1
|
Nelson CK, Kline M, Payne A, Dillon CR. Computational predictions of magnetic resonance acoustic radiation force imaging for breast cancer focused ultrasound therapy. Int J Hyperthermia 2025; 42:2452927. [PMID: 39842813 PMCID: PMC11902895 DOI: 10.1080/02656736.2025.2452927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
PURPOSE In magnetic resonance-guided focused ultrasound (MRgFUS) breast therapies, the focal location must be characterized to guide successful treatment. Focal characterization is difficult because heterogeneous breast tissues introduce phase aberrations that blur and shift the focus and traditional guidance methods do not work in adipose tissues. The purpose of this work is to evaluate numerical simulations of MRgFUS that predict the focal location. Those simulations are compared to clinical magnetic resonance acoustic radiation force imaging (MR-ARFI) data collected during in vivo treatment of breast tumors. METHODS The focal location was evaluated before MRgFUS treatment with MR-ARFI in five patients. The hybrid angular spectrum method (HAS) was applied to simulate pressure fields which were converted to forces, then convolved with a 3D Green's function (with time-of-arrival weighting) to produce a simulation of the MR-ARFI tissue displacement. RESULTS The focal locations found by the simulations and the MR-ARFI measurements were on average separated by 3.7 mm (SD: 0.9 mm). Characterization of the focal zone spatial distributions had a normalized root mean squared difference of 8.1% (SD: 2.5%). The displacement magnitudes of the simulations underestimated the MR-ARFI measurements by 82% (SD: 5.6%). CONCLUSIONS The agreement between MR-ARFI measurements and simulations demonstrates that HAS can predict the in vivo focal location in heterogeneous tissues, though accurate patient-specific properties are needed to improve predictions of tissue displacement magnitude. Tools developed in this study could be used to streamline MRgFUS treatment planning and optimization, for biomechanical property estimation, and in developing phase aberration correction techniques.
Collapse
Affiliation(s)
- Chloe K Nelson
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
| | - Michelle Kline
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
2
|
Richards N, Malmberg M, Odéen H, Johnson S, Kline M, Merrill R, Hadley R, Parker DL, Payne A. In vivo simultaneous proton resonance frequency shift thermometry and single reference variable flip angle T 1 measurements. Magn Reson Med 2025; 93:2070-2085. [PMID: 39831523 DOI: 10.1002/mrm.30413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE The single reference variable flip angle sequence with a multi-echo stack of stars acquisition (SR-VFA-SoS) simultaneously measures temperature change using proton resonance frequency (PRF) shift and T1-based thermometry methods. This work evaluates SR-VFA-SoS thermometry in MR-guided focused ultrasound in an in vivo rabbit model. METHODS Simultaneous PRF shift thermometry and T1-based thermometry were obtained in a New Zealand white rabbit model (n = 7) during MR-guided focused ultrasound surgery using the SR-VFA-SoS sequence at 3 T. Distinct locations in muscle (n = 16), fat (n = 12), or the interface of both tissues (n = 23) were heated. The T1-temperature coefficient of fat was determined using least-squares fitting of inversion recovery-based T1 maps of untreated fat harvested from the animal and was applied to the in vivo measured heat-induced T1 changes to create temperature maps. RESULTS Using k-space weighted image contrast reconstruction, temporal resolution of 1.71 s was achieved for simultaneous thermometry at 1.5 × 1.5 × 2 mm voxel resolution. PRF shift thermometry was not sensitive to heating in fat. T1 changes were observed in fat at the ultrasound focus. The mean T1-temperature coefficient for fat was determined to be 1.9%/°C ± 0.2%/°C. Precision was 0.76°C ± 0.18°C for PRF shift thermometry in muscle and 1.93°C ± 0.60°C for T1-based thermometry in fat. Sonications in muscle showed an increase in T1 of 2.4%/°C ± 0.9%/°C. CONCLUSION The SR-VFA-SoS sequence was shown to simultaneously measure temperature change using PRF shift and T1-based methods in an in vivo model, providing thermometry for both aqueous and fat tissues.
Collapse
Affiliation(s)
- Nicholas Richards
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Michael Malmberg
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Sara Johnson
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Michelle Kline
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Robb Merrill
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Rock Hadley
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Pei P, Chen Y, Chen X, Zhang F, Liu X, Wang JW. Optothermal-Stimulated Persistent Luminescence Imaging and Therapy (OSPLIT). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500769. [PMID: 40159881 DOI: 10.1002/adma.202500769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Persistent luminescent nanomaterials have significantly advanced in vivo bioimaging and biosensing by emitting photons after excitation ceases, effectively minimizing tissue autofluorescence. However, their application in biomedical fields such as tumor theranostics is limited by low brightness and rapid signal decay. To address these issues, OSPLIT (optothermal-stimulated persistent luminescence imaging therapy), a dual-function strategy for imaging and treatment is introduced. The OSPLIT approach enhances the release of charge carriers from deep traps in lanthanide-doped nanoparticles, resulting in a 73 fold increase in persistent luminescence within the second near-infrared (NIR-II) window. In living mice, it enables high-contrast imaging of lymph node metastases, with a signal-to-background ratio 11.8 times greater than conventional NIR-II fluorescence. Optothermal-boosted nanoparticles are effective in ablating lymph node metastasis and preventing tumor spread. These findings highlight the potential of optothermal stimulation to enhance persistent luminescence for both imaging and therapeutic applications.
Collapse
Affiliation(s)
- Peng Pei
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaoyuan Chen
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of, Singapore, 117609, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of, Singapore, 117609, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of, Singapore, 117609, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| |
Collapse
|
4
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
5
|
Su S, Wang Y, Lo EM, Tamukong P, Kim HL. High-intensity focused ultrasound ablation to increase tumor-specific lymphocytes in prostate cancer. Transl Oncol 2025; 53:102293. [PMID: 39862483 PMCID: PMC11803900 DOI: 10.1016/j.tranon.2025.102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Treatment options for localized prostate cancer have been expanded by FDA-approval of High-Intensity Focused Ultrasound (HIFU). Prostate cancer typically has few tumor-infiltrating lymphocytes, which are crucial for antitumor immunity. This study investigated the use of HIFU to increase lymphocyte infiltration into the tumor and enhance antitumor immunity. RM1 prostate tumors were implanted onto both flanks of syngeneic C57BL/6 J mice, with one tumor subjected to HIFU treatment. The growth of the contralateral tumor was monitored. Blood samples were obtained from patients both before and after prostatectomy or HIFU treatment. Peripheral blood mononuclear cells (PBMCs) were then isolated to analyze the immune cells. In murine experiments, the application of HIFU to one tumor decreased the growth of the contralateral (non-HIFU treated) tumor, when the contralateral tumor was the same tumor type, but not when it was a different tumor type. HIFU increased infiltration of CD4+ and CD8+ lymphocytes into the contralateral, same-type tumor. Lymphocyte depletion studies affirmed that the antitumor immune response triggered by HIFU relies on CD4+ and CD8+ lymphocytes. Addition of cholesterol-lowering intervention further increased antitumor immunity generated by HIFU in mice. In human subjects, HIFU, but not prostatectomy, stimulated anti-tumor CD4+ and CD8+ lymphocytes. We concluded that HIFU induced a potent cellular antitumor immune response that inhibited the progression of murine prostate tumors. HIFU stimulated tumor-specific cellular immunity in patients. Future clinical trials should explore the clinical benefits of HIFU, possibly in combination with existing immunotherapies, as immune modulators for both localized and metastatic disease.
Collapse
Affiliation(s)
- Shengchen Su
- Department of Urology, Cedars Sinai Medical Center, 8635 W. Third St, 1070, Los Angeles, CA 90048, United States
| | - Yanping Wang
- Department of Urology, Cedars Sinai Medical Center, 8635 W. Third St, 1070, Los Angeles, CA 90048, United States
| | - Eric M Lo
- Department of Urology, Cedars Sinai Medical Center, 8635 W. Third St, 1070, Los Angeles, CA 90048, United States
| | - Patrick Tamukong
- Department of Urology, Cedars Sinai Medical Center, 8635 W. Third St, 1070, Los Angeles, CA 90048, United States
| | - Hyung L Kim
- Department of Urology, Cedars Sinai Medical Center, 8635 W. Third St, 1070, Los Angeles, CA 90048, United States.
| |
Collapse
|
6
|
Caffaratti H, Slater B, Shaheen N, Rhone A, Calmus R, Kritikos M, Kumar S, Dlouhy B, Oya H, Griffiths T, Boes AD, Trapp N, Kaiser M, Sallet J, Banks MI, Howard MA, Zanaty M, Petkov CI. Neuromodulation with Ultrasound: Hypotheses on the Directionality of Effects and Community Resource. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.06.14.24308829. [PMID: 38947047 PMCID: PMC11213082 DOI: 10.1101/2024.06.14.24308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Low-intensity Transcranial Ultrasound Stimulation is a promising non-invasive technique for brain stimulation and focal neuromodulation. Research with humans and animal models has raised the possibility that TUS can be biased towards enhancing or suppressing neural function. Here, we first collate a set of hypotheses on the directionality of TUS effects and conduct an initial meta-analysis on the available healthy human participant TUS studies reporting stimulation parameters and outcomes (n = 47 studies, 52 experiments). In these initial exploratory analyses, we find that parameters such as the intensity and continuity of stimulation (duty cycle) with univariate tests show only statistical trends towards likely enhancement or suppressed of function with TUS. Multivariate machine learning analyses are currently limited by the small sample size. Given that human TUS sample sizes will continue to increase, predictability on the directionality of TUS effects could improve if this database can continue to grow as TUS studies more systematically explore the TUS stimulation parameter space and report outcomes. Therefore, we establish an inTUS database and resource for the systematic reporting of TUS parameters and outcomes to assist in greater precision in TUS use for brain stimulation and neuromodulation. The paper concludes with a selective review of human clinical TUS studies illustrating how hypotheses on the directionality of TUS effects could be developed for empirical testing in the intended clinical application, not limited to the examples provided.
Collapse
Affiliation(s)
- Hugo Caffaratti
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ben Slater
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Nour Shaheen
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ariane Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ryan Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Michael Kritikos
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Sukhbinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Brian Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Tim Griffiths
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Aaron D Boes
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Nicholas Trapp
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Marcus Kaiser
- NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jérôme Sallet
- Stem Cell and Brain Research Institute, INSERM U1208, University of Lyon, Lyon, France
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin at Madison, WI, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
7
|
Tan H, Griggs DJ, Chen L, Culevski KA, Floerchinger K, Phutirat A, Koh G, Schimek N, Mourad PD. Diagnostic ultrasound enhances, then reduces, exogenously induced brain activity of mice. Front Hum Neurosci 2025; 18:1509432. [PMID: 40007560 PMCID: PMC11850526 DOI: 10.3389/fnhum.2024.1509432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/23/2024] [Indexed: 02/27/2025] Open
Abstract
Transcranially delivered diagnostic ultrasound (tDUS) applied to the human brain can modulate those brains such that they became more receptive to external stimulation relative to sham ultrasound exposure. Here, we sought to directly measure the effect of tDUS on mouse brain activity subjected to an external stimulation-a blinking light. Using electrocorticography, we observed a substantial increase in median brain activity due to tDUS plus a blinking light relative to baseline and relative to sham tDUS plus a blinking light. Subsequent brain activity decreased after cessation of tDUS but with continuation of the blinking light, though it remained above that demonstrated by mice exposed to only a blinking light. In a separate experiment, we showed that tDUS alone, without a blinking light, had no observable effect on median brain activity, but upon its cessation, brain activity decreased. These results demonstrate that simultaneous exposure to tDUS and blinking light can increase the receptivity of the visual cortex of mice exposed to that light, and that prior exposure to tDUS can reduce subsequent brain activity. In each case, these results are consistent with published data. Our results on mice echo published human results but do not directly explain them, since their test subjects received less intense diagnostic ultrasound than did our mice. Given the near ubiquity of diagnostic ultrasound systems, further progress along this line of research could one day lead to the widespread use of diagnostic ultrasound to intentionally modulate human brain function during exogenous stimulation.
Collapse
Affiliation(s)
- Henry Tan
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Devon J. Griggs
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Lucas Chen
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Kahte Adele Culevski
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Kathryn Floerchinger
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Alissa Phutirat
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Gabe Koh
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Nels Schimek
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Pierre D. Mourad
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
- Division of Engineering and Mathematics, University of Washington, Bothell, WA, United States
| |
Collapse
|
8
|
Guillemin PC, M’Rad Y, Dipasquale G, Lorton O, Fleury V, Momjian S, Borich A, Crowe LA, Zilli T, Boudabbous S, Salomir R. Using the Tissue Impulse Response Function to Streamline Fractionated MRgFUS-Induced Hyperthermia. Cancers (Basel) 2025; 17:515. [PMID: 39941882 PMCID: PMC11817472 DOI: 10.3390/cancers17030515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Combining radiation therapy with mild hyperthermia, especially via magnetic resonance-guided focused ultrasound (MRgFUS), holds promise for enhancing tumor control and alleviating symptoms in cancer patients. However, current clinical applications of MRgFUS focus primarily on ablative treatments, and using MRI guidance for each radiation session increases treatment costs and logistical demands. This study aimed to test a streamlined workflow for repeated hyperthermia treatments that reduces the need for continuous MRI monitoring, using an approach based on impulse response function (Green's function) to optimize acoustic power settings in advance. Methods: We implemented the Green's function approach in a perfused, tissue-mimicking phantom, conducting 30 experiments to simulate hyperthermia delivery via MRgFUS. Pre-calculated acoustic power settings were applied to maintain a stable hyperthermia target without the need for real-time feedback control from MRI thermometry. Additionally, a retrospective analysis of patient thermometry data from MRgFUS sonications was performed to assess feasibility in clinical contexts. Results: Our experiments demonstrated consistent, stable hyperthermia (+7 °C) for 15 min across varying perfusion rates, outperforming conventional closed-loop MRI feedback methods in maintaining temperature stability. The retrospective analysis confirmed that this method is noise-robust and clinically applicable. Conclusions: This off-line approach to hyperthermia control could simplify the integration of MRgFUS hyperthermia in cancer treatment, reducing costs and logistical barriers. These findings suggest that our method may enable the broader adoption of hyperthermia in radiation therapy, supporting its role as a viable adjuvant treatment in oncology.
Collapse
Affiliation(s)
- Pauline C. Guillemin
- Image Guided Interventions Laboratory, GR-949, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.M.); (O.L.); (A.B.); (T.Z.); (S.B.); (R.S.)
| | - Yacine M’Rad
- Image Guided Interventions Laboratory, GR-949, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.M.); (O.L.); (A.B.); (T.Z.); (S.B.); (R.S.)
| | | | - Orane Lorton
- Image Guided Interventions Laboratory, GR-949, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.M.); (O.L.); (A.B.); (T.Z.); (S.B.); (R.S.)
- Clinical Neurosciences Department, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (V.F.); (S.M.)
| | - Vanessa Fleury
- Clinical Neurosciences Department, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (V.F.); (S.M.)
- Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Shahan Momjian
- Clinical Neurosciences Department, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (V.F.); (S.M.)
- Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Anna Borich
- Image Guided Interventions Laboratory, GR-949, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.M.); (O.L.); (A.B.); (T.Z.); (S.B.); (R.S.)
| | - Lindsey A. Crowe
- Radiation Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland;
| | - Thomas Zilli
- Image Guided Interventions Laboratory, GR-949, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.M.); (O.L.); (A.B.); (T.Z.); (S.B.); (R.S.)
- Radiation Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Sana Boudabbous
- Image Guided Interventions Laboratory, GR-949, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.M.); (O.L.); (A.B.); (T.Z.); (S.B.); (R.S.)
- Radiology Division, HUG, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Rares Salomir
- Image Guided Interventions Laboratory, GR-949, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.M.); (O.L.); (A.B.); (T.Z.); (S.B.); (R.S.)
- Radiology Division, HUG, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| |
Collapse
|
9
|
Helal MM, Ibrahim AA, Beddor A, Kashbour M. Breaking Barriers in Huntington's Disease Therapy: Focused Ultrasound for Targeted Drug Delivery. Neurochem Res 2025; 50:68. [PMID: 39751928 PMCID: PMC11698766 DOI: 10.1007/s11064-024-04302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease resulting from a mutation in the huntingtin (HTT) gene and characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, no disease-modifying treatments are available. Recent research has developed therapeutic agents that may have the potential to directly target the disease pathology, such as gene silencing or clearing the mutant protein. However, these agents are limited by their inability to cross the blood-brain barrier (BBB), preventing optimal therapeutic effects. Although various techniques have been explored to overcome the BBB, focused ultrasound (FUS) has emerged as a promising non-invasive therapeutic modality offering the potential for targeted intervention in neurodegenerative diseases, including HD. Preclinical studies demonstrated the safety and efficacy of FUS in delivering therapeutic agents, such as siRNAs and AAV vector-based gene therapy, resulting in significant reductions in mutant HTT expression and improvements in motor function in HD mouse models. Furthermore, the safety profile of FUS-induced BBB opening has been established in clinical trials on human patients of neurodegenerative diseases other than HD, showing no adverse effects on brain structure or function. This review provides a comprehensive overview of the current state of FUS research in HD and connects existing evidence from neurodegenerative disease studies with its promise in establishing disease-modifying therapies for HD.
Collapse
Affiliation(s)
| | - Arwa Amer Ibrahim
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Beddor
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
- Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Muataz Kashbour
- Diagnostic Radiology Department, National Cancer Institute, Misrata, Libya
| |
Collapse
|
10
|
Labib S, Bright RK, Liu J. Focused Ultrasound in Cancer Immunotherapy: A Review of Mechanisms and Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:1-14. [PMID: 39389856 DOI: 10.1016/j.ultrasmedbio.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Ultrasound is well-perceived for its diagnostic application. Meanwhile, ultrasound, especially focused ultrasound (FUS), has also demonstrated therapeutic capabilities, such as thermal tissue ablation, hyperthermia, and mechanical tissue ablation, making it a viable therapeutic approach for cancer treatment. Cancer immunotherapy is an emerging cancer treatment approach that boosts the immune system to fight cancer, and it has also exhibited enhanced effectiveness in treating previously considered untreatable conditions. Currently, cancer immunotherapy is regarded as one of the four pillars of cancer treatment because it has fewer adverse effects than radiation and chemotherapy. In recent years, the unique capabilities of FUS in ablating tumors, regulating the immune system, and enhancing anti-tumor responses have resulted in a new field of research known as FUS-induced/assisted cancer immunotherapy. In this work, we provide a comprehensive overview of this new research field by introducing the basics of focused ultrasound and cancer immunotherapy and providing the state-of-the-art applications of FUS in cancer immunotherapy: the mechanisms and preclinical and clinical studies. This review aims to offer the scientific community a reliable reference to the exciting field of FUS-induced/assisted cancer immunotherapy, hoping to foster the further development of related technology and expand its medical applications.
Collapse
Affiliation(s)
- Sadman Labib
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Jingfei Liu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
11
|
Leporace M, Calabria FF, Siciliano R, Capalbo C, Filippiadis DK, Iezzi R. The Thermal Ablation with MRgFUS: From Physics to Oncological Applications. Cancers (Basel) 2024; 17:36. [PMID: 39796667 PMCID: PMC11718996 DOI: 10.3390/cancers17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The growing interest in minimal and non-invasive therapies, especially in the field of cancer treatment, highlights a significant shift toward safer and more effective options. Ablative therapies are well-established tools in cancer treatment, with known effects including locoregional control, while their role as modulators of the systemic immune response against cancer is emerging. The HIFU developed with magnetic resonance imaging (MRI) guidance enables treatment precision, improves real-time procedural control, and ensures accurate outcome assessment. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) induces deep coagulation necrosis within an elliptical focal area, effectively encompassing the entire tumor site and allowing for highly targeted radical ablation. The applications of MRgFUS in oncology are rapidly expanding, offering pain relief and curative treatment options for bone metastatic lesions. Additionally, the MRgFUS plays an effective role in targeted optional therapies for early prostate and breast cancers. Emerging research also focuses on the potential uses in treating abdominal cancers and harnessing capabilities to stimulate immune responses against tumors or to facilitate the delivery of anticancer drugs. This evolving landscape presents exciting opportunities for improving patient outcomes and advancing cancer treatment methodologies. In neuro-oncology, MRgFUS utilizes low-intensity focused ultrasound (LIFU) along with intravenous microbubbles to open the blood-brain barrier (BBB) and enhance the intra-tumoral delivery of chemotherapy drugs.
Collapse
Affiliation(s)
- Mario Leporace
- Department of Nuclear Medicine and Theragnostics, “Mariano Santo” Cosenza Hospital, 87100 Cosenza, Italy;
| | - Ferdinando F. Calabria
- Department of Nuclear Medicine and Theragnostics, “Mariano Santo” Cosenza Hospital, 87100 Cosenza, Italy;
| | - Roberto Siciliano
- Operative Medical Physics Unit, Cosenza Hospital, 87100 Cosenza, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Complex Operative Oncology Unit, Annunziata Hospital Cosenza, 87100 Cosenza, Italy
| | - Dimitrios K. Filippiadis
- 2nd Department of Radiology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00100 Rome, Italy
- Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, 00100 Roma, Italy
| |
Collapse
|
12
|
Yang CH, Barbulescu DV, Marian L, Tung MC, Ou YC, Wu CH. High-Intensity Focus Ultrasound Ablation in Prostate Cancer: A Systematic Review. J Pers Med 2024; 14:1163. [PMID: 39728075 DOI: 10.3390/jpm14121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Prostate cancer (PCa) outcomes vary significantly across risk groups. In early-stage localized PCa, the functional outcomes following radical prostatectomy (RP) can be severe, prompting increased interest in focal therapy, particularly High-Intensity Focused Ultrasound (HIFU). This study is to summarize the current clinical trials of HIFU on PCa. Methods: We reviewed clinical trials from major databases, including PubMed, MEDLINE, Scopus, and EMBASE, to summarize the current research on HIFU in PCa treatment. Results: The literature highlights that HIFU may offer superior functional outcomes, particularly in continence recovery, compared to RP and radiation therapy. However, the oncological efficacy of HIFU remains inadequately supported by high-quality studies. Focal and hemigland ablations carry a risk of residual significant cancer, necessitating comprehensive patient counseling before treatment. For post-HIFU monitoring, we recommend 3T magnetic resonance imaging (MRI) with biopsy at 6 to 12 months to reassess the cancer status. Biochemical recurrence should be defined using the Phoenix criteria, and PSMA PET/CT can be considered for identifying recurrence in biopsy-negative patients. Conclusions: Whole-gland ablation is recommended as the general approach, as it provides a lower PSA nadir and avoids the higher positive biopsy rates observed after focal and hemigland ablation in both treated and untreated lobes. Future study designs should address heterogeneity, including variations in recurrence definitions and surveillance strategies, to provide more robust evidence for HIFU's oncological outcomes.
Collapse
Affiliation(s)
- Che-Hsueh Yang
- Department of Urology, Changbing Show Chwan Memorial Hospital, Changhua 505, Taiwan
| | | | - Lucian Marian
- Department of Urology, "Pius Brînzeu" County Emergency Clinical Hospital, 300723 Timisoara, Romania
| | - Min-Che Tung
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Yen-Chuan Ou
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Chi-Hsiang Wu
- Department of Urology, Changbing Show Chwan Memorial Hospital, Changhua 505, Taiwan
| |
Collapse
|
13
|
Verma Y, Arachchige ASPM. Revolutionizing cardiovascular care: the power of histotripsy. J Ultrasound 2024; 27:759-768. [PMID: 38217765 PMCID: PMC11496427 DOI: 10.1007/s40477-023-00848-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 01/15/2024] Open
Abstract
Histotripsy, an innovative ultrasonic technique, is poised to transform the landscape of cardiovascular disease management. This review explores the multifaceted applications of histotripsy across various domains of cardiovascular medicine. In thrombolysis, histotripsy presents a non-invasive, drug-free, and precise method for recanalizing blood vessels obstructed by clots, minimizing the risk of vessel damage and embolism. Additionally, histotripsy showcases its potential in congenital heart defect management, offering a promising alternative to invasive procedures by creating intracardiac communications noninvasively. For patients with calcified aortic stenosis, histotripsy demonstrates its effectiveness in softening calcified bioprosthetic valves, potentially revolutionizing valve interventions. In the realm of arrhythmias, histotripsy could play an important role in scar-based ventricular tachycardia ablation, eliminating channel-like isthmuses of slowly conducting myocardium. Histotripsy`s potential applications also extend to structural heart interventions, enabling the safe sectioning of basal chordae and potentially addressing mitral regurgitation. Furthermore, it showcases its versatility by safely generating ventricular septal defects, providing a non-invasive means of creating intracardiac communications in neonates with congenital heart disease. Yet, most supporting studies are in-vitro or animal studies and there are possible challenges in translating experimental data on cardiac histotripsy to the clinical level. As histotripsy continues to evolve and mature, its remarkable potential in cardiovascular disease management holds promise for improving patient outcomes and reducing the burden of invasive procedures in the field of cardiology.
Collapse
Affiliation(s)
- Yash Verma
- Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | | |
Collapse
|
14
|
Epstein JE, Pople CB, Meng Y, Lipsman N. An update on the role of focused ultrasound in neuro-oncology. Curr Opin Neurol 2024; 37:682-692. [PMID: 39498847 DOI: 10.1097/wco.0000000000001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
PURPOSE OF REVIEW Brain tumor treatment presents challenges for patients and clinicians, with prognosis for many of the most common brain tumors being poor. Focused ultrasound (FUS) can be deployed in several ways to circumvent these challenges, including the need to penetrate the blood-brain barrier and spare healthy brain tissue. This article reviews current FUS applications within neuro-oncology, emphasizing ongoing or recently completed clinical trials. RECENT FINDINGS Most clinical interest in FUS for neuro-oncology remains focused on exploring BBB disruption to enhance the delivery of standard-of-care therapeutics. More recently, the application of FUS for radiosensitization, liquid biopsy, and sonodynamic therapy is garnering increased clinical attention to assist in tumor ablation, early detection, and phenotypic diagnosis. Preclinical studies show encouraging data for the immunomodulatory effects of FUS, but these findings have yet to be tested clinically. SUMMARY FUS is a burgeoning area of neuro-oncology research. Data from several forthcoming large clinical trials should help clarify its role in neuro-oncology care.
Collapse
Affiliation(s)
- Jordan E Epstein
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Christopher B Pople
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| |
Collapse
|
15
|
Zhang X, He N, Zhang L, Dai T, Sun Z, Shi Y, Li S, Yu N. Application of high intensity focused ultrasound combined with nanomaterials in anti-tumor therapy. Drug Deliv 2024; 31:2342844. [PMID: 38659328 PMCID: PMC11047217 DOI: 10.1080/10717544.2024.2342844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
High intensity focused ultrasound (HIFU) has demonstrated its safety, efficacy and noninvasiveness in the ablation of solid tumor. However, its further application is limited by its inherent deficiencies, such as postoperative recurrence caused by incomplete ablation and excessive intensity affecting surrounding healthy tissues. Recent research has indicated that the integration of nanomaterials with HIFU exhibits a promising synergistic effect in tumor ablation. The concurrent utilization of nanomaterials with HIFU can help overcome the limitations of HIFU by improving targeting and ablation efficiency, expanding operation area, increasing operation accuracy, enhancing stability and bio-safety during the process. It also provides a platform for multi-therapy and multi-mode imaging guidance. The present review comprehensively expounds upon the synergistic mechanism between nanomaterials and HIFU, summarizes the research progress of nanomaterials as cavitation nuclei and drug carriers in combination with HIFU for tumor ablation. Furthermore, this review highlights the potential for further exploration in the development of novel nanomaterials that enhance the synergistic effect with HIFU on tumor ablation.
Collapse
Affiliation(s)
- Xuehui Zhang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Liang Zhang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Dai
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zihan Sun
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yuqing Shi
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ning Yu
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Zhou Y, Gong X, You Y. Prediction of high-intensity focused ultrasound (HIFU)-induced lesion size using the echo amplitude from the focus in tissue. Phys Eng Sci Med 2024; 47:1349-1359. [PMID: 38822970 DOI: 10.1007/s13246-024-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
In the realm of high-intensity focused ultrasound (HIFU) therapy, the precise prediction of lesion size during treatment planning remains a challenge, primarily due to the difficulty in quantitatively assessing energy deposition at the target site and the acoustic properties of the tissue through which the ultrasound wave propagates. This study investigates the hypothesis that the echo amplitude originating from the focus is indicative of acoustic attenuation and is directly related to the resultant lesion size. Echoes from multi-layered tissues, specifically porcine tenderloin and bovine livers, with varying fat thickness from 0 mm to 35 mm were collected using a focused ultrasound (FUS) transducer operated at a low power output and short duration. Subsequent to HIFU treatment under clinical conditions, the resulting lesion areas in the ex vivo tissues were meticulously quantified. A novel treatment strategy that prioritizes treatment spots based on descending echo amplitudes was proposed and compared with the conventional raster scan approach. Our findings reveal a consistent trend of decreasing echo amplitudes and HIFU-induced lesion areas with the increasing fat thickness. For porcine tenderloin, the values decreased from 2541.7 ± 641.9 mV and 94.4 ± 17.9 mm2 to 385(342.5) mV and 24.9 ± 18.7 mm2, and for bovine liver, from 1406(1202.5) mV and 94.4 ± 17.9 mm2 to 502.1 ± 225.7 mV and 9.4 ± 6.3 mm2, respectively, as the fat thickness increases from 0 mm to 35 mm. Significant correlations were identified between preoperative echo amplitudes and the HIFU-induced lesion areas (R = 0.833 and 0.784 for the porcine tenderloin and bovine liver, respectively). These correlations underscore the potential for an accurate and dependable prediction of treatment outcomes. Employing the proposed treatment strategy, the ex vivo experiment yielded larger lesion areas in bovine liver at a penetration depth of 8 cm compared to the conventional approach (58.84 ± 17.16 mm2 vs. 44.28 ± 15.37 mm2, p < 0.05). The preoperative echo amplitude from the FUS transducer is shown to be a reflective measure of acoustic attenuation within the wave propagation window and is closely correlated with the induced lesion areas. The proposed treatment strategy demonstrated enhanced efficiency in ex vivo settings, affirming the feasibility and accuracy of predicting HIFU-induced lesion size based on echo amplitude.
Collapse
Affiliation(s)
- Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 1 Medical College Road, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, National Medical Products Administration (NMPA), Donghu New Technology Development Zone, 507 Gaoxin Ave, Wuhan, 430075, Hubei, China.
| | - Xiaobo Gong
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401120, China
| | - Yaqin You
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401120, China
| |
Collapse
|
17
|
Lai Y, Tao W, Wang L, Liu Z, Wu P, Yang G, Yuan L. Medical Ultrasound Application Beyond Diagnosis: Insights From Ultrasound Sensing and Biological Response. Biotechnol J 2024; 19:e202400561. [PMID: 39726053 DOI: 10.1002/biot.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/09/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation. Based on the principle of echolocation, various assistive devices for visual impairment people have been developed. High-Intensity Focused Ultrasound (HIFU) are developed for targeted ablation and tissue destruction. Besides thermal ablation, histotripsy with US is designed to damage tissue purely via mechanical effect without thermal coagulation. Low-Intensity Focused Ultrasound (LIFU) has been proven to be an effective stimulation method for neuromodulation. Furthermore, US has been reported to transiently increase the permeability of biological membranes, enabling acoustic transfection and blood-brain barrier open. All of these advances in US are changing the clinic. This review mainly introduces the advances in these aspects, focusing on the physical and biological principles, challenges, and future direction.
Collapse
Affiliation(s)
- Yubo Lai
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenxin Tao
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lantian Wang
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhaoyou Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pengying Wu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University Xi'an, Xi'an, Shaanxi, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Dohmen S, Recker F, Ivanova Y, Strunk HM, Tonguc T, Ramig O, Thudium M, Stader JM, Conrad R, Essler M, Egger EK, Mustea A, Gortchev GA, Dimitrov D, Marinova M. Ultrasound-guided high-intensity focused ultrasound for symptomatic uterine fibroids: clinical outcome of two European centers. Eur Radiol 2024:10.1007/s00330-024-11230-4. [PMID: 39613955 DOI: 10.1007/s00330-024-11230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/10/2024] [Accepted: 10/19/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVES The aim of this study is to assess the clinical outcome and mid-term efficacy of ultrasound-guided high-intensity focused ultrasound (USgHIFU) as a treatment for symptomatic uterine fibroids at two major European HIFU centers. MATERIALS AND METHODS This bi-center longitudinal clinical study involved the treatment of 100 patients with symptomatic uterine fibroids using USgHIFU (n = 59 in Germany, n = 41 in Bulgaria). Clinical outcomes were evaluated at 6 weeks, 6 months, and 1 year follow-up utilizing the uterine fibroid symptoms-quality of life questionnaire for fibroid-related symptoms and health-related quality of life as well as MRI imaging for determining the fibroid volume. RESULTS The mean fibroid volume reduction rate was 33.2 ± 22.9%, 51.3 ± 24.2%, and 59.1 ± 28.0% at 6 weeks, 6 months, and 1 year, respectively (each p < 0.001). The mean symptom severity score decreased from 43.9 ± 18.8 at baseline to 35.4 ± 18.2 at 6 weeks, 31.1 ± 20.0 at 6 months, and 23.1 ± 14.0 at 1 year (each p < 0.001). The mean QOL score improved from 56.5 ± 23.4 at baseline to 65.4 ± 22.2 at 6 weeks, 72.5 ± 19.5 at 6 months, and 79.4 ± 15.3 at 1 year (each p < 0.001). No major complications were observed, though two patients experienced temporary sciatic nerve irritation following the procedure. Four patients had pregnancies and deliveries without any complications after USgHIFU therapy. CONCLUSION To our knowledge, this is the first longitudinal study conducted in two major European HIFU centers that reveals the clinical efficacy of USgHIFU ablation on symptomatic uterine fibroids. Our results confirm that USgHIFU is a non-invasive approach with a low risk of complications, offering an innovative treatment option for affected women. KEY POINTS Question To evaluate mid-term clinical efficacy and safety of US-guided high-intensity focused ultrasound (HIFU) for treating symptomatic uterine fibroids and patient outcomes across two European centers. Findings US-guided HIFU treatment resulted in significant fibroid volume reduction (up to 59.1% after 1 year) improving symptoms and quality of life with no major complications. Clinical relevance This prospective longitudinal study provides preliminary data assessing mid-term efficacy and clinical outcomes of ultrasound-guided HIFU. It is shown to be a low-risk, non-invasive treatment option for symptomatic uterine fibroids that reduces fibroid size and improves patients' quality of life.
Collapse
Affiliation(s)
- Sara Dohmen
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
- Department of Rаdiology, University Hospital Bonn, Bonn, Germany
| | - Florian Recker
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, Bonn, Germany
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Yoana Ivanova
- St. Marina University Hospital, Medical University Pleven, Pleven, Bulgaria
| | | | - Tolga Tonguc
- Department of Rаdiology, University Hospital Bonn, Bonn, Germany
| | - Olga Ramig
- Department of Rаdiology, University Hospital Bonn, Bonn, Germany
| | - Marcus Thudium
- Department of Anesthesiology, University Hospital Bonn, Bonn, Germany
| | - Judith M Stader
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Rupert Conrad
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Muenster, Muenster, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Eva-Katharina Egger
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, Bonn, Germany
| | - Grigor A Gortchev
- St. Marina University Hospital, Medical University Pleven, Pleven, Bulgaria
| | - Dobromir Dimitrov
- Department of Surgical Propedeutics/HIFU Center University Hospital St. Marina, Medical University Peleven, Pleven, Bulgaria
| | - Milka Marinova
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
19
|
Jeong YG, Park JH, Khang D. Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application. Int J Nanomedicine 2024; 19:11767-11788. [PMID: 39553460 PMCID: PMC11566213 DOI: 10.2147/ijn.s496028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
The advent of acoustically responsive nanodrugs that are specifically optimized for sonodynamic therapy (SDT) is a novel approach for clinical applications. Examining the therapeutic applications of sono-responsive drug delivery systems, understanding their dynamic response to acoustic stimuli, and their crucial role in enhancing targeted drug delivery are intriguing issues for current cancer treatment. Specifically, the suggested review covers SDT, a modality that enhances the cytotoxic activity of specific compounds (sonosensitizers) using ultrasound (US). Notably, SDT offers significant advantages in cancer treatment by utilizing US energy to precisely target and activate sonosensitizers toward deep-seated malignant sites. The potential mechanisms underlying SDT involve the generation of radicals from sonosensitizers, physical disruption of cell membranes, and enhanced drug transport into cells via US-assisted sonoporation. In particular, SDT is emerging as a promising modality for noninvasive, site-directed elimination of solid tumors. Given the complexity and diversity of tumors, many studies have explored the integration of SDT with other treatments to enhance the overall efficacy. This trend has paved the way for SDT-based multimodal synergistic cancer therapies, including sonophototherapy, sonoimmunotherapy, and sonochemotherapy. Representative studies of these multimodal approaches are comprehensively presented, with a detailed discussion of their underlying mechanisms. Additionally, the application of audible sound waves in biological systems is explored, highlighting their potential to influence cellular processes and enhance therapeutic outcomes. Audible sound waves can modulate enzyme activities and affect cell behavior, providing novel avenues for the use of sound-based techniques in medical applications. This review highlights the current challenges and prospects in the development of SDT-based nanomedicines in this rapidly evolving research field. The anticipated growth of this SDT-based therapeutic approach promises to significantly improve the precision of cancer treatment.
Collapse
Affiliation(s)
- Yong-Gyu Jeong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Joo-Hwan Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
20
|
Zhou Y, Gong X, You Y. Monitoring focused ultrasound ablation surgery (FUAS) using echo amplitudes of the therapeutic focused transducer. Med Eng Phys 2024; 133:104247. [PMID: 39557509 DOI: 10.1016/j.medengphy.2024.104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE B-mode sonography is commonly used to monitor focused ultrasound ablation surgery (FUAS), but has limitations in sensitivity. More accurate and reliable prediction of coagulation is required. METHODS The focused ultrasound (FUS) transducer was adapted for echo reception. Numerical simulations compared the normalized echo amplitudes from the FUS transducer and imaging probe at varying tissue depths and frequencies with a 3 mm necrosis at focus. An ex vivo experiment then evaluated echo changes from the FUS transducer and ultrasound imaging probe under different settings. Finally, coagulation prediction using FUS echo data was compared to sonography in a clinical ex vivo context. RESULTS The echo amplitudes from the FUS transducer exhibit a less pronounced decline with increasing tissue penetration depth compared to the ultrasound imaging probe. In ex vivo bovine liver experiments at depths of 2 cm and 4 cm, the FUS transducer detected normalized echo amplitudes that were significantly larger (i.e., 2∼3 folds) than those received by the ultrasound imaging probe. Moreover, multi-layered ex vivo tissue experiments that replicate clinical conditions revealed that coagulation prediction utilizing the FUS transducer's echo amplitudes achieved superior accuracy (91.2% vs. 60.3 %), sensitivity (92.1% vs. 54.5 %), and negative prediction (78.9% vs. 30.6 %), but similar specificity (88.2% vs. 84.6 %) and positive prediction (95.9% vs. 93.8 %) in comparison to sonography. CONCLUSION The echo amplitude of the FUS transducer serves as a sensitive and dependable metric for monitoring the FUAS outcomes. Its utilization may augment the procedure's safety and efficacy.
Collapse
Affiliation(s)
- Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, 507 Gaoxin Ave., Donghu New Technology Development Zone, Wuhan, Hubei, 430075, China.
| | - Xiaobo Gong
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401120, China
| | - Yaqin You
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401120, China
| |
Collapse
|
21
|
Tomas X, Cornellas L, Bassaganyas C, Blasco-Andaluz J, Cayon-Somacarrera S, Martel-Villagran J, Bueno-Horcajadas A, Chen S, Garcia-Diez AI, Soler-Perromat JC, Bartolome-Solanas A, Porta-Vilaro M, Del Amo-Conill M, Isern-Kebschull J. Minimally invasive interventional guided imaging therapies of musculoskeletal tumors. Quant Imaging Med Surg 2024; 14:7908-7936. [PMID: 39544466 PMCID: PMC11558482 DOI: 10.21037/qims-24-452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/26/2024] [Indexed: 11/17/2024]
Abstract
Historically, musculoskeletal (MSK) tumors, which include both bone and soft tissue tumors, have been managed as distinct entities. The incidence of metastases, particularly bone metastasis, in patients with MSK tumors can result in the emergence of significant complications such as pain, impairment of vital anatomical structures, or pathological fractures. Given these issues, a diverse team of experts is typically engaged in intricate treatment decision-making concerning the necessity of surgery, radiation, chemotherapy, or a mix of these methodologies. Nevertheless, percutaneous image-guided minimally invasive interventional therapy for MSK tumors represent a promising approach for treating such tumors. Over the past decade, significant progress has been made in this technique, leading to its growing acceptance in ordinary clinical practice. MSK tumors can be effectively treated by the use of ablation techniques, either as standalone procedures or in conjunction with other percutaneous treatments. Various image-guided techniques have been employed to observe the ablation zone and nearby structures, such as fluoroscopy, ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI). However, CT is the favored method due to its widespread availability and ability to visualize the tumor and its environs. The procedures employed include ethanol injection, radiofrequency ablation, microwave ablation, cryoablation, and magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU). The technique can be performed in combination with cementation, with or without additional metallic stabilizing devices, depending on the location of the lesion. Improved local tumor control can be attained by combining ablation with bland embolization or transarterial chemoembolization. This article provides an overview of the fundamental elements of minimally invasive interventional guided imaging therapy for MSK malignancies.
Collapse
Affiliation(s)
- Xavier Tomas
- Department of Radiology, MSK Unit, The Clinical Diagnostic Imaging Centre (CDIC), Hospital Clinic, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lluria Cornellas
- Department of Radiology, The Clinical Diagnostic Imaging Centre (CDIC), Hospital Clinic, Universitat of Barcelona (UB), Barcelona, Spain
| | - Clara Bassaganyas
- Department of Radiology, The Clinical Diagnostic Imaging Centre (CDIC), Hospital Clinic, Universitat of Barcelona (UB), Barcelona, Spain
| | - Jordi Blasco-Andaluz
- Department of Radiology, The Clinical Diagnostic Imaging Centre (CDIC), Hospital Clinic, Universitat of Barcelona (UB), Barcelona, Spain
| | - Silvia Cayon-Somacarrera
- Radiology Department, Hospital Universitario Marqués de Valdecilla. Universidad de Cantabria, Santander, Spain
| | - Jose Martel-Villagran
- Radiology Department, Hospital Universitario Fundacion Alcorcon, Alcorcón, Madrid, Spain
| | - Angel Bueno-Horcajadas
- Radiology Department, Hospital Universitario Fundacion Alcorcon, Alcorcón, Madrid, Spain
| | - Sonia Chen
- Radiology Department, Hospital Universitario Fundacion Alcorcon, Alcorcón, Madrid, Spain
| | - Ana Isabel Garcia-Diez
- Department of Radiology, MSK Unit, The Clinical Diagnostic Imaging Centre (CDIC), Hospital Clinic, Universitat de Barcelona (UB), Barcelona, Spain
| | - Juan Carlos Soler-Perromat
- Department of Radiology, MSK Unit, The Clinical Diagnostic Imaging Centre (CDIC), Hospital Clinic, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alvaro Bartolome-Solanas
- Department of Radiology, MSK Unit, The Clinical Diagnostic Imaging Centre (CDIC), Hospital Clinic, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Porta-Vilaro
- Department of Radiology, MSK Unit, The Clinical Diagnostic Imaging Centre (CDIC), Hospital Clinic, Universitat de Barcelona (UB), Barcelona, Spain
| | - Montserrat Del Amo-Conill
- Department of Radiology, MSK Unit, The Clinical Diagnostic Imaging Centre (CDIC), Hospital Clinic, Universitat de Barcelona (UB), Barcelona, Spain
| | - Jaime Isern-Kebschull
- Department of Radiology, MSK Unit, The Clinical Diagnostic Imaging Centre (CDIC), Hospital Clinic, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
22
|
Nawrath H, Holl A, Bedarf L, Mai D, Alfke H, Gröbner J. Optimized Schlieren imaging for real-time visualization of high-intensity focused ultrasound waves. BIOMED ENG-BIOMED TE 2024; 69:529-533. [PMID: 38860648 DOI: 10.1515/bmt-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVES This article presents an low-cost experimental setup for visualizing refraction anomalies caused by high-intensity focused ultrasound (HIFU). The technique is based on Schlieren imaging, commonly used to visualize temperature and pressure differences in a medium. With this setup, double images of the Schlieren or their shadows to be investigated occur, so that the experimental setup is modified to avoid these double image artifacts. METHODS The optical setup mainly consists of a point light source, a parabolic mirror, and a camera. Birefringence artifacts are avoided by placing the point light source at a certain vertical distance to the camera, so that the light beam passes through the medium only once. The soundfield is generated by a HIFU transducer in a water tank placed in the beam path of the optical setup. RESULTS The experimental setup is capable of capturing Schlieren or shadow images. These images show the soundfield without disturbing double images and enable further analysis and qualitative assessment of the soundfield. CONCLUSIONS The presented setup provides a reliable and efficient method for visualizing refraction anomalies caused by the sonic field of a HIFU transducer and allows for accurate depiction of the refraction anomalies. The double images that usually occur are avoided.
Collapse
Affiliation(s)
- Helena Nawrath
- Department of Electrical Engineering and Information Technology, South Westphalia University of Applied Sciences, Bahnhofsallee 5, 58507 Lüdenscheid, Germany
| | - Andreas Holl
- Department of Electrical Engineering and Information Technology, South Westphalia University of Applied Sciences, Bahnhofsallee 5, 58507 Lüdenscheid, Germany
| | - Lennart Bedarf
- Department of Electrical Engineering and Information Technology, South Westphalia University of Applied Sciences, Bahnhofsallee 5, 58507 Lüdenscheid, Germany
| | - Denis Mai
- Department of Electrical Engineering and Information Technology, South Westphalia University of Applied Sciences, Bahnhofsallee 5, 58507 Lüdenscheid, Germany
| | - Heiko Alfke
- Department of Diagnostic Radiology and Interventional Radiology, Märkische Kliniken, Paulmannshöher Str. 14, 58515 Lüdenscheid, Germany
- Department of Medicine, Philipps University of Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Jens Gröbner
- Department of Electrical Engineering and Information Technology, South Westphalia University of Applied Sciences, Bahnhofsallee 5, 58507 Lüdenscheid, Germany
| |
Collapse
|
23
|
Singh A, Reynolds JNJ. Therapeutic ultrasound: an innovative approach for targeting neurological disorders affecting the basal ganglia. Front Neuroanat 2024; 18:1469250. [PMID: 39417047 PMCID: PMC11480080 DOI: 10.3389/fnana.2024.1469250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
The basal ganglia are involved in motor control and action selection, and their impairment manifests in movement disorders such as Parkinson's disease (PD) and dystonia, among others. The complex neuronal circuitry of the basal ganglia is located deep inside the brain and presents significant treatment challenges. Conventional treatment strategies, such as invasive surgeries and medications, may have limited effectiveness and may result in considerable side effects. Non-invasive ultrasound (US) treatment approaches are becoming increasingly recognized for their therapeutic potential for reversibly permeabilizing the blood-brain barrier (BBB), targeting therapeutic delivery deep into the brain, and neuromodulation. Studies conducted on animals and early clinical trials using ultrasound as a therapeutic modality have demonstrated promising outcomes for controlling symptom severity while preserving neural tissue. These results could improve the quality of life for patients living with basal ganglia impairments. This review article explores the therapeutic frontiers of ultrasound technology, describing the brain mechanisms that are triggered and engaged by ultrasound. We demonstrate that this cutting-edge method could transform the way neurological disorders associated with the basal ganglia are managed, opening the door to less invasive and more effective treatments.
Collapse
Affiliation(s)
| | - John N. J. Reynolds
- Translational Brain Plasticity Laboratory, Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Center, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Rahpeima R, Lin CA. A comprehensive numerical procedure for high-intensity focused ultrasound ablation of breast tumour on an anatomically realistic breast phantom. PLoS One 2024; 19:e0310899. [PMID: 39352893 PMCID: PMC11444401 DOI: 10.1371/journal.pone.0310899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
High-Intensity Focused Ultrasound (HIFU) as a promising and impactful modality for breast tumor ablation, entails the precise focalization of high-intensity ultrasonic waves onto the tumor site, culminating in the generation of extreme heat, thus ablation of malignant tissues. In this paper, a comprehensive three-dimensional (3D) Finite Element Method (FEM)-based numerical procedure is introduced, which provides exceptional capacity for simulating the intricate multiphysics phenomena associated with HIFU. Furthermore, the application of numerical procedures to an anatomically realistic breast phantom (ARBP) has not been explored before. The integrity of the present numerical procedure has been established through rigorous validation, incorporating comparative assessments with previous two-dimensional (2D) simulations and empirical data. For ARBP ablation, the administration of a 0.1 MPa pressure input pulse at a frequency of 1.5 MHz, sustained at the focal point for 10 seconds, manifests an ensuing temperature elevation to 80°C. It is noteworthy that, in contrast, the prior 2D simulation using a 2D phantom geometry reached just 72°C temperature under the identical treatment regimen, underscoring the insufficiency of 2D models, ascribed to their inherent limitations in spatially representing acoustic energy, which compromises their overall effectiveness. To underscore the versatility of this numerical platform, a simulation of a more clinically relevant HIFU therapy procedure has been conducted. This scenario involves the repositioning of the ultrasound focal point to three separate lesions, each spaced at 3 mm intervals, with ultrasound exposure durations of 6 seconds each and a 5-second interval for movement between focal points. This approach resulted in a more uniform high-temperature distribution at different areas of the tumour, leading to the ablation of almost all parts of the tumour, including its verges. In the end, the effects of different abnormal tissue shapes are investigated briefly as well. For solid mass tumors, 67.67% was successfully ablated with one lesion, while rim-enhancing tumors showed only 34.48% ablation and non-mass enhancement tumors exhibited 20.32% ablation, underscoring the need for multiple lesions and tailored treatment plans for more complex cases.
Collapse
Affiliation(s)
- Reza Rahpeima
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-An Lin
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
25
|
Zhang Q, Liang X, Chen Z. An Updated Review of Thermal Ablation Technology for Uterine Fibroids and Adenomyosis: Focusing on Protecting Fertility. Int J Womens Health 2024; 16:1551-1563. [PMID: 39346931 PMCID: PMC11430362 DOI: 10.2147/ijwh.s473005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 10/01/2024] Open
Abstract
There is a growing trend towards minimally invasive or noninvasive alternatives for gynecological disorders due to their rapid alleviation of symptom, expedited recovery, and minimal risks of postoperative complications. Thermal ablation technology has been commonly advocated as a minimally invasive therapeutic methods in recent years, including microwave ablation, radiofrequency ablation, and high-intensity focused ultrasound. The increasing application scenarios require updated and systematic research, and more evidence to promote their appropriate use. The objective of this review is to summarize the latest views of ablation from a prospective of fertility protection, endeavor to clarify the clinical value of thermal ablation technology in protecting fertility by assessing parameters such as ablation rates, alleviation of disease symptoms, re-intervention rates and post-treatment pregnancy rates. We review the clinical studies of ablation for uterine fibroids and adenomyosis treatment in the past 10 years, summarize the limitation and the prospects of its development in the treatment process, so as to provide clinicians with advice on the best practice. In the management of uterine fibroids and adenomyosis, thermal ablation technology offers improved fertility preservation and minimizes normal tissue injury compared to traditional surgical approaches for patients pursuing reproductive goals. In the future, thermal ablation technology will play a significantly enhanced role in preserving fertility for individuals requiring treatment for uterine fibroids and adenomyosis, guided by indications. But further research is still needed in the form of more extensive randomized prospective trials to provide stronger evidence supporting this perspective.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People's Republic of China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| | - Xiaowen Liang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People's Republic of China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People's Republic of China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, People's Republic of China
- Department of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People's Republic of China
| |
Collapse
|
26
|
Zhao Z, Szewczyk B, Tarasek M, Bales C, Wang Y, Liu M, Jiang Y, Bhushan C, Fiveland E, Campwala Z, Trowbridge R, Johansen PM, Olmsted Z, Ghoshal G, Heffter T, Gandomi K, Tavakkolmoghaddam F, Nycz C, Jeannotte E, Mane S, Nalwalk J, Burdette EC, Qian J, Yeo D, Pilitsis J, Fischer GS. Deep Brain Ultrasound Ablation Thermal Dose Modeling with in Vivo Experimental Validation. ARXIV 2024:arXiv:2409.02395v2. [PMID: 39279835 PMCID: PMC11398545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Intracorporeal needle-based therapeutic ultrasound (NBTU) is a minimally invasive option for intervening in malignant brain tumors, commonly used in thermal ablation procedures. This technique is suitable for both primary and metastatic cancers, utilizing a high-frequency alternating electric field (up to 10 MHz) to excite a piezoelectric transducer. The resulting rapid deformation of the transducer produces an acoustic wave that propagates through tissue, leading to localized high-temperature heating at the target tumor site and inducing rapid cell death. To optimize the design of NBTU transducers for thermal dose delivery during treatment, numerical modeling of the acoustic pressure field generated by the deforming piezoelectric transducer is frequently employed. The bioheat transfer process generated by the input pressure field is used to track the thermal propagation of the applicator over time. Magnetic resonance thermal imaging (MRTI) can be used to experimentally validate these models. Validation results using MRTI demonstrated the feasibility of this model, showing a consistent thermal propagation pattern. However, a thermal damage isodose map is more advantageous for evaluating therapeutic efficacy. To achieve a more accurate simulation based on the actual brain tissue environment, a new finite element method (FEM) simulation with enhanced damage evaluation capabilities was conducted. The results showed that the highest temperature and ablated volume differed between experimental and simulation results by 2.1884°C (3.71%) and 0.0631 cm3 (5.74%), respectively. The lowest Pearson correlation coefficient (PCC) for peak temperature was 0.7117, and the lowest Dice coefficient for the ablated area was 0.7021, indicating a good agreement in accuracy between simulation and experiment.
Collapse
Affiliation(s)
| | - Benjamin Szewczyk
- Worcester Polytechnic Institute, Worcester, MA
- Department of Neurosurgery, Albany Medical Center, Albany, NY
| | | | | | - Yang Wang
- Worcester Polytechnic Institute, Worcester, MA
| | - Ming Liu
- Worcester Polytechnic Institute, Worcester, MA
| | - Yiwei Jiang
- Worcester Polytechnic Institute, Worcester, MA
| | | | | | - Zahabiya Campwala
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | - Rachel Trowbridge
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | - Phillip M Johansen
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | - Zachary Olmsted
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | | | | | | | | | | | - Erin Jeannotte
- Animal Resources Facility, Albany Medical Center, Albany, NY
| | - Shweta Mane
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | - Julia Nalwalk
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | | | - Jiang Qian
- Department of Neurosurgery, Albany Medical Center, Albany, NY
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
| | | | - Julie Pilitsis
- Department of Neurosurgery, Albany Medical Center, Albany, NY
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL
| | | |
Collapse
|
27
|
Lari S, Kohandel M, Kwon HJ. Model based deep learning method for focused ultrasound pathway scanning. Sci Rep 2024; 14:20042. [PMID: 39198623 PMCID: PMC11358149 DOI: 10.1038/s41598-024-70689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
The primary purpose of high-intensity focused ultrasound (HIFU), a non-invasive medical therapy, is to precisely target and ablate tumors by focusing high-frequency ultrasound from an external power source. A series of ablations must be performed in order to treat a big volume of tumors, as a single ablation can only remove a small amount of tissue. To maximize therapeutic efficacy while minimizing adverse side effects such as skin burns, preoperative treatment planning is essential in determining the focal site and sonication duration for each ablation. Here, we introduce a machine learning-based approach for designing HIFU treatment plans, which makes use of a map of the material characteristics unique to a patient alongside an accurate thermal simulation. A numerical model was employed to solve the governing equations of HIFU process and to simulate the HIFU absorption mechanism, including ensuing heat transfer process and the temperature rise during the sonication period. To validate the accuracy of this numerical model, a series of tests was conducted using ex vivo bovine liver. The findings indicate that the developed models properly represent the considerable variances observed in tumor geometrical shapes and proficiently generate well-defined closed treated regions based on imaging data. The proposed strategy facilitated the formulation of high-quality treatment plans, with an average tissue over- or under-treatment rate of less than 0.06%. The efficacy of the numerical model in accurately predicting the heating process of HIFU, when combined with machine learning techniques, was validated through quantitative comparison with experimental data. The proposed approach in cooperation with HIFU simulation holds the potential to enhance presurgical HIFU plan.
Collapse
Affiliation(s)
- Salman Lari
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hyock Ju Kwon
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
28
|
Kaplińska-Kłosiewicz PM, Fura Ł, Kujawska T, Andrzejewski K, Kaczyńska K, Strzemecki D, Sulejczak M, Chrapusta SJ, Macias M, Sulejczak D. Study of Biological Effects Induced in Solid Tumors by Shortened-Duration Thermal Ablation Using High-Intensity Focused Ultrasound. Cancers (Basel) 2024; 16:2846. [PMID: 39199617 PMCID: PMC11352750 DOI: 10.3390/cancers16162846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
The HIFU ablation technique is limited by the long duration of the procedure, which results from the large difference between the size of the HIFU beam's focus and the tumor size. Ablation of large tumors requires treating them with a sequence of single HIFU beams, with a specific time interval in-between. The aim of this study was to evaluate the biological effects induced in a malignant solid tumor of the rat mammary gland, implanted in adult Wistar rats, during HIFU treatment according to a new ablation plan which allowed researchers to significantly shorten the duration of the procedure. We used a custom, automated, ultrasound imaging-guided HIFU ablation device. Tumors with a 1 mm thickness margin of healthy tissue were subjected to HIFU. Three days later, the animals were sacrificed, and the HIFU-treated tissues were harvested. The biological effects were studied, employing morphological, histological, immunohistochemical, and ultrastructural techniques. Massive cell death, hemorrhages, tissue loss, influx of immune cells, and induction of pro-inflammatory cytokines were observed in the HIFU-treated tumors. No damage to healthy tissues was observed in the area surrounding the safety margin. These results confirmed the efficacy of the proposed shortened duration of the HIFU ablation procedure and its potential for the treatment of solid tumors.
Collapse
Affiliation(s)
- Patrycja Maria Kaplińska-Kłosiewicz
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland; (P.M.K.-K.); (S.J.C.)
| | - Łukasz Fura
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland; (Ł.F.); (T.K.)
| | - Tamara Kujawska
- Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland; (Ł.F.); (T.K.)
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland; (K.A.); (K.K.)
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland; (K.A.); (K.K.)
| | - Damian Strzemecki
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland; (P.M.K.-K.); (S.J.C.)
| | - Mikołaj Sulejczak
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1 St., 02-096 Warsaw, Poland;
| | - Stanisław J. Chrapusta
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland; (P.M.K.-K.); (S.J.C.)
| | - Matylda Macias
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena 4 St., 02-109 Warsaw, Poland;
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland; (P.M.K.-K.); (S.J.C.)
| |
Collapse
|
29
|
Lin L, Ba Z, Tian H, Qin H, Chen X, Zhou X, Zhao S, Li L, Xue F, Li H, He L, Li X, Du J, Zhou Z, Zeng W. Ultrasound-responsive theranostic platform for the timely monitoring and efficient thrombolysis in thrombi of tPA resistance. Nat Commun 2024; 15:6610. [PMID: 39098904 PMCID: PMC11298549 DOI: 10.1038/s41467-024-50741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
There is no effective and noninvasive solution for thrombolysis because the mechanism by which certain thrombi become tissue plasminogen activator (tPA)-resistant remains obscure. Endovascular thrombectomy is the last option for these tPA-resistant thrombi, thus a new noninvasive strategy is urgently needed. Through an examination of thrombi retrieved from stroke patients, we found that neutrophil extracellular traps (NETs), ε-(γ-glutamyl) lysine isopeptide bonds and fibrin scaffolds jointly comprise the key chain in tPA resistance. A theranostic platform is designed to combine sonodynamic and mechanical thrombolysis under the guidance of ultrasonic imaging. Breakdown of the key chain leads to a recanalization rate of more than 90% in male rat tPA-resistant occlusion model. Vascular reconstruction is observed one month after recanalization, during which there was no thrombosis recurrence. The system also demonstrates noninvasive theranostic capabilities in managing pigs' long thrombi (>8 mm) and in revascularizing thrombosis-susceptible tissue-engineered vascular grafts, indicating its potential for clinical application. Overall, this noninvasive theranostic platform provides a new strategy for treating tPA-resistant thrombi.
Collapse
Affiliation(s)
- Lin Lin
- Department of Cell Biology, Third Military Medical University, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, China
| | - Zhaojing Ba
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Hao Tian
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Haoxiang Qin
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Xi Chen
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Shanlan Zhao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Lang Li
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lang He
- Department of Cell Biology, Third Military Medical University, Chongqing, China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, China
| | - Xiaochen Li
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Jiahui Du
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
30
|
Fura Ł, Tymkiewicz R, Kujawska T. Numerical studies on shortening the duration of HIFU ablation therapy and their experimental validation. ULTRASONICS 2024; 142:107371. [PMID: 38852549 DOI: 10.1016/j.ultras.2024.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
High Intensity Focused Ultrasound (HIFU) is used in clinical practice for thermal ablation of malignant and benign solid tumors located in various organs. One of the reason limiting the wider use of this technology is the long treatment time resulting from i.a. the large difference between the size of the focal volume of the heating beam and the size of the tumor. Therefore, the treatment of large tumors requires scanning their volume with a sequence of single heating beams, the focus of which is moved in the focal plane along a specific trajectory with specific time and distance interval between sonications. To avoid an undesirable increase in the temperature of healthy tissues surrounding the tumor during scanning, the acoustic power and exposure time of each HIFU beam as well as the time intervals between sonications should be selected in such a way as to cover the entire volume of the tumor with necrosis as quickly as possible. This would reduce the costs of treatment. The aim of this study was to quantitatively evaluate the hypothesis that selecting the average acoustic power and exposure time for each individual heating beam, as well as the temporal intervals between sonications, can significantly shorten treatment time. Using 3D numerical simulations, the dependence of the duration of treatment of a tumor with a diameter of 5 mm or 9 mm (requiring multiple exposure to the HIFU beam) on the sonication parameters (acoustic power, exposure time) of each single beam capable of delivering the threshold thermal dose (CEM43 = 240 min) to the treated tissue volume was examined. The treatment duration was determined as the sum of exposure times to individual beams and time intervals between sonications. The tumor was located inside the ex vivo tissue sample at a depth of 12.6 mm. The thickness of the water layer between the HIFU transducer and the tissue was 50 mm. The sonication and scanning parameters selected using the developed algorithm shortened the duration of the ablation procedure by almost 14 times for a 5-mm tumor and 20 times for a 9-mm tumor compared to the duration of the same ablation plan when a HIFU beam was used of a constant acoustic power, constant exposure time (3 s) and constant long time intervals (120 s) between sonications. Results of calculations of the location and size of the necrotic lesion formed were experimentally verified on ex vivo pork loin samples, showing good agreement between them. In this way, it was proven that the proper selection of sonication and scanning parameters for each HIFU beam allows to significantly shorten the time of HIFU therapy.
Collapse
Affiliation(s)
- Łukasz Fura
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
| | - Ryszard Tymkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Tamara Kujawska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
31
|
Campbell WA, Makary MS. Advances in Image-Guided Ablation Therapies for Solid Tumors. Cancers (Basel) 2024; 16:2560. [PMID: 39061199 PMCID: PMC11274819 DOI: 10.3390/cancers16142560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Image-guided solid tumor ablation methods have significantly advanced in their capability to target primary and metastatic tumors. These techniques involve noninvasive or percutaneous insertion of applicators to induce thermal, electrochemical, or mechanical stress on malignant tissue to cause tissue destruction and apoptosis of the tumor margins. Ablation offers substantially lower risks compared to traditional methods. Benefits include shorter recovery periods, reduced bleeding, and greater preservation of organ parenchyma compared to surgical intervention. Due to the reduced morbidity and mortality, image-guided tumor ablation offers new opportunities for treatment in cancer patients who are not candidates for resection. Currently, image-guided ablation techniques are utilized for treating primary and metastatic tumors in various organs with both curative and palliative intent, including the liver, pancreas, kidneys, thyroid, parathyroid, prostate, lung, breast, bone, and soft tissue. The invention of new equipment and techniques is expanding the criteria of eligible patients for therapy, as now larger and more high-risk tumors near critical structures can be ablated. This article provides an overview of the different imaging modalities, noninvasive, and percutaneous ablation techniques available and discusses their applications and associated complications across various organs.
Collapse
Affiliation(s)
- Warren A. Campbell
- Division of Vascular and Interventional Radiology, Department of Radiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mina S. Makary
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Lu SS, Yang LL, Yang W, Wang J, Zhang XL, Yang L, Wen Y. Complications and adverse events of high-intensity focused ultrasound in its application to gynecological field - a systematic review and meta-analysis. Int J Hyperthermia 2024; 41:2370969. [PMID: 38945548 DOI: 10.1080/02656736.2024.2370969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
OBJECTIVE To analyze and summarize the types, incidence rates and relevant influencing factors of adverse events (AEs) after high-intensity focused ultrasound ablation of gynecological diseases and provide reference and basis for handling such events in clinical practice. METHOD We searched PubMed, Cochrane Library, Web of Science and Embase databases to retrieve all literature since its establishment until February 2024. We evaluated the quality of included literature and publication bias and conducted a meta-analysis of single group rates for various AEs using Stata 17.0. RESULTS This systematic review finally included 41 articles. We summarized 34 kinds of AEs in 7 aspects and conducted a single group rate meta-analysis and sub-group analysis of 16 kinds of AEs. Among the common AEs of High-Intensity Focused Ultrasound (HIFU), the incidence of lower abdominal pain/pelvic pain is 36.1% (95% CI: 24.3%∼48.8%), vaginal bleeding is 20.6% (95% CI: 13.9%∼28.0%), vaginal discharge is 14.0% (95% CI: 9.6%∼19.1%), myoma discharge is 24% (95% CI: 14.6%∼34.8%), buttock pain is 10.8% (95% CI: 6.0%∼16.5%) and sacral pain is 10% (95% CI: 8.8%∼11.2%). Serious complications include uterine rupture, necrotic tissue obstruction requiring surgical intervention, third degree skin burns and persistent lower limb pain or movement disorders. CONCLUSION The common AEs after HIFU surgery are mostly mild and controllable, and the incidence of serious complications is extremely low. By reasonable prevention and active intervention, these events can be further reduced, making it a safe and effective treatment method. It is a good choice for patients who crave noninvasive treatment or have other surgical contraindications.
Collapse
Affiliation(s)
- Shan-Shan Lu
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lei-Lei Yang
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Yang
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Wang
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xia-Lin Zhang
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liu Yang
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Wen
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Seasons GM, Pellow C, Kuipers HF, Pike GB. Ultrasound and neuroinflammation: immune modulation via the heat shock response. Theranostics 2024; 14:3150-3177. [PMID: 38855178 PMCID: PMC11155413 DOI: 10.7150/thno.96270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Current pharmacological therapeutic approaches targeting chronic inflammation exhibit transient efficacy, often with adverse effects, limiting their widespread use - especially in the context of neuroinflammation. Effective interventions require the consideration of homeostatic function, pathway dysregulation, and pleiotropic effects when evaluating therapeutic targets. Signalling molecules have multiple functions dependent on the immune context, and this complexity results in therapeutics targeting a single signalling molecule often failing in clinical translation. Additionally, the administration of non-physiologic levels of neurotrophic or anti-inflammatory factors can alter endogenous signalling, resulting in unanticipated effects. Exacerbating these challenges, the central nervous system (CNS) is isolated by the blood brain barrier (BBB), restricting the infiltration of many pharmaceutical compounds into the brain tissue. Consequently, there has been marked interest in therapeutic techniques capable of modulating the immune response in a pleiotropic manner; ultrasound remains on this frontier. While ultrasound has been used therapeutically in peripheral tissues - accelerating healing in wounds, bone fractures, and reducing inflammation - it is only recently that it has been applied to the CNS. The transcranial application of low intensity pulsed ultrasound (LIPUS) has successfully mitigated neuroinflammation in vivo, in models of neurodegenerative disease across a broad spectrum of ultrasound parameters. To date, the underlying biological effects and signalling pathways modulated by ultrasound are poorly understood, with a diverse array of reported molecules implicated. The distributed nature of the beneficial response to LIPUS implies the involvement of an, as yet, undetermined upstream signalling pathway, homologous to the protective effect of febrile range hyperthermia in chronic inflammation. As such, we review the heat shock response (HSR), a protective signalling pathway activated by thermal and mechanical stress, as the possible upstream regulator of the anti-inflammatory effects of ultrasound.
Collapse
Affiliation(s)
- Graham M. Seasons
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - Carly Pellow
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - Hedwich F. Kuipers
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, University of Calgary, Alberta, T2N 1N4, Canada
| | - G. Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
34
|
Verma Y, Perera Molligoda Arachchige AS. Advances in Tumor Management: Harnessing the Potential of Histotripsy. Radiol Imaging Cancer 2024; 6:e230159. [PMID: 38639585 PMCID: PMC11148838 DOI: 10.1148/rycan.230159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
Tissue ablation techniques have long been used in clinical settings to treat various oncologic diseases. However, many of these techniques are invasive and can cause substantial adverse effects. Histotripsy is a noninvasive, nonionizing, nonthermal tissue ablation technique that has the potential to replace surgical interventions in various clinical settings. Histotripsy works by delivering high-intensity focused ultrasound waves to target tissue. These waves create cavitation bubbles within tissues that rapidly expand and collapse, thereby mechanically fractionating the tissue into acellular debris that is subsequently absorbed by the body's immune system. Preclinical and clinical studies have demonstrated the efficacy of histotripsy in treating a range of diseases, including liver, pancreatic, renal, and prostate tumors. Safety outcomes of histotripsy have been generally favorable, with minimal adverse effects reported. However, further studies are needed to optimize the technique and understand its long-term effects. This review aims to discuss the importance of histotripsy as a noninvasive tissue ablation technique, the preclinical and clinical literature on histotripsy and its safety, and the potential applications of histotripsy in clinical practice. Keywords: Tumor Microenvironment, Ultrasound-High-Intensity Focused (HIFU), Ablation Techniques, Abdomen/GI, Genital/Reproductive, Nonthermal Tissue Ablation, Histotripsy, Clinical Trials, Preclinical Applications, Focused Ultrasound © RSNA, 2024.
Collapse
|
35
|
Littrup PJ, Mehrmohammadi M, Duric N. Breast Tomographic Ultrasound: The Spectrum from Current Dense Breast Cancer Screenings to Future Theranostic Treatments. Tomography 2024; 10:554-573. [PMID: 38668401 PMCID: PMC11053617 DOI: 10.3390/tomography10040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
This review provides unique insights to the scientific scope and clinical visions of the inventors and pioneers of the SoftVue breast tomographic ultrasound (BTUS). Their >20-year collaboration produced extensive basic research and technology developments, culminating in SoftVue, which recently received the Food and Drug Administration's approval as an adjunct to breast cancer screening in women with dense breasts. SoftVue's multi-center trial confirmed the diagnostic goals of the tissue characterization and localization of quantitative acoustic tissue differences in 2D and 3D coronal image sequences. SoftVue mass characterizations are also reviewed within the standard cancer risk categories of the Breast Imaging Reporting and Data System. As a quantitative diagnostic modality, SoftVue can also function as a cost-effective platform for artificial intelligence-assisted breast cancer identification. Finally, SoftVue's quantitative acoustic maps facilitate noninvasive temperature monitoring and a unique form of time-reversed, focused US in a single theranostic device that actually focuses acoustic energy better within the highly scattering breast tissues, allowing for localized hyperthermia, drug delivery, and/or ablation. Women also prefer the comfort of SoftVue over mammograms and will continue to seek out less-invasive breast care, from diagnosis to treatment.
Collapse
Affiliation(s)
- Peter J. Littrup
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA; (M.M.); (N.D.)
- Delphinus Medical Technologies, Inc., Novi, MI 48374, USA
| | - Mohammad Mehrmohammadi
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA; (M.M.); (N.D.)
| | - Nebojsa Duric
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA; (M.M.); (N.D.)
- Delphinus Medical Technologies, Inc., Novi, MI 48374, USA
| |
Collapse
|
36
|
Hahmann J, Ishaqat A, Lammers T, Herrmann A. Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound. Angew Chem Int Ed Engl 2024; 63:e202317112. [PMID: 38197549 DOI: 10.1002/anie.202317112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Ultrasound technology, synergistically harnessed with genetic engineering and chemistry concepts, has started to open the gateway to the remarkable realm of sonogenetics-a pioneering paradigm for remotely orchestrating cellular functions at the molecular level. This fusion not only enables precisely targeted imaging and therapeutic interventions, but also advances our comprehension of mechanobiology to unparalleled depths. Sonogenetic tools harness mechanical force within small tissue volumes while preserving the integrity of the surrounding physiological environment, reaching depths of up to tens of centimeters with high spatiotemporal precision. These capabilities circumvent the inherent physical limitations of alternative in vivo control methods such as optogenetics and magnetogenetics. In this review, we first discuss mechanosensitive ion channels, the most commonly utilized sonogenetic mediators, in both mammalian and non-mammalian systems. Subsequently, we provide a comprehensive overview of state-of-the-art sonogenetic approaches that leverage thermal or mechanical features of ultrasonic waves. Additionally, we explore strategies centered around the design of mechanochemically reactive macromolecular systems. Furthermore, we delve into the realm of ultrasound imaging of biomolecular function, encompassing the utilization of gas vesicles and acoustic reporter genes. Finally, we shed light on limitations and challenges of sonogenetics and present a perspective on the future of this promising technology.
Collapse
Affiliation(s)
- Johannes Hahmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Aman Ishaqat
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), Center for Biohybrid Medical Systems (CBMS), RWTH Aachen University Clinic, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Andreas Herrmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| |
Collapse
|
37
|
Zhou Y, Gong X, You Y. In vivo evaluation of focused ultrasound ablation surgery (FUAS)-induced coagulation using echo amplitudes of the therapeutic focused ultrasound transducer. Int J Hyperthermia 2024; 41:2325477. [PMID: 38439505 DOI: 10.1080/02656736.2024.2325477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
OBJECTIVE Monitoring sensitivity of sonography in focused ultrasound ablation surgery (FUAS) is limited (no hyperechoes in ∼50% of successful coagulation in uterine fibroids). A more accurate and sensitive approach is required. METHOD The echo amplitudes of the focused ultrasound (FUS) transducer in a testing mode (short pulse duration and low power) were found to correlate with the ex vivo coagulation. To further evaluate its coagulation prediction capabilities, in vivo experiments were carried out. The liver, kidney, and leg muscles of three adult goats were treated using clinical FUAS settings, and the echo amplitude of the FUS transducer and grayscale in sonography before and after FUAS were collected. On day 7, animals were sacrificed humanely, and the treated tissues were dissected to expose the lesion. Echo amplitude changes and lesion areas were analyzed statistically, as were the coagulation prediction metrics. RESULTS The echo amplitude changes of the FUS transducer correlate well with the lesion areas in the liver (R = 0.682). Its prediction in accuracy (94.4% vs. 50%), sensitivity (92.9% vs. 35.7%), and negative prediction (80% vs. 30.8%) is better than sonography, but similar in specificity (80% vs. 100%) and positive prediction (100% vs. 100%). In addition, the correlation between tissue depth and the lesion area is not good (|R| < 0.2). Prediction performances in kidney and leg muscles are similar. CONCLUSION The FUS echo amplitudes are sensitive to the tissue properties and their changes after FUAS. They are sensitive and reliable in evaluating and predicting FUAS outcomes.
Collapse
Affiliation(s)
- Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, Wuhan, Hubei, China
| | - Xiaobo Gong
- Research and Development, National Engineering Research Center of Ultrasound Medicine, Chongqing, China
| | - Yaqing You
- Research and Development, National Engineering Research Center of Ultrasound Medicine, Chongqing, China
| |
Collapse
|
38
|
Baust JM, Robilotto A, Raijman I, Santucci KL, Van Buskirk RG, Baust JG, Snyder KK. The Assessment of a Novel Endoscopic Ultrasound-Compatible Cryocatheter to Ablate Pancreatic Cancer. Biomedicines 2024; 12:507. [PMID: 38540120 PMCID: PMC10968037 DOI: 10.3390/biomedicines12030507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 11/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease that may be treated utilizing thermal therapies. Cryoablation is an effective, minimally invasive therapy that has been utilized for the treatment of various cancers, offering patients a quicker recovery and reduced side effects. Cryoablation has been utilized on a limited basis for the treatment of PDAC. With the recent reports on the success of cryoablation, there is a growing interest in the use of cryoablation as a standalone, minimally invasive procedure to treat PDAC. While offering a promising path, the application of cryoablation to PDAC is limited by current technologies. As such, there is a need for the development of new devices to support advanced treatment strategies for PDAC. To this end, this study investigated the performance of a new endoscopic ultrasound-compatible cryoablation catheter technology, FrostBite. We hypothesized that FrostBite would enable the rapid, effective, minimally invasive delivery of ultra-cold temperatures to target tissues, resulting in effective ablation via an endoscopic approach. Thermal properties and ablative efficacy were evaluated using a heat-loaded gel model, tissue-engineered models (TEMs), and an initial in vivo porcine study. Freeze protocols evaluated included single and repeat 3 and 5 min applications. Isotherm assessment revealed the generation of a 2.2 cm diameter frozen mass with the -20 °C isotherm reaching a diameter of 1.5 cm following a single 5 min freeze. TEM studies revealed the achievement of temperatures ≤ -20 °C at a diameter of 1.9 cm after a 5 min freeze. Fluorescent imaging conducted 24 h post-thaw demonstrated a uniformly shaped ellipsoidal ablative zone with a midline diameter of 2.5 cm, resulting in a total ablative volume of 6.9 cm3 after a single 5 min freeze. In vivo findings consistently demonstrated the generation of ablative areas measuring 2.03 cm × 3.2 cm. These studies demonstrate the potential of the FrostBite cryocatheter as an endoscopic ultrasound-based treatment option. The data suggest that FrostBite may provide for the rapid, effective, controllable freezing of cancerous pancreatic and liver tissues. This ablative power also offers the potential of improved safety margins via the minimally invasive nature of an endoscopic ultrasound-based approach or natural orifice transluminal endoscopic surgery (NOTES)-based approach. The results of this pre-clinical feasibility study show promise, affirming the need for further investigation into the potential of the FrostBite cryocatheter as an advanced, minimally invasive cryoablative technology.
Collapse
Affiliation(s)
- John M. Baust
- CPSI Biotech, Owego, NY 13827, USA
- Phase Therapeutics, Inc., Owego, NY 13827, USA
| | | | - Isaac Raijman
- Department of Medicine-Gastroenterology, Baylor College of Medicine, Houston, TX 77030, USA
- GI Alliance, Houston, TX 77030, USA
| | | | - Robert G. Van Buskirk
- CPSI Biotech, Owego, NY 13827, USA
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, Binghamton, NY 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - John G. Baust
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, Binghamton, NY 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Kristi K. Snyder
- CPSI Biotech, Owego, NY 13827, USA
- Phase Therapeutics, Inc., Owego, NY 13827, USA
| |
Collapse
|
39
|
Momin SMB, Aquilina K, Bulstrode H, Taira T, Kalia S, Natalwala A. MRI-Guided Focused Ultrasound for the Treatment of Dystonia: A Narrative Review. Cureus 2024; 16:e54284. [PMID: 38500932 PMCID: PMC10945285 DOI: 10.7759/cureus.54284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Contemporary surgical management of dystonia includes neuromodulation via deep brain stimulation (DBS) or ablative techniques such as radiofrequency (RF) ablation. MRI-guided focused ultrasound (MRgFUS) is an emerging modality that uses high-intensity ultrasound to precisely ablate targets in the brain; this is incisionless, potentially avoiding the surgical risks of a burr hole and transcortical tract to reach the anatomical target. There is some evidence of efficacy in essential tremor and Parkinson's disease (PD), but, to date, there is no study aggregating the evidence of MRgFUS in dystonia. In this narrative review, we searched Medline, Embase, CINAHL, EBSCO, and ClinicalTrials.gov for primary studies and clinical trials on MRgFUS in the treatment of dystonia. Data were analyzed concerning dystonia phenotype, reported outcomes, and complications. PD-related dystonia was also included within the scope of the review. Using our search criteria, six articles on the use of MRgFUS in adult dystonia and three articles on the use of FUS in dystonia in PD were included. Four trials on the use of FUS in dystonia were also found on ClinicalTrials.gov, one of which was completed in December 2013. All included studies showed evidence of symptomatic improvement, mostly in focal hand dystonia; improvements were also found in dystonia-associated tremor, cervicobrachial dystonia, and dystonia-associated chronic neuropathic pain as well as PD-related dystonia. Reported complications included transient neurological deficits and persistent arm pain in one study. However, the evidence is limited to level-4 case series at present. MRgFUS is an emerging modality that appears to be safe and effective, particularly in focal hand dystonia, without major adverse effects. However, the quality of evidence is low at present, and long-term outcomes are unknown. High-quality prospective studies comparing MRgFUS to other surgical techniques will be useful in determining its role in the management of dystonia.
Collapse
Affiliation(s)
- Sheikh Muktadir Bin Momin
- Institute of Inflammation & Ageing, University of Birmingham, Birmingham, GBR
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, GBR
| | - Kristian Aquilina
- Department of Paediatric Neurosurgery, Great Ormond Street Hospital, London, GBR
| | - Harry Bulstrode
- Department of Neurosurgery, Wellcome-MRC Cambridge Stem Cell Institute, Addenbrooke's Hospital, Cambridge, GBR
| | - Takaomi Taira
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, JPN
| | - Suneil Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, CAN
| | - Ammar Natalwala
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, GBR
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, GBR
| |
Collapse
|
40
|
Park D, Lee SJ, Park JW. Aptamer-Based Smart Targeting and Spatial Trigger-Response Drug-Delivery Systems for Anticancer Therapy. Biomedicines 2024; 12:187. [PMID: 38255292 PMCID: PMC10813750 DOI: 10.3390/biomedicines12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, the field of drug delivery has witnessed remarkable progress, driven by the quest for more effective and precise therapeutic interventions. Among the myriad strategies employed, the integration of aptamers as targeting moieties and stimuli-responsive systems has emerged as a promising avenue, particularly in the context of anticancer therapy. This review explores cutting-edge advancements in targeted drug-delivery systems, focusing on the integration of aptamers and stimuli-responsive platforms for enhanced spatial anticancer therapy. In the aptamer-based drug-delivery systems, we delve into the versatile applications of aptamers, examining their conjugation with gold, silica, and carbon materials. The synergistic interplay between aptamers and these materials is discussed, emphasizing their potential in achieving precise and targeted drug delivery. Additionally, we explore stimuli-responsive drug-delivery systems with an emphasis on spatial anticancer therapy. Tumor microenvironment-responsive nanoparticles are elucidated, and their capacity to exploit the dynamic conditions within cancerous tissues for controlled drug release is detailed. External stimuli-responsive strategies, including ultrasound-mediated, photo-responsive, and magnetic-guided drug-delivery systems, are examined for their role in achieving synergistic anticancer effects. This review integrates diverse approaches in the quest for precision medicine, showcasing the potential of aptamers and stimuli-responsive systems to revolutionize drug-delivery strategies for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
41
|
Liao M, Du J, Chen L, Huang J, Yang R, Bao W, Zeng K, Wang W, Aphan BC, Wu Z, Ma L, Lu Q. Sono-activated materials for enhancing focused ultrasound ablation: Design and application in biomedicine. Acta Biomater 2024; 173:36-50. [PMID: 37939816 DOI: 10.1016/j.actbio.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades, and its non-invasive features have great advantages, especially for clinical diseases where surgical treatment is not available or appropriate. Recently, rapid advances in the adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials have significantly promoted the medical application of FUS ablation. However, a systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications of sono-activated materials in the FUS ablation biomedical field. First, the different ablation mechanisms and the key factors affecting ablation are carefully determined. Then, the design of sono-activated materials with high FUS ablation efficiencies is comprehensively discussed. Subsequently, the representative biological applications are summarized in detail. Finally, the primary challenges and future perspectives are also outlined. We believe this timely review will provide key information and insights for further exploration of focused ultrasound ablation and new inspiration for designing future sono-activated materials. STATEMENT OF SIGNIFICANCE: The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades. However, there are also some challenges of FUS ablation, such as skin burns, tumour recurrence after thermal ablation, and difficulty in controlling cavitation ablation. The rapid advance in adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials has significantly promoted the medical application of FUS ablation. However, the systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications in the FUS ablation biomedical field of sono-activated materials. We believe this timely review will provide key information and insights for further exploration of FUS ablation.
Collapse
Affiliation(s)
- Min Liao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinpeng Du
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lin Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiayan Huang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Yang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuyongga Bao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyu Zeng
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenhui Wang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Benjamín Castañeda Aphan
- Department of Engineering, Medical Imaging Laboratory, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Lang Ma
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Lu
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
42
|
Roth B, Rao S, Huynh K, Abi-Jaoudeh N. Liver Ablation. IR PLAYBOOK 2024:485-498. [DOI: 10.1007/978-3-031-52546-9_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Shen CC, Chen YA, Ku HY. Improved source localization in passive acoustic mapping using delay-multiply-and-sum beamforming with virtually augmented aperture. ULTRASONICS 2023; 135:107125. [PMID: 37542780 DOI: 10.1016/j.ultras.2023.107125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
High-intensity focused ultrasound (HIFU) is a promising non-invasive treatment method whose applications include tissue ablation, hemostasis, thrombolysis and blood-brain barrier opening etc. Its therapeutic effects come from the thermal necrosis and the mechanical destruction associated with acoustic cavitation. Passive acoustic mapping (PAM) is capable of simultaneous monitoring of HIFU-induced cavitation events using only receive beamforming. Nonetheless, conventional time exposure acoustics (TEA) algorithm has poor spatial resolution and suffers from the X-shaped artifacts. These factors lead to difficulties in precise localization of cavitation source. In this study, we proposed a novel adaptive PAM method which combines Delay-Multiply-and-Sum (DMAS) beamforming with virtual augmented aperture (VA) to overcome the problem. In DMAS-VA beamforming, the magnitude of each channel waveform is scaled by p-th root while the phase is multiplied by L. The p and L correspond respectively to the degree of signal coherence in DMAS beamforming and the augmentation factor of aperture size. After channel sum, p-th power is applied to restore the dimensionality of source strength and then the PAM image is reconstructed by accumulating the signal power over the observation time. Based on simulation and experimental results, the proposed DMAS-VA has better image resolution and image contrast compared with the conventional TEA. Moreover, since the VA method may introduce grating lobes into PAM because of the virtually augmented pitch size, DMAS coherent factor (DCF) is further developed to alleviate these image artifacts. Results indicate that, with DCF weighting, the PAM image of DMAS-VA beamforming could be constructed without detectable image artifacts from grating lobes and false main lobes.
Collapse
Affiliation(s)
- Che-Chou Shen
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - You-An Chen
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsin-Yu Ku
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
44
|
Lou W, Xie L, Xu L, Xu M, Xu F, Zhao Q, Jiang T. Present and future of metal nanoparticles in tumor ablation therapy. NANOSCALE 2023; 15:17698-17726. [PMID: 37917010 DOI: 10.1039/d3nr04362b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer is an important factor affecting the quality of human life as well as causing death. Tumor ablation therapy is a minimally invasive local treatment modality with unique advantages in treating tumors that are difficult to remove surgically. However, due to its physical and chemical characteristics and the limitation of equipment technology, ablation therapy cannot completely kill all tumor tissues and cells at one time; moreover, it inevitably damages some normal tissues in the surrounding area during the ablation process. Therefore, this technology cannot be the first-line treatment for tumors at present. Metal nanoparticles themselves have good thermal and electrical conductivity and unique optical and magnetic properties. The combination of metal nanoparticles with tumor ablation technology, on the one hand, can enhance the killing and inhibiting effect of ablation technology on tumors by expanding the ablation range; on the other hand, the ablation technology changes the physicochemical microenvironment such as temperature, electric field, optics, oxygen content and pH in tumor tissues. It helps to stimulate the degree of local drug release of nanoparticles and increase the local content of anti-tumor drugs, thus forming a synergistic therapeutic effect with tumor ablation. Recent studies have found that some specific ablation methods will stimulate the body's immune response while physically killing tumor tissues, generating a large number of immune cells to cause secondary killing of tumor tissues and cells, and with the assistance of metal nanoparticles loaded with immune drugs, the effect of this anti-tumor immunotherapy can be further enhanced. Therefore, the combination of metal nanoparticles and ablative therapy has broad research potential. This review covers common metallic nanoparticles used for ablative therapy and discusses in detail their characteristics, mechanisms of action, potential challenges, and prospects in the field of ablation.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Lei Xu
- Department of Ultrasound Medicine, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Min Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Fan Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Qiyu Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
- Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| |
Collapse
|
45
|
Ardeshna DR, Leupold M, Cruz-Monserrate Z, Pawlik TM, Cloyd JM, Ejaz A, Shah H, Burlen J, Krishna SG. Advancements in Microwave Ablation Techniques for Managing Pancreatic Lesions. Life (Basel) 2023; 13:2162. [PMID: 38004302 PMCID: PMC10672411 DOI: 10.3390/life13112162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Thermal ablation, including microwave ablation, has become increasingly important in the management of many solid tumors, including primary and metastatic tumors of the liver, kidney, and lung. However, its adoption to treat pancreatic lesions has been slowed due to concerns about potential adverse events. The success of radiofrequency ablation (RFA) in inoperable pancreatic cancers paved the way for its use in pancreatic neuroendocrine tumors and pancreatic cystic neoplasms (PCLs). In the last decade, other thermal ablation techniques, like microwave ablation, have emerged as alternatives to RFA. Microwaves, with frequencies ranging from 900 to 2450 MHz, generate heat by rapidly oscillating water molecules. Microwave ablation's advantage lies in its ability to achieve higher intra-lesion temperatures and uniform heating compared with RFA. Microwave ablation's application in pancreatic cancer and pancreatic neuroendocrine tumors has demonstrated promise with similar technical success to RFA. Yet, concern for peri-procedure complications, as well as a dearth of studies comparing RFA and microwave ablation, emphasize the need for further research. No studies have evaluated microwave ablation in PCLs. We herein review thermal ablation's potential to treat pancreatic lesions.
Collapse
Affiliation(s)
- Devarshi R. Ardeshna
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Matthew Leupold
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Timothy M. Pawlik
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jordan M. Cloyd
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Aslam Ejaz
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hamza Shah
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jordan Burlen
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
46
|
Imran KM, Gannon J, Morrison HA, Tupik JD, Tintera B, Nagai-Singer MA, Ivester H, Madanick JM, Hendricks-Wenger A, Uh K, Luyimbazi DT, Edwards M, Coutermarsh-Ott S, Eden K, Byron C, Clark-Deener S, Lee K, Vlaisavljevich E, Allen IC. Successful In Situ Targeting of Pancreatic Tumors in a Novel Orthotopic Porcine Model Using Histotripsy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2361-2370. [PMID: 37596154 PMCID: PMC10529075 DOI: 10.1016/j.ultrasmedbio.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE New therapeutic strategies and paradigms are direly needed to treat pancreatic cancer. The absence of a suitable pre-clinical animal model of pancreatic cancer is a major limitation to biomedical device and therapeutic development. Traditionally, pigs have proven to be ideal models, especially in the context of designing human-sized instruments, perfecting surgical techniques and optimizing clinical procedures for use in humans. However, pig studies have typically focused on healthy tissue assessments and are limited to general safety evaluations because of the inability to effectively model human tumors. METHODS Here, we establish an orthotopic porcine model of human pancreatic cancer using RAG2/IL2RG double-knockout immunocompromised pigs and treat the tumors ex vivo and in vivo with histotripsy. RESULTS Using these animals, we describe the successful engraftment of Panc-1 human pancreatic cancer cell line tumors and characterize their development. To illustrate the utility of these animals for therapeutic development, we determine for the first time, the successful targeting of in situ pancreatic tumors using histotripsy. Treatment with histotripsy resulted in partial ablation in vivo and reduction in collagen content in both in vivo tumor in pig pancreas and ex vivo patient tumor. CONCLUSION This study presents a first step toward establishing histotripsy as a non-invasive treatment method for pancreatic cancer and exposes some of the challenges of ultrasound guidance for histotripsy ablation in the pancreas. Simultaneously, we introduce a highly robust model of pancreatic cancer in a large mammal model that could be used to evaluate a variety biomedical devices and therapeutic strategies.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Jessica Gannon
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Holly A Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Juselyn D Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Benjamin Tintera
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Hannah Ivester
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Justin Markov Madanick
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Alissa Hendricks-Wenger
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Kyungjun Uh
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - David T Luyimbazi
- Department of Surgery, Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Michael Edwards
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Christopher Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kiho Lee
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
47
|
Benaim EH, Nieri C, Mamidala M, Herr MJ, Sheyn A, Gillespie MB. High-intensity focused ultrasound for benign thyroid nodules: Systemic review and meta-analysis. Am J Otolaryngol 2023; 44:103999. [PMID: 37478539 DOI: 10.1016/j.amjoto.2023.103999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) is a less invasive option offered for the treatment of large, compressive, benign thyroid nodules. METHODS Observational studies of more than five participants using HIFU in the management of benign thyroid nodules from 2000 to 2021 were identified using predefined inclusion criteria. The primary outcome was an estimate of the effectiveness of HIFU. RESULTS Out of 158 studies reviewed, 8 articles were included with 297 patients and 300 nodules. HIFU significantly reduced nodule volume from 1 to 24 months following therapy (weighted mean difference [WMD], 47.68, 95 % confidence interval [CI], 34.13-59.66, p < 0.0001) and achieved favorable success rates (risk ratio [RR], 1.49, 95 % CI, 1.15-1.84, p < 0.001) for 50 % volume reduction. CONCLUSIONS HIFU appears to be a feasible, safe, and effective treatment modality for patients with benign thyroid nodules. Future research, including randomized controlled trials, is needed to determine therapy optimization, and patient selection to identify the potential role of this new therapy.
Collapse
Affiliation(s)
- Ezer H Benaim
- University of Tennessee Health Science Center-Department of Otolaryngology-Head & Neck Surgery, United States of America
| | - Chad Nieri
- University of Tennessee Health Science Center-Department of Otolaryngology-Head & Neck Surgery, United States of America
| | - Madhu Mamidala
- University of Tennessee Health Science Center-Department of Otolaryngology-Head & Neck Surgery, United States of America
| | - Michael J Herr
- University of Tennessee Health Science Center-Department of Otolaryngology-Head & Neck Surgery, United States of America
| | - Anthony Sheyn
- University of Tennessee Health Science Center-Department of Otolaryngology-Head & Neck Surgery, United States of America
| | - M Boyd Gillespie
- University of Tennessee Health Science Center-Department of Otolaryngology-Head & Neck Surgery, United States of America.
| |
Collapse
|
48
|
Zheng Y, Li C, Zhang C, He J, Jiang X, Ta D. Distinct thermal effect on biological tissues using subwavelength ultrasound metalens at megahertz. iScience 2023; 26:107929. [PMID: 37810209 PMCID: PMC10551838 DOI: 10.1016/j.isci.2023.107929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Ultrasound focusing plays an important role in biomedical therapy and diagnosis. Acoustic metalens has showcased remarkable focusing performance but yet to be implemented to the practical ultrasound therapeutic applications. We design a planar metalens operating at megahertz and experimentally demonstrate the distinct thermal effect on biological tissues induced by the high-resolution focusing. A prominent temperature rise of 50°C is experimentally observed in the biological phantom, with a much lower input ultrasound power of 4 W compared with the traditional methods. We further study the thermal effect on fresh porcine liver and investigate the morphological changes under different physical parameters. Visible lesions are observed in in vitro tissues at the lowest input ultrasound power of 2.6 W within 10 s. This study facilitates the practical biomedical application of acoustic metalens, providing a feasible approach for the precise, safe, and reliable therapeutic ultrasound with the simple and compact metalens.
Collapse
Affiliation(s)
- Yan Zheng
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Chen Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Chuanxin Zhang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Jiajie He
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Xue Jiang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
49
|
Liu P, Foiret J, Situ Y, Zhang N, Kare AJ, Wu B, Raie MN, Ferrara KW, Qi LS. Sonogenetic control of multiplexed genome regulation and base editing. Nat Commun 2023; 14:6575. [PMID: 37852951 PMCID: PMC10584809 DOI: 10.1038/s41467-023-42249-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Manipulating gene expression in the host genome with high precision is crucial for controlling cellular function and behavior. Here, we present a precise, non-invasive, and tunable strategy for controlling the expression of multiple endogenous genes both in vitro and in vivo, utilizing ultrasound as the stimulus. By engineering a hyper-efficient dCas12a and effector under a heat shock promoter, we demonstrate a system that can be inducibly activated through thermal energy produced by ultrasound absorption. This system allows versatile thermal induction of gene activation or base editing across cell types, including primary T cells, and enables multiplexed gene activation using a single guide RNA array. In mouse models, localized temperature elevation guided by high-intensity focused ultrasound effectively triggers reporter gene expression in implanted cells. Our work underscores the potential of ultrasound as a clinically viable approach to enhance cell and gene-based therapies via precision genome and epigenome engineering.
Collapse
Affiliation(s)
- Pei Liu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Josquin Foiret
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Yinglin Situ
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Nisi Zhang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aris J Kare
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bo Wu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marina N Raie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Katherine W Ferrara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
50
|
Chang H, Wang Q, Liu T, Chen L, Hong J, Liu K, Li Y, Yang N, Han D, Mi X, Li X, Guo X, Li Y, Li Z. A Bibliometric Analysis for Low-Intensity Ultrasound Study Over the Past Three Decades. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2215-2232. [PMID: 37129170 DOI: 10.1002/jum.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Low-intensity ultrasound (LI-US) is a non-invasive stimulation technique that has emerged in recent years and has been shown to have positive effects on neuromodulation, fracture healing, inflammation improvement, and metabolic regulation. This study reports the conclusions of a bibliometric analysis of LI-US. Input data for the period between 1995 and 2022, including 7209 related articles in the field of LI-US, were collected from the core library of the Web of Science (WOS) database. Using these data, a set of bibliometric indicators was obtained to gain knowledge on different aspects: global production, research areas, and sources analysis, contributions of countries and institutions, author analysis, citation analysis, and keyword analysis. This study combined the data analysis capabilities provided by the WOS database, making use of two bibliometric software tools: R software and VOS viewer to achieve analysis and data exploration visualization, and predicted the further development trends of LI-US. It turns out that the United States and China are co-leaders while Zhang ZG is the most significant author in LI-US. In the future, the hot spots of LI-US will continue to focus on parameter research, mechanism discussion, safety regulations, and neuromodulation applications.
Collapse
Affiliation(s)
- Huixian Chang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Qian Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yitong Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Ning Yang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
| | - Yingwei Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
| |
Collapse
|