1
|
Krogman WL, Woodard T, McKay RSF. Anesthetic Mechanisms: Synergistic Interactions With Lipid Rafts and Voltage-Gated Sodium Channels. Anesth Analg 2024; 139:92-106. [PMID: 37968836 DOI: 10.1213/ane.0000000000006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Despite successfully utilizing anesthetics for over 150 years, the mechanism of action remains relatively unknown. Recent studies have shown promising results, but due to the complex interactions between anesthetics and their targets, there remains a clear need for further mechanistic research. We know that lipophilicity is directly connected to anesthetic potency since lipid solubility relates to anesthetic partition into the membrane. However, clinically relevant concentrations of anesthetics do not significantly affect lipid bilayers but continue to influence various molecular targets. Lipid rafts are derived from liquid-ordered phases of the plasma membrane that contain increased concentrations of cholesterol and sphingomyelin and act as staging platforms for membrane proteins, including ion channels. Although anesthetics do not perturb membranes at clinically relevant concentrations, they have recently been shown to target lipid rafts. In this review, we summarize current research on how different types of anesthetics-local, inhalational, and intravenous-bind and affect both lipid rafts and voltage-gated sodium channels, one of their major targets, and how those effects synergize to cause anesthesia and analgesia. Local anesthetics block voltage-gated sodium channel pores while also disrupting lipid packing in ordered membranes. Inhalational anesthetics bind to the channel pore and the voltage-sensing domain while causing an increase in the number, size, and diameter of lipid rafts. Intravenous anesthetics bind to the channel primarily at the voltage-sensing domain and the selectivity filter, while causing lipid raft perturbation. These changes in lipid nanodomain structure possibly give proteins access to substrates that have translocated as a result of these structural alterations, resulting in lipid-driven anesthesia. Overall, anesthetics can impact channel activity either through direct interaction with the channel, indirectly through the lipid raft, or both. Together, these result in decreased sodium ion flux into the cell, disrupting action potentials and producing anesthetic effects. However, more research is needed to elucidate the indirect mechanisms associated with channel disruption through the lipid raft, as not much is known about anionic lipid products and their influence over voltage-gated sodium channels. Anesthetics' effect on S-palmitoylation, a promising mechanism for direct and indirect influence over voltage-gated sodium channels, is another auspicious avenue of research. Understanding the mechanisms of different types of anesthetics will allow anesthesiologists greater flexibility and more specificity when treating patients.
Collapse
Affiliation(s)
- William L Krogman
- From the Department of Anesthesiology, University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | | | | |
Collapse
|
2
|
Dupas T, Vergnaud A, Pelé T, Blangy-Letheule A, Aillerie V, Bouaud M, Erraud A, Maillard A, Hassoun D, Persello A, Lecomte J, Rivière M, Tessier A, Leroux AA, Rozec B, Denis M, Lauzier B. O-GlcNAcylation levels remain stable regardless of the anaesthesia in healthy rats. Sci Rep 2024; 14:10669. [PMID: 38724577 PMCID: PMC11082205 DOI: 10.1038/s41598-024-61445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.
Collapse
Affiliation(s)
- Thomas Dupas
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France.
| | - Amandine Vergnaud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Thomas Pelé
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | | | - Virginie Aillerie
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Martin Bouaud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Angélique Erraud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Anaïs Maillard
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Dorian Hassoun
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Antoine Persello
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Jules Lecomte
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Matthieu Rivière
- Faculté des Sciences et des Techniques, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, CNRS, Université de Nantes, Nantes, France
| | - Arnaud Tessier
- Faculté des Sciences et des Techniques, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, CNRS, Université de Nantes, Nantes, France
| | - Aurélia A Leroux
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
- Oniris, 44300, Nantes, France
| | - Bertrand Rozec
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Manon Denis
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Benjamin Lauzier
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| |
Collapse
|
3
|
Jang IS, Nakamura M, Nonaka K, Noda M, Kotani N, Katsurabayashi S, Nagami H, Akaike N. Protein Kinase A Is Responsible for the Presynaptic Inhibition of Glycinergic and Glutamatergic Transmissions by Xenon in Rat Spinal Cord and Hippocampal CA3 Neurons. J Pharmacol Exp Ther 2023; 386:331-343. [PMID: 37391223 DOI: 10.1124/jpet.123.001599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023] Open
Abstract
The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd2+, extracellular Ca2+, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS). Moreover, Xe inhibited evoked glycinergic transmission, which was canceled by KT5720. Like glycinergic transmission, spontaneous and evoked glutamatergic transmissions were also inhibited by Xe in a KT5720-sensitive manner. Our results suggest that Xe decreases glycinergic and glutamatergic spontaneous and evoked transmissions at the presynaptic level in a PKA-dependent manner. These presynaptic responses are independent of Ca2+ dynamics. We conclude that PKA can be the main molecular target of Xe in the inhibitory effects on both inhibitory and excitatory neurotransmitter release. SIGNIFICANCE STATEMENT: Spontaneous and evoked glycinergic and glutamatergic transmissions were investigated using the whole-cell patch clamp technique in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xenon (Xe) significantly inhibited glycinergic and glutamatergic transmission presynaptically. As a signaling mechanism, protein kinase A was responsible for the inhibitory effects of Xe on both glycine and glutamate release. These results may help understand how Xe modulates neurotransmitter release and exerts its excellent anesthetic properties.
Collapse
Affiliation(s)
- Il-Sung Jang
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Michiko Nakamura
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Kiku Nonaka
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Mami Noda
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Naoki Kotani
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Shutaro Katsurabayashi
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Hideaki Nagami
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Norio Akaike
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| |
Collapse
|
4
|
Younes S, Mourad N, Salla M, Rahal M, Hammoudi Halat D. Potassium Ion Channels in Glioma: From Basic Knowledge into Therapeutic Applications. MEMBRANES 2023; 13:434. [PMID: 37103862 PMCID: PMC10144598 DOI: 10.3390/membranes13040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Ion channels, specifically those controlling the flux of potassium across cell membranes, have recently been shown to exhibit an important role in the pathophysiology of glioma, the most common primary central nervous system tumor with a poor prognosis. Potassium channels are grouped into four subfamilies differing by their domain structure, gating mechanisms, and functions. Pertinent literature indicates the vital functions of potassium channels in many aspects of glioma carcinogenesis, including proliferation, migration, and apoptosis. The dysfunction of potassium channels can result in pro-proliferative signals that are highly related to calcium signaling as well. Moreover, this dysfunction can feed into migration and metastasis, most likely by increasing the osmotic pressure of cells allowing the cells to initiate the "escape" and "invasion" of capillaries. Reducing the expression or channel blockage has shown efficacy in reducing the proliferation and infiltration of glioma cells as well as inducing apoptosis, priming several approaches to target potassium channels in gliomas pharmacologically. This review summarizes the current knowledge on potassium channels, their contribution to oncogenic transformations in glioma, and the existing perspectives on utilizing them as potential targets for therapy.
Collapse
Affiliation(s)
- Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
| | - Nisreen Mourad
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa 146404, Lebanon;
| | - Mohamad Rahal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
- Academic Quality Department, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
5
|
Keshavarz S, Nemati M, Saied Salehi M, Naseh M. The impact of anesthetic drugs on hemodynamic parameters and neurological outcomes following temporal middle cerebral artery occlusion in rats. Neuroreport 2023; 34:199-204. [PMID: 36789841 PMCID: PMC10516172 DOI: 10.1097/wnr.0000000000001863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 02/16/2023]
Abstract
The induction of ischemic stroke in the experimental model requires general anesthesia. One of the factors that can be effective in the size of ischemic brain lesions and neurological outcomes is the type of anesthesia. So, the current study was designed to compare the impacts of the most important and widely used anesthetics including halothane, isoflurane, and chloral hydrate on the transient middle cerebral artery occlusion (MCAO) outcomes. Adult Male Sprague-Dawley rats were randomly divided into three groups as follows: (1) MCAO + halothane group, (2) MCAO + isoflurane group, and (3) MCAO + chloral hydrate group. After 24 h, the mortality rate, infarct size, tissue swelling, neurological function, hemodynamic, and arterial blood gas parameters were assessed. Our finding showed that 60 min MCAO rats anesthetized with chloral hydrate significantly increased mortality rate, infarct size, tissue swelling, and neurological deficits compared with halothane and isoflurane anesthetics after 24 h of MCAO. Also, chloral hydrate caused a significant decrease in mean arterial pressure and arterial pO2 compared to halothane and isoflurane anesthetics. On the basis of the current data, we concluded that chloral hydrate increased cerebral infarct volume and neurological outcomes and reduced hemodynamic and metabolic parameters compared with halothane and isoflurane-anesthetized rats temporal MCAO.
Collapse
Affiliation(s)
- Somaye Keshavarz
- Histomorphometry and Stereology Research Center
- Department of Physiology
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
6
|
Piao L, Na OH, Seo EH, Hong SW, Sohn KM, Kwon Y, Lee SH, Kim SH. Effects of general anaesthesia with an inhalational anaesthetic agent on the expression of exosomes in rats. Int J Med Sci 2022; 19:1399-1407. [PMID: 36035371 PMCID: PMC9413565 DOI: 10.7150/ijms.72565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022] Open
Abstract
Background: We hypothesized that the expression of exosomes under general anaesthesia with an inhalational anaesthetic agent would be changed. The study was designed to confirm the effect of general anesthesia with an inhalational anaesthetic agent on the expression of exosomes in rats. Methods: After intraperitoneal administration for the mixture of ketamine and xylazine, tracheal intubation was performed. Just before the connection to ventilator, Control group and Anaesthesia group, according to anaesthesia with isoflurane, were allocated. The expressions of exosomes were checked in bronchoalveolar lavage (BAL), the blood and the tissues from the lung and the brain. Cytokines in the blood were also assessed. Results: The expressions of cluster of differentiation (CD)63 and CD81 as markers for the exosomes in the blood was increased after anaesthesia with isoflurane (CD63, 0.078 ± 0.057 % in Control group vs. 0.180 ± 0.036 % in Anaesthesia group, p = 0.02; CD81, 0.028 ± 0.034 % in Control group vs. 0.245 ± 0.054 % in Anaesthesia group, p < 0.01). However, the increased expression of them were not checked in BAL, and the tissues from the lung and the brain. The cytokines in the blood did not show any significant difference before and after anaesthesia with isoflurane. Conclusion: General anaesthesia with an inhalational anaesthetic agent increased the expression of exosomes in the blood. However, the change was limited in the blood, not the alveoli and the brain.
Collapse
Affiliation(s)
- Liyun Piao
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea
| | - Og-Heui Na
- Department of Medicine, Jeju National University Graduate School, Jeju, Korea
| | - Eun-Hye Seo
- BK21 plus, Department of Cellular and Molecular Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Seung-Wan Hong
- Department of Anesthesiology and Pain medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Kyo-Min Sohn
- Department of Anesthesiology and Pain medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Yubi Kwon
- Department of Anesthesiology and Pain medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Seung-Hyun Lee
- Department of Microbiology, Konkuk University School of Medicine, Seoul, Korea
- Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea
| | - Seong-Hyop Kim
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea
- Department of Anesthesiology and Pain medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
- Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Beta-Site Amyloid Precursor Protein-Cleaving Enzyme Inhibition Partly Restores Sevoflurane-Induced Deficits on Synaptic Plasticity and Spine Loss. Int J Mol Sci 2022; 23:ijms23126637. [PMID: 35743082 PMCID: PMC9223703 DOI: 10.3390/ijms23126637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Evidence indicates that inhalative anesthetics enhance the β-site amyloid precursor protein (APP)-cleaving enzyme (BACE) activity, increase amyloid beta 1-42 (Aβ1–42) aggregation, and modulate dendritic spine dynamics. However, the mechanisms of inhalative anesthetics on hippocampal dendritic spine plasticity and BACE-dependent APP processing remain unclear. In this study, hippocampal slices were incubated with equipotent isoflurane (iso), sevoflurane (sevo), or xenon (Xe) with/without pretreatment of the BACE inhibitor LY2886721 (LY). Thereafter, CA1 dendritic spine density, APP processing-related molecule expressions, nectin-3 levels, and long-term potentiation (LTP) were tested. The nectin-3 downregulation on LTP and dendritic spines were evaluated. Sevo treatment increased hippocampal mouse Aβ1–42 (mAβ1–42), abolished CA1-LTP, and decreased spine density and nectin-3 expressions in the CA1 region. Furthermore, CA1-nectin-3 knockdown blocked LTP and reduced spine density. Iso treatment decreased spine density and attenuated LTP. Although Xe blocked LTP, it did not affect spine density, mAβ1–42, or nectin-3. Finally, antagonizing BACE activity partly restored sevo-induced deficits. Taken together, our study suggests that sevo partly elevates BACE activity and interferes with synaptic remodeling, whereas iso mildly modulates synaptic changes in the CA1 region of the hippocampus. On the other hand, Xe does not alternate dendritic spine remodeling.
Collapse
|
8
|
Kim G, Nakamura M, Cho JH, Nam S, Jang IS. Sevoflurane modulation of tetrodotoxin-resistant Na+ channels in small-sized dorsal root ganglion neurons of rats. Neuroreport 2021; 32:1335-1340. [PMID: 34718245 DOI: 10.1097/wnr.0000000000001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Volatile anesthetics are widely used for general anesthesia during surgical operations. Voltage-gated Na+ channels expressed in central neurons are major targets for volatile anesthetics; but it is unclear whether these drugs modulate native tetrodotoxin-resistant (TTX-R) Na+ channels, which are involved in the development and maintenance of inflammatory pain. METHODS In this study, we examined the effects of sevoflurane on TTX-R Na+ currents (INa) in acutely isolated rat dorsal root ganglion neurons, using a whole-cell patch-clamp technique. RESULTS Sevoflurane slightly potentiated the peak amplitude of transient TTX-R INa but more potently inhibited slow voltage-ramp-induced persistent INa in a concentration-dependent manner. Sevoflurane (0.86 ± 0.02 mM) (1) slightly shifted the steady-state fast inactivation relationship to hyperpolarizing ranges without affecting the voltage-activation relationship, (2) reduced the extent of use-dependent inhibition of Na+ channels, (3) accelerated the onset of inactivation and (4) delayed the recovery from inactivation of TTX-R Na+ channels. Thus, sevoflurane has diverse effects on TTX-R Na+ channels expressed in nociceptive neurons. CONCLUSIONS The present results suggest that the inhibition of persistent INa and the modulation of the voltage dependence and inactivation might be, at least in part, responsible for the analgesic effects elicited by sevoflurane.
Collapse
Affiliation(s)
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | | | | | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Jakšová J, Rác M, Bokor B, Petřík I, Novák O, Reichelt M, Mithöfer A, Pavlovič A. Anaesthetic diethyl ether impairs long-distance electrical and jasmonate signaling in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:311-321. [PMID: 34826706 DOI: 10.1016/j.plaphy.2021.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
General volatile anaesthetics (GVA) inhibit electrical signal propagation in animal neurons. Although plants do not have neurons, they generate and propagate electrical signals systemically from a local damaged leaf to neighbouring leaves. This systemic electrical signal propagation is mediated by ligand-gated glutamate receptor-like (GLR) channels. Here, we investigated the effect of GVA diethyl ether on the systemic electrical and further downstream responses in Arabidopsis thaliana. We monitored electrical signals, cytoplasmic Ca2+ level ([Ca2+]cyt), ultra-weak photon emission, amino acid contents, phytohormone response as well as gene expression in response to heat wounding during diethyl ether anaesthesia. We found complete suppression of electrical and [Ca2+]cyt signal propagation from damaged leaf to neighbouring systemic leaves upon diethyl ether treatment. Concomitantly, jasmonates (JAs) did not accumulate and expression of JA-responsive genes (AOS, OPR3, JAZ10) was not detected in systemic leaves. However local damaged leaves still showed increased [Ca2+]cyt and accumulated high level of JAs and JA-inducible transcripts. An exogenously added GLR ligand, L-glutamate, was not able to trigger Ca2+ wave in etherized plants indicating that GLRs are targeted by diethyl ether, but not specifically. The fact that GVA inhibit electrical signal propagation not only in animals but also in plants is intriguing. However, the cellular response is completely blocked only in systemic leaves; the local damaged leaf still senses damaging stimuli.
Collapse
Affiliation(s)
- Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia; Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, SK-841 04, Bratislava, Slovakia
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
10
|
Azizan A, Alfaro AC, Young T, Venter L. Beyond relaxed: magnesium chloride anaesthesia alters the circulatory metabolome of a marine mollusc (Perna canaliculus). Metabolomics 2021; 17:73. [PMID: 34390406 DOI: 10.1007/s11306-021-01820-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The New Zealand Green-lipped mussel industry is well-established providing vastly to aquaculture exports. To assess mussel health and reproduction status, visual examination of organs and/or collection of haemolymph is commonly applied. Anesthetics, such as magnesium chloride (MgCl2) can be utilized to prevent muscle contraction and keep shells open during sampling. The specific effects of muscle relaxing agents on baseline metabolism in invertebrates is unknown, but it is evident that molecular, cellular and physiological parameters are altered with these chemical applications. To this end, metabolomics approaches can help elucidate the effects of relaxing agents for better assessment of their use as a research tool. METHODS Adult Green-lipped mussels were anaesthetized for 3 h in a MgCl2 bath, whereafter haemolymph samples were collected and analyzed via gas chromatography-mass spectrometry applying methyl chloroformate alkylation derivatization. RESULTS Anesthetized mussels were characterized as non-responsive to manual manipulation, with open valves, and limited siphoning function. Metabolite profiling revealed significant increases in the abundances of most metabolites with an array of metabolic activities affected, resulting in an energy imbalance driven by anaerobic metabolism with altered amino acids acting as neurotransmitters and osmolytes. CONCLUSION This research is the first to use a metabolomics approach to identify the metabolic consequences of this commonly used bivalve relaxing technique. Ultimately the use of MgCl2 anesthetization as a sampling strategy should be carefully evaluated and managed when performing metabolomics-related research.
Collapse
Affiliation(s)
- Awanis Azizan
- Aquaculture Biotechnology Research Group, Department of Applied Ecology, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- Faculty of Health and Environmental Sciences, Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Applied Ecology, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
- Faculty of Health and Environmental Sciences, Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Tim Young
- Aquaculture Biotechnology Research Group, Department of Applied Ecology, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- Centre for Biomedical & Chemical Sciences, School of Science, Auckland University of Technology, Auckland, New Zealand
- Faculty of Health and Environmental Sciences, Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Applied Ecology, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- Faculty of Health and Environmental Sciences, Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
11
|
Dominguini D, Steckert AV, Michels M, Spies MB, Ritter C, Barichello T, Thompson J, Dal-Pizzol F. The effects of anaesthetics and sedatives on brain inflammation. Neurosci Biobehav Rev 2021; 127:504-513. [PMID: 33992694 DOI: 10.1016/j.neubiorev.2021.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Microglia are involved in many dynamic processes in the central nervous system (CNS) including the development of inflammatory processes and neuromodulation. Several sedative, analgesic or anaesthetic drugs, such as opioids, ∝2-adrenergic agonists, ketamine, benzodiazepines and propofol can cause both neuroprotective and harmful effects on the brain. The purpose of this review is to present the main findings on the use of these drugs and the mechanisms involved in microglial activation. Alpha 2-adrenergic agonists, propofol and benzodiazepines have several pro- or anti-inflammatory effects on microglia. Long-term use of benzodiazepines and propofol causes neuroapoptotic effects and α2-adrenergic agonists may attenuate these effects. Conversely, morphine and fentanyl may have proinflammatory effects, causing behavioural changes in patients and changes in cell viability in vitro. Conversely, chronic administration of morphine induces CCL5 chemokine expression in microglial cells that promotes their survival.
Collapse
Affiliation(s)
- Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda V Steckert
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mariana B Spies
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Jonathan Thompson
- Department of Cardiovascular Sciences, Anaesthesia Critical Care and Pain Management Group, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
12
|
Dendritic spine remodeling and plasticity under general anesthesia. Brain Struct Funct 2021; 226:2001-2017. [PMID: 34061250 PMCID: PMC8166894 DOI: 10.1007/s00429-021-02308-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
Ever since its first use in surgery, general anesthesia has been regarded as a medical miracle enabling countless life-saving diagnostic and therapeutic interventions without pain sensation and traumatic memories. Despite several decades of research, there is a lack of understanding of how general anesthetics induce a reversible coma-like state. Emerging evidence suggests that even brief exposure to general anesthesia may have a lasting impact on mature and especially developing brains. Commonly used anesthetics have been shown to destabilize dendritic spines and induce an enhanced plasticity state, with effects on cognition, motor functions, mood, and social behavior. Herein, we review the effects of the most widely used general anesthetics on dendritic spine dynamics and discuss functional and molecular correlates with action mechanisms. We consider the impact of neurodevelopment, anatomical location of neurons, and their neurochemical profile on neuroplasticity induction, and review the putative signaling pathways. It emerges that in addition to possible adverse effects, the stimulation of synaptic remodeling with the formation of new connections by general anesthetics may present tremendous opportunities for translational research and neurorehabilitation.
Collapse
|
13
|
Klemcke HG, Calderon ML, Crimmins SL, Ryan KL, Xiang L, Hinojosa-Laborde C. Effects of ketamine analgesia on cardiorespiratory responses and survival to trauma and hemorrhage in rats. J Appl Physiol (1985) 2021; 130:1583-1593. [PMID: 33830812 DOI: 10.1152/japplphysiol.00476.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ketamine is the recommended analgesic on the battlefield for soldiers with hemorrhage, despite a lack of supportive evidence from laboratory or clinical studies. Hence, this study determined the effects of ketamine analgesia on cardiorespiratory responses and survival to moderate (37% blood volume; n = 8/group) or severe hemorrhage (50% blood volume; n = 10/group) after trauma in rats. We used a conscious hemorrhage model with extremity trauma (fibular fracture + soft tissue injury) while measuring mean arterial pressure (MAP), heart rate (HR), and body temperature (Tb) by telemetry, and respiration rate (RR), minute volume (MV), and tidal volume (TV) via whole body plethysmography. Male rats received saline (S) or 5.0 mg/kg ketamine (K) (100 µL/100 g body wt) intra-arterially after trauma and hemorrhage. All rats survived 37% hemorrhage. For 50% hemorrhage, neither survival times [180 min (SD 78) vs. 209 min (SD 66)] nor percent survival (60% vs. 80%) differed between S- and K-treated rats. After 37% hemorrhage, K (compared with S) increased MAP and decreased Tb and MV. After 50% hemorrhage, K (compared with S) increased MAP but decreased HR and MV. K effects on cardiorespiratory function were time dependent, significant but modest, and transient at the analgesic dose given. K effects on Tb were also significant but modest and more prolonged. With the use of this rat model, our data support the use of K as an analgesic in injured, hypovolemic patients.NEW & NOTEWORTHY Ketamine administration at a dose shown to alleviate pain in nonhemorrhaged rats with extremity trauma had only modest and transient effects on multiple aspects of cardiorespiratory function after both moderate (37%) and severe (50%) traumatic hemorrhages. Such effects did not alter survival.
Collapse
Affiliation(s)
- Harold G Klemcke
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Mariam L Calderon
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Stephen L Crimmins
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Kathy L Ryan
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Lusha Xiang
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | | |
Collapse
|
14
|
Caldirola D, Alciati A, Cuniberti F, Perna G. Experimental Drugs for Panic Disorder: An Updated Systematic Review. J Exp Pharmacol 2021; 13:441-459. [PMID: 33889031 PMCID: PMC8055642 DOI: 10.2147/jep.s261403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Several effective pharmacological therapies for panic disorder (PD) are available, but they have some drawbacks, and unsatisfactory outcomes can occur. Expanding the variety of anti-panic medications may allow for improving PD treatment. The authors performed an updated systematic review of preclinical and clinical (Phase I–III) pharmacological studies to look for advances made in the last six years concerning novel-mechanism-based anti-panic compounds or using medications approved for nonpsychiatric medical conditions to treat PD. The study included seven published articles presenting a series of preclinical studies, two Phase I clinical studies with orexin receptor (OXR) antagonists, and two clinical studies investigating the effects of D-cycloserine (DCS) and xenon gas in individuals with PD. The latest preclinical findings confirmed and expanded previous promising indications of OXR1 antagonists as novel-mechanism-based anti-panic compounds. Translating preclinical research into clinical applications remains in the early stages. However, limited clinical findings suggested the selective OXR1 antagonist JNJ-61393115 may exert anti-panic effects in humans. Overall, OXR1 antagonists displayed a favorable profile of short-term safety and tolerability. Very preliminary suggestions of possible anti-panic effects of xenon gas emerged but need confirmation with more rigorous methodology. DCS did not seem promising as an enhancer of cognitive-behavioral therapy in PD. Future studies, including objective panic-related physiological parameters, such as respiratory measures, and expanding the use of panic vulnerability biomarkers, such as hypersensitivity to CO2 panic provocation, may allow for more reliable conclusions about the anti-panic properties of new compounds.
Collapse
Affiliation(s)
- Daniela Caldirola
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| | - Alessandra Alciati
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Rozzano, 20089, Italy
| | - Francesco Cuniberti
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| | - Giampaolo Perna
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| |
Collapse
|
15
|
Gupta PR, Prabhavalkar K. Combination therapy with neuropeptides for the treatment of anxiety disorder. Neuropeptides 2021; 86:102127. [PMID: 33607407 DOI: 10.1016/j.npep.2021.102127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
Anxiety is a neurological disorder that is characterized by excessive, persistent, and unreasonable worry about everyday things like family, work, money, and relationships. The current therapy used for the treatment has many disadvantages like higher cost, severe adverse reactions, and has suboptimal efficiency. There is a need to look for more innovative approaches for the treatment of anxiety disorder which overcomes the disadvantages of conventional treatment. Recent findings suggest a strong correlation of glutamate with anxiety. Some promising drugs which have a novel mechanism for anxiolytic action are currently under clinical development for generalized anxiety disorder, social anxiety disorder, panic disorder, obsessive-compulsive disorder, or post-traumatic stress disorder. Similarly, an interrelation of oxytocin with neuropeptide S or glutamate or vasopressin can also be considered for further evaluation for the development of new drugs for anxiety treatment. Anxiolytic drug development is a multi-target approach, with the idea of more efficiently equilibrating perturbed circuits. This review focuses on targeting unconventional targets like the glutamate system, voltage-gated ion channels, and neuropeptides system either alone or in combination for the treatment of anxiety disorder.
Collapse
Affiliation(s)
- Priti Ramakant Gupta
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Kedar Prabhavalkar
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
16
|
Sedating Mechanically Ventilated COVID-19 Patients with Volatile Anesthetics: Insights on the Last-Minute Potential Weapons. Sci Pharm 2021. [DOI: 10.3390/scipharm89010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) has spread globally with the number of cases exceeding seventy million. Although trials on potential treatments of COVID-19 Acute Respiratory Distress Syndrome (ARDS) are promising, the introduction of an effective therapeutic intervention seems elusive. In this review, we explored the potential therapeutic role of volatile anesthetics during mechanical ventilation in the late stages of the disease. COVID-19 is thought to hit the human body via five major mechanisms: direct viral damage, immune overactivation, capillary thrombosis, loss of alveolar capillary membrane integrity, and decreased tissue oxygenation. The overproduction of pro-inflammatory cytokines will eventually lead to the accumulation of inflammatory cells in the lungs, which will lead to ARDS requiring mechanical ventilation. Respiratory failure resulting from ARDS is thought to be the most common cause of death in COVID-19. The literature suggests that these effects could be directly countered by using volatile anesthetics for sedation. These agents possess multiple properties that affect viral replication, immunity, and coagulation. They also have proven benefits at the molecular, cellular, and tissue levels. Based on the comprehensive understanding of the literature, short-term sedation with volatile anesthetics may be beneficial in severe stages of COVID-19 ARDS and trials to study their effects should be encouraged.
Collapse
|
17
|
Bessière B, Iris F, Milet A, Beopoulos A, Billoet C, Farjot G. A new mechanistic approach for the treatment of chronic neuropathic pain with nitrous oxide integrated from a systems biology narrative review. Med Gas Res 2021; 11:34-41. [PMID: 33642336 PMCID: PMC8103977 DOI: 10.4103/2045-9912.310058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
The limitations of the currently available treatments for chronic neuropathic pain highlight the need for safer and more effective alternatives. The authors carried out a focused review using a systems biology approach to integrate the complex mechanisms of nociception and neuropathic pain, and to decipher the effects of nitrous oxide (N2O) on those pathways, beyond the known effect of N2O on N-methyl-D-aspartate receptors. This review identified a number of potential mechanisms by which N2O could impact the processes involved in peripheral and central sensitization. In the ascending pathway, the effects of N2O include activating TWIK-related K+ channel 1 potassium channels on first-order neurons, blocking voltage-dependent calcium channels to attenuate neuronal excitability, attenuating postsynaptic glutamatergic receptor activation, and possibly blocking voltage-dependent sodium channels. In the descending pathway, N2O induces the release of endogenous opioid ligands and stimulates norepinephrine release. In addition, N2O may mediate epigenetic changes by inhibiting methionine synthase, a key enzyme involved in DNA and RNA methylation. This could explain why this short-acting analgesic has shown long-lasting anti-pain sensitization effects in animal models of chronic pain. These new hypotheses support the rationale for investigating N2O, either alone or in combination with other analgesics, for the management of chronic neuropathic pain.
Collapse
Affiliation(s)
- Baptiste Bessière
- Air Liquide Santé International, Paris Innovation Campus, Jouy-en-Josas, France
| | | | - Aude Milet
- Air Liquide Santé International, Paris Innovation Campus, Jouy-en-Josas, France
| | | | - Catherine Billoet
- Air Liquide Santé International, Paris Innovation Campus, Jouy-en-Josas, France
| | - Géraldine Farjot
- Air Liquide Santé International, Paris Innovation Campus, Jouy-en-Josas, France
| |
Collapse
|
18
|
Hristovska I, Verdonk F, Comte JC, Tsai ES, Desestret V, Honnorat J, Chrétien F, Pascual O. Ketamine/xylazine and barbiturates modulate microglial morphology and motility differently in a mouse model. PLoS One 2020; 15:e0236594. [PMID: 32760073 PMCID: PMC7410236 DOI: 10.1371/journal.pone.0236594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Microglia, the resident immune cells of the brain, are highly ramified and motile and their morphology is strongly linked to their function. Microglia constantly monitor the brain parenchyma and are crucial for maintaining brain homeostasis and fine-tuning neuronal networks. Besides affecting neurons, anesthetics may have wide-ranging effects mediated by non-neuronal cells and in particular microglia. We thus examined the effect of two commonly used anesthetic agents, ketamine/xylazine and barbiturates, on microglial motility and morphology. A combination of two-photon in vivo imaging and electroencephalography (EEG) recordings in unanesthetized and anesthetized mice as well as automated analysis of ex vivo sections were used to assess morphology and dynamics of microglia. We found that administration of ketamine/xylazine and pentobarbital anesthesia resulted in quite distinct EEG profiles. Both anesthetics reduced microglial motility, but only ketamine/xylazine administration led to reduction of microglial complexity in vivo. The change of cellular dynamics in vivo was associated with a region-dependent reduction of several features of microglial cells ex vivo, such as the complexity index and the ramification length, whereas thiopental altered the size of the cytoplasm. Our results show that anesthetics have considerable effects on neuronal activity and microglial morphodynamics and that barbiturates may be a preferred anesthetic agent for the study of microglial morphology. These findings will undoubtedly raise compelling questions about the functional relevance of anesthetics on microglial cells in neuronal physiology and anesthesia-induced neurotoxicity.
Collapse
Affiliation(s)
- Ines Hristovska
- Equipe Synaptopathies et Autoanticorps (SynatAc), Institut NeuroMyoGène, INSERM U1217/UMR CNRS 5310, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Franck Verdonk
- Unité Neuropathologie Expérimentale, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
- Department d’anesthésiologie et de Soins Intensifs, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, Paris, France
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jean-Christophe Comte
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Equipe Processus d’oubli et Dynamique Corticale, Centre de Recherche en Neuroscience de Lyon (CRNL), INSERM U1028, CNRS UMR5292, Lyon, France
| | - Eileen S. Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Virginie Desestret
- Equipe Synaptopathies et Autoanticorps (SynatAc), Institut NeuroMyoGène, INSERM U1217/UMR CNRS 5310, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Centre maladies rares sur les syndromes neurologiques paranéoplasiques, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Honnorat
- Equipe Synaptopathies et Autoanticorps (SynatAc), Institut NeuroMyoGène, INSERM U1217/UMR CNRS 5310, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Centre maladies rares sur les syndromes neurologiques paranéoplasiques, Hospices Civils de Lyon, Lyon, France
| | - Fabrice Chrétien
- Unité Neuropathologie Expérimentale, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Laboratoire Hospitalo-Universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France
- * E-mail: (FC); (OP)
| | - Olivier Pascual
- Equipe Synaptopathies et Autoanticorps (SynatAc), Institut NeuroMyoGène, INSERM U1217/UMR CNRS 5310, Lyon, France
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- * E-mail: (FC); (OP)
| |
Collapse
|
19
|
Pavlovič A, Libiaková M, Bokor B, Jakšová J, Petřík I, Novák O, Baluška F. Anaesthesia with diethyl ether impairs jasmonate signalling in the carnivorous plant Venus flytrap (Dionaea muscipula). ANNALS OF BOTANY 2020; 125:173-183. [PMID: 31677265 PMCID: PMC6948209 DOI: 10.1093/aob/mcz177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS General anaesthetics are compounds that induce loss of responsiveness to environmental stimuli in animals and humans. The primary site of action of general anaesthetics is the nervous system, where anaesthetics inhibit neuronal transmission. Although plants do not have neurons, they generate electrical signals in response to biotic and abiotic stresses. Here, we investigated the effect of the general volatile anaesthetic diethyl ether on the ability to sense potential prey or herbivore attacks in the carnivorous plant Venus flytrap (Dionaea muscipula). METHODS We monitored trap movement, electrical signalling, phytohormone accumulation and gene expression in response to the mechanical stimulation of trigger hairs and wounding under diethyl ether treatment. KEY RESULTS Diethyl ether completely inhibited the generation of action potentials and trap closing reactions, which were easily and rapidly restored when the anaesthetic was removed. Diethyl ether also inhibited the later response: jasmonic acid (JA) accumulation and expression of JA-responsive genes (cysteine protease dionain and type I chitinase). However, external application of JA bypassed the inhibited action potentials and restored gene expression under diethyl ether anaesthesia, indicating that downstream reactions from JA are not inhibited. CONCLUSIONS The Venus flytrap cannot sense prey or a herbivore attack under diethyl ether treatment caused by inhibited action potentials, and the JA signalling pathway as a consequence.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova, Bratislava, Slovakia
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | | |
Collapse
|
20
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
21
|
Kapoor MC. Neurological dysfunction after cardiac surgery and cardiac intensive care admission: A narrative review part 1: The problem; nomenclature; delirium and postoperative neurocognitive disorder; and the role of cardiac surgery and anesthesia. Ann Card Anaesth 2020; 23:383-390. [PMID: 33109792 PMCID: PMC7879912 DOI: 10.4103/aca.aca_138_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The association with cardiac surgery with cognitive decline was first reported in the 1960s after the introduction of coronary artery surgery. The incidence in cognitive decline was thought to be more after cardiac surgery, especially with the use of the cardiopulmonary bypass. Anesthesia and surgery are both associated with cognitive decline but many other factors appear to contribute its genesis. On-pump surgery, microembolization during manipulation of the heart and great vessels, temperature changes, pH changes, and altered cerebral perfusion, during cardiac surgery, have all been blamed for this. Postoperative cognitive decline is associated with poor clinical outcomes and higher mortality. Several studies have been conducted in the last decade to determine the genesis of this malady. Current evidence is absolving cardiac surgery and anesthesia to be the primary causes per se of cognitive dysfunction.
Collapse
Affiliation(s)
- Mukul C Kapoor
- Department of Anaesthesia, Max Smart Super Specialty Hospital, Saket, Delhi, India
| |
Collapse
|
22
|
Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 2019; 204:107402. [PMID: 31470029 DOI: 10.1016/j.pharmthera.2019.107402] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Current medication for anxiety disorders is suboptimal in terms of efficiency and tolerability, highlighting the need for improved drug treatments. In this review an overview of drugs being studied in different phases of clinical trials for their potential in the treatment of fear-, anxiety- and trauma-related disorders is presented. One strategy followed in drug development is refining and improving compounds interacting with existing anxiolytic drug targets, such as serotonergic and prototypical GABAergic benzodiazepines. A more innovative approach involves the search for compounds with novel mechanisms of anxiolytic action using the growing knowledge base concerning the relevant neurocircuitries and neurobiological mechanisms underlying pathological fear and anxiety. The target systems evaluated in clinical trials include glutamate, endocannabinoid and neuropeptide systems, as well as ion channels and targets derived from phytochemicals. Examples of promising novel candidates currently in clinical development for generalised anxiety disorder, social anxiety disorder, panic disorder, obsessive compulsive disorder or post-traumatic stress disorder include ketamine, riluzole, xenon with one common pharmacological action of modulation of glutamatergic neurotransmission, as well as the neurosteroid aloradine. Finally, compounds such as D-cycloserine, MDMA, L-DOPA and cannabinoids have shown efficacy in enhancing fear-extinction learning in humans. They are thus investigated in clinical trials as an augmentative strategy for speeding up and enhancing the long-term effectiveness of exposure-based psychotherapy, which could render chronic anxiolytic drug treatment dispensable for many patients. These efforts are indicative of a rekindled interest and renewed optimism in the anxiety drug discovery field, after decades of relative stagnation.
Collapse
Affiliation(s)
- Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
23
|
Şterbuleac D. Molecular determinants of chemical modulation of two-pore domain potassium channels. Chem Biol Drug Des 2019; 94:1596-1614. [PMID: 31124599 DOI: 10.1111/cbdd.13571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
The K+ ion channels comprising the two-pore domain (K2P) family have specific biophysical roles in generating the critical regulatory K+ current. Ion flow through K2P channels and, implicitly, channel regulation is mediated by diverse metabolic and physical inputs such as mechanical stimulation, interaction with lipids or endogenous regulators, intra- or extracellular pH, and phosphorylation, while their function can be finely tuned by chemical compounds. In the latter category, some drug-channel interactions can lead to side effects or have clinical action, while identifying novel chemical modulators of K2Ps is an area of intense research. Due to their cellular and therapeutic importance, much attention was turned to these channels in recent years and several experimental approaches have pinpointed the molecular determinants of K2P chemical modulation. Given their unique structural features and properties, chemical modulators act on K2P channels in multiple and diverse ways. In this review, the particularities of K2P modulation by chemical compounds, such as binding modality, affinity, or position, are identified, synthesized, and linked to structural and functional properties in order to refer to how activators and blockers modify channel function and vice versa, focusing on specificity related to protein structure (and its modification) and cross-linking information among different subfamilies.
Collapse
Affiliation(s)
- Daniel Şterbuleac
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| |
Collapse
|
24
|
Yuan SM, Lin H. Postoperative Cognitive Dysfunction after Coronary Artery Bypass Grafting. Braz J Cardiovasc Surg 2019; 34:76-84. [PMID: 30810678 PMCID: PMC6385821 DOI: 10.21470/1678-9741-2018-0165] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/21/2018] [Indexed: 12/18/2022] Open
Abstract
Postoperative cognitive dysfunction is a common complication following cardiac
surgery. The incidence of cognitive dysfunction is more pronounced in patients
receiving a cardiac operation than in those undergoing a non-cardiac operation.
Clinical observations demonstrated that pulsatile flow was superior to
nonpulsatile flow, and membrane oxygenator was superior to bubble oxygenator in
terms of postoperative cognitive status. Nevertheless, cognitive assessments in
patients receiving an on-pump and off-pump coronary artery bypass surgery have
yielded inconsistent results. The exact mechanisms of postoperative cognitive
dysfunction following coronary artery bypass grafting remain uncertain. The dual
effects, neuroprotective and neurotoxic, of anesthetics should be thoroughly
investigated. The diagnosis should be based on a comprehensive cognitive
evaluation with neuropsychiatric tests, cerebral biomarker inspections, and
electroencephalographic examination. The management strategies for cognitive
dysfunction can be preventive or therapeutic. The preventive strategies of
modifying surgical facilities and techniques can be effective for preventing the
development of postoperative cognitive dysfunction. Investigational therapies
may offer novel strategies of treatments. Anesthetic preconditioning might be
helpful for the improvement of this dysfunction.
Collapse
Affiliation(s)
- Shi-Min Yuan
- Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China
| | - Hong Lin
- Department of Cardiology, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, Fujian Province, People's Republic of China
| |
Collapse
|
25
|
McFadzean W, Macfarlane P, Khenissi L, Murrell JC. Repeated hyperkalaemia during two separate episodes of general anaesthesia in a nine-year-old, female neutered greyhound. VETERINARY RECORD CASE REPORTS 2018. [DOI: 10.1136/vetreccr-2018-000658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is an increasing awareness of the development of hyperkalaemia during anaesthesia in otherwise healthy veterinary patients. In the human literature 63 per cent of in-hospital hyperkalaemic episodes are associated with drug administration. Anecdotal veterinary reports have suggested that a genetic component may also play a role, with greyhounds seemingly more susceptible to the development of hyperkalaemia under anaesthesia. This case report identifies the repeated development of hyperkalaemia, and its treatment, during two separate episodes of general anaesthesia in a nine-year-old, female neutered greyhound. The first episode of hyperkalaemia (7.89 mmol/l) was identified due to bradycardia and second-degree atrioventricular block on electrocardiogram. Treatment was with intravenous calcium gluconate, insulin, glucose and fluid therapy. The second episode (6.60 mmol/l) was associated with spiked T-waves, and treatment was with insulin and glucose infusions to allow completion of the anaesthetic and surgery. Possible causes and treatments are discussed, and the need for reporting of such cases is highlighted.
Collapse
|
26
|
Yang E, Granata D, Eckenhoff RG, Carnevale V, Covarrubias M. Propofol inhibits prokaryotic voltage-gated Na + channels by promoting activation-coupled inactivation. J Gen Physiol 2018; 150:1299-1316. [PMID: 30018038 PMCID: PMC6122921 DOI: 10.1085/jgp.201711924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Propofol is widely used in the clinic for the induction and maintenance of general anesthesia. As with most general anesthetics, however, our understanding of its mechanism of action remains incomplete. Local and general anesthetics largely inhibit voltage-gated Na+ channels (Navs) by inducing an apparent stabilization of the inactivated state, associated in some instances with pore block. To determine the biophysical and molecular basis of propofol action in Navs, we investigated NaChBac and NavMs, two prokaryotic Navs with distinct voltage dependencies and gating kinetics, by whole-cell patch clamp electrophysiology in the absence and presence of propofol at clinically relevant concentrations (2-10 µM). In both Navs, propofol induced a hyperpolarizing shift of the pre-pulse inactivation curve without any significant effects on recovery from inactivation at strongly hyperpolarized voltages, demonstrating that propofol does not stabilize the inactivated state. Moreover, there was no evidence of fast or slow pore block by propofol in a non-inactivating NaChBac mutant (T220A). Propofol also induced hyperpolarizing shifts of the conductance-voltage relationships with negligible effects on the time constants of deactivation at hyperpolarized voltages, indicating that propofol does not stabilize the open state. Instead, propofol decreases the time constants of macroscopic activation and inactivation. Adopting a kinetic scheme of Nav gating that assumes preferential closed-state recovery from inactivation, a 1.7-fold acceleration of the rate constant of activation and a 1.4-fold acceleration of the rate constant of inactivation were sufficient to reproduce experimental observations with computer simulations. In addition, molecular dynamics simulations and molecular docking suggest that propofol binding involves interactions with gating machinery in the S4-S5 linker and external pore regions. Our findings show that propofol is primarily a positive gating modulator of prokaryotic Navs, which ultimately inhibits the channels by promoting activation-coupled inactivation.
Collapse
Affiliation(s)
- Elaine Yang
- Vickie and Jack Farber Institute for Neuroscience and Department of Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Daniele Granata
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA
| | - Manuel Covarrubias
- Vickie and Jack Farber Institute for Neuroscience and Department of Neuroscience, Sidney Kimmel Medical College and Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
27
|
Dryn D, Luo J, Melnyk M, Zholos A, Hu H. Inhalation anaesthetic isoflurane inhibits the muscarinic cation current and carbachol-induced gastrointestinal smooth muscle contractions. Eur J Pharmacol 2017; 820:39-44. [PMID: 29198958 DOI: 10.1016/j.ejphar.2017.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 02/02/2023]
Abstract
Gastrointestinal tract motility may be demoted significantly after surgery operations at least in part due to anaesthetic agents, but there is no comprehensive explanation of the molecular mechanism(s) of such adverse effects. Anesthetics are known to interact with various receptors and ion channels including several subtypes of transient receptor potential (TRP) channels. Two members of the canonical subfamily of TRP channels (TRPC), TRPC4 and TRPC6 are Ca2+-permeable cation channels involved in visceral smooth muscle contractility induced by acetylcholine, the primary excitatory neurotransmitter in the gut. In the present study, we aimed to study the effect of anesthetics on muscarinic receptor-mediated excitation and contraction of intestinal smooth muscle. Here we show that muscarinic cation current (mICAT) mediated by TRPC4 and TRPC6 channels in mouse ileal myocytes was strongly inhibited by isoflurane (0.5mM), one of the most commonly used inhalation anesthetics. Carbachol-activated mICAT was reduced by 63 ± 11% (n = 5), while GTPγS-induced (to bypass muscarinic receptors) current was inhibited by 44 ± 9% (n = 6). Furthermore, carbachol-induced ileum and colon contractions were inhibited by isoflurane by about 30%. We discuss the main sites of isoflurane action, which appear to be G-proteins and muscarinic receptors, rather than TRPC4/6 channels. These results contribute to our better understanding of the signalling pathways affected by inhalation anesthetics, which may cause ileus, and thus may be important for the development of novel treatment strategies during postoperative recovery.
Collapse
Affiliation(s)
- Dariia Dryn
- Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, St. Louis, MO, USA; A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine; Institute of Pharmacology and Toxicology, Academy of Medical Sciences of Ukraine, 14 Eugene Pottier Street, Kyiv 03680, Ukraine
| | - Jialie Luo
- Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, St. Louis, MO, USA
| | - Mariia Melnyk
- A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine; Institute of Pharmacology and Toxicology, Academy of Medical Sciences of Ukraine, 14 Eugene Pottier Street, Kyiv 03680, Ukraine
| | - Alexander Zholos
- A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine; ESC "Institute of Biology and Medicine", Taras Shevchenko Kyiv National University, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine.
| | - Hongzhen Hu
- Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, St. Louis, MO, USA
| |
Collapse
|
28
|
Stoyek MR, Schmidt MK, Wilfart FM, Croll RP, Smith FM. The in vitro zebrafish heart as a model to investigate the chronotropic effects of vapor anesthetics. Am J Physiol Regul Integr Comp Physiol 2017; 313:R669-R679. [PMID: 28877873 DOI: 10.1152/ajpregu.00467.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022]
Abstract
In addition to their intended clinical actions, all general anesthetic agents in common use have detrimental intrasurgical and postsurgical side effects on organs and systems, including the heart. The major cardiac side effect of anesthesia is bradycardia, which increases the probability of insufficient systemic perfusion during surgery. These side effects also occur in all vertebrate species so far examined, but the underlying mechanisms are not clear. The zebrafish heart is a powerful model for studying cardiac electrophysiology, employing the same pacemaker system and neural control as do mammalian hearts. In this study, isolated zebrafish hearts were significantly bradycardic during exposure to the vapor anesthetics sevoflurane (SEVO), desflurane (DES), and isoflurane (ISO). Bradycardia induced by DES and ISO continued during pharmacological blockade of the intracardiac portion of the autonomic nervous system, but the chronotropic effect of SEVO was eliminated during blockade. Bradycardia evoked by vagosympathetic nerve stimulation was augmented during DES and ISO exposure; nerve stimulation during SEVO exposure had no effect. Together, these results support the hypothesis that the cardiac chronotropic effect of SEVO occurs via a neurally mediated mechanism, while DES and ISO act directly upon cardiac pacemaker cells via an as yet unknown mechanism.
Collapse
Affiliation(s)
- Matthew R Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael K Schmidt
- Department of Anesthesia, Pain Management and Perioperative Care, Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - Florentin M Wilfart
- Department of Anesthesia, Pain Management and Perioperative Care, Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Frank M Smith
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
29
|
Hashemi M, Hutt A, Hight D, Sleigh J. Anesthetic action on the transmission delay between cortex and thalamus explains the beta-buzz observed under propofol anesthesia. PLoS One 2017; 12:e0179286. [PMID: 28622355 PMCID: PMC5473556 DOI: 10.1371/journal.pone.0179286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
In recent years, more and more surgeries under general anesthesia have been performed with the assistance of electroencephalogram (EEG) monitors. An increase in anesthetic concentration leads to characteristic changes in the power spectra of the EEG. Although tracking the anesthetic-induced changes in EEG rhythms can be employed to estimate the depth of anesthesia, their precise underlying mechanisms are still unknown. A prominent feature in the EEG of some patients is the emergence of a strong power peak in the β-frequency band, which moves to the α-frequency band while increasing the anesthetic concentration. This feature is called the beta-buzz. In the present study, we use a thalamo-cortical neural population feedback model to reproduce observed characteristic features in frontal EEG power obtained experimentally during propofol general anesthesia, such as this beta-buzz. First, we find that the spectral power peak in the α- and δ-frequency ranges depend on the decay rate constant of excitatory and inhibitory synapses, but the anesthetic action on synapses does not explain the beta-buzz. Moreover, considering the action of propofol on the transmission delay between cortex and thalamus, the model reveals that the beta-buzz may result from a prolongation of the transmission delay by increasing propofol concentration. A corresponding relationship between transmission delay and anesthetic blood concentration is derived. Finally, an analytical stability study demonstrates that increasing propofol concentration moves the systems resting state towards its stability threshold.
Collapse
Affiliation(s)
- Meysam Hashemi
- INRIA Grand Est - Nancy, Team NEUROSYS, Villers-lès-Nancy, France
- CNRS, Loria, UMR nō 7503, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Loria, UMR nō 7503, Vandoeuvre-lès-Nancy, France
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Axel Hutt
- German Meteorology Service, Offenbach am Main, Germany
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
30
|
Fourati Z, Ruza RR, Laverty D, Drège E, Delarue-Cochin S, Joseph D, Koehl P, Smart T, Delarue M. Barbiturates Bind in the GLIC Ion Channel Pore and Cause Inhibition by Stabilizing a Closed State. J Biol Chem 2016; 292:1550-1558. [PMID: 27986812 DOI: 10.1074/jbc.m116.766964] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Barbiturates induce anesthesia by modulating the activity of anionic and cationic pentameric ligand-gated ion channels (pLGICs). Despite more than a century of use in clinical practice, the prototypic binding site for this class of drugs within pLGICs is yet to be described. In this study, we present the first X-ray structures of barbiturates bound to GLIC, a cationic prokaryotic pLGIC with excellent structural homology to other relevant channels sensitive to general anesthetics and, as shown here, to barbiturates, at clinically relevant concentrations. Several derivatives of barbiturates containing anomalous scatterers were synthesized, and these derivatives helped us unambiguously identify a unique barbiturate binding site within the central ion channel pore in a closed conformation. In addition, docking calculations around the observed binding site for all three states of the receptor, including a model of the desensitized state, showed that barbiturates preferentially stabilize the closed state. The identification of this pore binding site sheds light on the mechanism of barbiturate inhibition of cationic pLGICs and allows the rationalization of several structural and functional features previously observed for barbiturates.
Collapse
Affiliation(s)
- Zaineb Fourati
- From the Unité de Dynamique Structurale des Macromolécules, UMR 3528 du CNRS, Institut Pasteur, 75015 Paris, France
| | - Reinis Reinholds Ruza
- From the Unité de Dynamique Structurale des Macromolécules, UMR 3528 du CNRS, Institut Pasteur, 75015 Paris, France
| | - Duncan Laverty
- the Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Emmanuelle Drège
- the UMR 8076 du CNRS, BioCIS, Faculté de Pharmacie, Université Paris Sud, 92296 Chatenay-Malabry, France
| | - Sandrine Delarue-Cochin
- the UMR 8076 du CNRS, BioCIS, Faculté de Pharmacie, Université Paris Sud, 92296 Chatenay-Malabry, France
| | - Delphine Joseph
- the UMR 8076 du CNRS, BioCIS, Faculté de Pharmacie, Université Paris Sud, 92296 Chatenay-Malabry, France
| | - Patrice Koehl
- the Department of Computer Science, University of California, Davis, California 95616
| | - Trevor Smart
- the Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | - Marc Delarue
- From the Unité de Dynamique Structurale des Macromolécules, UMR 3528 du CNRS, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
31
|
Phillips WA, Larkum ME, Harley CW, Silverstein SM. The effects of arousal on apical amplification and conscious state. Neurosci Conscious 2016; 2016:niw015. [PMID: 29877512 PMCID: PMC5934888 DOI: 10.1093/nc/niw015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/28/2016] [Accepted: 08/08/2016] [Indexed: 01/19/2023] Open
Abstract
Neocortical pyramidal cells can integrate two classes of input separately and use one to modulate response to the other. Their tuft dendrites are electrotonically separated from basal dendrites and soma by the apical dendrite, and apical hyperpolarization-activated currents (Ih) further isolate subthreshold integration of tuft inputs. When apical depolarization exceeds a threshold, however, it can enhance response to the basal inputs that specify the cell's selective sensitivity. This process is referred to as apical amplification (AA). We review evidence suggesting that, by regulating Ih in the apical compartments, adrenergic arousal controls the coupling between apical and somatic integration zones thus modifying cognitive capabilities closely associated with consciousness. Evidence relating AA to schizophrenia, sleep, and anesthesia is reviewed, and we assess theories that emphasize the relevance of AA to consciousness. Implications for theories of neocortical computation that emphasize context-sensitive modulation are summarized. We conclude that the findings concerning AA and its regulation by arousal offer a new perspective on states of consciousness, the function and evolution of neocortex, and psychopathology. Many issues worthy of closer examination arise.
Collapse
Affiliation(s)
- W. A. Phillips
- School of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - M. E. Larkum
- Neurocure Cluster of Excellence, Department of Biology, Humboldt University,
Charitéplatz 1, Berlin 10117, Germany
| | - C. W. Harley
- Psychology Department, Memorial University of Newfoundland, St. John's, NL A1C 5S7,
P.O. Box 4200, Canada
| | | |
Collapse
|
32
|
Delayed application of the anesthetic propofol contrasts the neurotoxic effects of kainate on rat organotypic spinal slice cultures. Neurotoxicology 2016; 54:1-10. [PMID: 26947011 DOI: 10.1016/j.neuro.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
Abstract
Excitotoxicity due to hyperactivation of glutamate receptors is thought to underlie acute spinal injury with subsequent strong deficit in spinal network function. Devising an efficacious protocol of neuroprotection to arrest excitotoxicity might, therefore, spare a substantial number of neurons and allow later recovery. In vitro preparations of the spinal cord enable detailed measurement of spinal damage evoked by the potent glutamate analogue kainate. Any clinically-relevant neuroprotective treatment should start after the initial lesion and spare networks for at least 24h when cell damage plateaus. Using this strategy, we have observed that the gas anesthetic methoxyflurane provided strong, delayed neuroprotection. It is unclear if this beneficial effect was due to the mechanism of action by methoxyflurane, or it was the consequence of anesthetic depression. To test this hypothesis, we investigated the effect by propofol (commonly injected i.v. for general anesthesia) after kainate excitotoxicity induced on organotypic spinal slices. At 5μM concentration, propofol significantly attenuated cell death, including neuronal losses and, especially, damage to the highly vulnerable motoneurons. The action by propofol was fully prevented when co-applied with the GABAA antagonist bicuculline, indicating that neuroprotection required intact GABAA receptor function. Although bicuculline per se was not neurotoxic, it largely enhanced the lesional effects of kainate, suggesting that GABAA receptor activity could limit excitotoxicity. Our data might offer an explanation for the beneficial clinical outcome of neurosurgery performed as soon as possible after spinal lesion: we posit that general anesthesia contributes to this outcome, regardless of the type of anesthetic used.
Collapse
|
33
|
How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. J Comput Neurosci 2015; 39:155-79. [PMID: 26256583 DOI: 10.1007/s10827-015-0569-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
Increasing concentrations of the anaesthetic agent propofol initially induces sedation before achieving full general anaesthesia. During this state of anaesthesia, the observed specific changes in electroencephalographic (EEG) rhythms comprise increased activity in the δ- (0.5-4 Hz) and α- (8-13 Hz) frequency bands over the frontal region, but increased δ- and decreased α-activity over the occipital region. It is known that the cortex, the thalamus, and the thalamo-cortical feedback loop contribute to some degree to the propofol-induced changes in the EEG power spectrum. However the precise role of each structure to the dynamics of the EEG is unknown. In this paper we apply a thalamo-cortical neuronal population model to reproduce the power spectrum changes in EEG during propofol-induced anaesthesia sedation. The model reproduces the power spectrum features observed experimentally both in frontal and occipital electrodes. Moreover, a detailed analysis of the model indicates the importance of multiple resting states in brain activity. The work suggests that the α-activity originates from the cortico-thalamic relay interaction, whereas the emergence of δ-activity results from the full cortico-reticular-relay-cortical feedback loop with a prominent enforced thalamic reticular-relay interaction. This model suggests an important role for synaptic GABAergic receptors at relay neurons and, more generally, for the thalamus in the generation of both the δ- and the α- EEG patterns that are seen during propofol anaesthesia sedation.
Collapse
|
34
|
The volatile anesthetic methoxyflurane protects motoneurons against excitotoxicity in an in vitro model of rat spinal cord injury. Neuroscience 2014; 285:269-80. [PMID: 25446348 DOI: 10.1016/j.neuroscience.2014.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/21/2014] [Accepted: 11/13/2014] [Indexed: 11/23/2022]
Abstract
Neuroprotection of the spinal cord during the early phase of injury is an important goal to determine a favorable outcome by prevention of delayed pathological events, including excitotoxicity, which otherwise extend the primary damage and amplify the often irreversible loss of motor function. While intensive care and neurosurgical intervention are important treatments, effective neuroprotection requires further experimental studies focused to target vulnerable neurons, particularly motoneurons. The present investigation examined whether the volatile general anesthetic methoxyflurane might protect spinal locomotor networks from kainate-evoked excitotoxicity using an in vitro rat spinal cord preparation as a model. The protocols involved 1h excitotoxic stimulation on day 1 followed by electrophysiological and immunohistochemical testing on day 2. A single administration of methoxyflurane applied together with kainate (1h), or 30 or even 60 min later prevented any depression of spinal reflexes, loss of motoneuron excitability, and histological damage. Methoxyflurane per se temporarily decreased synaptic transmission and motoneuron excitability, effects readily reversible on washout. Spinal locomotor activity recorded as alternating electrical discharges from lumbar motor pools was fully preserved on the second day after application of methoxyflurane together with (or after) kainate. These data suggest that a volatile general anesthetic could provide strong electrophysiological and histological neuroprotection that enabled expression of locomotor network activity 1 day after the excitotoxic challenge. It is hypothesized that the benefits of early neurosurgery for acute spinal cord injury (SCI) might be enhanced if, in addition to injury decompression and stabilization, the protective role of general anesthesia is exploited.
Collapse
|