were assessed immunohistochemically (IHC). IDH1 mutation and IHC markers were correlated with the patient survival. Results 20 from 52 GBM tumor samples comprised IDH1 R132H mutation (38.5%). The majority of mutated tumors were classified as secondary glioblastomas (89.9%). Patients with IDH1 mutated tumors experienced better progression-free survival (P = 0.037) as well as overall survival (P = 0.035) compared with wild type tumors. The significantly lower expression of VEGF was observed in GBM with IDH1 mutation than in wild type tumors (P = 0.01). No such association was found for microvascular markers. The increased expression of newly-formed microvessels (ratio CD105/CD31) in tumor samples was associated with worse patient’s progression-free survival (P = 0.026). Summary No increase in HIF/VEGF-mediated angiogenesis was observed in IDH1-mutated GBM compared with IDH1 wild type tumors. The histological assessment of the portion of newly-formed microvessels in tumor tissue can be used for the prediction of GBM patient’s prognosis.
Collapse
|
16
|
Robinson BL, Dumas M, Ali SF, Paule MG, Gu Q, Kanungo J. Mechanistic studies on ketamine-induced mitochondrial toxicity in zebrafish embryos. Neurotoxicol Teratol 2017; 69:63-72. [PMID: 29225006 DOI: 10.1016/j.ntt.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022]
Abstract
Ketamine, a phencyclidine derivative, is an antagonist of the Ca2+-permeable N-methyl-d-aspartate (NMDA)-type glutamate receptors. It is a pediatric anesthetic and has been implicated in developmental neurotoxicity. Ketamine has also been shown to deplete ATP in mammalian cells. Our previous studies showed that acetyl l-carnitine (ALCAR) prevented ketamine-induced cardiotoxicity and neurotoxicity in zebrafish embryos. Based on our finding that ALCAR's protective effect was blunted by oligomycin A, an inhibitor of ATP synthase, we further investigated the effects of ketamine and ALCAR on ATP levels, mitochondria and ATP synthase in zebrafish embryos. The results demonstrated that ketamine reduced ATP levels in the embryos but not in the presence of ALCAR. Ketamine reduced total mitochondrial protein levels and mitochondrial potential, which were prevented with ALCAR co-treatment. To determine the cause of ketamine-induced ATP deficiency, we explored the status of ATP synthase. The results showed that a subunit of ATP synthase, atp5α1, was transcriptionally down-regulated by ketamine, but not in the presence of ALCAR, although ketamine caused a significant upregulation in another ATP synthase subunit, atp5β and total ATP synthase protein levels. Most of the ATP generated by heart mitochondria are utilized for its contraction and relaxation. Ketamine-treated embryos showed abnormal heart structure, which was abolished with ALCAR co-treatment. This study offers evidence for a potential mechanism by which ketamine could cause ATP deficiency mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Melanie Dumas
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
17
|
Phan DTT, Bender RHF, Andrejecsk JW, Sobrino A, Hachey SJ, George SC, Hughes CCW. Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface. Exp Biol Med (Maywood) 2017; 242:1669-1678. [PMID: 28195514 PMCID: PMC5786363 DOI: 10.1177/1535370217694100] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood-brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer's disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood-brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood-brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood-brain barrier pathology, recent advances in the development of novel 3D blood-brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood-brain barrier, and provide an outlook on how these blood-brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood-Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer's disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB - something that until recently had not been well modeled by in vitro systems. Our hope is that this review will provide a launch pad for new ideas and methodologies that can provide us with truly physiological BBB models capable of yielding new insights into the function of this critical interface.
Collapse
Affiliation(s)
- Duc TT Phan
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - R Hugh F Bender
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jillian W Andrejecsk
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Agua Sobrino
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Stephanie J Hachey
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Christopher CW Hughes
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Sun XY, Qu Y, Ni AR, Wang GX, Huang WB, Chen ZP, Lv ZF, Zhang S, Lindsay H, Zhao S, Li XN, Feng BH. Novel histone deacetylase inhibitor N25 exerts anti-tumor effects and induces autophagy in human glioma cells by inhibiting HDAC3. Oncotarget 2017; 8:75232-75242. [PMID: 29088860 PMCID: PMC5650415 DOI: 10.18632/oncotarget.20744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 08/06/2017] [Indexed: 11/25/2022] Open
Abstract
N25, a novel histone deacetylase inhibitor, was created through structural modification of suberoylanilide hydroxamic acid. To evaluate the anti-tumor activity of N25 and clarify its molecular mechanism of inducing autophagy in glioma cells, we investigated its in vitro anti-proliferative effect and in vivo anticancer effect. Moreover, we detected whether N25 induces autophagy in glioma cells by transmission electron microscope and analyzed the protein expression level of HDAC3, Tip60, LC3 in glioma samples by western blot. We additionally analyzed the protein expression level of HDAC3, Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment with N25 in glioma cells. Our results showed that the anti-tumor activity of N25 in glioma cells is slightly stronger than SAHA both in vitro and in vivo. We found that N25 induced autophagy, and HDAC3 was significantly elevated and Tip60 and LC3 significantly decreased in glioma samples compared with normal brain tissues. Nevertheless, N25 inhibited HDAC3 and up-regulated the protein expression of Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment of glioma cells with N25. In conclusion, these data suggest that N25 has striking anti-tumor activity in part due to inhibition of HDAC3. Additionally, N25 may induce autophagy through inhibiting HDAC3.
Collapse
Affiliation(s)
- Xin-Yuan Sun
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Qu
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - An-Ran Ni
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gui-Xiang Wang
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei-Bin Huang
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Clinical Pharmacy, Puning People's Hospital, Puning, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhu-Fen Lv
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, China
| | - Song Zhang
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Pharmacy, The First People's Hospital of Guangyuan, Guangyuan, China
| | - Holly Lindsay
- Preclinical Neuro-Oncology Research Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sibo Zhao
- Preclinical Neuro-Oncology Research Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xiao-Nan Li
- Preclinical Neuro-Oncology Research Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bing-Hong Feng
- Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
19
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Gliomas: Interactions between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma. Front Physiol 2017; 8:352. [PMID: 28620312 PMCID: PMC5451860 DOI: 10.3389/fphys.2017.00352] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
Gliomas cells are the site of numerous metabolic and thermodynamics abnormalities with an increasing entropy rate which is characteristic of irreversible processes driven by changes in Gibbs energy, heat production, intracellular acidity, membrane potential gradient, and ionic conductance. We focus our review on the opposing interactions observed in glioma between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In gliomas, WNT/beta-catenin pathway is upregulated while PPAR gamma is downregulated. Upregulation of WNT/beta-catenin signaling induces changes in key metabolic enzyme that modify their thermodynamics behavior. This leads to activation pyruvate dehydrogenase kinase 1(PDK-1) and monocarboxylate lactate transporter 1 (MCT-1). Consequently, phosphorylation of PDK-1 inhibits pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into acetyl-CoA in mitochondria and in TCA (tricarboxylic acid) cycle. This leads to aerobic glycolysis despite the availability of oxygen, named Warburg effect. Cytoplasmic pyruvate is, in major part, converted into lactate. The WNT/beta-catenin pathway induces also the transcription of genes involved in cell proliferation, cell invasiveness, nucleotide synthesis, tumor growth, and angiogenesis, such as c-Myc, cyclin D1, PDK. In addition, in gliomas cells, PPAR gamma is downregulated, leading to a decrease in insulin sensitivity and an increase in neuroinflammation. Moreover, PPAR gamma contributes to regulate some key circadian genes. Abnormalities in the regulation of circadian rhythms and dysregulation in circadian clock genes are observed in gliomas. Circadian rhythms are dissipative structures, which play a key role in far-from-equilibrium thermodynamics through their interactions with WNT/beta-catenin pathway and PPAR gamma. In gliomas, metabolism, thermodynamics, and circadian rhythms are tightly interrelated.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, Institut National de la Santé et de la Recherche Médicale U1084, University of PoitiersPoitiers, France
- Laboratoire de Mathématiques et Applications, UMR Centre National de la Recherche Scientifique 7348, Université de PoitiersPoitiers, France
| | | | - Rémy Guillevin
- DACTIM, Laboratoire de Mathématiques et Applications, Université de Poitiers et CHU de Poitiers, UMR Centre National de la Recherche Scientifique 7348, SP2MIFuturoscope, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications, UMR Centre National de la Recherche Scientifique 7348, Université de PoitiersPoitiers, France
- CHU Amiens Picardie, Université Picardie Jules VerneAmiens, France
| |
Collapse
|
20
|
Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 2017; 113:177-200. [PMID: 28606739 PMCID: PMC5578712 DOI: 10.1016/j.addr.2017.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity.
Collapse
Affiliation(s)
- Julia Y Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA.
| | - Tao Sun
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Leila Mashouf
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Alexander V Ljubimov
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Liron L Israel
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Vladimir A Ljubimov
- Department of Neurosurgery and Brain Repair, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Vida Falahatian
- Duke University School of Medicine, Department of Biostatistics and Bioinformatics, Clinical Research Training Program (CRTP), 2424 Erwin Road, Suite 1102, Hock Plaza Box 2721, Durham, NC 27710, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA; Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
21
|
Fan Y, Shi C, Li T, Kuang T. microRNA-454 shows anti-angiogenic and anti-metastatic activity in pancreatic ductal adenocarcinoma by targeting LRP6. Am J Cancer Res 2017; 7:139-147. [PMID: 28123855 PMCID: PMC5250688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023] Open
Abstract
Our previous work has shown that microRNA-454 (miR-454) can inhibit the growth of pancreatic ductal adenocarcinoma (PDAC) by blocking the recruitment of bone marrow-derived macrophages. In the present study, we aimed to explore its role in the proliferation, invasion, and pro-angiogenic activity of PDAC cells in vitro and lung metastasis in vivo. PANC-1 and MiaPaCa-2 cells were transfected with a miR-454-expressing plasmid and tested for cell proliferation, colony formation, cell cycle distribution, invasion, and pro-angiogenic activity. The target gene(s) that mediated the action of miR-454 was identified. The effect of miR-454 overexpression on lung metastasis of PDAC was evaluated in nude mice. Of note, overexpression of miR-454 significantly inhibited PDAC cell proliferation and colony formation and arrests PDAC cells at the G2/M phase. Decreased invasiveness was observed in miR-454-overexpressing PDAC cells. Conditioned media from miR-454-overexpressing PANC-1 cells contained lower levels of vascular endothelial growth factor and had reduced capacity to induce endothelial cell tube-like structure formation. Mechanistically, miR-454 was found to target the mRNA of LRP6 and inhibit the activation of Wnt/β-catenin signaling in PDAC cells. Ectopic expression of LRP6 significantly reversed the suppressive effects of miR-454 on PDAC cells. In vivo studies confirmed that miR-454-overexpressing PANC-1 cells formed significantly less lung metastases than control cells. Altogether, miR-454 functions as a suppressor in tumor growth, angiogenesis, and metastasis in PDAC, likely through downregulation of LRP6.
Collapse
Affiliation(s)
- Yue Fan
- Department of Integrated TCM & Western Medicine, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
| | - Chenye Shi
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
| | - Tianyu Li
- Department of Integrated TCM & Western Medicine, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
| |
Collapse
|