1
|
Hinz K, Niu M, Ni HM, Ding WX. Targeting Autophagy for Acetaminophen-Induced Liver Injury: An Update. LIVERS 2024; 4:377-387. [PMID: 39301093 PMCID: PMC11412313 DOI: 10.3390/livers4030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Acetaminophen (APAP) overdose can induce hepatocyte necrosis and acute liver failure in experimental rodents and humans. APAP is mainly metabolized via hepatic cytochrome P450 enzymes to generate the highly reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which forms acetaminophen protein adducts (APAP-adducts) and damages mitochondria, triggering necrosis. APAP-adducts and damaged mitochondria can be selectively removed by autophagy. Increasing evidence implies that the activation of autophagy may be beneficial for APAP-induced liver injury (AILI). In this minireview, we briefly summarize recent progress on autophagy, in particular, the pharmacological targeting of SQSTM1/p62 and TFEB in AILI.
Collapse
Affiliation(s)
- Kaitlyn Hinz
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Laddha AP, Wu H, Manautou JE. Deciphering Acetaminophen-Induced Hepatotoxicity: The Crucial Role of Transcription Factors like Nuclear Factor Erythroid 2-Related Factor 2 as Genetic Determinants of Susceptibility to Drug-Induced Liver Injury. Drug Metab Dispos 2024; 52:740-753. [PMID: 38857948 DOI: 10.1124/dmd.124.001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Acetaminophen (APAP) is the most commonly used over-the-counter medication throughout the world. At therapeutic doses, APAP has potent analgesic and antipyretic effects. The efficacy and safety of APAP are influenced by multifactorial processes dependent upon dosing, namely frequency and total dose. APAP poisoning by repeated ingestion of supratherapeutic doses, depletes glutathione stores in the liver and other organs capable of metabolic bioactivation, leading to hepatocellular death due to exhausted antioxidant defenses. Numerous genes, encompassing transcription factors and signaling pathways, have been identified as playing pivotal roles in APAP toxicity, with the liver being the primary organ studied due to its central role in APAP metabolism and injury. Nuclear factor erythroid 2-related factor 2 (NRF2) and its array of downstream responsive genes are crucial in counteracting APAP toxicity. NRF2, along with its negative regulator Kelch-like ECH-associated protein 1, plays a vital role in regulating intracellular redox homeostasis. This regulation is significant in modulating the oxidative stress, inflammation, and hepatocellular death induced by APAP. In this review, we provide an updated overview of the mechanisms through which NRF2 activation and signaling critically influence the threshold for developing APAP toxicity. We also describe how genetically modified rodent models for NRF2 and related genes have been pivotal in underscoring the significance of this antioxidant response pathway. While NRF2 is a primary focus, the article comprehensively explores other genetic factors involved in phase I and phase II metabolism of APAP, inflammation, oxidative stress, and related pathways that contribute to APAP toxicity, thereby providing a holistic understanding of the genetic landscape influencing susceptibility to this condition. SIGNIFICANCE STATEMENT: This review summarizes the genetic elements and signaling pathways underlying APAP-induced liver toxicity, focusing on the crucial protective role of the transcription factor NRF2. This review also delves into the genetic intricacies influencing APAP safety and potential liver harm. It also emphasizes the need for deeper insight into the molecular mechanisms of hepatotoxicity, especially the interplay of NRF2 with other pathways.
Collapse
Affiliation(s)
- Ankit P Laddha
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Hangyu Wu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
3
|
Balogun O, Shao D, Carson M, King T, Kosar K, Zhang R, Zeng G, Cornuet P, Goel C, Lee E, Patel G, Brooks E, Monga SP, Liu S, Nejak-Bowen K. Loss of β-catenin reveals a role for glutathione in regulating oxidative stress during cholestatic liver disease. Hepatol Commun 2024; 8:e0485. [PMID: 38967587 PMCID: PMC11227358 DOI: 10.1097/hc9.0000000000000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Cholestasis is an intractable liver disorder that results from impaired bile flow. We have previously shown that the Wnt/β-catenin signaling pathway regulates the progression of cholestatic liver disease through multiple mechanisms, including bile acid metabolism and hepatocyte proliferation. To further explore the impact of these functions during intrahepatic cholestasis, we exposed mice to a xenobiotic that causes selective biliary injury. METHODS α-naphthylisothiocyanate (ANIT) was administered to liver-specific knockout (KO) of β-catenin and wild-type mice in the diet. Mice were killed at 6 or 14 days to assess the severity of cholestatic liver disease, measure the expression of target genes, and perform biochemical analyses. RESULTS We found that the presence of β-catenin was protective against ANIT, as KO mice had a significantly lower survival rate than wild-type mice. Although serum markers of liver damage and total bile acid levels were similar between KO and wild-type mice, the KO had minor histological abnormalities, such as sinusoidal dilatation, concentric fibrosis around ducts, and decreased inflammation. Notably, both total glutathione levels and expression of glutathione-S-transferases, which catalyze the conjugation of ANIT to glutathione, were significantly decreased in KO after ANIT. Nuclear factor erythroid-derived 2-like 2, a master regulator of the antioxidant response, was activated in KO after ANIT as well as in a subset of patients with primary sclerosing cholangitis lacking activated β-catenin. Despite the activation of nuclear factor erythroid-derived 2-like 2, KO livers had increased lipid peroxidation and cell death, which likely contributed to mortality. CONCLUSIONS Loss of β-catenin leads to increased cellular injury and cell death during cholestasis through failure to neutralize oxidative stress, which may contribute to the pathology of this disease.
Collapse
Affiliation(s)
- Oluwashanu Balogun
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Shao
- Case-Western Reserve University, Departments of Biochemistry and Computer Science, Cleveland, Ohio, USA
| | - Matthew Carson
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thalia King
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karis Kosar
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rong Zhang
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gang Zeng
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela Cornuet
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chhavi Goel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth Lee
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Garima Patel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eva Brooks
- Duquesne University, School of Science and Engineering, Department of Biotechnology, Pittsburgh, Pennsylvania, USA
| | - Satdarshan P. Monga
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, Hepatology and Nutrition, Division of Gastroenterology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kari Nejak-Bowen
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Indumathi MC, Swetha K, Abhilasha KV, Siddappa S, Kumar SM, Prasad GK, Chen CH, Marathe GK. Selenium Ameliorates Acetaminophen-Induced Oxidative Stress via MAPK and Nrf2 Pathways in Mice. Biol Trace Elem Res 2024; 202:2598-2615. [PMID: 37702962 DOI: 10.1007/s12011-023-03845-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Overdose of acetaminophen (paracetamol), a widely used non-prescriptive analgesic and antipyretic medication, is one of the main causes of drug-induced acute liver failure around the world. Oxidative stress contributes to this hepatotoxicity. Antioxidants are known to protect the liver from oxidative stress. Selenium, a potent antioxidant, is a commonly used micronutrient. Here, we evaluated the protective effect of selenium on acetaminophen-induced hepatotoxicity. Treating Wistar albino mice with sodium selenite (1 mg/kg) before or after inducing hepatotoxicity with acetaminophen (150 mg/kg) significantly reduced the levels of liver injury biomarkers such as serum glutamate oxaloacetate transaminase and serum glutamate pyruvate transaminase. In addition, selenium-treated mice showed decreased levels of oxidative stress markers such as protein carbonyls and myeloperoxidase. Acetaminophen treatment stimulated all three mitogen-activated protein kinases (MAPKs) and Keap1 and decreased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 in liver and in isolated mouse peritoneal macrophages, which was reversed by selenium treatment. Our findings suggest that the reactive oxygen species-mediated Nrf2 and MAPK pathways are critical players in acetaminophen-induced hepatotoxicity. These key findings offer an alternative therapeutic target for addressing acetaminophen-induced hepatotoxicity.
Collapse
Affiliation(s)
| | - Kamatam Swetha
- Department of Studies in Biochemistry, 8J8C+98P, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | | | - Shiva Siddappa
- Division of Biochemistry, School of Life Sciences, 8MV2+MPG, Sri Shivarathreeshwara Nagara, JSS Academy of Higher Education and Research, Bannimantap A Layout, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Shivamadhaiah Manjula Kumar
- Department of Studies in Biochemistry, 8J8C+98P, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Govinda Keerthi Prasad
- Department of Studies in Biochemistry, 8J8C+98P, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, 8J8C+98P, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India.
- Department of Studies in Molecular Biology, 8J8C+JFP, University of Mysore, Manasagangotri, Mysore, 570006, Karnataka, India.
| |
Collapse
|
5
|
Liu FC, Yu HP, Lee HC, Chen CY, Liao CC. The Modulation of Phospho-Extracellular Signal-Regulated Kinase and Phospho-Protein Kinase B Signaling Pathways plus Activity of Macrophage-Stimulating Protein Contribute to the Protective Effect of Stachydrine on Acetaminophen-Induced Liver Injury. Int J Mol Sci 2024; 25:1484. [PMID: 38338766 PMCID: PMC10855734 DOI: 10.3390/ijms25031484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Stachydrine, a prominent bioactive alkaloid derived from Leonurus heterophyllus, is a significant herb in traditional medicine. It has been noted for its anti-inflammatory and antioxidant characteristics. Consequently, we conducted a study of its hepatoprotective effect and the fundamental mechanisms involved in acetaminophen (APAP)-induced liver injury, utilizing a mouse model. Mice were intraperitoneally administered a hepatotoxic dose of APAP (300 mg/kg). Thirty minutes after APAP administration, mice were treated with different concentrations of stachydrine (0, 2.5, 5, and 10 mg/kg). Animals were sacrificed 16 h after APAP injection for serum and liver tissue assays. APAP overdose significantly elevated the serum alanine transferase levels, hepatic pro-inflammatory cytokines, malondialdehyde activity, phospho-extracellular signal-regulated kinase (ERK), phospho-protein kinase B (AKT), and macrophage-stimulating protein expression. Stachydrine treatment significantly decreased these parameters in mice with APAP-induced liver damage. Our results suggest that stachydrine may be a promising beneficial target in the prevention of APAP-induced liver damage through attenuation of the inflammatory response, inhibition of the ERK and AKT pathways, and expression of macrophage-stimulating proteins.
Collapse
Affiliation(s)
- Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Yu Chen
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Wang Z, Zhou C, Zhang Y, Tian X, Wang H, Wu J, Jiang S. From synergy to resistance: Navigating the complex relationship between sorafenib and ferroptosis in hepatocellular carcinoma. Biomed Pharmacother 2024; 170:116074. [PMID: 38147732 DOI: 10.1016/j.biopha.2023.116074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major global health burden, and sorafenib, a multi-kinase inhibitor, has shown effectiveness in the treatment of HCC and is considered as the first-line therapy for advanced HCC. However, the response to sorafenib varies among patients, and the development of drug resistance poses a prevalent obstacle. Ferroptosis, a newly characterized form of cell death featured by iron-dependent lipid peroxidation, has emerged as a critical player in the reaction to sorafenib therapy in HCC. The induction of ferroptosis has been shown to augment the anticancer benefits of sorafenib. However, it has also been observed to contribute to sorafenib resistance. This review presents a comprehensive and thorough analysis that elucidates the intricate relationship between ferroptosis and sorafenib over recent years, aiming to formulate effective therapeutic approaches for liver cancer. Based on this exploration, we propose innovative strategies intended to overcome sorafenib resistance via targeted modulation of ferroptosis.
Collapse
Affiliation(s)
- Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunyang Zhou
- Department of Radiation Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yiming Zhang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, Shandong, China; College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
7
|
Zhong X, Song R, Shan D, Ren X, Zheng Y, Lv F, Deng Q, He Y, Li X, Li R, Yan L, She G. Discovery of hepatoprotective activity components from Thymus quinquecostatus celak. by molecular networking, biological evaluation and molecular dynamics studies. Bioorg Chem 2023; 140:106790. [PMID: 37604095 DOI: 10.1016/j.bioorg.2023.106790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Thymus quinquecostatus Celak. is an edible herb that widely cultivated in Asia and possesses hepatoprotective activity, but the underlying non-volatile components of this protective activity are not well studied. In this study, combining molecular networking visualization and bioassay-guided fractionation strategies, a pair of novel skeleton diterpenoid enantiomers, (+)- and (-)-thymutatusone A [(+)- and (-)-1], along with one new and one known biogenetically related compounds (2-3) and 16 other known compounds (4-19), were identified from T. quinquecostatus. Their structures were exhaustively characterized by comprehensive spectroscopic data, X-ray diffraction analysis, and ECD calculations. Compounds (±)-1, (-)-1, and (+)-1, with a rare tricyclo [7.3.1.02,7] tridecane skeleton, exhibited potent hepatoprotective activity in HepG2 cells injured by acetaminophen, with EC50 values of 11.5 ± 2.8, 8.4 ± 1.9, and 12.2 ± 0.3 μM respectively. They were more potent than positive drug bifendate (EC50 15.2 ± 1.3). Further, the underlying mechanism for the hepatoprotective activity of compound (-)-1 related to activating the Nrf 2 signaling pathway. What's more, molecular docking and molecular dynamics simulation analysis showed that compound (-)-1 could dock with the active site of Nrf 2 protein and form a stable system through hydrogen bonding. These results suggest that T. quinquecostatus can be used as a valuable source of hepatoprotective activity compounds.
Collapse
Affiliation(s)
- Xiangjian Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Dongjie Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Fang Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Ruiwen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Li Yan
- Analysis & Testing Center, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China.
| |
Collapse
|
8
|
Tian J, Zhang S, Li L, Lin X, Li Y, Zhao K, Zheng F, Chen Y, Yang Y, Wu T, Pang J. Febuxostat ameliorates APAP-induced acute liver injury by activating Keap1/Nrf2 and inhibiting TLR4/NF-κB p65 pathways. Exp Biol Med (Maywood) 2023; 248:1864-1876. [PMID: 38031247 PMCID: PMC10792428 DOI: 10.1177/15353702231211862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Excessive acetaminophen (APAP) application is a major cause of drug-induced liver injury (DILI). Febuxostat (Feb), a drug for reducing uric acid (UA) levels, was demonstrated to relieve hepatic inflammation and reverse organ functions. However, the effect of Feb on APAP-induced DILI and its mechanisms have not been fully explored. In this study, Feb (10 mg/kg) was given to mice by gavage 1 h after APAP (300 mg/kg, i.g.) induction. Serum and liver samples were collected 12 or 3 h after APAP challenge. Feb treatment was found to remarkably improve APAP-induced DILI, as evidenced by reduced serum ALT, AST and UA levels, pathomorphology, inflammatory, and oxidative responses. Consistently, treatment with Feb also reduced the cell injury induced by APAP in LO2 cells. Mechanistically, Feb induced GPX4 expression, activated the Keap1/Nrf2 pathway, and inhibited the TLR4/NF-κB p65 pathway. Feb also inhibited glutathione (GSH) depletion and Jun N-terminal kinase (JNK) activation in the early injury phase. Notably, pretreatment with Feb for 3 days also revealed preventive effects against APAP-induced DILI in mice. Overall, our data revealed a potential health impact of Feb on APAP-mediated DILI in vivo and in vitro, suggesting that Feb might be a potential candidate for treating DILI.
Collapse
Affiliation(s)
| | | | - Lu Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xueman Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongmei Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kunlu Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengxin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongjun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yang Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianxin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Mosayyeb Zadeh A, Mirghelenj SA, Daneshyar M, Eslami M, Karimi Torshizi MA, Zhandi M. Effects of dietary supplementation of tomato pomace (Solanum lycopersicum L.) and L-Arg on reproductive performance of aged male broiler breeders. Poult Sci 2023; 102:102614. [PMID: 36965255 PMCID: PMC10064435 DOI: 10.1016/j.psj.2023.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
This study aimed to investigate the effects of different dietary supplementation of tomato pomace (TP) and L-arginine (L-Arg) supplementation on sperm characteristics, reproductive performance, and semen biochemical components of aged commercial male broiler breeders. Thirty Ross 308 male broiler breeders (58 wk old) were provided and assigned to 5 dietary treatment groups, including control (CON), 5% TP (TPS-5), 10% TP (TPS-10), 15% TP (TPS-15), and L-Arg supplemented (10% above the recommendation, LAS-10). The results indicated that the semen volume increased in the TPS-15 group compared to that of the LAS-10 (and CON on wk 9) throughout the study (P < 0.05). The sperm concentration significantly increased in TPS-10 and TPS-15 groups in comparison to the other experimental groups. On wk 5 and 7, the sperm viability increased in all TPS groups compared to the CON and LAS-10, while on wk 9, it only increased in the TPS-10 group in comparison to the LAS-10 group (P < 0.05). The hypo-osmotic swelling test decreased in the LAS-10 group compared to the other experimental groups on wk 5 and all TPS groups on wk 7 and 9 (P < 0.05). The sperm total motility and forward progressive motility decreased in the LAS-10 group compared to the other experimental groups (P < 0.05). In contrast, unprogressive motility and immotile sperms were increased in the LAS-10 group compared to the other experimental groups (P < 0.05). In addition, the sperm penetration and fertility rate increased in TPS-10 and TPS-15 groups in comparison to CON and LAS-10 groups (P < 0.05). However, hatchability was reduced in the LAS-10 group (P < 0.05). The semen adenosine triphosphate increased in TPS-10, TPS-15, and LAS-10 groups compared to the CON (P < 0.05). Finally, the semen TAC and superoxidase dismutase decreased in the LAS-10 group (P < 0.05), while the glutathione peroxidase increased in the TPS-15 group (P < 0.05). In conclusion, 15% dietary TPS is recommended to improve the reproductive performance of aged commercial male broiler breeders.
Collapse
Affiliation(s)
- Amir Mosayyeb Zadeh
- Department of Animal Science, College of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Seyyed Ali Mirghelenj
- Department of Animal Science, College of Agriculture and Natural Resources, Urmia University, Urmia, Iran.
| | - Mohsen Daneshyar
- Department of Animal Science, College of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Mohsen Eslami
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Mahdi Zhandi
- Department of Animal Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|
10
|
Li H, Weng Q, Gong S, Zhang W, Wang J, Huang Y, Li Y, Guo J, Lan T. Kaempferol prevents acetaminophen-induced liver injury by suppressing hepatocyte ferroptosis via Nrf2 pathway activation. Food Funct 2023; 14:1884-1896. [PMID: 36723004 DOI: 10.1039/d2fo02716j] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) has become a growing public health problem. Ferroptosis, an iron-dependent form of cell death associated with lipid peroxide accumulation, has been recently implicated in AILI. The activation of the Nrf2 signaling pathway is a potential therapy for AILI. Kaempferol (KA), a flavonoid widely existing in edible plants, has been reported to exert profound anti-inflammatory and antioxidant activities. This study aimed to investigate whether KA exerts anti-AILI effects via the Nrf2 signaling pathway. Mice were fasted for 22 h and injected intraperitoneally with APAP (250 mg kg-1) to induce AILI. Mice were pre-injected intragastrically with KA for 2 h followed by APAP injection. The hepatic injury was observed by H&E staining. Biochemical parameters of the serum and liver were measured using kits. KA alleviated hepatic injury and inflammatory response in AILI mice and ameliorated APAP-induced hepatic iron overload and oxidative stress in mice. In addition, the protective effects of KA against APAP-induced hepatotoxicity were examined in L02 cells in vitro. Cell viability was assayed by the CCK8 assay. Mitochondrial reactive oxygen species (ROS) in L02 cells were detected by MitoSox fluorescence. KA reversed the APAP-induced decrease in cell viability and GSH levels and inhibited the accumulation of intracellular ROS. Furthermore, KA activated the Nrf2 pathway and upregulated Gpx4 in mouse livers and L02 cells to inhibit ferroptosis induced by APAP. Finally, molecular docking indicated the potential interaction of KA with Keap1. Taken together, KA ameliorated oxidative stress and ferroptosis-mediated AILI by activating Nrf2 signaling.
Collapse
Affiliation(s)
- Huiyi Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China.,Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Qiqing Weng
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China.,Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Shuai Gong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China.,Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Weixian Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China.,Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Jiaqi Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China.,Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Yuqiao Huang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China.,Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Yuanjun Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China.,Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Jiao Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China.,Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Tian Lan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou 510006, China. .,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China.,Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| |
Collapse
|
11
|
Targeting IKKβ Activity to Limit Sterile Inflammation in Acetaminophen-Induced Hepatotoxicity in Mice. Pharmaceutics 2023; 15:pharmaceutics15020710. [PMID: 36840032 PMCID: PMC9959252 DOI: 10.3390/pharmaceutics15020710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The kinase activity of inhibitory κB kinase β (IKKβ) acts as a signal transducer in the activating pathway of nuclear factor-κB (NF-κB), a master regulator of inflammation and cell death in the development of numerous hepatocellular injuries. However, the importance of IKKβ activity on acetaminophen (APAP)-induced hepatotoxicity remains to be defined. Here, a derivative of caffeic acid benzylamide (CABA) inhibited the kinase activity of IKKβ, as did IMD-0354 and sulfasalazine which show therapeutic efficacy against inflammatory diseases through a common mechanism: inhibiting IKKβ activity. To understand the importance of IKKβ activity in sterile inflammation during hepatotoxicity, C57BL/6 mice were treated with CABA, IMD-0354, or sulfasalazine after APAP overdose. These small-molecule inhibitors of IKKβ activity protected the APAP-challenged mice from necrotic injury around the centrilobular zone in the liver, and rescued the mice from hepatic damage-associated lethality. From a molecular perspective, IKKβ inhibitors directly interrupted sterile inflammation in the Kupffer cells of APAP-challenged mice, such as damage-associated molecular pattern (DAMP)-induced activation of NF-κB activity via IKKβ, and NF-κB-regulated expression of cytokines and chemokines. However, CABA did not affect the upstream pathogenic events, including oxidative stress with glutathione depletion in hepatocytes after APAP overdose. N-acetyl cysteine (NAC), the only FDA-approved antidote against APAP overdose, replenishes cellular levels of glutathione, but its limited efficacy is concerning in late-presenting patients who have already undergone oxidative stress in the liver. Taken together, we propose a novel hypothesis that chemical inhibition of IKKβ activity in sterile inflammation could mitigate APAP-induced hepatotoxicity in mice, and have the potential to complement NAC treatment in APAP overdoses.
Collapse
|
12
|
Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury. Antioxidants (Basel) 2023; 12:antiox12010158. [PMID: 36671020 PMCID: PMC9854665 DOI: 10.3390/antiox12010158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Acetaminophen (APAP) is the major cause of drug-induced liver injury, with limited treatment options. APAP overdose invokes excessive oxidative stress that triggers mitochondria-to-nucleus retrograde pathways, contributing to APAP-induced liver injury (AILI). Mesenchymal stem cell therapy is a promising tool for acute liver failure. Therefore, the purpose of this study was to investigate the beneficial effects of adipose-derived mesenchymal stem cell (AMSC) therapy on AILI and reveal the potential therapeutic mechanisms. C57BL/6 mice were used as the animal model and AML12 normal murine hepatocytes as the cellular model of APAP overdose. Immunohistochemical staining, Western blotting, immunofluorescence staining, and RNA sequencing assays were used for assessing the efficacy and validating mechanisms of AMSC therapy. We found AMSC therapy effectively ameliorated AILI, while delayed AMSC injection lost its efficacy related to the c-Jun N-terminal kinase (JNK)-mediated mitochondrial retrograde pathways. We further found that AMSC therapy inhibited JNK activation and mitochondrial translocation, reducing APAP-induced mitochondrial damage. The downregulation of activated ataxia telangiectasia-mutated (ATM) and DNA damage response proteins in AMSC-treated mouse liver indicated AMSCs blocked the JNK-ATM pathway. Overall, AMSCs may be an effective treatment for AILI by inhibiting the JNK-ATM mitochondrial retrograde pathway, which improves APAP-induced mitochondrial dysfunction and liver injury.
Collapse
|
13
|
Kim HY, Yoon HS, Heo AJ, Jung EJ, Ji CH, Mun SR, Lee MJ, Kwon YT, Park JW. Mitophagy and endoplasmic reticulum-phagy accelerated by a p62 ZZ ligand alleviates paracetamol-induced hepatotoxicity. Br J Pharmacol 2022; 180:1247-1266. [PMID: 36479690 DOI: 10.1111/bph.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Paracetamol (acetaminophen)-induced hepatotoxicity is the leading cause of drug-induced liver injury worldwide. Autophagy is a degradative process by which various cargoes are collected by the autophagic receptors such as p62/SQSTM1/Sequestosome-1 for lysosomal degradation. Here, we investigated the protective role of p62-dependent autophagy in paracetamol-induced liver injury. EXPERIMENTAL APPROACH Paracetamol-induced hepatotoxicity was induced by a single i.p. injection of paracetamol (500 mg·kg-1 ) in C57/BL6 male mice. YTK-2205 (20 mg·kg-1 ), a p62 agonist targeting ZZ domain, was co- or post-administered with paracetamol. Western blotting and immunocytochemistry were performed to explore the mechanism. KEY RESULTS N-terminal arginylation of the molecular chaperone calreticulin retro-translocated from the endoplasmic reticulum (ER) was induced in the livers undergoing paracetamol-induced hepatotoxicity, and YTK-2205 exhibited notable therapeutic efficacy in acute hepatotoxicity as assessed by the levels of serum alanine aminotransferase and hepatic necrosis. This efficacy was significantly attributed to accelerated degradation of ubiquitin (Ub) conjugates as well as damaged mitochondria (mitophagy) and endoplasmic reticulum (ER-phagy). In primary murine hepatocytes treated with paracetamol, YTK-2205 induced the co-localization of p62+ LC3+ phagophores to the sites of mitophagy and ER-phagy. A similar activity of YTK-2205 was observed with N-acetyl-p-benzoquinone imine, a putative toxic metabolite of paracetamol in Hep3B cells. CONCLUSION AND IMPLICATIONS Our results elucidated that p62-dependent autophagy plays a key role in the removal of cytotoxic materials such as damaged mitochondria in paracetamol-induced hepatotoxicity. Small molecule ligands to p62 may be developed into drugs to treat this pathological condition.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hee-Soo Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eui Jung Jung
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,AUTOTAC Bio Inc., 254, Changgyeonggung-ro, Jongno-gu, Seoul, Republic of Korea
| | - Su Ran Mun
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Ju Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,AUTOTAC Bio Inc., 254, Changgyeonggung-ro, Jongno-gu, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Wu Q, Yu P, Bi Y, Li Z, Guo W, Chen Y, Duan Z. Naringin regulates mitochondrial dynamics to protect against acetaminophen-induced hepatotoxicity by activating the AMPK/Nrf2 signaling pathway in vitro. Braz J Med Biol Res 2022; 55:e12040. [PMID: 36259797 PMCID: PMC9578698 DOI: 10.1590/1414-431x2022e12040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
Naringin (Nar) has been reported to exert potential hepatoprotective effects against acetaminophen (APAP)-induced injury. Mitochondrial dysfunction plays an important role in APAP-induced liver injury. However, the protective mechanism of Nar against mitochondrial damage has not been elucidated. Therefore, the aim of this study was to investigate the hepatoprotective effects of Nar against APAP and the possible mechanisms of actions. Primary rat hepatocytes and HepG2 cells were utilized to establish an in vitro model of APAP-induced hepatotoxicity. The effect of APAP and Nar on cell viability was evaluated by a CCK8 assay and detection of the concentrations of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase. The cellular concentrations of biomarkers of oxidative stress were measured by ELISA. The mRNA expression levels of APAP-related phase II enzymes were determined by real-time PCR. The protein levels of Nrf2, phospho (p)-AMPK/AMPK, and biomarkers of mitochondrial dynamics were determined by western blot analysis. The mitochondrial membrane potential (MMP) was measured by high-content analysis and confocal microscopy. JC-1 staining was performed to evaluate mitochondrial depolarization. Nar pretreatment notably prevented the marked APAP-induced hepatocyte injury, increases in oxidative stress marker expression, reductions in the expression of phase II enzymes, significant loss of MMP, mitochondrial depolarization, and mitochondrial fission in vitro. In conclusion, Nar alleviated APAP-induced hepatocyte and mitochondrial injury by activating the AMPK/Nrf2 pathway to reduce oxidative stress in vitro. Applying Nar for the treatment of APAP-induced liver injury might be promising.
Collapse
Affiliation(s)
- Qiao Wu
- Infection Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pengfei Yu
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Yanzhen Bi
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Zhijie Li
- Hepatobiliary Surgery Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wei Guo
- Infection Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Zhongping Duan
- Fourth Department of Liver Disease (Difficult & Complicated Liver Diseases and Artificial Liver Center), Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, China,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| |
Collapse
|
15
|
Ahmed HM, Shehata HH, El-Saeed GSM, Gabal HHA, El-Daly SM. Ameliorative effect of Lactobacillus rhamnosus GG on acetaminophen-induced hepatotoxicity via PKC/Nrf2/PGC-1α pathway. J Genet Eng Biotechnol 2022; 20:142. [PMID: 36201094 PMCID: PMC9537380 DOI: 10.1186/s43141-022-00422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/23/2022] [Indexed: 07/10/2024]
Abstract
Background Acetaminophen (APAP) overdose is a common cause of hepatotoxicity. Antioxidants like N-acetyl cysteine are recommended as a therapeutic option; nevertheless, it has limitations. The search for efficient alternatives is ongoing. Probiotics are live microorganisms that maintain a healthy gut microecology. Lactobacillus rhamnosus GG (LGG) is one of the widely used probiotics. Our study aimed to assess the protective and therapeutic effects of probiotic LGG on APAP-induced hepatotoxicity and evaluate the molecular pathways behind this effect. Methods Wistar Albino male rats were randomly distributed into the following experimental groups: group 1, non-treated rats (vehicle); group 2, rats received oral gavage of suspension of probiotic LGG (5 × 1010 CFU GG/0.5 ml in PBS) daily for 2 weeks (probiotic control); group 3, rats received APAP dose of 2 g/kg body weight (positive control); group 4, rats received oral gavage of suspension of probiotic LGG for 2 weeks followed by a single dose of APAP injection (prophylactic); and group 5, rats received a single dose of APAP and then 24 h later treated with oral gavage of probiotic LGG daily for 2 weeks (treatment). Results Our study revealed that administration of probiotic LGG (either as prophylactic or treatment) exhibited a remarkable reduction in APAP-induced liver injury as resembled by the decrease in liver enzymes (ALT and AST) and the histopathological features of liver sections. Moreover, the significant reduction in the oxidative marker malondialdehyde, along with the enhancement in glutathione reductase, and the significant reduction in inflammatory markers (nitric oxide and tumor necrosis factor-α) were all indicators of the efficiency of LGG in ameliorating the alterations accompanied with APAP-induced hepatotoxicity. Our findings also demonstrate that LGG administration boosted the expression of Nrf2 and PGC-1 while decreasing the expression of protein kinase C (PKC). As a result, the nuclear abundance of Nrf2 is increased, and the expression of various antioxidants is eventually upregulated. Conclusion Our study shows that probiotic LGG supplementation exerts a prophylactic and therapeutic effect against APAP-induced hepatotoxicity through modulating the expression of PKC and the Nrf2/PGC-1α signaling pathway and eventually suppressing oxidative damage from APAP overdose.
Collapse
Affiliation(s)
- Hend M Ahmed
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hanan H Shehata
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gamila S M El-Saeed
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hoda H Abou Gabal
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt. .,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt.
| |
Collapse
|
16
|
Guan S, Zhang R, Zhao Y, Meng Z, Lu J. 1,3-Dichloro-2-propanol induced ferroptosis through Nrf2/ARE signaling pathway in hepatocytes. ENVIRONMENTAL TOXICOLOGY 2022; 37:2515-2528. [PMID: 35870111 DOI: 10.1002/tox.23615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/16/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
1,3-Dichloro-2-propanol (1,3-DCP) is a representative chloropropane environmental contaminant with multiple toxicities. Ferroptosis is a novel iron-dependent form of regulated cell death that is closely associated with the accumulation of lipid peroxides, Fe2+ and reactive oxygen species (ROS). In this study, we found that 1,3-DCP could induce mouse liver injury via ferroptosis. Administrating of C57BL/6J mice with 12.5, 25, and 50 mg/kg 1,3-DCP for 4 weeks via oral gavage, the data showed that 1,3-DCP exposure led to the pathological changes in mouse livers, remarkably induced accumulation of malondialdehyde (MDA) and Iron, reduction of glutathione (GSH), and changed in the expression of ferroptosis marker proteins glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase-4 (ACSL4). Then, we also proved the results with HepG2 cells in vitro. The data showed that treatment 1,3-DCP significantly triggered the ferroptosis in vitro. Furthermore, we found that the ferroptosis-related signal pathways were significantly activated in mice livers and HepG2 cells in response to 1,3-DCP exposure. The data showed that 1,3-DCP induced ferroptosis by inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into nuclear and thereby suppressing the expression of its downstream target proteins including GPX4, ferritin heavy chain (FTH), ferroportin (FPN), cystine/glutamate transporter xCT (SLC7A11), and heme oxygenase 1 (HO-1). Taken together, our findings confirmed that 1,3-DCP induced ferroptosis via the Nrf2/ARE signaling pathway in hepatocytes. Our works provide new toxicity mechanisms of 1,3-DCP with ferroptosis on hepatocytes injury.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Yanan Zhao
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Zhuoqun Meng
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
17
|
Zhou Z, Wu Y, Hua W, Yan X, Li L, Zhu A, Qi J. Sappanone A ameliorates acetaminophen-induced acute liver injury in mice. Toxicology 2022; 480:153336. [PMID: 36126895 DOI: 10.1016/j.tox.2022.153336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
Sappanone A (SA), a homoisoflavonoid compound extracted from the heartwood of Caesalpinia sappan Linn., exerts anti-inflammatory and antioxidant activities. However, the effects of SA on acetaminophen (APAP) overdose-induced acute liver injury (ALI) have not been determined yet. This study aims to explore the protective effects of SA and the potential mechanisms of action. Mice were pretreated with SA (25, 50, and 100 mg/kg) by intraperitoneal (i.p.) injection for seven days prior to APAP (300 mg/kg, i.p.) administration. At 12 h after APAP injection, serum and liver samples were collected. Primary murine hepatocytes were used to investigate the underlying mechanisms. SA pretreatment dose-dependently attenuated APAP-induced ALI, as validated by reduced serum alanine/aspartate aminotransferase levels, histopathologic lesions, and oxidative stress. Consistently, pretreatment with SA reduced the formation of APAP protein adducts in damaged livers of mice. Mechanistically, SA could facilitate the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and thus promote cellular glutathione (GSH) synthesis. The hepatoprotective outcomes provided by SA were significantly abolished by treatment with ML385, a Nrf2 inhibitor. Besides, anti-inflammatory property of SA reduced inflammatory reaction in injured livers of mice. Of note, posttreatment with SA reveals significant therapeutic influences against APAP-induced ALI in mice. Collectively, our findings demonstrated that pretreated-SA ameliorated APAP-mediated ALI in mice, at least in part, by reducing the generation of APAP protein adducts via Nrf2-enhanced GSH synthesis, and by diminishing hepatic inflammation. Therefore, SA could be a potential hepatoprotective agent for treating ALI.
Collapse
Affiliation(s)
- Zixiong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China; Department of Pathology and Institute of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Yong Wu
- Department of Pathology and Institute of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Wenxi Hua
- Department of Pathology and Institute of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Xueqing Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Lanqian Li
- Department of Pathology and Institute of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Jing Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| |
Collapse
|
18
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
19
|
Amini N, Maleki M, Badavi M. Nephroprotective activity of naringin against chemical-induced toxicity and renal ischemia/reperfusion injury: A review. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:357-370. [PMID: 35782769 PMCID: PMC9121258 DOI: 10.22038/ajp.2022.19620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
Objective The kidney is well-known as the vital organ which is responsible for maintaining body homeostasis and secretion of toxic metabolites. Renal injury is accompanied by oxidative stress which results in cellular apoptosis, lipid peroxidation, and reduction of antioxidant levels. Plant extracts and their phytoconstituents, owing to free radical scavenging properties, seem to be valuable against modern synthetic and chemical drugs. Naringin is a flavonoid present in citrus fruits with pharmacologic effects including antioxidant, anti-inflammatory, and anti-apoptotic properties. This review summarizes the renoprotective effects of naringin and discusses mechanisms of its action against renal injury. Materials and Methods For this paper, original subject-related articles published up to October 2020 have been reviewed in the databases, including PubMed, Scopus, and Web of Science, and Google Scholar. Results Naringin increases antioxidant enzyme activity, and glutathione content, reduces lipid peroxidation and inhibits inflammatory cytokines. In the molecular investigation, naringin activates the Nrf-2 signaling, prevents apoptosis signaling, and inhibits the autophagy pathway. Besides, naringin could protect the kidney through modulating microRNA-10a in the kidney tissue in an acute kidney injury model. Conclusion This review recommends that naringin can be considered a promising candidate to treat kidney dysfunction induced by oxidative stress in the future.
Collapse
Affiliation(s)
- Negin Amini
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Maleki
- Department of Physiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Gheraibia S, Belattar N, Diab KA, Hassan ME, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Costus speciosus extract protects against the oxidative damage of zearalenone via modulation of inflammatory cytokines, Nrf2 and iNOS gene expression in rats. Toxicon 2022; 214:62-73. [PMID: 35597521 DOI: 10.1016/j.toxicon.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin that induces severe health disturbances in humans and animals. This study aimed to determine the bioactive compounds in Costus speciosus extract (CSE) using GC-MS and evaluate its protective capability against ZEN-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Six groups of male Sprague Dawley rats were treated orally for 15 days including the control group, CSE-treated groups at low (200 mg/kg b. w) or high (400 mg/kg b. w) dose, ZEN-treated group (40 μg/kg b. w), and the groups treated with ZEN plus the low or the high dose of CSE. Blood and tissue samples were collected for different assays and pathological analyses. The results of GC-MS indicated the identification of 6 compounds and Azulene was the major. Animals that received ZEN showed severe disturbances in serum biochemical, cytokines, oxidative stress indicators, mRNA expression of iNOS, Nrf2, and inflammatory-related genes. ZEN also increased micronucleated polychromatic erythrocytes (MNPCEs) and comet tail formation in bone marrow cells along with the disturbances in the histological architecture of the liver and kidney. Co-administration of CSE plus ZEN could normalize the majority of the tested parameters and the histological picture at a dose as low as 200 mg/kg b. w. Therefore, CSE protects against ZEN toxicity via its antioxidant activity, modulation of iNOS, inflammatory-related genes, and the Nrf2 pathway and it could be used in the endemic regions.
Collapse
Affiliation(s)
- Sara Gheraibia
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif, 1, Algeria
| | - Noureddine Belattar
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif, 1, Algeria
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Marwa E Hassan
- Toxicology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
21
|
Wang YP, Wang YD, Liu YP, Cao JX, Yang ML, Wang YF, Khan A, Zhao TR, Cheng GG. 6'- O-Caffeoylarbutin from Que Zui tea ameliorates acetaminophen-induced liver injury via enhancing antioxidant ability and regulating the PI3K signaling pathway. Food Funct 2022; 13:5299-5316. [PMID: 35441652 DOI: 10.1039/d2fo00507g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Que Zui tea (QT), a traditional herbal tea in China, has a significant hepatoprotective effect. 6'-O-Caffeoylarbutin (CA) is the most abundant chemical compound in the QT. However, the hepatoprotective effect of CA has not been investigated. This study is aimed to evaluate the protective effect of CA on acetaminophen (APAP) induced hepatotoxicity in vivo and in vitro and its possible underlying mechanism. In APAP-induced HepG-2 cells, CA inhibited intracellular ROS accumulation and cell apoptosis, and improved the expression of antioxidants including SOD, CAT and GSH. In APAP-administrated mice, CA pretreatment remarkably ameliorated the histopathological damage and inflammatory response, and antioxidant enzyme activity in the serum and liver tissues. Moreover, the immunohistochemistry and immunofluorescence assay results revealed that the CA markedly reduced ROS production and apoptosis, and activated antioxidant transcription factor Nrf2 in the liver. Meanwhile, molecular docking results showed that the strong binding force of CA and PI3K was due to the higher number of hydrogen- and π-bonds with active site residues. Notably, CA pretreatment significantly regulated the expression of PI3K, Akt, Nrf2, NQO1, HO-1, Bcl-2, Bax, caspase-3, and caspase-9 proteins in APAP-treated liver tissues. These data demonstrated that CA had a protective effect against APAP-induced hepatotoxicity via regulating the PI3K/Akt and Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yong-Peng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yu-Dan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China. .,National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China
| | - Ya-Ping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jian-Xin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Mei-Lian Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yi-Fen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Tian-Rui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Gui-Guang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
22
|
Guo J, Yan WR, Tang JK, Jin X, Xue HH, Wang T, Zhang LW, Sun QY, Liang ZX. Dietary phillygenin supplementation ameliorates aflatoxin B 1-induced oxidative stress, inflammation, and apoptosis in chicken liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113481. [PMID: 35405527 DOI: 10.1016/j.ecoenv.2022.113481] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 (AFB1), a mycotoxin contaminating food and feed, can trigger liver immune toxicity and threaten the poultry industry. Phillygenin (PHI) is a natural lignan derived primarily from Forsythia suspensa with hepatoprotective pharmacological and medicinal properties. This research aimed to investigate the preventive effects of PHI on the toxicity of AFB1 in the liver of chickens. Chickens were administered with AFB1 (2.8 mg/kg) and/or treated with PHI (24 mg/kg) for 33 days. The histopathological changes, serum biochemical indices, oxidative damage, inflammatory mediators, apoptosis, and activation of the NF-κB and Nrf2 signaling pathways were measured. Results revealed that dietary PHI ameliorated liver function indicators, reduced the malondialdehyde and inflammatory mediator production and the apoptotic cell number, and increased the antioxidant enzyme contents and Bcl-2 level. The quantitative realtime PCR and Western blot results revealed that PHI reduced p53, cytochrome c, Bax, caspase-9, and caspase-3 levels, normalized the NF-κB p65 phosphorylation, and upregulated the Nrf2 and its downstream genes expression in chicken liver. These results indicated that PHI has beneficial effects on AFB1-induced liver damage, oxidative damage, inflammatory response, apoptosis, and immunotoxicity by inhibiting NF-κB and activating the Nrf2 signaling pathway in chickens. This study provides new insight into the therapeutic uses of PHI.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Wen-Rui Yan
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian-Kai Tang
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiang Jin
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Huan-Huan Xue
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Tao Wang
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li-Wei Zhang
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Qian-Yun Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| | - Zhan-Xue Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
23
|
Gastrodin Alleviates Acetaminophen-Induced Liver Injury in a Mouse Model Through Inhibiting MAPK and Enhancing Nrf2 Pathways. Inflammation 2022; 45:1450-1462. [PMID: 35474551 DOI: 10.1007/s10753-021-01557-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
Gastrodin is a major active phenolic glycoside extract from Gastrodia elata, an important herb used in traditional medicine. Previous research has reported that gastrodin possesses anti-inflammatory and anti-oxidant properties. Therefore, we aimed to investigate its hepatoprotective effects and mechanisms on acetaminophen (APAP)-induced liver injury in a mouse model. Mice included in this study were intraperitoneally administered with a hepatotoxic APAP dose (300 mg/kg). At 30 min after APAP administration, gastrodin was intraperitoneally injected at concentrations of 0, 15, 30, and 45 mg/kg. Then, all mice were sacrificed at 16 h after APAP injection for further analysis. The results showed that gastrodin treatment ameliorated acute liver injury caused by APAP, as indicated by serum alanine aminotransferase level, hepatic myeloperoxidase activity, and cytokine (TNF-α, IL-1β, and IL-6) production. It also significantly decreased hepatic malondialdehyde activity but increased superoxide dismutase activity. In addition, gastrodin decreased ERK/JNK MAPK expression but promoted Nrf2 expression. These results demonstrated that gastrodin may be a potential therapeutic target for the prevention of APAP-induced hepatotoxicity via amelioration of the inflammatory response and oxidative stress, inhibition of ERK/JNK MAPK signaling pathways, and activation of Nrf2 expression levels.
Collapse
|
24
|
Ntamo Y, Ziqubu K, Chellan N, Nkambule BB, Nyambuya TM, Mazibuko-Mbeje SE, Gabuza KB, Orlando P, Tiano L, Dludla PV. Clinical use of N-acetyl cysteine during liver transplantation: Implications of oxidative stress and inflammation as therapeutic targets. Biomed Pharmacother 2022; 147:112638. [DOI: 10.1016/j.biopha.2022.112638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/09/2023] Open
|
25
|
Qian H, Bai Q, Yang X, Akakpo JY, Ji L, Yang L, Rülicke T, Zatloukal K, Jaeschke H, Ni HM, Ding WX. Dual roles of p62/SQSTM1 in the injury and recovery phases of acetaminophen-induced liver injury in mice. Acta Pharm Sin B 2021; 11:3791-3805. [PMID: 35024307 PMCID: PMC8727897 DOI: 10.1016/j.apsb.2021.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Acetaminophen (APAP) overdose can induce liver injury and is the most frequent cause of acute liver failure in the United States. We investigated the role of p62/SQSTM1 (referred to as p62) in APAP-induced liver injury (AILI) in mice. We found that the hepatic protein levels of p62 dramatically increased at 24 h after APAP treatment, which was inversely correlated with the hepatic levels of APAP-adducts. APAP also activated mTOR at 24 h, which is associated with increased cell proliferation. In contrast, p62 knockout (KO) mice showed increased hepatic levels of APAP-adducts detected by a specific antibody using Western blot analysis but decreased mTOR activation and cell proliferation with aggravated liver injury at 24 h after APAP treatment. Surprisingly, p62 KO mice recovered from AILI whereas the wild-type mice still sustained liver injury at 48 h. We found increased number of infiltrated macrophages in p62 KO mice that were accompanied with decreased hepatic von Willebrand factor (VWF) and platelet aggregation, which are associated with increased cell proliferation and improved liver injury at 48 h after APAP treatment. Our data indicate that p62 inhibits the late injury phase of AILI by increasing autophagic selective removal of APAP-adducts and mitochondria but impairs the recovery phase of AILI likely by enhancing hepatic blood coagulation.
Collapse
Key Words
- 4EBP-1, translational initiation factor 4E binding protein-1
- AILI, APAP-induced liver injury
- ALT, alanine aminotransferase
- APAP, acetaminophen
- APAP-AD, APAP-adducts
- Autophagy
- CLEC-2, C-type lectin-like receptor
- CYP2E1, cytochrome P450 2E
- Coagulation
- DILI
- GCL, glutamate cysteine ligase
- GSH, glutathione
- H&E, hematoxylin and eosin
- Hepatotoxicity
- KC, Kupffer cells
- KEAP1, Kelch-like ECH-associated protein-1
- KIR, KEAP1-interacting region
- KO, knockout
- LC3, microtubule-associated light chain 3
- Liver regeneration
- Macrophage
- NAC, N-acetylcysteine
- NAPQI, N-acetyl-p-benzoquinone imine
- NF-κB, nuclear factor-κB
- NPCs, non-parenchymal cells
- NQO1, NADPH quinone dehydrogenase 1
- NRF2, nuclear factor erythroid 2-related factor 2
- Platelet
- S6, ribosomal protein S6 kinase
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- VWF, von Willebrand factor
- WT, wild type
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Qingyun Bai
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Chemistry and Bioengineering, Yichun University, Yichun 336000, China
| | - Xiao Yang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jephte Y. Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna Veterinärplatz, Vienna 1210, Austria
| | - Kurt Zatloukal
- The Institute of Pathology, Medical University of Graz, Graz A-8036, Austria
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
26
|
Ghanim BY, Ahmad MI, Abdallah QM, Qatouseh LA, Qinna NA. Modulation of NRF2/ARE pathway- and cell death-related genes during drug-induced liver injury. Hum Exp Toxicol 2021; 40:2223-2236. [PMID: 34219507 DOI: 10.1177/09603271211027947] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transcriptional factor NRF2 is an emerging tool in reviewing mechanistic behavior of drug-specific injury pathways. Drug-induced liver injury (DILI) represents a major clinical concern that often manifests oxidative stress and cell death. Despite the pivotal role of NRF2 pathway in liver pathologies, it is questioned whether NRF2 activation or regulatory efficiency could be hindered in by the severity of DILI and progression of cell death. In this study, we evaluate NRF2 as a biomarker to DILI in comparison to severity of injury as well as explore stress mediating factors affecting Nrf2 expression. In vivo DILI model was established in C57BL/6 mice by acetaminophen (APAP) at different toxic doses, confirmed by dose-dependent liver pathological changes and accompanied with in vitro time- and dose-dependent depletion of GSH and SOD in isolated primary mouse hepatocytes. Increase in liver NRF2 translocation and cytosolic content was observed in 70 mg/kg APAP-treated mice. At this subtoxic dose, liver Nrf2 transcription was increased in mice by 18.3-fold, a prominent downregulation was seen in ARE (antioxidant response element) genes; Hmox1, Nqo1 and Glcm, and apoptotic Bcl2 regulating genes. In addition, upregulation in necrosis inducer Parp2 was associated to downregulation in Hmgb1. Collectively, expression of genes related to cell survival were regulated at mild APAP hepatotoxicity. By increasing APAP dose, hemorrhagic necrosis and impaired genetic transcription in both Nrf2 and several other genes were evident. In conclusion, NRF2/ARE system and cell death modulation is halted by the increase of chemical stress and found directly associated with DILI severity.
Collapse
Affiliation(s)
- B Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
| | - M I Ahmad
- Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Q M Abdallah
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - L A Qatouseh
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - N A Qinna
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
27
|
Chen Z, Tian L, Wang L, Ma X, Lei F, Chen X, Fu R. TRIM32 Inhibition Attenuates Apoptosis, Oxidative Stress, and Inflammatory Injury in Podocytes Induced by High Glucose by Modulating the Akt/GSK-3β/Nrf2 Pathway. Inflammation 2021; 45:992-1006. [PMID: 34783942 DOI: 10.1007/s10753-021-01597-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022]
Abstract
Hyperglycemia-induced oxidative stress in podocytes exerts a major role in the pathological process of diabetic nephropathy. Tripartite motif-containing protein 32 (TRIM32) has been reported to be a key protein in the modulation of cellular apoptosis and oxidative stress under various pathological processes. However, whether TRIM32 participates in the regulation of high glucose (HG)-induced injury in podocytes has not been investigated. This work aimed to assess the possible role of TRIM32 in mediating HG-induced apoptosis, oxidative stress, and inflammatory response in podocytes in vitro. Our results showed a marked increase in TRIM32 expression in HG-exposed podocytes and the glomeruli of diabetic mice. Loss-of-function experiments showed that TRIM32 knockdown improves the viability of HG-stimulated podocytes and suppresses HG-induced apoptosis, oxidative stress, and inflammatory responses in podocytes. Further investigation revealed that TRIM32 inhibition enhances the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, which is associated with the modulation of the Akt/glycogen synthase kinase-3β (GSK-3β) axis in podocytes following HG exposure. However, Akt suppression abrogated the TRIM32 knockdown-mediated activation of Nrf2 in HG-exposed podocytes. Nrf2 knockdown also markedly abolished the protective effects induced by TRIM32 inhibition o in HG-exposed podocytes. In summary, this work demonstrated that TRIM32 inhibition protects podocytes from HG-induced injury by potentiating Nrf2 signaling through modulation of Akt/GSK-3β signaling. The findings reveal the potential role of TRIM32 in mediating podocyte injury during the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Lifang Tian
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Li Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Xiaotao Ma
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Fuqian Lei
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Xianghui Chen
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China
| | - Rongguo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xincheng District, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
28
|
Sattari M, Ostadi A, Hassani S, Mazloumi Z, Noshad H, Mirnia K, Salek Maghsoudi A. Plasma Concentration of Taurine Changes following Acetaminophen Overdose in Male Patients during Hospitalization. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:297-306. [PMID: 34567163 PMCID: PMC8457743 DOI: 10.22037/ijpr.2020.113698.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Changes in plasma concentration of taurine during hospitalization of acetaminophen poisoned patients have not been studied. Hepatotoxicity is a common consequence of acetaminophen overdose that may lead to acute liver failure. Numerous biomarkers for drug-induced liver injury have been explored. All biomarkers are usually obtainable 48 h following acetaminophen overdose. We have already introduced taurine as a non-specific early biomarker of acetaminophen overdose. This study aimed to follow up changes in plasma concentration of taurine during the first three days of acetaminophen overdose. Sixty-four male patients suffering from acetaminophen overdose were selected for the study. Four blood samples were taken from the patients every 12 h. Sixty blood samples were also taken from sixty healthy humans. The plasma concentration of taurine in both groups was analyzed an already developed HPLC method. Analysis of regression showed a significant correlation between means of plasma concentrations of taurine and acetaminophen, aspartate aminotransferase, Alanine aminotransferase, glutathione peroxidase, and prothrombin time during hospitalization. The high plasma concentration of taurine, 6 h or more after acetaminophen overdose, could be a useful early indicator of liver damage.
Collapse
Affiliation(s)
- Mohammadreza Sattari
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ostadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Internal Medicine, Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Mazloumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Noshad
- Department of Nephrology, Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kayvan Mirnia
- Department of Neonatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Armin Salek Maghsoudi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Kawakami K, Moritani C, Hatanaka T, Suzaki E, Tsuboi S. Hepatoprotective Activity of Yellow Chinese Chive against Acetaminophen-Induced Acute Liver Injury via Nrf2 Signaling Pathway. J Nutr Sci Vitaminol (Tokyo) 2021; 66:357-363. [PMID: 32863309 DOI: 10.3177/jnsv.66.357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutathione, the most abundant intracellular antioxidant, protects cells against reactive oxygen species induced oxidative stress and regulates intracellular redox status. We previously demonstrated that yellow Chinese chive (ki-nira) increased the intracellular glutathione levels. Acetaminophen (APAP) is a commonly used analgesic. However, an overdose of APAP causes severe hepatotoxicity via depletion of the hepatic glutathione. In this study, we investigated the hepatoprotective effects of yellow Chinese chive extract (YCE) against APAP-induced hepatotoxicity in mice. YCE (25 or 100 mg/kg) was administered once daily for 7 d, and then APAP (700 mg/kg) was injected at 6 h before the mice were sacrificed. APAP treatment markedly increased the serum biological markers of liver injury such as alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase. Pretreatment with YCE significantly prevented the increases in the serum levels of these enzymes. Histopathological evaluation of the livers also revealed that YCE prevented APAP-induced centrilobular necrosis. Pretreatment with YCE dose-dependently elevated glutathione levels, but the difference was not significant. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in APAP-induced hepatotoxicity by regulating the antioxidant defense system. Therefore, we investigated the expression of Nrf2 and its target antioxidant enzyme. YCE led to an increased expression of Nrf2 and its target antioxidant enzymes, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (GPx), cystine uptake transporter (xCT), especially hemeoxygenase-1 (HO-1) in mice livers. These results suggest that YCE could induce HO-1 expression via activation of the Nrf2 antioxidant pathway, and protect against APAP-induced hepatotoxicity in mice.
Collapse
Affiliation(s)
| | | | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS)
| | | | | |
Collapse
|
30
|
Li Y, Xu J, Li D, Ma H, Mu Y, Zheng D, Huang X, Li L. Chemical Characterization and Hepatoprotective Effects of a Standardized Triterpenoid-Enriched Guava Leaf Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3626-3637. [PMID: 33733770 DOI: 10.1021/acs.jafc.0c07125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nutraceutical/pharmaceutical agents capable of maintaining redox and inflammation homeostasis are considered as candidates for the prevention and/or treatment of liver diseases. Psidium guajava (commonly known as guava) leaf is a commercially available functional food that has been reported to possess hepatoprotective property. However, the hepatoprotective constituents in guava leaf are not known. In the current study, a standardized triterpenoid-enriched extract of guava leaves (TGL) was developed. A new ursolic acid derivative, namely 2α,3β,6β,23,30-pentahydroxyurs-11,13(18)-dien-28,20β-olide (1), and 23 known triterpenoids were isolated and identified from TGL. The hepatoprotective effects of TGL were evaluated through a model using acetaminophen (APAP)-exposed C57BL/6 male mice. Pretreatment of TGL (75 and 150 mg/kg) restored the mice hepatic architecture, improved the serum ALT and AST levels, and reduced the hepatic ROS and MDA contents. Further molecular mechanistic study revealed that TGL modulated Nrf2 and MAPK signaling pathways to alleviate APAP-induced oxidative and inflammatory stress in liver. In addition, the new compound 1 from TGL showed protective effects against APAP-induced cytotoxicity via activation of the Nrf2 pathway in HepG2 cells. Overall, this is the first report on the hepatoprotective effects of a standardized triterpenoid-enriched extract of guava leaves, which supports its potential nutraceutical application in liver disease management.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
31
|
Huang S, Mo C, Zeng T, Lai Y, Zhou C, Xie S, Chen L, Wang Y, Chen Y, Huang S, Gao L, Lv Z. Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFβ1-Nrf2 signal pathway. Aging (Albany NY) 2021; 13:6592-6605. [PMID: 33707345 PMCID: PMC7993700 DOI: 10.18632/aging.202409] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
Acute hepatic damage is a severe condition characterized by inflammation and oxidative stress, which is a serious threat to people's life and health. But there are few effective treatments for acute liver injury. Therefore, safe and effective therapeutic approaches for preventing acute liver damage are urgently needed. Lupeol is a natural compound, which has significant antioxidant and anti-inflammatory properties in liver disease. However, the protective mechanism of lupeol against acute liver injury remains unclear. Here, zebrafish and mutant mice were utilized to investigate the protective effects of lupeol against lipopolysaccharide (LPS)/ D-galactosamine(D-GalN) -induced liver injury and the underlying mechanisms. We found that pretreatment with lupeol attenuated the LPS/D-GalN-induced liver injury by decreasing the infiltration of inflammatory cells and reducing pro-inflammatory cytokines. We also demonstrated that lupeol could protect injured liver from oxidative stress by downregulating the expression of TGFβ1 and upregulating Nrf2. Notably, our experimental results provided the support that lupeol effectively protected against LPS/D-GalN-induced acute liver injury via suppression of inflammation response and oxidative stress, which were largely dependent on the upregulation of the Nrf2 pathway via downregulating TGFβ1.
Collapse
Affiliation(s)
- Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shunwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Limei Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
32
|
Wang Y, Tian L, Wang Y, Zhao T, Khan A, Wang Y, Cao J, Cheng G. Protective effect of Que Zui tea hot-water and aqueous ethanol extract against acetaminophen-induced liver injury in mice via inhibition of oxidative stress, inflammation, and apoptosis. Food Funct 2021; 12:2468-2480. [PMID: 33650604 DOI: 10.1039/d0fo02894k] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tender leaves and buds of Vaccinium dunalianum Wight have been traditionally processed as folk tea, known as Que Zui tea (QT), with a wide range of benefits to humans. In this study, Que Zui tea hot-water extract (QTW) and aqueous-ethanol extract (QTE) were tested for their effectiveness to alleviate acetaminophen (APAP)-induced liver damage. QTW and QTE significantly inhibited the alanine aminotransaminase, aspartate aminotransaminase, tumor necrosis factor-α, interleukin-6, and interleukin-1β levels in the serum. Both extracts also ameliorated pathological damage and inhibited oxidative stress in the liver of APAP-induced mice. In addition, QTW and QTE activated the nuclear erythroid related factor 2 signal pathway, and inhibited mitogen-activated protein kinase activation. QTW and QTE also suppressed hepatocyte apoptosis by improvement of Bcl-2/Bax and inhibition of caspase-3 and caspase-9 expression. The results demonstrated that QTW and QTE could effectively protect APAP hepatotoxicity, which might be attributed to their antioxidant, anti-inflammatory and anti-apoptosis activities.
Collapse
Affiliation(s)
- Yongpeng Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bousquet J, Czarlewski W, Zuberbier T, Mullol J, Blain H, Cristol JP, De La Torre R, Pizarro Lozano N, Le Moing V, Bedbrook A, Agache I, Akdis CA, Canonica GW, Cruz AA, Fiocchi A, Fonseca JA, Fonseca S, Gemicioğlu B, Haahtela T, Iaccarino G, Ivancevich JC, Jutel M, Klimek L, Kraxner H, Kuna P, Larenas-Linnemann DE, Martineau A, Melén E, Okamoto Y, Papadopoulos NG, Pfaar O, Regateiro FS, Reynes J, Rolland Y, Rouadi PW, Samolinski B, Sheikh A, Toppila-Salmi S, Valiulis A, Choi HJ, Kim HJ, Anto JM. Potential Interplay between Nrf2, TRPA1, and TRPV1 in Nutrients for the Control of COVID-19. Int Arch Allergy Immunol 2021; 182:324-338. [PMID: 33567446 PMCID: PMC8018185 DOI: 10.1159/000514204] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
In this article, we propose that differences in COVID-19 morbidity may be associated with transient receptor potential ankyrin 1 (TRPA1) and/or transient receptor potential vanilloid 1 (TRPV1) activation as well as desensitization. TRPA1 and TRPV1 induce inflammation and play a key role in the physiology of almost all organs. They may augment sensory or vagal nerve discharges to evoke pain and several symptoms of COVID-19, including cough, nasal obstruction, vomiting, diarrhea, and, at least partly, sudden and severe loss of smell and taste. TRPA1 can be activated by reactive oxygen species and may therefore be up-regulated in COVID-19. TRPA1 and TRPV1 channels can be activated by pungent compounds including many nuclear factor (erythroid-derived 2) (Nrf2)-interacting foods leading to channel desensitization. Interactions between Nrf2-associated nutrients and TRPA1/TRPV1 may be partly responsible for the severity of some of the COVID-19 symptoms. The regulation by Nrf2 of TRPA1/TRPV1 is still unclear, but suggested from very limited clinical evidence. In COVID-19, it is proposed that rapid desensitization of TRAP1/TRPV1 by some ingredients in foods could reduce symptom severity and provide new therapeutic strategies.
Collapse
Affiliation(s)
- Jean Bousquet
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Charité, and Berlin Institute of Health, Comprehensive Allergy Center, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany, .,University Hospital and MACVIA France, Montpellier, France,
| | | | - Torsten Zuberbier
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Charité, and Berlin Institute of Health, Comprehensive Allergy Center, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic - Clinical & Experimental Respiratory Immunoallergy, IDIBAPS, CIBERES, Universitat de Barcelona, Barcelona, Spain
| | - Hubert Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
| | - Jean-Paul Cristol
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de, Montpellier, France
| | - Rafael De La Torre
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.,IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut Toxicologia, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | - Anna Bedbrook
- University Hospital and MACVIA France, Montpellier, France.,MASK-air, Montpellier, France
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - G Walter Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS and Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Alvaro A Cruz
- Fundação ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Brazil
| | - Alessandro Fiocchi
- Division of Allergy, The Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Joao A Fonseca
- CINTESIS, Center for Research in Health Technologies and Information Systems, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,MEDIDA, Lda, Porto, Portugal
| | - Susana Fonseca
- GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, Faculty of Sciences, University of Porto, Vila do Conde, Portugal
| | - Bilun Gemicioğlu
- Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Guido Iaccarino
- Interdepartmental Center of Research on Hypertension and Related Conditions CIRIAPA, Federico II University, Napoli, Italy
| | | | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University and ALL-MED Medical Research Institute, Wrocław, Poland
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Helga Kraxner
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Piotr Kuna
- Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | - Désirée E Larenas-Linnemann
- Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, Mexico City, Mexico
| | - Adrian Martineau
- Institute for Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital, University of Manchester, Manchester, United Kingdom.,Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou," University of Athens, Athens, Greece
| | - Oliver Pfaar
- Section of Rhinology and Allergy, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Frederico S Regateiro
- Allergy and Clinical Immunology Unit, Centro Hospitalar e Universitário de Coimbra, Faculty of Medicine, Institute of Immunology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, ICBR - Institute for Clinical and Biomedical Research, CIBB, University of Coimbra, Coimbra, Portugal
| | - Jacques Reynes
- Maladies Infectieuses et Tropicales, CHU, Montpellier, France
| | | | - Philip W Rouadi
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Boleslaw Samolinski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Aziz Sheikh
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Arunas Valiulis
- Vilnius University Faculty of Medicine, Institute of Clinical Medicine & Institute of Health Sciences, Vilnius, Lithuania
| | - Hak-Jong Choi
- Research and Development Division, Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hyun Ju Kim
- Strategy and Planning Division, SME Service Department, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Josep M Anto
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut Toxicologia, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,ISGlobAL, Barcelona, Centre for Research in Environmental Epidemiology, Barcelona, Spain
| |
Collapse
|
34
|
Zhou Z, Qi J, Yang D, Yang MS, Jeong H, Lim CW, Kim JW, Kim B. Exogenous activation of toll-like receptor 5 signaling mitigates acetaminophen-induced hepatotoxicity in mice. Toxicol Lett 2021; 342:58-72. [PMID: 33571619 DOI: 10.1016/j.toxlet.2021.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) poisoning is the most common cause of drug-induced acute liver injury (ALI). Our results showed that toll-like receptor 5 (TLR5) was abundantly expressed in hepatocytes and dramatically downregulated in the toxic mouse livers. Hence, we herein investigated the role of TLR5 signaling after APAP overdose. Mice were intraperitoneally (i.p.) injected with APAP to induce ALI, and then injected with flagellin at one hour after APAP administration. Flagellin attenuated APAP-induced ALI based on decreased histopathologic lesions, serum biochemical, oxidative stress, and inflammation. Furthermore, the protective effects of flagellin were abolished by TH1020 (a TLR5 antagonist) treatment. These results suggest that flagellin exerted protective effects on ALI via TLR5 activation. Mechanistically, flagellin injection promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus in hepatocytes. Consistent with the in vivo results, flagellin increased the activation of Nrf2 in hepatocytes, resulting in decreased APAP toxicity. ML385, a selective inhibitor of Nrf2, abolished the flagellin-mediated hepatoprotective effects in damaged livers and hepatocytes. Additionally, the flagellin-induced Nrf2 translocation was dependent upon the activation of TLR5-JNK/p38 pathways. These findings suggest that TLR5 signaling-induced Nrf2 activation, at least partially, contributed to the protection against APAP-induced ALI by flagellin treatment.
Collapse
Affiliation(s)
- Zixiong Zhou
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China
| | - Jing Qi
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China
| | - Daram Yang
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Myeon-Sik Yang
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Hyuneui Jeong
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| |
Collapse
|
35
|
|
36
|
Ding CH, Zhu H. Isatidis Folium alleviates acetaminophen-induced liver injury in mice by enhancing the endogenous antioxidant system. ENVIRONMENTAL TOXICOLOGY 2020; 35:1251-1259. [PMID: 32677766 DOI: 10.1002/tox.22990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/11/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Isatidis Folium (IF) has been clinically combined with acetaminophen (APAP), but the rationality of combinational therapy is still ambiguous. In the present study, the protective effect and related mechanism of IF on APAP-induced hepatotoxicity were evaluated. Hepatic histopathology and blood biochemistry investigations clearly demonstrated that IF could restore APAP-induced hepatotoxicity. Liver distribution study indicated that the hepatoprotective effect of IF on APAP is attributed to the reduction of N-acetyl-p-benzoquinone imine (NAPQI) in liver, which is a known hepatotoxic metabolite of APAP. Further study suggested the reduction is not via decreasing the generation of NAPQI through inhibiting the enzyme activities of CYP 1A2, 2E1, and 3A4 but via accelerating the transformation of NAPQI to NAPQI-GSH by promoting GSH and decreasing GSSG contents in liver. Furthermore, IF significantly enhanced the hepatic activities of GSH-associated enzymes in APAP-treated mice. In summary, IF could alleviate APAP-induced hepatotoxicity by reducing the content of NAPQI via enhancing the level of GSH and the followed generation of NAPQI-GSH which might be ascribed to the upregulation of GSH-associated enzymes.
Collapse
Affiliation(s)
- Chuan-Hua Ding
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - He Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
37
|
Ye N, Lv Z, Dai H, Huang Z, Shi F. Dietary alpha-lipoic acid supplementation improves spermatogenesis and semen quality via antioxidant and anti-apoptotic effects in aged breeder roosters. Theriogenology 2020; 159:20-27. [PMID: 33113440 DOI: 10.1016/j.theriogenology.2020.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022]
Abstract
The purpose of the present study was to investigate the effects of dietary alpha-lipoic acid (ALA) supplementation on the reproductive performance of aged breeder roosters. Sixteen 50-wk-old ROSS 308 breeder roosters were randomly allocated to two groups: roosters received a basal diet (CON), or a basal diet supplemented with 300 mg/kg of ALA (ALA). The results indicated that dietary ALA supplementation significantly increased sperm concentration, motility, viability, and membrane functional integrity. ALA also dramatically increased seminiferous tubule epithelial height (SEH) and testis scores. The ALA group had a higher serum concentration of testosterone than the CON group. ALA supplementation remarkably increased total antioxidant capacity (T-AOC), the enzyme activities of glutathione peroxidase (GPx), and catalase (CAT) in the testes; following a decrease in malondialdehyde (MDA) levels. In addition, we noted significant upregulation of Nrf2 mRNA and protein expression of and mRNA expression of its Downstream Genes (GPx1, NQO1, and GCLC), as well as significant downregulation of Keap1 mRNA expression in testicular tissue of aged roosters with ALA supplementation. The protein expression of Caspase 3 was downregulated and the protein expression of proliferating cell nuclear antigen (PCNA) was upregulated by ALA supplementation. The mRNA expression of spermatogenesis-related genes (ER1, AKT1, and Cav1) were markedly augmented in the ALA group compared with the CON group. In conclusion, dietary ALA supplementation enhanced the testicular antioxidant capacity through the Nrf2-signaling pathway, exerted anti-apoptotic effects, and improved the reproductive performance of aged roosters.
Collapse
Affiliation(s)
- Nanwei Ye
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
38
|
Minsart C, Rorive S, Lemmers A, Quertinmont E, Gustot T. N-acetylcysteine and glycyrrhizin combination: Benefit outcome in a murine model of acetaminophen-induced liver failure. World J Hepatol 2020; 12:596-618. [PMID: 33033567 PMCID: PMC7522565 DOI: 10.4254/wjh.v12.i9.596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/29/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acetaminophen overdose is the most frequent cause of drug-induced liver failure in developed countries. Substantial progress has been made in understanding the mechanism of hepatocellular injury, but N-acetylcysteine remains the only effective treatment despite its short therapeutic window. Thus, other hepatoprotective drugs are needed for the delayed treatment of acetaminophen-induced hepatotoxicity. Our interest focused on glycyrrhizin for its role as an inhibitor of high mobility group box 1 (HMGB1) protein, a member of the family of damage-associated molecular pattern, known to play an important pathological role in various diseases.
AIM To investigate the efficacy of the N-acetylcysteine/glycyrrhizin combination compared to N-acetylcysteine alone in the prevention of liver toxicity.
METHODS Eight-week-old C57BL/6J wild-type female mice were used for all our experiments. Mice fasted for 15 h were treated with acetaminophen (500 mg/kg) or vehicle (phosphate-buffered saline) by intraperitoneal injection and separated into the following groups: Glycyrrhizin (200 mg/kg); N-acetylcysteine (150 mg/kg); and N-acetylcysteine/glycyrrhizin. In all groups, mice were sacrificed 12 h following acetaminophen administration. The assessment of hepatotoxicity was performed by measuring plasma levels of alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase. Hepatotoxicity was also evaluated by histological examination of hematoxylin and eosin-stained tissues sections. Survival rates were compared between various groups using Kaplan-Meier curves.
RESULTS Consistent with data published in the literature, we confirmed that intraperitoneal administration of acetaminophen (500 mg/kg) in mice induced severe liver injury as evidenced by increases in alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase but also by liver necrosis score. Glycyrrhizin administration was shown to reduce the release of HMGB1 and significantly decreased the severity of liver injury. Thus, the co-administration of glycyrrhizin and N-acetylcysteine was investigated. Administered concomitantly with acetaminophen, the combination significantly reduced the severity of liver injury. Delayed administration of the combination of drugs, 2 h or 6 h after acetaminophen, also induced a significant decrease in hepatocyte necrosis compared to mice treated with N-acetylcysteine alone. In addition, administration of N-acetylcysteine/glycyrrhizin combination was associated with an improved survival rate compared to mice treated with only N-acetylcysteine.
CONCLUSION We demonstrate that, compared to N-acetylcysteine alone, co-administration of glycyrrhizin decreases the liver necrosis score and improves survival in a murine model of acetaminophen-induced liver injury. Our study opens a potential new therapeutic pathway in the prevention of acetaminophen hepatotoxicity.
Collapse
Affiliation(s)
- Charlotte Minsart
- Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Sandrine Rorive
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
- DIAPATH-Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies 6041, Belgium
| | - Arnaud Lemmers
- Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
- Department of Gastroenterology, Hepato Pancreatology and Digestive Oncology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Eric Quertinmont
- Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Thierry Gustot
- Laboratory of Experimental Gastroenterology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
- Department of Gastroenterology, Hepato Pancreatology and Digestive Oncology, Erasme Hospital, Université Libre de Bruxelles, Brussels 1070, Belgium
- Inserm Unité 1149, Centre de Recherche sur l’inflammation, Paris 75006, France
- UMR S_1149, Université Paris Diderot, Paris 75006, France
| |
Collapse
|
39
|
(+)-Clausenamide protects against drug-induced liver injury by inhibiting hepatocyte ferroptosis. Cell Death Dis 2020; 11:781. [PMID: 32951003 PMCID: PMC7502081 DOI: 10.1038/s41419-020-02961-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury is the major cause of acute liver failure. However, the underlying mechanisms seem to be multifaceted and remain poorly understood, resulting in few effective therapies. Here, we report a novel mechanism that contributes to acetaminophen-induced hepatotoxicity through the induction of ferroptosis, a distinctive form of programmed cell death. We subsequently identified therapies protective against acetaminophen-induced liver damage and found that (+)-clausenamide ((+)-CLA), an active alkaloid isolated from the leaves of Clausena lansium (Lour.) Skeels, inhibited acetaminophen-induced hepatocyte ferroptosis both in vivo and in vitro. Consistently, (+)-CLA significantly alleviated acetaminophen-induced or erastin-induced hepatic pathological damages, hepatic dysfunctions and excessive production of lipid peroxidation both in cultured hepatic cell lines and mouse liver. Furthermore, treatment with (+)-CLA reduced the mRNA level of prostaglandin endoperoxide synthase 2 while it increased the protein level of glutathione peroxidase 4 in hepatocytes and mouse liver, confirming that the inhibition of ferroptosis contributes to the protective effect of (+)-CLA on drug-induced liver damage. We further revealed that (+)-CLA specifically reacted with the Cys-151 residue of Keap1, which blocked Nrf2 ubiquitylation and resulted in an increased Nrf2 stability, thereby leading to the activation of the Keap1–Nrf2 pathway to prevent drug-induced hepatocyte ferroptosis. Our studies illustrate the innovative mechanisms of acetaminophen-induced liver damage and present a novel intervention strategy to treat drug overdose by using (+)-CLA.
Collapse
|
40
|
Agarwood Alcohol Extract Ameliorates Isoproterenol-Induced Myocardial Ischemia by Inhibiting Oxidation and Apoptosis. Cardiol Res Pract 2020; 2020:3640815. [PMID: 32695503 PMCID: PMC7368238 DOI: 10.1155/2020/3640815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/19/2020] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
Agarwood is a traditional medicine used for treating some diseases, including painful and ischemic diseases. This study was carried out to investigate the potential cardioprotective effect of the whole-tree agarwood-inducing technique-produced agarwood alcohol extract (WTAAE) on isoproterenol- (ISO-) induced myocardial ischemia (MI) in rats and explore the underlying molecular mechanisms. Compared to the MI group, WTAAE pretreatment significantly improved ST wave abnormal-elevation, mitigated myocardial histological damage; decreased creatinine kinase (CK), lactate dehydrogenase (LDH), alanine transaminase (ALT), and aspartate transaminase (AST) levels; reduced hydrogen peroxide (H2O2) and lipid peroxide (LPO) production; and increased total antioxidant capacity (T-AOC) and catalase (CAT) activities. Moreover, agarwood alcohol extracts (AAEs) markedly enhanced the mRNA levels of Nrf2-ARE pathway, and Bcl-2 reduced the apoptotic Bax family mRNA expressions. In addition, the effect of WTAAE was greater than that of wild agarwood alcohol extract (WAAE) and burning-chisel-drilling agarwood alcohol extract (FBAAE). All of these data indicate that WTAAE exerted the protective effects of MI, and its mechanism was associated with upregulating Nrf2-ARE and suppressing Bcl-2 pathways.
Collapse
|
41
|
Mechanism of protection of rat hepatocytes from acetaminophen-induced cellular damage by ethanol extract of Aerva lanata. Interdiscip Toxicol 2020; 12:169-179. [PMID: 32461720 PMCID: PMC7247370 DOI: 10.2478/intox-2019-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/29/2019] [Indexed: 12/01/2022] Open
Abstract
The aim of this study is to evaluate the protective effect of ethanol extract of Aerva lanata (EEAL) in preventing acetaminophen induced liver toxicity. EEAL was prepared and its hepatoprotective effect was studied in both isolated primary hepatocytes in vitro and in Sprague Dawley rats in vivo. For in vivo studies, the animals were grouped as Group I – Control; Group II – ACN (2 g/kg b.w.); Group III – EEAL (50 mg/kg b.w.) + ACN (2 g/kg b.w.), Group IV – EEAL (100 mg/kg b.w.) + ACN (2 g/kg b.w.). Extracellular activities of the enzymes liver aminotransferease (GOT, GPT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in isolated hepatocytes and rat plasma were studied colorimetrically. Expression of GST, Nrf2, COX 1 & COX2 genes in rat liver were evaluated by RT-PCR. The results showed that ACN induced down-regulation of Nrf2 and upregulation of GST gene expression, which were modulated by EEAL treatment. GOT, GPT, ALP and LDH levels were found to be lowered in both hepatocyte culture media and plasma following EEAL treatment. In addition, the medium GOT and GPT levels were diminished following EEAL treatment only. Moreover, only ALP and LDH in serum appeared to be at normal level following EEAL treatment, whereas GOT and GPT showed levels lower than control. ACN treatment increased the expression of pro-inflammatory COX 1 and COX 2 genes and the levels of these genes were reduced by EEAL treatment. EEAL pre-treated rats exposed to ACN were found to retain normal hepatic structure compared to ACN alone treated rats. From these results it can be concluded that ethanol extract of A. lanata possesses both anti-inflammatory and hepatoprotective activity.
Collapse
|
42
|
Yang R, Song C, Chen J, Zhou L, Jiang X, Cao X, Sun Y, Zhang Q. Limonin ameliorates acetaminophen-induced hepatotoxicity by activating Nrf2 antioxidative pathway and inhibiting NF-κB inflammatory response via upregulating Sirt1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153211. [PMID: 32259676 DOI: 10.1016/j.phymed.2020.153211] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Limonin, a bioactive compound from citrus plants, exerts antioxidant activities, however its therapeutic potential in acetaminophen (APAP)-induced hepatotoxicity remains unclear. PURPOSE Our study aims to investigate the protective effect of limonin on APAP-induced hepatotoxicity and illuminate the underlying mechanisms. STUDY design In vitro, we chose L-02 cells to establish in vitro APAP-induced liver injury model. L-02 cells were treated with APAP (7.5 mM) for 24 h after pre-incubation with limonin (10, 25, 50 μM) or NAC (250 μM) for 2 h. In vivo, we used C57BL/6 mice as an in vivo APAP-induced liver injury model. C57BL/6 mice with pre-treatment of limonin (40, 80 mg/kg) or NAC (150 mg/kg) for 1 h, were given with a single dose of APAP (300 mg/kg). METHODS After pre-incubation with limonin (10, 25, 50 μM) for 2 h, L-02 cells were treated with APAP (7.5 mM) for 24 h.The experiments in vitro included MTT assay, Annexin V/PI staining, measurement of reactive oxygen species (ROS), quantitative real-time PCR analysis, Western blot analysis, immunofluorescence microscopy and analysis of LDH activity. Transfection of Nrf2 or Sirt1 siRNA was also conducted in vitro. In vivo, C57BL/6 mice with pre-treatment of limonin (40, 80 mg/kg) or NAC (150 mg/kg) for 1 h, were given with a single dose of APAP (300 mg/kg). Mice were sacrificed at 4, 12 h after APAP poisoning, and analysis of ALT and AST in serum, GSH level in liver tissues, liver histological observation and immunohistochemistry were performed. RESULTS Limonin increased the cell viability and alleviated APAP-induced apoptosis in hepatocytes. Limonin also inhibited APAP-induced mitochondrial-mediated apoptosis by decreasing the ratio of Bax/Bcl-2, recovery of mitochondrial membrane potential (MMP), inhibiting ROS production and cleavage of caspase-3 in L-02 cells. Moreover, limonin induced activation of Nrf2 and increased protein expression and mRNA levels of its downstream targets, including HO-1, NQO1 and GCLC/GCLM. The inhibition of limonin on apoptosis and promotion on Nrf2 antioxidative pathway were lessened after the application of Nrf2 siRNA. In addition, limonin inhibited NF-κB transcriptional activation, NF-κB-regulated genes and protein expression of inflammatory related proteins iNOS and COX2. Furthermore, limonin increased the protein expression of Sirt1. Sirt1 siRNA transfection confirmed that limonin activated Nrf2 antioxidative pathway and inhibited NF-κB inflammatory response by upregulating Sirt1. Finally, we established APAP-induced liver injury in vivo and demonstrated that limonin alleviated APAP-induced hepatotoxicity by activating Nrf2 antioxidative signals and inhibiting NF-κB inflammatory response via upregulating Sirt1. CONCLUSION In summary, this study documented that limonin mitigated APAP-induced hepatotoxicity by activating Nrf2 antioxidative pathway and inhibiting NF-κB inflammatory response via upregulating Sirt1, and demonstrated that limonin had therapeutic promise in APAP-induced liver injury.
Collapse
Affiliation(s)
- Runyu Yang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Changqin Song
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lvqi Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiubo Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaomei Cao
- Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China; Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China; Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
43
|
Shu Y, He D, Li W, Wang M, Zhao S, Liu L, Cao Z, Liu R, Huang Y, Li H, Yang X, Lu C, Liu Y. Hepatoprotective Effect of Citrus aurantium L. Against APAP-induced Liver Injury by Regulating Liver Lipid Metabolism and Apoptosis. Int J Biol Sci 2020; 16:752-765. [PMID: 32071546 PMCID: PMC7019131 DOI: 10.7150/ijbs.40612] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP) refers to a medication used to manage pain and fever symptoms, but it always causes liver injury when overdosed. Zhishi, dried young fruit of Citrus aurantium L., is a famous Citrus herbal medicine in Asian countries which is rich in dietary phenolic substances. In this study, the mechanism of Zhishi protected against APAP-induced liver injury was studied more deeply by metabolomic strategy and pharmacological study. The metabolomics results demonstrated that Zhishi can prevent the APAP-induced liver injury model by regulating liver metabolic disorders in glycerophospholipid metabolism, fatty acid biosynthesis and glycerolipid metabolism. Moreover, it is confirmed that Zhishi blocked apoptosis of APAP-induced BRL-3A cell by simultaneously regulating p53 up-regulated apoptosis regulator (PUMA), AMPK-SIRT1 and JNK1 signaling pathways. Our findings indicated that Zhishi exhibited a hepaprotective effect against APAP-induced liver necrosis by inhibiting the PUMA and reversing disorder of liver lipid metabolism which could assist in improving the clinical outcomes of chemical-induced liver injury.
Collapse
Affiliation(s)
- Yisong Shu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan He
- Patent Examination Cooperation (Tianjin) Center of the Patent Office, Tianjin, 300304, China
| | - Wen Li
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Menglei Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Linlin Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiwen Cao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yujuan Huang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui Li
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xueqing Yang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanyan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
44
|
Li Y, Xu J, Li D, Ma H, Mu Y, Huang X, Li L. Guavinoside B from Psidium guajava alleviates acetaminophen-induced liver injury via regulating the Nrf2 and JNK signaling pathways. Food Funct 2020; 11:8297-8308. [DOI: 10.1039/d0fo01338b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GUB, a main phenolic compound present in guava fruits, could alleviate APAP-induced liver injury in vitro and in vivo by activating the Nrf2 signaling pathway and inhibiting the JNK signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Microbial Pharmaceuticals
- College of Life and Health Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology
- College of Life and Health Sciences
- Northeastern University
- Shenyang
- P. R. China
| | - Dongli Li
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Hang Ma
- Bioactive Botanical Research Laboratory
- Department of Biomedical and Pharmaceutical Sciences
- College of Pharmacy
- University of Rhode Island
- Kingston
| | - Yu Mu
- Institute of Microbial Pharmaceuticals
- College of Life and Health Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals
- College of Life and Health Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Liya Li
- Institute of Microbial Pharmaceuticals
- College of Life and Health Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| |
Collapse
|
45
|
Güvenç M, Cellat M, Gökçek İ, Özkan H, Arkalı G, Yakan A, Yurdagül Özsoy Ş, Aksakal M. Nobiletin attenuates acetaminophen-induced hepatorenal toxicity in rats. J Biochem Mol Toxicol 2019; 34:e22427. [PMID: 31777137 DOI: 10.1002/jbt.22427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/22/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
The study aimed to examine the effects of nobiletin on the toxicity model induced with acetaminophen (APAP). For this purpose, 24 adult male rats were equally divided into four groups. The groups were the control group (group 1); dimethyl sulfoxide only, the APAP group (group 2) received a single dose of APAP 1000 mg/kg on the 10th day of experiment; the Nobiletin group (group 3), nobiletin (10 mg/kg) for 10 days; and the APAP + Nobiletin group (group 4), nobiletin (10 mg/kg) for 10 days with a single dose of APAP (1000 mg/kg) administered on the 10th day and the experiment ended after 48 hours. At the end of the study, a significant increase in malondialdehyde, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels and a significant decrease in glutathione levels, glutathione peroxidase activities and nuclear factor erythroid-derived 2-like 2 (Nrf-2) and heme oxygenase-1 (HO-1) expressions were observed with APAP application in liver and kidney tissues. Serum aspartate transaminase (AST), alanine transaminase (ALT), urea, and creatinine levels were also significantly increased in the APAP group. However, nobiletin treatment in group 4 reversed oxidative stress and inflammatory and histopathological signs caused by APAP. It is concluded that nobiletin may be a beneficial substance that confers hepatorenal protection to APAP-induced toxicity via antioxidant and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey
| | - İshak Gökçek
- Department of Physiology, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Hüseyin Özkan
- Department of Genetics, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Gözde Arkalı
- Department of Physiology, Faculty of Veterinary Medicine, Firat University, Elazığ, Turkey
| | - Akın Yakan
- Department of Genetics, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Şule Yurdagül Özsoy
- Department of Pathology, Faculty of Veterinary Medicine, Adnan Menderes University, Aydın, Turkey
| | - Mesut Aksakal
- Department of Physiology, Faculty of Veterinary Medicine, Firat University, Elazığ, Turkey
| |
Collapse
|
46
|
Feng Y, Cui R, Li Z, Zhang X, Jia Y, Zhang X, Shi J, Qu K, Liu C, Zhang J. Methane Alleviates Acetaminophen-Induced Liver Injury by Inhibiting Inflammation, Oxidative Stress, Endoplasmic Reticulum Stress, and Apoptosis through the Nrf2/HO-1/NQO1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7067619. [PMID: 31781345 PMCID: PMC6875424 DOI: 10.1155/2019/7067619] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
Abstract
Acetaminophen- (APAP-) induced hepatic injury is an important clinical challenge. Oxidative stress, inflammation, apoptosis, and endoplasmic reticulum stress (ERS) contribute to the pathogenesis. Methane has potential anti-inflammatory, antioxidant, and antiapoptotic properties. This project was aimed at studying the protective effects and relative mechanisms of methane in APAP-induced liver injury. In the in vivo experiment, C57BL/6 mice were treated with APAP (400 mg/kg) to induce hepatic injury followed by methane-rich saline (MRS) 10 ml/kg i.p. after 12 and 24 h. We observed that MRS alleviated the histopathological lesions in the liver, decreased serum aminotransferase levels, reduced the levels of inflammatory cytokines, suppressed the nuclear factor-κB expression. Further, we found that MRS relieved oxidative stress by regulating the Nrf2/HO-1/NQO1 signaling pathway and their downstream products after APAP challenge. MRS also regulated proteins associated with ERS-induced apoptosis. In the in vitro experiment, the L-02 cell line was treated with APAP (10 mM) to induce hepatic injury. We found that a methane-rich medium decreased the levels of reactive oxygen species (DHE fluorescent staining), inhibited apoptosis (cell flow test), and regulated the Nrf2/HO-1/NQO1 signaling pathway. Our data indicated that MRS prevented APAP-induced hepatic injury via anti-inflammatory, antioxidant, anti-ERS, and antiapoptotic properties involving the Nrf2/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Yang Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
- Department of Immunology, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046, China
| | - Ruixia Cui
- Department of ICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
| | - Zeyu Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
| | - Xia Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
| | - Yifan Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
| | - Jinghong Shi
- Department of Immunology, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
- Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
- Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, China
| |
Collapse
|
47
|
Taniguchi M, Miyamoto H, Tokunaga A, Fumoto S, Tanaka T, Nishida K. Evaluation of mRNA expression of drug-metabolizing enzymes in acetaminophen-induced hepatotoxicity using a three-dimensional hepatocyte culture system. Xenobiotica 2019; 50:654-662. [PMID: 31631733 DOI: 10.1080/00498254.2019.1683258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. The expression and activity of drug-metabolizing enzymes are known to affect the pharmacokinetics of drugs metabolized in the liver. Here, we assessed the effect of acetaminophen (APAP)-induced hepatotoxicity on the mRNA expression of drug-metabolizing enzymes and elucidated the underlying mechanism using three-dimensional (3D) cultures of HepG2 cells.2. 3D culture cells enabled us to establish an in vitro model of APAP-induced hepatotoxicity which showed the increase in N-acetyl-p-benzoquinone imine production, reactive oxygen species (ROS) generation and cellular injury.3. In this 3D culture model, APAP treatment significantly increased the mRNA expression of drug-metabolizing enzymes (cytochrome P450 [CYP]3A4, CYP2E1 and UDP-glucuronosyltransferase 1A6) and their nuclear receptors (pregnane X receptor and constitutive androstane receptor) compared with untreated cells. Treatment with N-acetylcysteine, a therapeutic agent for APAP-induced hepatotoxicity, suppressed these increases. In addition, the mRNA expression of drug-metabolizing enzymes and nuclear receptors were elevated depending on the concentration of H2O2, one of ROS involved in the development of APAP-induced hepatotoxicity. The mRNA expression of nuclear receptors increased before that of drug-metabolizing enzymes.4. In conclusion, ROS may induce the mRNA expression of nuclear receptors and promote the transcription of drug-metabolizing enzymes in the in vitro model of APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Mariko Taniguchi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ayako Tokunaga
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
48
|
Kumagai Y, Akiyama M, Unoki T. Adaptive Responses to Electrophilic Stress and Reactive Sulfur Species as their Regulator Molecules. Toxicol Res 2019; 35:303-310. [PMID: 31636841 PMCID: PMC6791667 DOI: 10.5487/tr.2019.35.4.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
We are exposed to numerous xenobiotic electrophiles on a daily basis through the environment, lifestyle, and dietary habits. Although such reactive species have been associated with detrimental effects, recent accumulated evidence indicates that xenobiotic electrophiles appear to act as signaling molecules. In this review, we introduce our findings on 1) activation of various redox signaling pathways involved in cell proliferation, detoxification/excretion of electrophiles, quality control of cellular proteins, and cell survival during exposure to xenobiotic electrophiles at low concentrations through covalent modification of thiol groups in sensor proteins, and 2) negative regulation of reactive sulfur species (RSS) in the modulation of redox signaling and toxicity caused by xenobiotic electrophiles.
Collapse
Affiliation(s)
- Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takamitsu Unoki
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto, Japan
| |
Collapse
|
49
|
Ramos-Tovar E, Muriel P. Free radicals, antioxidants, nuclear factor-E2-related factor-2 and liver damage. J Appl Toxicol 2019; 40:151-168. [PMID: 31389060 DOI: 10.1002/jat.3880] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress is proposed to be a critical factor in various diseases, including liver pathologies. Antioxidants derived from medicinal plants have been studied extensively and are relevant to many illnesses, including liver diseases. Several hepatic disorders, such as viral hepatitis and alcoholic or nonalcoholic steatohepatitis, involve free radicals/oxidative stress as agents that cause or at least exacerbate liver injury, which can result in chronic liver diseases, such as liver fibrosis, cirrhosis and end-stage hepatocellular carcinoma. In this scenario, nuclear factor-E2-related factor-2 (Nrf2) appears to be an essential factor to counteract or attenuate oxidative or nitrosative stress in hepatic cells. In fact, a growing body of evidence indicates that Nrf2 plays complex and multicellular roles in hepatic inflammation, fibrosis, hepatocarcinogenesis and regeneration via the induction of its target genes. Inflammation is the most common feature of chronic liver diseases, triggering fibrosis, cirrhosis and hepatocellular carcinoma. Increasing evidence indicates that Nrf2 counteracts the proinflammatory process by modulating the recruitment of inflammatory cells and inducing the endogenous antioxidant response of the cell. In this review, the interactions between antioxidant and inflammatory molecular pathways are analyzed.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
50
|
Motawi TK, Ahmed SA, El-Boghdady NA, Metwally NS, Nasr NN. Protective effects of betanin against paracetamol and diclofenac induced neurotoxicity and endocrine disruption in rats. Biomarkers 2019; 24:645-651. [PMID: 31305161 DOI: 10.1080/1354750x.2019.1642958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Context: Overconsumption of paracetamol (PAR) and diclofenac (DF) have been reported to induce neurotoxicity and endocrine disruption. Objective: The current study was designed to explore the protective potential of betanin against PAR and DF inducing neurotoxicity and endocrine disruption in a rat model. Material and Methods: Forty rats were equally divided into five groups: group I served as control, group II received PAR (400 mg/kg), group III received PAR plus betanin (25 mg/kg), group IV received DF (10 mg/kg) and group V received DF plus betanin orally for 28 consecutive days. Thyroid axis hormones, sex hormone, neurotransmitters, paraoxonase-1, hemeoxygenase-1 and nuclear factor-2 were measured by ELISA. While, the oxidative stress markers were colorimetrically estimated. Moreover, DNA damage and histopathological picture of the brains were investigated. Results: A marked reduction in thyroid axis hormones, brain neurotransmitters and serum testosterone as well as enhanced oxidative stress and brain DNA damage accompanied by drastic changes in the brain histopathological picture were recorded in the challenged PAR and DF groups. Betanin supplementation ameliorated most of the biochemical and histopathological changes induced by PAR or DF. Conclusion: The study suggests betanin of potential protective effects against neurotoxicity and endocrine disruption induced by PAR and DF overconsumption.
Collapse
Affiliation(s)
- Tarek K Motawi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Samia A Ahmed
- Department of Therapeutic Chemistry, National Research Center , Giza , Egypt
| | - Noha A El-Boghdady
- Department of Biochemistry, Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Nadia S Metwally
- Department of Therapeutic Chemistry, National Research Center , Giza , Egypt
| | - Noha N Nasr
- Department of Therapeutic Chemistry, National Research Center , Giza , Egypt
| |
Collapse
|