1
|
Cai G, Zhao Y, Zhai Y, Yan M, Ma R, Zhang D. Two new species of Cytospora (Diaporthales, Cytosporaceae) causing canker disease of Malusdomestica and M.sieversii in Xinjiang, China. MycoKeys 2024; 109:305-318. [PMID: 39450332 PMCID: PMC11499669 DOI: 10.3897/mycokeys.109.131456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/31/2024] [Indexed: 10/26/2024] Open
Abstract
Apple tree canker is a serious disease caused by species of Cytospora. Xinjiang Uygur Autonomous Region is one of the most important apple-producing areas in China. However, losses due to apple Cytospora canker have seriously damaged the apple industry and affected the economic development of the apple growers in this region. In this study, we used morphological characteristics combined with multilocus phylogenetic analyses of the ITS, act, rpb2, tef1 and tub2 loci to identify isolates from apple (Malusdomestica) and wild apple (M.sieversii). As a result, C.hippophaopsis sp. nov. from M.sieversii and C.shawanensis sp. nov. from M.domestica were discovered and proposed herein. Pathogenicity tests were further conducted on 13 varieties of apple and wild apple, which confirmed C.hippophaopsis and C.shawanensis as canker pathogens. Meanwhile, C.hippophaopsis is generally more aggressive than C.shawanensis on the tested varieties of apple and wild apple.
Collapse
Affiliation(s)
- Guifang Cai
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, ChinaXinjiang Agricultural UniversityUrumqiChina
- Forestry and Grassland Technology Extension Center of Changji Prefecture, Changji 831100, ChinaForestry and Grassland Technology Extension Center of Changji PrefectureChangjiChina
| | - Ying Zhao
- Forestry and Grassland Resources Monitoring Center of Xinjiang Production and Construction Corps, Urumqi, 830002, ChinaForestry and Grassland Resources Monitoring Center of Xinjiang Production and Construction CorpsUrumqiChina
| | - Yawei Zhai
- China Energy Engineering Group Xin Jiang Electric Power Design Institute CO., LTD., Urumqi, 830050, ChinaChina Energy Engineering Group Xin Jiang Electric Power Design Institute CO., LTD.UrumqiChina
| | - Meilin Yan
- Forestry and Grassland Bureau of Hinggan League, Hinggan, 137599, ChinaForestry and Grassland Bureau of Hinggan LeagueHingganChina
| | - Rong Ma
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, ChinaXinjiang Agricultural UniversityUrumqiChina
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, ChinaCAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and GeographyUrumqiChina
| | - Daoyuan Zhang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, ChinaCAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and GeographyUrumqiChina
| |
Collapse
|
2
|
Wang D, Jin Y, Guan C, Yang Q, He G, Xu N, Han X. Evolutionary divergence of CXE gene family in green plants unveils that PtoCXEs overexpression reduces fungal colonization in transgenic Populus. TREE PHYSIOLOGY 2024; 44:tpae071. [PMID: 38905297 DOI: 10.1093/treephys/tpae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
Plant enzymes significantly contribute to the rapidly diversified metabolic repertoire since the colonization of land by plants. Carboxylesterase is just one of the ubiquitous, multifunctional and ancient enzymes that has particularly diversified during plant evolution. This study provided a status on the carboxylesterase landscape within Viridiplantae. A total of 784 carboxylesterases were identified from the genome of 31 plant species representing nine major lineages of sequenced Viridiplantae and divided into five clades based on phylogenetic analysis. Clade I carboxylesterase genes may be of bacterial origin and then expanded and diversified during plant evolution. Clade II was first gained in the ancestor of bryophytes after colonization of land by plants, Clade III and Clade IV in ferns which were considered the most advanced seedless vascular plants, while Clade V was gained in seed plants. To date, the functions of carboxylesterase genes in woody plants remain unclear. In this study, 51 carboxylesterase genes were identified from the genome of Populus trichocarpa and further divided into eight classes. Tandem and segmental duplication events both contributed to the expansion of carboxylesterase genes in Populus. Although carboxylesterase genes were proven to enhance resistance to pathogens in many herbaceous species, relevant researches on forest trees are still needed. In this study, pathogen incubation assays showed that overexpressing of six Class VI carboxylesterases in Populus tomentosa, to a greater or lesser degree, reduced colonization of detached leaves by fungus Cytospora chrysosperma. A significant difference was also found in functional divergence patterns for genes derived from different gene duplication events. Functional differentiation of duplicated carboxylesterase genes in Populus was proved for the first time by in vivo physiological analysis. The identification of the potentially anti-fungal PtoCXE06 gene also laid a theoretical foundation for promoting the genetic improvement of disease-resistance traits in forest trees.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, No. 1 Dong Xiaofu, Haidian District, Beijing 100091, China
| | - Yuting Jin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Chaonan Guan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, No. 666 Wusu street, Lin'an district, Hangzhou 311300, China
| | - Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, No. 2025 Chengluo Avenue, Longquanyi District, Chengdu 610106, China
| | - Nan Xu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghuadonglu, Haidian District, Beijing 100083, China
| | - Xuemin Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, No. 1 Dong Xiaofu, Haidian District, Beijing 100091, China
| |
Collapse
|
3
|
Hattori Y, Masuya H, Torii M, Miyamoto T, Koiwa T, Nakashima C. Lectotypification, epitypification, and molecular phylogenetic confirmation of Cytospora paulowniae comb. nov., a causal pathogen of Paulownia tree canker in Japan. MYCOSCIENCE 2024; 65:156-161. [PMID: 39493654 PMCID: PMC11527768 DOI: 10.47371/mycosci.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 11/05/2024]
Abstract
Paulownia tree canker is a major disease of Paulowniae tomentosa in Japan. The pathogen was described as Valsa paulowniae in 1916 by Hemmi and Miyabe. However, its current taxonomic status and phylogenetic position are uncertain. In this study, we reviewed the protologue of this species and rediscovered the syntypes maintained at the Hokkaido University Museum (SAPA). From these specimens, a lectotype was selected. The molecular phylogenetic position of this species was examined with newly collected samples. Based on the result of phylogeny and morphology, an epitype of this species was designated and transferred to the genus Cytospora.
Collapse
Affiliation(s)
- Yukako Hattori
- Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute (FFPRI)
| | - Hayato Masuya
- Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute (FFPRI)
| | - Masato Torii
- Tohoku Research Center, Forestry and Forest Products Research Institute (FFPRI)
| | | | | | | |
Collapse
|
4
|
Spetik M, Pecenka J, Stuskova K, Stepanova B, Eichmeier A, Kiss T. Fungal Trunk Diseases Causing Decline of Apricot and Plum Trees in the Czech Republic. PLANT DISEASE 2024; 108:1425-1436. [PMID: 38085239 DOI: 10.1094/pdis-06-23-1080-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Fungal trunk diseases (FTDs) have been a significant threat to the global stone fruit industry. FTDs are caused by a consortium of wood-decaying fungi. These fungi colonize woody tissues, causing cankers, dieback, and other decline-related symptoms in host plants. In this study, a detailed screening of the fungal microbiota associated with the decline of stone fruit trees in the Czech Republic was performed. The wood fragments of plum and apricot trees showing symptoms of FTDs were subjected to fungal isolation. The partial internal transcribed spacer region, partial beta-tubulin, and translation elongation factor 1-α genes were amplified from genomic DNA extracted from fungal cultures. All isolates were classified, and the taxonomic placement of pathogenic strains was illustrated in phylogenetic trees. The most abundant pathogenic genus was Dactylonectria (31%), followed by Biscogniauxia (13%), Thelonectria (10%), Eutypa (9%), Dothiorella (7%), Diplodia (6%), and Diaporthe (6%). The most frequent endophytic genus was Aposphaeria (17%). The pathogenicity of six fungal species (Cadophora daguensis, Collophorina africana, Cytospora sorbicola, Dothiorella sarmentorum, Eutypa lata, and E. petrakii var. petrakii) to four Prunus spp. was evaluated, and Koch's postulates were fulfilled. All tested isolates caused lesions on at least one Prunus sp. The most aggressive species was E. lata, which caused the largest lesions on all four tested Prunus spp., followed by E. petrakii var. petrakii and D. sarmentorum. Japanese plum (Prunus salicina) and almond (P. amygdalus) were the most susceptible hosts, while apricot (P. armeniaca) was the least susceptible host in the pathogenicity trial.
Collapse
Affiliation(s)
- Milan Spetik
- Mendeleum-Institute of Genetics, Mendel University in Brno 691 44, Lednice na Morave, Czech Republic
| | - Jakub Pecenka
- Mendeleum-Institute of Genetics, Mendel University in Brno 691 44, Lednice na Morave, Czech Republic
| | - Katerina Stuskova
- Mendeleum-Institute of Genetics, Mendel University in Brno 691 44, Lednice na Morave, Czech Republic
| | - Bara Stepanova
- Department of Fruit Science, Mendel University in Brno 691 44, Lednice na Morave, Czech Republic
| | - Ales Eichmeier
- Mendeleum-Institute of Genetics, Mendel University in Brno 691 44, Lednice na Morave, Czech Republic
| | - Tomas Kiss
- Department of Fruit Science, Mendel University in Brno 691 44, Lednice na Morave, Czech Republic
| |
Collapse
|
5
|
Li S, Travadon R, Nouri MT, Trouillas FP. Determining the Main Infection Courts in Sweet Cherry Trees of the Canker Pathogens Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata. PLANT DISEASE 2024; 108:1695-1702. [PMID: 38173260 DOI: 10.1094/pdis-10-23-2154-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The major fungal canker pathogens causing branch dieback of sweet cherry trees in California include Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata. These pathogens have long been known to infect cherry trees mainly through pruning wounds. However, recent field observations revealed numerous shoots and fruiting spurs exhibiting dieback symptoms with no apparent pruning wounds or mechanical injuries. Accordingly, this study was conducted to assess the incidence of the three pathogens in symptomatic terminal shoots and dying fruiting spurs, in addition to the wood below pruning wounds in branches. Surveys were conducted in five sweet cherry orchards across three counties in California. We also investigated the possibility that leaf scars, bud scars, and wounds resulting from fruit picking could serve as infection courts for Cal. pulchella, Cyt. sorbicola, and E. lata by means of artificial inoculations in the field. Orchard surveys revealed that Cal. pulchella had the highest pathogen incidence below pruning wounds in branch samples, followed by Cyt. sorbicola and E. lata. Among terminal shoots with dieback symptoms and dying fruiting spurs, Cyt. sorbicola was the most prevalent, followed by Cal. pulchella. Results from field inoculations indicated that fruit-picking wounds could serve as important infection courts for Cal. pulchella, Cyt. sorbicola, and E. lata, with average pathogen recovery of 41.5, 63, and 36.2%, respectively. Results also indicated that leaf and bud scars could serve as an entry site for Cyt. sorbicola, although recovery was relatively low. The present study is the first to identify harvest-induced wounds on fruiting spurs of sweet cherry as an important infection court of Cal. pulchella, Cyt. sorbicola, and E. lata.
Collapse
Affiliation(s)
- Sampson Li
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Mohamed T Nouri
- University of California Cooperative Extension San Joaquin County, Stockton, CA 95206
| | - Florent P Trouillas
- Department of Plant Pathology, University of California, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| |
Collapse
|
6
|
Bashiri S, Abdollahzadeh J. Taxonomy and pathogenicity of fungi associated with oak decline in northern and central Zagros forests of Iran with emphasis on coelomycetous species. FRONTIERS IN PLANT SCIENCE 2024; 15:1377441. [PMID: 38708399 PMCID: PMC11067508 DOI: 10.3389/fpls.2024.1377441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024]
Abstract
Oak decline is a complex disorder that seriously threatens the survival of Zagros forests. In an extensive study on taxonomy and pathology of fungi associated with oak decline in the central and northern part of Zagros forests, 462 fungal isolates were obtained from oak trees showing canker, gummosis, dieback, defoliation, and partial or total death symptoms. Based on inter-simple sequence repeat (ISSR) fingerprinting patterns, morphological characteristics, and sequences of ribosomal DNA (28S rDNA and ITS) and protein coding loci (acl1, act1, caM, tef-1α, rpb1, rpb2, and tub2), 24 fungal species corresponding to 19 genera were characterized. Forty percent of the isolates were placed in eight coelomycetous species from seven genera, namely, Alloeutypa, Botryosphaeria, Cytospora, Didymella, Gnomoniopsis, Kalmusia, and Neoscytalidium. Of these, four species are new to science, which are introduced here as taxonomic novelties: Alloeutypa iranensis sp. nov., Cytospora hedjaroudei sp. nov., Cytospora zagrosensis sp. nov., and Gnomoniopsis quercicola sp. nov. According to pathogenicity trials on leaves and stems of 2-year-old Persian oak (Quercus brantii) seedlings, Alternaria spp. (A. alternata, A. atra, and A. contlous), Chaetomium globosum, and Parachaetomium perlucidum were recognized as nonpathogenic. All coelomycetous species were determined as pathogenic in both pathogenicity trials on leaves and seedling stems, of which Gnomoniopsis quercicola sp. nov., Botryosphaeria dothidea, and Neoscytalidium dimidiatum were recognized as the most virulent species followed by Biscogniauxia rosacearum.
Collapse
Affiliation(s)
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
7
|
Li J, Li J, Jiang N. Morphology and phylogeny of Cytospora (Cytosporaceae, Diaporthales) species associated with plant cankers in Tibet, China. MycoKeys 2024; 104:51-70. [PMID: 38665971 PMCID: PMC11040198 DOI: 10.3897/mycokeys.104.113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/17/2023] [Indexed: 04/28/2024] Open
Abstract
During our biodiversity investigations in Tibet, China, typical Cytospora canker symptoms were observed on branches of hosts Myricariapaniculate, Prunuscerasifera and Sibiraeaangustata. Samples were studied, based on morphological features coupled with multigene phylogenetic analyses of ITS, act, rpb2, tef1 and tub2 sequence data, which revealed two new species (Cytosporamyricicolasp. nov. and C.sibiraeicolasp. nov.) and a known species (C.populina). In addition, Cytosporapopulina is newly discovered on the host Prunuscerasifera and in Tibet.
Collapse
Affiliation(s)
- Jiangrong Li
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education,Institute of Tibet Plateau Ecology, Tibet Agricultual & Animal Husbandry University, Nyingchi, Tibet 860000, ChinaTibet Agricultual & Animal Husbandry UniversityNyingchiChina
- National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, ChinaNational Key Station of Field Scientific Observation & ExperimentNyingchiChina
| | - Jieting Li
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education,Institute of Tibet Plateau Ecology, Tibet Agricultual & Animal Husbandry University, Nyingchi, Tibet 860000, ChinaTibet Agricultual & Animal Husbandry UniversityNyingchiChina
- National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, ChinaNational Key Station of Field Scientific Observation & ExperimentNyingchiChina
| | - Ning Jiang
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaKey Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| |
Collapse
|
8
|
Azizi R, Ghosta Y, Ahmadpour A. Apple crown and collar canker and necrosis caused by Cytospora balanejica sp. nov. in Iran. Sci Rep 2024; 14:6629. [PMID: 38504125 PMCID: PMC10951349 DOI: 10.1038/s41598-024-57235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Apple is the most important fruit tree in West Azarbaijan province of Iran. In a survey of apple orchards, a disease with crown and collar canker and necrosis symptoms was observed in three young apple orchards in Urmia, affecting 15% and 1% of 'Red Delicious' and 'Golden Delicious' cultivars, respectively. A fungus with typical characteristics of the asexual morph of Cytospora was regularly isolated from the diseased tissues. Morphological characteristics and phylogenetic analyses inferred from the combined dataset of the ITS-rDNA, parts of LSU, tef1-α, rpb2, and act1 genes revealed that the isolates represent a new species of Cytospora, described herein as Cytospora balanejica sp. nov.. The pathogenicity of all isolates was confirmed on apple cv. 'Red Delicious' based on Koch's postulates. Also, the reaction of 12 other apple cultivars was assessed against five selected isolates with the highest virulence. The results showed that except for cv. 'Braeburn', which did not produce any symptoms of the disease, the other 11 cultivars showed characteristic disease symptoms including sunken and discolored bark and wood. The mean length of the discolored area was different among the 11 so-called susceptible cultivars, hence cvs. 'M4' and 'Golden Delicious' showed the highest and the lowest lesion length, respectively. Moreover, the aggressiveness of the five tested isolates was different, and the isolates BA 2-4 and BA 3-1 had the highest and lowest aggressiveness, respectively. Based on our observations on the potential ability of the fungus to cause disease on young and actively growing apple trees, it will be a serious threat to apple cultivation and industry.
Collapse
Affiliation(s)
- Razmig Azizi
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Abdollah Ahmadpour
- Higher Education Center of Shahid Bakeri, Urmia University, Miyandoab, Iran
| |
Collapse
|
9
|
Jia A, Chen B, Lu H, Xing Y, Li B, Fan X. Multigene phylogeny and morphology reveal three new species of Cytospora isolated from diseased plant branches in Fengtai District, Beijing, China. MycoKeys 2024; 101:163-189. [PMID: 38283722 PMCID: PMC10811668 DOI: 10.3897/mycokeys.101.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Members of Cytospora include saprobes, endophytes and important plant pathogens, which are widely distributed on various wood hosts and have a wide global distribution. In this study, the species definitions were conducted, based on multigene phylogeny (ITS, act, rpb2, tef1-α and tub2 genes) and comparisons of morphological characters. A total of 22 representative isolates obtained from 21 specimens in Fengtai District of Beijing City were identified as seven species of Cytospora, including four known species (C.albodisca, C.ailanthicola, C.euonymina, C.haidianensis) and three novel species (C.fengtaiensis, C.pinea, C.sorbariae). The results provide an understanding of the taxonomy of Cytospora species associated with canker and dieback diseases in Fengtai District, Beijing, China.
Collapse
Affiliation(s)
- Aoli Jia
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Baoyue Chen
- Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Hongyan Lu
- Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yu Xing
- Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Bin Li
- Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xinlei Fan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
10
|
Li S, Travadon R, Trouillas FP. Effects of Temperature on Spore Germination and Mycelial Growth of Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata Isolates Associated with Sweet Cherry Canker Diseases. PLANT DISEASE 2023; 107:3448-3456. [PMID: 37081630 DOI: 10.1094/pdis-12-22-2956-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although fungal canker diseases constitute a limiting factor to orchard productivity and longevity, little is known about the effects of temperature on spore germination and mycelial growth of the fungal causal agents. Accordingly, the germination of spores and colony growth of Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata were evaluated after incubation on 2% water agar and 4% potato dextrose agar, respectively, at 5, 10, 15, 20, 25, 30, 35, and 40°C. Temperature optima for spore germination and mycelial growth were derived from nonlinear models fitted to germination rates and colony diameter data. The optimal temperatures for spore germination of Cal. pulchella were 28.5°C for ascospores and 29.2°C for conidia. The optimal temperatures for Cyt. sorbicola conidia and E. lata ascospore germination were 25.8 and 23.1°C, respectively. The germination of ascospores and conidia of Cal. pulchella at temperatures below 15°C required an incubation time of at least 72 h. Ascospores of E. lata and conidia of Cyt. sorbicola germinated at 10°C after 36 h. The optimal temperature for colony growth of Cal. pulchella was 24.6°C, whereas it was 21.7°C for both Cyt. sorbicola and E. lata. Our study indicates that temperature requirements for basic biological functions are higher for Cal. pulchella than for Cyt. sorbicola and E. lata. The overall higher temperatures of California relative to other cherry-producing regions in the United States or worldwide could explain the prevalence of Calosphaeria canker in the state. Conversely, Cyt. sorbicola and E. lata appear better adapted to cooler temperatures.
Collapse
Affiliation(s)
- Sampson Li
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Florent P Trouillas
- Department of Plant Pathology, University of California, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| |
Collapse
|
11
|
Li S, Travadon R, Trouillas FP. Seasonal Susceptibility of Sweet Cherry Pruning Wounds to Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata. PLANT DISEASE 2023; 107:3517-3522. [PMID: 37163313 DOI: 10.1094/pdis-04-23-0668-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fungal canker pathogens commonly infect trees at pruning wounds leading to branch dieback and loss of productivity in sweet cherry orchards. However, the seasonal susceptibility of sweet cherry pruning wounds to Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata is not well understood. This study compared the susceptibility of sweet cherry pruning wounds made during the dormant season (January) and the postharvest season (late May to June) to infection by main canker pathogens in California. Field trials were conducted in three cherry orchards and trees were pruned at the different periods over 2 years. Fresh pruning wounds were inoculated with spores of each pathogen, and pathogen recovery was assessed through microbiological isolations at 3 to 4 months after inoculations. Pruning wounds made in late May and June resulted in significantly higher infection by Cal. pulchella compared to pruning wounds made in January. Pruning wounds made during both seasons were generally equally susceptible to Cyt. sorbicola and E. lata infections. However, there was one orchard where dormant pruning wounds were more susceptible to infection by E. lata and there was one particularly cold winter where Cyt. sorbicola did not infect pruning wounds. Overall, our findings suggest that Cal. pulchella infections of cherry pruning wounds are more likely to occur during periods of warm temperatures such as late spring and early summer. However, infections by Cyt. sorbicola and E. lata can occur year-round if inoculum is present and if winter temperatures are not abnormally low for California. Finally, our results suggest that the emergence of Cal. pulchella as a major canker pathogen of sweet cherry in California may be the result of a shift from dormant to after-harvest pruning of sweet cherry trees.
Collapse
Affiliation(s)
- Sampson Li
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Florent P Trouillas
- Department of Plant Pathology, University of California, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| |
Collapse
|
12
|
Baker ST, Froelich MH, Boatwright H, Wang H, Schnabel G, Kerrigan J. Genetic Diversity and Fungicide Sensitivity of Cytospora plurivora on Peach. PLANT DISEASE 2023; 107:2112-2118. [PMID: 36510433 DOI: 10.1094/pdis-04-22-0790-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cytospora plurivora D.P. Lawr., L.A. Holland & Trouillas has been associated with recent premature peach tree decline in South Carolina, but very little is known about the pathogen or chemical control options. Ninety-three C. plurivora isolates were collected in 2016 and 2017 from 1-year-old peach wood and symptomatic scaffold limbs, respectively, from orchards in six towns in South Carolina. Six unique genotypes were identified based on substantial ITS1-5.8S-ITS2 sequence variability and classified G1 to G6. Three of the genotypes (G2, G3, and G6) were isolated in high frequency in multiple locations of both years. In addition to the genotypic variation, multiple phenotypes were observed between and within genotype groups. Species identity was determined using additional gene loci: ACT, TUB, and EF, and isolates were found to belong to C. plurivora for all genotype groups. All tested genotypes were sensitive to thiophanate-methyl (FRAC 1) but exhibited slightly lower sensitivity to propiconazole and difenoconazole (both FRAC 3). Boscalid, fluopyram (both FRAC 7s), azoxystrobin, and pyraclostrobin (both FRAC 11s) were ineffective in vitro at inhibiting mycelial growth of C. plurivora genotypes. Field inoculation of peach and nectarine trees revealed that all genotypes developed twig cankers with differences in virulence. G1 was most virulent, and G6 was least virulent. This study provides a link between the C. plurivora genetic variability and virulence and provides fungicide sensitivity information that could be used to improve disease management practices.
Collapse
Affiliation(s)
- Stephen T Baker
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Martha H Froelich
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Harriet Boatwright
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Hehe Wang
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Julia Kerrigan
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
13
|
Petrović E, Vrandečić K, Ivić D, Ćosić J, Godena S. First Report of Olive Branch Dieback in Croatia Caused by Cytospora pruinosa Défago. Microorganisms 2023; 11:1679. [PMID: 37512852 PMCID: PMC10384268 DOI: 10.3390/microorganisms11071679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Olive (Olea europaea L.) is a very important crop grown in the Mediterranean part of Croatia. Olive branch and fruit dieback symptoms were observed in two olive orchards in Istria, Croatia. The samples from symptomatic trees were collected and brought to the laboratory for analysis. Based on their morphological characterization, isolated fungi were identified as Cytospora sp. Two representative isolates (one per orchard) were taken for molecular analysis, and based on DNA sequence data of the ITS and TUB gene regions, and phylogenetic analysis of the sequences, the isolates were identified as Cytospora pruinosa Défago. To determine pathogenicity, pathogenicity tests were conducted on detached olive branches and two-year-old olive trees in the greenhouse. This is the first report of C. pruinosa causing olive branch and fruit dieback in Croatia.
Collapse
Affiliation(s)
- Elena Petrović
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Karolina Vrandečić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Dario Ivić
- Centre for Plant Protection, Croatian Agency for Agriculture and Food, Gorice 68b, 10000 Zagreb, Croatia
| | - Jasenka Ćosić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
| | - Sara Godena
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| |
Collapse
|
14
|
Philpott M, Liew ECY, van der Merwe MM, Mertin A, French K. The Influence of Cone Age and Urbanisation on the Diversity and Community Composition of Culturable Seed Fungal Endophytes within Native Australian Banksia ericifolia L.f. subsp. ericifolia. J Fungi (Basel) 2023; 9:706. [PMID: 37504695 PMCID: PMC10381327 DOI: 10.3390/jof9070706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Seed fungal endophytes play a crucial role in assisting the overall health and success of their host plant; however, little is known about the factors that influence the diversity and composition of these endophytes, particularly with respect to how they change over time and within urban environments. Using culturing techniques, morphological analyses, and Sanger sequencing, we identified the culturable seed fungal endophytes of Banksia ericifolia at two urban and two natural sites in Sydney, New South Wales, Australia. A total of 27 Operational Taxonomic Units were obtained from 1200 seeds. Older cones were found to contain, on average, more colonised endophytes than younger cones. Species richness was also significantly influenced by cone age, with older cones being more speciose. Between urban and natural sites, the overall community composition did not change, although species richness and diversity were greatest at urban sites. Understanding how these endophytes vary in time and space may help provide an insight into the transmission pathways used and the potential role they play within the development and survival of the seed. This knowledge may also be crucial for restoration purposes, especially regarding the need to consider endophyte viability in ex situ seed collection and storage in seed-banking practices.
Collapse
Affiliation(s)
- Merize Philpott
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Edward C Y Liew
- Research Centre for Ecosystem Resilience, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
| | - Marlien M van der Merwe
- Research Centre for Ecosystem Resilience, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
| | - Allison Mertin
- Research Centre for Ecosystem Resilience, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
| | - Kristine French
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
15
|
Belair M, Pensec F, Jany JL, Le Floch G, Picot A. Profiling Walnut Fungal Pathobiome Associated with Walnut Dieback Using Community-Targeted DNA Metabarcoding. PLANTS (BASEL, SWITZERLAND) 2023; 12:2383. [PMID: 37376008 DOI: 10.3390/plants12122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Walnut dieback can be caused by several fungal pathogenic species, which are associated with symptoms ranging from branch dieback to fruit necrosis and blight, challenging the one pathogen-one disease concept. Therefore, an accurate and extensive description of the walnut fungal pathobiome is crucial. To this end, DNA metabarcoding represents a powerful approach provided that bioinformatic pipelines are evaluated to avoid misinterpretation. In this context, this study aimed to determine (i) the performance of five primer pairs targeting the ITS region in amplifying genera of interest and estimating their relative abundance based on mock communities and (ii) the degree of taxonomic resolution using phylogenetic trees. Furthermore, our pipelines were also applied to DNA sequences from symptomatic walnut husks and twigs. Overall, our results showed that the ITS2 region was a better barcode than ITS1 and ITS, resulting in significantly higher sensitivity and/or similarity of composition values. The ITS3/ITS4_KYO1 primer set allowed to cover a wider range of fungal diversity, compared to the other primer sets also targeting the ITS2 region, namely, GTAA and GTAAm. Adding an extraction step to the ITS2 sequence influenced both positively and negatively the taxonomic resolution at the genus and species level, depending on the primer pair considered. Taken together, these results suggested that Kyo set without ITS2 extraction was the best pipeline to assess the broadest fungal diversity, with a more accurate taxonomic assignment, in walnut organs with dieback symptoms.
Collapse
Affiliation(s)
- Marie Belair
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Flora Pensec
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Jean-Luc Jany
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Gaétan Le Floch
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| | - Adeline Picot
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France
| |
Collapse
|
16
|
Pan M, Lin L, Tian C, Fan X. Identification and pathogenicity of six fungal species causing canker and dieback disease on golden rain tree in Beijing, China. Mycology 2023; 14:37-51. [PMID: 36816770 PMCID: PMC9930857 DOI: 10.1080/21501203.2022.2096144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Golden rain trees (Koelreuteria paniculata) are largely cultivated because of their important ornamental, medicinal, and economic value. However, they are affected by canker and dieback disease to a large extent. To determine the fungi associated with canker and dieback disease of golden rain trees, isolations were obtained from diseased branches and twigs during 2019 and 2020 in greenbelts and nurseries in Beijing, China. Isolates were identified as six species (Allocryptovalsa castaneicola, Botryosphaeria dothidea, Cytospora koelreutericola sp. nov., Dothiorella acericola, Eutypella citricola, and Peroneutypa scoparia) based on morphological features and phylogenetic analyses of ITS, act, rpb2, tef1-α, and tub2. The results of pathogenicity tests indicated that all fungi produced discoloration and Botryosphaeria dothidea was highly aggressive to golden rain tree. In conclusion, this study explored the taxonomy, phylogeny, and pathogenicity of different fungal species associated with canker and dieback disease on golden rain tree and provided fundamental knowledge to improve disease management.
Collapse
Affiliation(s)
- Meng Pan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Lu Lin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China,CONTACT Xinlei Fan
| |
Collapse
|
17
|
Manetti G, Brunetti A, Lumia V, Sciarroni L, Marangi P, Cristella N, Faggioli F, Reverberi M, Scortichini M, Pilotti M. Identification and Characterization of Neofusicoccum stellenboschiana in Branch and Twig Dieback-Affected Olive Trees in Italy and Comparative Pathogenicity with N. mediterraneum. J Fungi (Basel) 2023; 9:292. [PMID: 36983460 PMCID: PMC10053632 DOI: 10.3390/jof9030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
For about a decade, olive groves in Apulia (Southern Italy) have been progressively destroyed by Olive Quick Decline Syndrome (OQDS), a disease caused by the bacterium Xylella fastidiosa subsp. pauca (Xfp). Recently, we described an additional wilting syndrome affecting olive trees in that area. The botryosphaeriaceous fungus Neofusicoccum mediterraneum was found associated with the diseased trees, and its high virulence toward olive trees was demonstrated. Given the common features with Branch and Twig Dieback (BTD) of olive tree, occurring in Spain and California, we suggested that the observed syndrome was BTD. During our first survey, we also found a botryosphaeriaceous species other than N. mediterraneum. In the present article, we report the morphological and molecular characterization of this fungal species which we identified as Neofusicoccum stellenboschiana. In the study, we also included for comparison additional N. stellenboschiana isolates obtained from olive trees in Latium and Tuscany region (Central Italy). The occurrence of N. stellenboschiana in olive trees is reported here for the first time in the northern hemisphere. The pathogenicity and virulence were tested in nine inoculation trials, where the Apulian N. stellenboschiana isolate was compared with the isolate from Latium and with the Apulian isolate of N. mediterraneum. Both isolates of N. stellenboschiana proved pathogenic to olive trees. They caused evident bark canker and wood discolouration when inoculated at the base of the stem of two/three-year-old trees and on one-year-old twigs. However, virulence of N. stellenboschiana was significantly lower, though still remarkable, compared with N. mediterraneum in term of necrosis progression in the bark and the wood and capacity of wilting the twigs. Virulence of N. stellenboschiana and N. mediterraneum did not substantially change when inoculations were performed in spring/summer and in autumn, suggesting that these fungal species have the potential to infect and damage olive trees in all seasons. The high thermotolerance of N. stellenboschiana was also revealed with in vitro growth and survival tests. The high virulence of these Botryosphaeriaceae species highlights their contribution in BTD aetiology and the necessity to investigate right away their diffusion and, possibly, the role of additional factors other than Xfp in the general decline of olive groves in Apulia. Hence the importance of assessing the degree of overlap of BTD/Botryosphariaceae with OQDS/Xfp is discussed.
Collapse
Affiliation(s)
- Giuliano Manetti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Angela Brunetti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Valentina Lumia
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Lorenzo Sciarroni
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Paolo Marangi
- Terranostra S.r.l.s., 72021 Francavilla Fontana, Italy
| | | | - Francesco Faggioli
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, University Sapienza, 00165 Rome, Italy
| | - Marco Scortichini
- Research Centre for Olive, Fruit trees and Citrus Crops, Council for Agricultural Research and Economics (CREA) (CREA-OFA), 00134 Rome, Italy
| | - Massimo Pilotti
- Research Centre for Plant Protection and Certification (CREA-DC), Council for Agricultural Research and Economics, 00156 Rome, Italy
| |
Collapse
|
18
|
Ilyukhin E, Nguyen HDT, Castle AJ, Ellouze W. Cytospora paraplurivora sp. nov. isolated from orchards with fruit tree decline syndrome in Ontario, Canada. PLoS One 2023; 18:e0279490. [PMID: 36630368 PMCID: PMC9833554 DOI: 10.1371/journal.pone.0279490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023] Open
Abstract
A new species of Cytospora was isolated from cankered wood of Prunus spp. during a survey of orchards exhibiting symptoms of fruit tree decline syndrome in southern Ontario, Canada. We found isolates that are morphologically similar to species in the Cytosporaceae family, which is characterized by single or labyrinthine locules, filamentous conidiophores or clavate to elongate obovoid asci and allantoid, hyaline conidia. Multi-gene phylogenetic analysis of ITS, LSU, act and tef1- α showed that the isolates form a distinct clade, sister to Cytospora plurivora. Morphologically, our isolates showed differences in the length of conidia and culture characteristics compared to C. plurivora, suggesting the establishment of a new species. The species is described as Cytospora paraplurivora sp. nov. and placed in the family Cytosporaceae of Diaporthales. Additionally, we sequenced, assembled and characterized the genome of the representative isolate for this new species. The phylogenomic analysis confirms the species order and family level classification. C. paraplurivora sp. nov. has the potential to severely affect stone fruits production, causing cankers and dieback in stressed trees, and eventually leads to tree decline. Pathogenicity tests show that the species is pathogenic to Prunus persica var. persica.
Collapse
Affiliation(s)
- Evgeny Ilyukhin
- Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada
| | | | - Alan J. Castle
- Department of Biological Sciences, Brock University, St. Catharines, Canada
| | - Walid Ellouze
- Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Multigene phylogeny, morphology, and pathogenicity trials reveal novel Cytospora species involved in perennial canker disease of apple trees in Iran. Fungal Biol 2022; 126:707-726. [PMID: 36517139 DOI: 10.1016/j.funbio.2022.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/06/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023]
Abstract
In recent years, canker and die-back diseases have become a growing threat for the productivity and longevity of apple orchards in Iran. In this study, 131 Cytospora isolates were recovered from symptomatic tissues of apple trees in apple orchards of Iran. Multigene phylogenetic inference based on combined sequence data of ITS, act, rpb2, and tef1-α loci, supplemented with morphological characteristics and pathogenicity assay revealed four novel Cytospora species which were described as C. avicennae, C. azerbaijanica, C. ershadii, and C. iranica, and four known species, namely C. chrysosperma, C. parasitica, C. paratranslucens, and C. sorbicola. Also, C. sorbicola is newly reported on apple trees worldwide. Koch's postulates were fulfilled to confirm that all eight species in this study were pathogenic on apple trees in Iran, among which C. sorbicola was the most intensive species. The results of this study further highlight rich diversity among Cytospora species occurring on apple trees, revealing several novel Cytospora species on this host. The host range, geographical distribution, and economic significance of novel species on apple industry remains to be studied.
Collapse
|
20
|
Travadon R, Lawrence DP, Moyer MM, Fujiyoshi PT, Baumgartner K. Fungal species associated with grapevine trunk diseases in Washington wine grapes and California table grapes, with novelties in the genera Cadophora, Cytospora, and Sporocadus. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1018140. [PMID: 37746176 PMCID: PMC10512239 DOI: 10.3389/ffunb.2022.1018140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 09/26/2023]
Abstract
Grapevine trunk diseases cause serious economic losses to grape growers worldwide. The identification of the causal fungi is critical to implementing appropriate management strategies. Through a culture-based approach, we identified the fungal species composition associated with symptomatic grapevines from wine grapes in southeastern Washington and table grapes in the southern San Joaquin Valley of California, two regions with contrasting winter climates. Species were confirmed through molecular identification, sequencing two to six gene regions per isolate. Multilocus phylogenetic analyses were used to identify novel species. We identified 36 species from 112 isolates, with a combination of species that are new to science, are known causal fungi of grapevine trunk diseases, or are known causal fungi of diseases of other woody plants. The novel species Cadophora columbiana, Cytospora macropycnidia, Cytospora yakimana, and Sporocadus incarnatus are formally described and introduced, six species are newly reported from North America, and grape is reported as a new host for three species. Six species were shared between the two regions: Cytospora viticola, Diatrype stigma, Diplodia seriata, Kalmusia variispora, Phaeoacremonium minimum, and Phaeomoniella chlamydospora. Dominating the fungal community in Washington wine grape vineyards were species in the fungal families Diatrypaceae, Cytosporaceae and Sporocadaceae, whereas in California table grape vineyards, the dominant species were in the families Diatrypaceae, Togniniaceae, Phaeomoniellaceae and Hymenochaetaceae. Pathogenicity tests demonstrated that 10 isolates caused wood discoloration similar to symptomatic wood from which they were originally isolated. Growth rates at temperatures from 5 to 35°C of 10 isolates per region, suggest that adaptation to local climate might explain their distribution.
Collapse
Affiliation(s)
- Renaud Travadon
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Daniel P. Lawrence
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Michelle M. Moyer
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Phillip T. Fujiyoshi
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service, Davis, CA, United States
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
21
|
Luo Y, Ma R, Barrera E, Gusella G, Michailides TJ. Effects of Temperature on Development of Canker-Causing Pathogens in Almond and Prune. PLANT DISEASE 2022; 106:2424-2432. [PMID: 35171640 DOI: 10.1094/pdis-01-22-0048-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Between 2000 and 2020, canker diseases of nut and stone fruit trees have become very widespread and severe in California. This study determined the effects of temperature on the development of canker-causing pathogens of almond and prune. Five pathogen taxa, Botryosphaeria dothidea, Cytospora leucostoma, Diaporthe (Phomopsis) neotheicola, Lasiodiplodia citricola, and Neofusicoccum mediterraneum, were used. Colony growth on medium and canker lesion development on detached shoots were measured at 10, 15, 20, 25, 30, and 35°C. The effects of temperature on colony growth differed among different pathogen taxa, although 25°C was the optimal temperature for most of the pathogens tested. The patterns of lesion growth as response to temperature were different among the different pathogens and tree crops. On almond, the highest growth rates appeared at 30°C for B. dothidea and L. citricola, but at 20°C for N. mediterraneum. The growth rates for C. leucostoma were lower than those of the other three pathogen taxa, with the highest rates recorded at 25°C. However, on prune, C. leucostoma showed greater lesion growth rates at different temperatures than the other pathogen taxa and maximum growth at 30 to 35°C. Similar trends were observed for L. citricola. The growth rates of B. dothidea and N. mediterraneum were comparatively lower than those of C. leucostoma and L. citricola.
Collapse
Affiliation(s)
- Y Luo
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - R Ma
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - E Barrera
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - G Gusella
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
- University of Catania Department of Agriculture Food and Environment, Catania, Italy
| | - T J Michailides
- Department of Plant Pathology, University of California Davis/Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| |
Collapse
|
22
|
Avenot HF, Jaime-Frias R, Travadon R, Holland LA, Lawrence DP, Trouillas FP. Development of PCR-Based Assays for Rapid and Reliable Detection and Identification of Canker-Causing Pathogens from Symptomatic Almond Trees. PHYTOPATHOLOGY 2022; 112:1710-1722. [PMID: 35240867 DOI: 10.1094/phyto-08-21-0351-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trunk and scaffold canker diseases (TSCDs) of almond cause significant yield and tree losses and reduce the lifespan of orchards. In California, several pathogens cause TSCDs, including Botryosphaeriaceae, Ceratocystis destructans, Eutypa lata, Collophorina hispanica, Pallidophorina paarla, Cytospora, Diaporthe, and Phytophthora spp. Field diagnosis of TSCDs is challenging because symptom delineation among the diseases is not clear. Accurate diagnosis of the causal species requires detailed examination of symptoms and subsequent isolation on medium and identification using morphological criteria and subsequent confirmation using molecular tools. The process is time-consuming and difficult, particularly as morphological characteristics are variable and overlap among species. To facilitate diagnosis of TSCD, we developed PCR assays using 23 species-specific primers designed by exploiting sequence differences in the translation elongation factor, β-tubulin, or internal transcribed spacer gene. Using genomic DNA from pure cultures of each fungal and oomycete species, each primer pair successfully amplified a single DNA fragment from the target pathogen but not from selected nontarget pathogens or common endophytes. Although 10-fold serial dilution of fungal DNA extracted from either pure cultures or infected wood samples detected as little as 0.1 pg of DNA sample, consistent detection required 10 ng of pathogen DNA from mycelial samples or from wood chips or drill shavings from artificially or naturally infected almond wood samples with visible symptoms. The new PCR assay represents an improved tool for diagnostic laboratories and will be critical to implement effective disease surveillance and control measures.
Collapse
Affiliation(s)
- Herve F Avenot
- Kearney Agricultural Research & Extension Center, Parlier, CA 93648
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Rosa Jaime-Frias
- Kearney Agricultural Research & Extension Center, Parlier, CA 93648
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Leslie A Holland
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Florent P Trouillas
- Kearney Agricultural Research & Extension Center, Parlier, CA 93648
- Department of Plant Pathology, University of California, Davis, CA 95616
| |
Collapse
|
23
|
Jiménez Luna I, Doll D, Ashworth VETM, Trouillas FP, Rolshausen PE. Comparative Profiling of Wood Canker Pathogens from Spore Traps and Symptomatic Plant Samples Within California Almond and Walnut Orchards. PLANT DISEASE 2022; 106:2182-2190. [PMID: 35077222 DOI: 10.1094/pdis-05-21-1057-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungi causing wood canker diseases are major factors limiting productivity and longevity of almond and walnut orchards. The goal of this study was to compare pathogen profiles from spore traps with those of plant samples collected from symptomatic almond and walnut trees and assess if profiles could be influenced by orchard type and age, rainfall amount and frequency, and/or neighboring trees. Three almond orchards and one walnut orchard with different characteristics were selected for this study. Fungal inoculum was captured weekly from nine trees per orchard using a passive spore-trapping device, during a 30-week period in the rainy season (October to April) and for two consecutive years. Fungal taxa identified from spore traps were compared with a collection of fungal isolates obtained from 61 symptomatic wood samples collected from the orchards. Using a culture-dependent approach coupled with molecular identification, we identified 18 known pathogenic species from 10 fungal genera (Ceratocystis destructans, Collophorina hispanica, Cytospora eucalypti, Diaporthe ampelina, Diaporthe chamaeropis/rhusicola, Diaporthe eres, Diaporthe novem, Diplodia corticola, Diplodia mutila, Diplodia seriata, Dothiorella iberica, Dothiorella sarmentorum, Dothiorella viticola, Eutypa lata, Neofusicoccum mediterraneum, Neofusicoccum parvum, Neoscytalidium dimidiatum, and Pleurostoma richardsiae), plus two unidentified Cytospora and Diaporthe species. However, only four species were identified with both methods (Diplodia mutila, Diplodia seriata, Dothiorella Iberica, and E. lata), albeit not consistently across orchards. Our results demonstrate a clear disparity between the two diagnostic methods and caution against using passive spore traps to predict disease risks. In particular, the spore trap approach failed to capture: insect-vectored pathogens such as Ceratocystis destructans that were often recovered from almond trunk and scaffold; Diaporthe chamaeropis/rhusicola commonly isolated from wood samples likely because Diaporthe species have a spatially restricted dispersal mechanism, as spores are exuded in a cirrus; and pathogenic species with low incidence in wood samples such as P. richardsiae and Collophorina hispanica. We propose that orchard inoculum is composed of both endemic taxa that are characterized by frequent and repeated trapping events from the same trees and isolated from plant samples, as well as immigrant taxa characterized by rare trapping events. We hypothesize that host type, orchard age, precipitation, and alternative hosts at the periphery of orchards are factors that could affect pathogen profile. We discuss the limitations and benefits of our methodology and experimental design to develop guidelines and prediction tools for fungal wood canker diseases in California orchards.
Collapse
Affiliation(s)
- Israel Jiménez Luna
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521
| | - David Doll
- University of California Agricultural and Natural Resources, Merced, CA 95343
| | - Vanessa E T M Ashworth
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521
| | - Florent P Trouillas
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521
| |
Collapse
|
24
|
Chen Q, Bakhshi M, Balci Y, Broders K, Cheewangkoon R, Chen S, Fan X, Gramaje D, Halleen F, Jung MH, Jiang N, Jung T, Májek T, Marincowitz S, Milenković I, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies C, Suhaizan L, Suzuki H, Tian C, Tomšovský M, Úrbez-Torres J, Wang W, Wingfield B, Wingfield M, Yang Q, Yang X, Zare R, Zhao P, Groenewald J, Cai L, Crous P. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol 2022; 101:417-564. [PMID: 36059898 PMCID: PMC9365048 DOI: 10.3114/sim.2022.101.06] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenković, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenković, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenković T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomšovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
Collapse
Affiliation(s)
- Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Bakhshi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
| | - R. Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - S.F. Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV). Consejo Superior de Investigaciones Científicas - Universidad de La Rioja - Gobierno de La Rioja. Ctra. LO-20 Salida 13, 26007 Logroño. Spain
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenboscvh, 7599, South Africa
| | - M. Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - T. Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - T. Májek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - I. Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - I. Nurul Faziha
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Pan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - C.F.J. Spies
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - L. Suhaizan
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - H. Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - J.R. Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W. Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Q. Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - X. Yang
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland, 21702 USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, P.O. Box 117, Oak Ridge, Tennessee, 37831 USA
| | - R. Zare
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
25
|
Fungal Richness of Cytospora Species Associated with Willow Canker Disease in China. J Fungi (Basel) 2022; 8:jof8040377. [PMID: 35448608 PMCID: PMC9030772 DOI: 10.3390/jof8040377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Species of Cytospora are considered important plant pathogens of a wide range of plant hosts, especially Salicaceae plants. Salix (Salicaceae, Malpighiales) has been widely cultivated in China because of its strong ecological adaptability, fast growth, and easy reproduction. In this study, a total of eight species of Cytospora were discovered on Salix in China, including C. ailanthicola, C. alba, C. chrysosperma, C. gigaspora, C. nivea, C. paracinnamomea, C. rostrata, and C. sophoriopsis. Among them, C. alba and C. paracinnamomea were identified as novel species based on morphology and phylogenetic analyses of ITS, act, rpb2, tef1-α, and tub2 gene sequences and were confirmed as pathogens of willow canker disease by pathogenicity tests. The mycelial growth rates of strains from these two novel species (C. alba and C. paracinnamomea) had optimum temperatures of 21 to 22 °C and an optimum pH value of 5 to 6. The effectiveness of six carbon sources on the mycelial growth showed that fructose and maltose had the highest influence. Cytospora species richness was significantly positively correlated with dry and wet areas. This study represents a significant evaluation of Cytospora associated with willow canker disease in China and provides a theoretical basis for predicting the potential risk of willow canker disease.
Collapse
|
26
|
Stewart JE, Miller ST, Zink FA, Caballero JI, Tembrock LR. Genetic and Phenotypic Characterization of the Fungal Pathogen Cytospora plurivora from Western Colorado Peach Orchards and the Development of a ddPCR Assay for Detection and Quantification. PHYTOPATHOLOGY 2022; 112:917-928. [PMID: 34554008 DOI: 10.1094/phyto-05-21-0210-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cytospora canker is one of the most important diseases affecting peach production in Colorado, yet previous efforts to characterize Cytospora species diversity in Colorado have relied exclusively on morphological traits. Recently, several new Cytospora species were described from peach orchards within the United States using molecular and morphological data, prompting the need to reexamine Cytospora spp. present on peach trees in Colorado. A total of 137 isolates of Cytospora spp. were collected from eight orchards in western Colorado. Isolates were sequenced at the internal transcribed spacer region and elongation factor 1-α and assessed with reference sequences in phylogenetic analyses. All isolates from western Colorado peach trees resolved with the newly described Cytospora plurivora. In addition to molecular characterization, temperature growth and virulence assays were conducted to assess phenotypic variation among the isolates from western Colorado. Variation across isolates was found both in growth at different temperatures and in virulence. Ancestral state reconstruction analyses resolved the most virulent (and most often collected) haplotypes together in a well-supported clade from which a single monophyletic origin of high virulence can be inferred. Finally, a droplet digital PCR assay was developed for use in ongoing and future studies to detect and quantify C. plurivora from field and laboratory samples.
Collapse
Affiliation(s)
- Jane E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Stephan T Miller
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Frida A Zink
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | | | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
27
|
Gusella G, Lawrence DP, Aiello D, Luo Y, Polizzi G, Michailides TJ. Etiology of Botryosphaeria Panicle and Shoot Blight of Pistachio ( Pistacia vera) Caused by Botryosphaeriaceae in Italy. PLANT DISEASE 2022; 106:1192-1202. [PMID: 34752130 DOI: 10.1094/pdis-08-21-1672-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pistachio (Pistacia vera) is an important crop in Italy, traditionally cultivated in Sicily (southern Italy) for several decades now. In recent years, new orchards have been planted in new areas of the island. Field surveys conducted in 2019 revealed the presence of symptomatic trees showing shoot dieback, cankers, fruit spots, and leaf lesions. Isolations from symptomatic samples consistently yielded fungal species in the Botryosphaeriaceae family. Identification of collected isolates was conducted using morphological and molecular analyses. Morphological characterization was based on conidia measurements of representative isolates and also effects of temperatures on mycelial growth was evaluated. DNA data derived from sequencing the ITS, tef1-α, and tub2 gene regions were analyzed via phylogenetic analyses (maximum parsimony and maximum likelihood). Results of the analyses confirmed the identity of Botryosphaeria dothidea, Neofusicoccum hellenicum, and N. mediterraneum. Pathogenicity tests were conducted on detached twigs and in the fields both on shoots as well as on fruit clusters using the mycelial plug technique. The inoculation experiments revealed that among the Botryosphaeriaceae species identified in this study N. hellenicum (occasionally detected) and N. mediterraneum were the most aggressive based on lesion length on shoots and fruits. N. mediterraneum was the most widespread among the orchards while B. dothidea can be considered a minor pathogen involved in this complex disease of pistachio. Moreover, to our knowledge, this is the first report of N. hellenicum in Italy.
Collapse
Affiliation(s)
- Giorgio Gusella
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Sezione di Patologia vegetale, University of Catania, Catania, 95123, Italy
- Department of Plant Pathology, University of California, Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, U.S.A
| | - Dalia Aiello
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Sezione di Patologia vegetale, University of Catania, Catania, 95123, Italy
| | - Yong Luo
- Department of Plant Pathology, University of California, Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Giancarlo Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Sezione di Patologia vegetale, University of Catania, Catania, 95123, Italy
| | - Themis J Michailides
- Department of Plant Pathology, University of California, Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| |
Collapse
|
28
|
Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00500-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
van Dyk M, Spies CFJ, Mostert L, van der Rijst M, du Plessis IL, Moyo P, van Jaarsveld WJ, Halleen F. Pathogenicity Testing of Fungal Isolates Associated with Olive Trunk Diseases in South Africa. PLANT DISEASE 2021; 105:4060-4073. [PMID: 34156267 DOI: 10.1094/pdis-08-20-1837-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A recent olive trunk disease survey performed in the Western Cape Province, South Africa, identified several fungi associated with olive trunk disease symptoms, including species of Basidiomycota, Botryosphaeriaceae, Coniochaetaceae, Calosphaeriaceae, Diaporthaceae, Diatrypaceae, Phaeomoniellaceae, Phaeosphaeriaceae, Symbiotaphrinaceae, Togniniaceae, and Valsaceae. Many of the species recovered had not yet been reported from olive trees; therefore, the aim of this study was to determine their pathogenicity toward this host. Pathogenicity tests were first conducted on detached shoots to select virulent isolates, which were then used in field trials. During field trials, 2-year-old olive branches of 15-year-old trees were inoculated by inserting colonized agar plugs into artificially wounded tissue. Measurements were made of the internal lesions after 8 months. In total, 58 isolates were selected for the field trials. Species that formed lesions significantly larger than the control could be considered as olive trunk pathogens. These included Biscogniauxia rosacearum, Celerioriella umnquma, Coniochaeta velutina, Coniothyrium ferrarisianum, isolates of the Cytospora pruinosa complex, Didymocyrtis banksiae, Diaporthe foeniculina, Eutypa lata, Fomitiporella viticola, Neofusicoccum stellenboschiana, Neofusicoccum vitifusiforme, Neophaeomoniella niveniae, Phaeoacremonium africanum, Phaeoacremonium minimum, Phaeoacremonium oleae, Phaeoacremonium parasiticum, Phaeoacremonium prunicola, Phaeoacremonium scolyti, Phaeoacremonium spadicum, Pleurostoma richardsiae, Pseudophaeomoniella globosa, Punctularia atropurpurascens, Vredendaliella oleae, an undescribed Cytospora sp., Geosmithia sp., two undescribed Neofusicoccum spp., and four Xenocylindrosporium spp. Pseudophaeomoniella globosa can be regarded as one of the main olive trunk pathogens in South Africa because of its high incidence from olive trunk disease symptoms in established orchards and its high virulence in pathogenicity trials.
Collapse
Affiliation(s)
- Meagan van Dyk
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| | - Christoffel F J Spies
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Lizel Mostert
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| | | | - Ihan L du Plessis
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| | - Providence Moyo
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| | - Wynand J van Jaarsveld
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| | - Francois Halleen
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
- Department of Plant Pathology, University of Stellenbosch, Matieland, 7602, South Africa
| |
Collapse
|
30
|
Nourian A, Salehi M, Safaie N, Khelghatibana F, Abdollahzadeh J. Fungal canker agents in apple production hubs of Iran. Sci Rep 2021; 11:22646. [PMID: 34811444 PMCID: PMC8608896 DOI: 10.1038/s41598-021-02245-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
To identify apple canker casual agents and evaluate their pathogenicity and virulence in apple production hubs including West Azarbaijan, Isfahan and Tehran provinces; samples were collected from symptomatic apple trees. Pathogenic isolates on the detached branches were identified as Cytospora cincta, Diplodia bulgarica, Neoscytalidium dimidiatum and Eutypa cf. lata. E. cf. lata was reported as a potential apple canker causal agent in Iran for the first time based on the pathogenicity test on the detached branches, whereas it caused no canker symptoms in apple trees until 6 months after inoculation. Currently, E. cf. lata seems to be adapted to a single city. C. cincta, D. bulgarica and N. dimidiatum caused canker symptoms in apple trees. “C. cincta” and also “C. cincta and N. dimidiatum” were the most widespread and aggressive apple canker species, respectively, associated with apple canker in Iran. Therefore, they are considered to be the main threat to apple production in Iran and should be carefully monitored. Disease progress curve, area under the disease progress curve and optimum temperatures were determined for mentioned species. It is concluded that the establishment of each species occurs in appropriate areas and times in terms of the optimum temperature for their growth.
Collapse
Affiliation(s)
- Abbas Nourian
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mina Salehi
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Khelghatibana
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
31
|
Holland LA, Travadon R, Lawrence DP, Nouri MT, Trouillas F. Evaluation of Pruning Wound Protection Products for the Management of Almond Canker Diseases in California. PLANT DISEASE 2021; 105:3368-3375. [PMID: 33560878 DOI: 10.1094/pdis-11-20-2371-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Almond trunk and branch canker diseases constitute a major cause of tree mortality in California. Numerous fungal pathogens have been associated with these canker diseases and pruning wounds act as major infection courts. Before this study, there were no products registered in California for the management of these diseases. In this study, fungicidal products including synthetic chemistries, biocontrols, paint, and a sealant were evaluated for preventing fungal pathogen infection via pruning wounds. In four field trials conducted over two dormant seasons, 16 pruning wound treatments were tested using handheld spray applications against five almond canker pathogens, namely Botryosphaeria dothidea, Neofusicoccum parvum, Cytospora sorbicola, Ceratocystis destructans, and Eutypa lata. The fungicide thiophanate-methyl (Topsin M; United Phosphorus, Bandra West, Mumbai, India) provided 82% overall disease prevention against four fungal pathogens. The biological control agent, Trichoderma atroviride SC1 (Vintec; Bi-PA, Londerzeel, Belgium), tested at three application rates, resulted in 90 to 93% protection of pruning wounds in field trials, and for individual pathogens ranged from 81 to 100% protection for the three rates. At the time of this publication, Vintec is being considered for registration as a biological control product for the prevention of almond canker diseases, while Topsin M is recommended to growers for the prevention of almond canker diseases. This research indicates that effective protection of pruning wounds from infection by almond canker pathogens can be achieved with a one-time spray application of thiophanate-methyl or the biocontrol T. atroviride SC1 (recommended 2 g/liter) after pruning.
Collapse
Affiliation(s)
- Leslie A Holland
- Plant Pathology, University of California, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | | | | | - Mohamed T Nouri
- University of California Cooperative Extension San Joaquin County, Stockton, CA 95206
| | - Florent Trouillas
- Plant Pathology, University of California, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| |
Collapse
|
32
|
Discovery of Three Novel Cytospora Species in Thailand and Their Antagonistic Potential. DIVERSITY 2021. [DOI: 10.3390/d13100488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During an ongoing research survey of saprobic fungi in Thailand, four coelomycetous strains were isolated from decaying leaves in Chiang Mai and Phitsanulok Provinces. Morphological characteristics demonstrated that these taxa are typical of Cytospora in forming multi-loculate, entostromatic conidiomata, branched or unbranched conidiophores, with enteroblastic, phialidic conidiogenous cells and hyaline, allantoid, aseptate conidia. Multiloci phylogeny of ITS, LSU, ACT, RPB2, TEF1-α and TUB2 confirmed these taxa are distinct new species in Cytospora in Cytosporaceae (Diaporthales, Sordariomycetes), viz., Cytospora chiangmaiensis, C. phitsanulokensis and C. shoreae. Cytospora chiangmaiensis has a close phylogenetic relationship with C. shoreae, while C. phitsanulokensis is sister to C. acaciae. These three novel species were also preliminary screened for their antagonistic activity against five plant pathogenic fungi: Colletotrichumfructicola, Co. siamense, Co. artocarpicola, Co. viniferum and Fusarium sambucinum. Cytospora shoreae and C. phitsanulokensis showed >60% inhibition against Co. viniferum and F. sambucinum, while C. chiangmaiensis had moderate inhibition activity against all pathogens.
Collapse
|
33
|
Dieback and decline pathogens of olive trees in South Africa. Persoonia - Molecular Phylogeny and Evolution of Fungi 2021; 45:196-220. [PMID: 34456377 PMCID: PMC8375345 DOI: 10.3767/persoonia.2020.45.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/03/2020] [Indexed: 12/03/2022]
Abstract
Trunk disease fungal pathogens reduce olive production globally by causing cankers, dieback, and other decline-related symptoms on olive trees. Very few fungi have been reported in association with olive dieback and decline in South Africa. Many of the fungal species reported from symptomatic olive trees in other countries have broad host ranges and are known to occur on other woody host plants in the Western Cape province, the main olive production region of South Africa. This survey investigated the diversity of fungi and symptoms associated with olive dieback and decline in South Africa. Isolations were made from internal wood symptoms of 145 European and 42 wild olive trees sampled in 10 and 9 districts, respectively. A total of 99 taxa were identified among 440 fungal isolates using combinations of morphological and molecular techniques. A new species of Pseudophaeomoniella, P. globosa, had the highest incidence, being recovered from 42.8 % of European and 54.8 % of wild olive samples. This species was recovered from 9 of the 10 districts where European olive trees were sampled and from all districts where wild olive trees were sampled. Members of the Phaeomoniellales (mainly P. globosa) were the most prevalent fungi in five of the seven symptom types considered, the only exceptions being twig dieback, where members of the Botryosphaeriaceae were more common, and soft/white rot where only Basidiomycota were recovered. Several of the species identified are known as pathogens of olives or other woody crops either in South Africa or elsewhere in the world, including species of Neofusicoccum, Phaeoacremonium, and Pleurostoma richardsiae. However, 81 of the 99 taxa identified have not previously been recorded on olive trees and have unknown interactions with this host. These taxa include one new genus and several putative new species, of which four are formally described as Celerioriella umnquma sp. nov., Pseudophaeomoniella globosa sp. nov., Vredendaliella oleae gen. & sp. nov., and Xenocylindrosporium margaritarum sp. nov.
Collapse
|
34
|
Gao H, Pan M, Tian C, Fan X. Cytospora and Diaporthe Species Associated With Hazelnut Canker and Dieback in Beijing, China. Front Cell Infect Microbiol 2021; 11:664366. [PMID: 34408987 PMCID: PMC8366500 DOI: 10.3389/fcimb.2021.664366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022] Open
Abstract
Hazelnut (Corylus heterophylla Fisch.) is an important nut crop in China but has been declining owing to the destructive effects of fungal branch canker and dieback. The identification and management of these pathogens are difficult because of the lack of attention to branch canker, insufficient understanding of phylogenetic, and overlapping morphological characteristics of the pathogens. In total, 51 strains were isolated from Chinese wild hazelnut in this study, and three species of Cytospora and two of Diaporthe were identified through morphological observation and multi-locus phylogenetic analyses (ITS, act, rpb2, tef1-α, and tub2 for Cytospora; ITS, cal, his3, tef1-α, and tub2 for Diaporthe). Three new species, Cytospora corylina, C. curvispora, and Diaporthe corylicola, and two known species, Cytospora leucostoma and Diaporthe eres, grew at 5-30°C and a pH of 3.0-11.0, with optimum growth at approximately 25°C and pH 4.0-7.0. Additionally, the effects of six carbon sources on mycelial growth were investigated. This study explored the main pathogenic fungi species of Corylus heterophylla, completed the corresponding database of pathogenic fungi information, and clarified their biological characteristics. Moreover, the results of this study provided a theoretical basis for Corylus heterophylla disease management and prevention in China.
Collapse
Affiliation(s)
| | | | | | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
35
|
Lawrence DP, Nouri MT, Trouillas FP. Pleurostoma Decline of Olive Trees Caused by Pleurostoma richardsiae in California. PLANT DISEASE 2021; 105:2149-2159. [PMID: 33289413 DOI: 10.1094/pdis-08-20-1771-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A single fungal pathogen was consistently isolated from symptomatic wood of olive trees (Olea europaea) displaying branch and trunk cankers in superhigh-density orchards in the Sacramento and San Joaquin Valleys of California. Morphological characters of the pathogen included two distinct types of conidia (thick-walled, dark brown, and globose and thin-walled, hyaline, and oblong to ellipsoid) and three types of phialides, indicating a pleurostoma-like fungus. Phylogenetic results of four nuclear loci including the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) and partial sequences of the actin, beta-tubulin, and translation elongation factor 1-α genes confirmed the isolates as Pleurostoma richardsiae. Pathogenicity trials conducted in the field involving 2- to 3-year-old branches of three widely planted oil olive cultivars (Arbequina, Arbosana, and Koroneiki) satisfied Koch's postulates and confirmed the pathogenic nature of this species to cause the decline of olive trees in California. All three cultivars were equally susceptible to Pl. richardsiae, indicating no detectable resistance to the pathogen. Additional isolations from symptomatic hosts including almond, peach, pistachio, and plum, also confirmed this species, suggesting that Pl. richardsiae is widespread in agricultural systems and should be considered an emerging pathogen of fruit and nut crops in California.
Collapse
Affiliation(s)
- Daniel P Lawrence
- University of California, Davis, Department of Plant Pathology, Davis, CA 95616
| | - Mohamed T Nouri
- University of California Cooperative Extension San Joaquin County, Stockton, CA 95206
| | - Florent P Trouillas
- University of California, Davis, Department of Plant Pathology and Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| |
Collapse
|
36
|
Zhu H, Pan M, Wijayawardene NN, Jiang N, Ma R, Dai D, Tian C, Fan X. The Hidden Diversity of Diatrypaceous Fungi in China. Front Microbiol 2021; 12:646262. [PMID: 34135872 PMCID: PMC8200573 DOI: 10.3389/fmicb.2021.646262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/09/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, we investigated the diversity of diatrypaceous fungi from six regions in China based on morpho-molecular analyses of combined ITS and tub2 gene regions. We accept 23 genera in Diatrypaceae with 18 genera involved in the phylogram, and the other five genera are lacking living materials with sequences data. Eleven species included in four genera (viz. Allocryptovalsa, Diatrype, Diatrypella, and Eutypella) have been isolated from seven host species, of which nine novel species (viz. Allocryptovalsa castaneae, A. castaneicola, Diatrype betulae, D. castaneicola, D. quercicola, Diatrypella betulae, Da. betulicola, Da. hubeiensis, and Da. shennongensis), a known species of Diatrypella favacea, and a new record of Eutypella citricola from the host genus Morus are included. Current results show the high diversity of Diatrypaceae which are wood-inhabiting fungi in China.
Collapse
Affiliation(s)
- Haiyan Zhu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Meng Pan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Yunnan, China
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Rong Ma
- College of Forestry and Horticulture, Xinjiang Agricultural University, Ürümqi, China
| | - Dongqin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Yunnan, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
37
|
Pan M, Zhu H, Tian C, Huang M, Fan X. Assessment of Cytospora Isolates From Conifer Cankers in China, With the Descriptions of Four New Cytospora Species. FRONTIERS IN PLANT SCIENCE 2021; 12:636460. [PMID: 33679851 PMCID: PMC7930227 DOI: 10.3389/fpls.2021.636460] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Cytospora species are widely distributed and often occur as endophytes, saprobes or phytopathogens. They primarily cause canker and dieback diseases of woody host plants, leading to the growth weakness or death of host plants, thereby causing significant economic and ecological losses. In order to reveal the diversity of Cytospora species associated with canker and dieback diseases of coniferous trees in China, we assessed 11 Cytospora spp. represented by 28 fungal strains from symptomatic branches or twigs of coniferous trees, i.e., Juniperus procumbens, J. przewalskii, Picea crassifolia, Pinus armandii, P. bungeana, Platycladus orientalis in China. Through morphological observations and multilocus phylogeny of ITS, LSU, act, rpb2, tef1-α, and tub2 gene sequences, we focused on four novel Cytospora species (C. albodisca, C. discostoma, C. donglingensis, and C. verrucosa) associated with Platycladus orientalis. This study represented the first attempt to clarify the taxonomy of Cytospora species associated with canker and dieback symptoms of coniferous trees in China.
Collapse
Affiliation(s)
- Meng Pan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Haiyan Zhu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | | | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
38
|
Holland LA, Trouillas FP, Nouri MT, Lawrence DP, Crespo M, Doll DA, Duncan RA, Holtz BA, Culumber CM, Yaghmour MA, Niederholzer FJA, Lightle DM, Jarvis-Shean KS, Gordon PE, Fichtner EJ. Fungal Pathogens Associated With Canker Diseases of Almond in California. PLANT DISEASE 2021; 105:346-360. [PMID: 32757731 DOI: 10.1094/pdis-10-19-2128-re] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Almond canker diseases are destructive and can reduce the yield as well as the lifespan of almond orchards. These diseases may affect the trunk and branches of both young and mature trees and can result in tree death soon after orchard establishment in severe cases. Between 2015 and 2018, 70 almond orchards were visited throughout the Central Valley of California upon requests from farm advisors for canker disease diagnosis. Two major canker diseases were identified, including Botryosphaeriaceae cankers and Ceratocystis canker. In addition, five less prevalent canker diseases were identified, including Cytospora, Eutypa, Diaporthe, Collophorina, and Pallidophorina canker. Seventy-four fungal isolates were selected for multilocus phylogenetic analyses of internal transcribed spacer region ITS1-5.8S-ITS2 and part of the translation elongation factor 1-α, β-tubulin, and glyceraldehyde 3-phosphate dehydrogenase gene sequences; 27 species were identified, including 12 Botryosphaeriaceae species, Ceratocystis destructans, five Cytospora species, Collophorina hispanica, four Diaporthe species, two Diatrype species, Eutypa lata, and Pallidophorina paarla. The most frequently isolated species were Ceratocystis destructans, Neoscytalidium dimidiatum, and Cytospora californica. Pathogenicity experiments on almond cultivar Nonpareil revealed that Neofusicoccum parvum, Neofusicoccum arbuti, and Neofusicoccum mediterraneum were the most virulent. Botryosphaeriaceae cankers were predominantly found in young orchards and symptoms were most prevalent on the trunks of trees. Ceratocystis canker was most commonly found in mature orchards and associated with symptoms found on trunks or large scaffold branches. This study provides a thorough examination of the diversity and pathogenicity of fungal pathogens associated with branch and trunk cankers of almond in California.
Collapse
Affiliation(s)
- Leslie A Holland
- Department of Plant Pathology, University of California, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Florent P Trouillas
- Department of Plant Pathology, University of California, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Mohamed T Nouri
- University of California Cooperative Extension San Joaquin County, Stockton, CA 95206
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Maria Crespo
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - David A Doll
- University of California Cooperative Extension Merced County, Merced, CA 95341
| | - Roger A Duncan
- University of California Cooperative Extension Stanislaus County, Modesto, CA 95358
| | - Brent A Holtz
- University of California Cooperative Extension San Joaquin County, Stockton, CA 95206
| | | | - Mohammad A Yaghmour
- University of California Cooperative Extension Kern County, Bakersfield, CA 93307
| | | | - Danielle M Lightle
- University of California Cooperative Extension Glenn County, Orland, CA 95963
| | - Katherine S Jarvis-Shean
- University of California Cooperative Extension Sacramento, Solano, and Yolo Counties, Woodland, CA 95695
| | - Phoebe E Gordon
- University of California Cooperative Extension Madera County, Madera, CA 93637
| | | |
Collapse
|
39
|
Agustí-Brisach C, Moldero D, Raya MDC, Lorite IJ, Orgaz F, Trapero A. Water Stress Enhances the Progression of Branch Dieback and Almond Decline under Field Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091213. [PMID: 32947913 PMCID: PMC7570136 DOI: 10.3390/plants9091213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Branch dieback and tree decline have been described as a common complex disease worldwide in woody crops, with Botryosphaeriaceae and Diaporthaceae being considered the most frequent fungi associated with the disease symptoms. Their behaviour is still uncertain, since they are considered endophytes becoming pathogenic in weakened hosts when stress conditions, such as water deficiency occur. Therefore, the main goal of this study was to determine if water stress enhances general decline on weakened almond trees subjected to different irrigation treatments under natural field conditions. In parallel, the occurrence of fungal species associated with almond decline was also determined in relation to disease progression by fungal isolation, and morphological and molecular based-methods. The symptoms of branch dieback and general decline were observed over time, mainly in the experimental plots subjected to high water deficiency. Botryosphaeriaceae were the most consistently isolated fungi, and Botryosphaeria dothidea was the most frequent. Collophorina hispanica was the second most frequent species and Diaporthe and Cytospora species were isolated in a low frequency. Most of them were recovered from both asymptomatic and symptomatic trees, with their consistency of isolation increasing with the disease severity. This work reveals the need to elucidate the role of biotic and abiotic factors which increase the rate of infection of fungal trunk pathogens, in order to generate important knowledge on their life cycle.
Collapse
Affiliation(s)
- Carlos Agustí-Brisach
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain; (M.d.C.R.); (A.T.)
| | - David Moldero
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (D.M.); (F.O.)
| | - María del Carmen Raya
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain; (M.d.C.R.); (A.T.)
| | - Ignacio J. Lorite
- IFAPA-Centro Alameda del Obispo, Junta de Andalucía, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Francisco Orgaz
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Alameda del Obispo, Avda Menéndez Pidal s/n, 14004 Córdoba, Spain; (D.M.); (F.O.)
| | - Antonio Trapero
- Departamento de Agronomía, ETSIAM, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 14071 Córdoba, Spain; (M.d.C.R.); (A.T.)
| |
Collapse
|
40
|
Gugliuzzo A, Criscione G, Biondi A, Aiello D, Vitale A, Polizzi G, Tropea Garzia G. Seasonal changes in population structure of the ambrosia beetle Xylosandrus compactus and its associated fungi in a southern Mediterranean environment. PLoS One 2020; 15:e0239011. [PMID: 32915885 PMCID: PMC7485756 DOI: 10.1371/journal.pone.0239011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
Exotic ambrosia beetles are increasing in Europe due to global trade and global warming. Among these xylomycetophagous insects, Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae) is a serious threat for several Mediterranean host plants. Carob trees growing in Sicily (Italy) have been extensively attacked by beetles leading to rapid tree decline. Although X. compactus has been found in Europe for several years, most aspects of its ecology are still unknown. We thus studied the population structure and dynamics of X. compactus, together with its twig size preference during a sampling of infested carob trees in south east Sicily. In addition, fungi associated with insects or galleries were isolated and characterized. The results showed that, in this newly-colonized environment and host plant, adult X. compactus overwinters inside twigs and starts to fly and reproduce in mid spring, completing five generations before overwintering in late fall. The mean diameter of carob twigs infested by the beetle varied significantly over the seasons, with the insect tending to infest larger twigs as season progresses. The mean number of adults/gallery was 19.21, ranging from 6 to 28. The minimum temperature significantly affected the overwintering adult mortality. Ambrosiella xylebori and Fusarium solani were the main symbionts associated with the pest in this study. Acremonium sp. was instead recorded for the first time in Europe inside X. compactus galleries. Several other fungi species were also found for the first time in association with X. compactus. Our findings provide useful insights into the sustainable management of this noxious pest.
Collapse
Affiliation(s)
- Antonio Gugliuzzo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Giulio Criscione
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Antonio Biondi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Dalia Aiello
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Alessandro Vitale
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Giancarlo Polizzi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Giovanna Tropea Garzia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| |
Collapse
|
41
|
Nicoletti R, Di Vaio C, Cirillo C. Endophytic Fungi of Olive Tree. Microorganisms 2020; 8:E1321. [PMID: 32872625 PMCID: PMC7565531 DOI: 10.3390/microorganisms8091321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to the general interest connected with investigations on biodiversity in natural contexts, more recently the scientific community has started considering occurrence of endophytic fungi in crops in the awareness of the fundamental role played by these microorganisms on plant growth and protection. Crops such as olive tree, whose management is more and more frequently based on the paradigm of sustainable agriculture, are particularly interested in the perspective of a possible applicative employment, considering that the multi-year crop cycle implies a likely higher impact of these symbiotic interactions. Aspects concerning occurrence and effects of endophytic fungi associated with olive tree (Olea europaea) are revised in the present paper.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Claudio Di Vaio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
42
|
Pan M, Zhu H, Bonthond G, Tian C, Fan X. High Diversity of Cytospora Associated With Canker and Dieback of Rosaceae in China, With 10 New Species Described. FRONTIERS IN PLANT SCIENCE 2020; 11:690. [PMID: 32719689 PMCID: PMC7350520 DOI: 10.3389/fpls.2020.00690] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Cytospora canker is a destructive disease of numerous hosts and causes serious economic losses with a worldwide distribution. Identification of Cytospora species is difficult due to insufficient phylogenetic understanding and overlapped morphological characteristics. In this study, we provide an assessment of 23 Cytospora spp., which covered nine genera of Rosaceae, and focus on 13 species associated with symptomatic branch or twig canker and dieback disease in China. Through morphological observation and multilocus phylogeny of internal transcribed spacer (ITS), large nuclear ribosomal RNA subunit (LSU), actin (act), RNA polymerase II subunit (rpb2), translation elongation factor 1-α (tef1-α), and beta-tubulin (tub2) gene regions, the results indicate 13 distinct lineages with high branch support. These include 10 new Cytospora species, i.e., C. cinnamomea, C. cotoneastricola, C. mali-spectabilis, C. ochracea, C. olivacea, C. pruni-mume, C. rosicola, C. sorbina, C. tibetensis, and C. xinjiangensis and three known taxa including Cytospora erumpens, C. leucostoma, and C. parasitica. This study provides an initial understanding of the taxonomy of Cytospora associated with canker and dieback disease of Rosaceae in China.
Collapse
Affiliation(s)
- Meng Pan
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Haiyan Zhu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guido Bonthond
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Chengming Tian
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Xinlei Fan
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
43
|
Úrbez-Torres JR, Lawrence DP, Hand FP, Trouillas FP. Olive Twig and Branch Dieback in California Caused by Cytospora oleicola and the Newly Described Species Cytospora olivarum sp. nov. PLANT DISEASE 2020; 104:1908-1917. [PMID: 32432982 DOI: 10.1094/pdis-09-19-1979-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Field surveys conducted throughout California olive-growing regions in 2008 and 2009 resulted in a collection of 101 Cytospora-like isolates from olive twig and branch dieback symptoms. Cytospora isolates were isolated from multiple cvs. in different olive orchards in Fresno, Madera, Merced, Napa, Riverside, Santa Barbara, Sonoma, Tulare, and Ventura counties. Taxonomic studies of macro- and microscopic structures along with multigene phylogenetic analyses of the internal transcribed spacer region, including the 5.8S rDNA (ITS1-5.8S-ITS2), and fragments of the translation elongation factor 1-α, beta-tubulin, and actin genes identified two species, Cytospora oleicola and C. olivarum sp. nov. Pathogenicity studies conducted in mature olive trees cvs. Manzanillo and Sevillano showed both species to be pathogenic and able to cause vascular necrosis and cankers in olive branches. This study adds to the current knowledge on the etiology of olive twig and branch dieback and provides new important information for the development of effective control strategies against canker diseases affecting olive in California.
Collapse
Affiliation(s)
- José Ramón Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | | | - Florent P Trouillas
- Department of Plant Pathology, University of California, Davis and Kearney Agricultural Research and Extension Centre, Parlier, CA 93648, U.S.A
| |
Collapse
|
44
|
Dieback of Euonymus alatus (Celastraceae) Caused by Cytospora haidianensis sp. nov. in China. FORESTS 2020. [DOI: 10.3390/f11050524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Euonymus alatus (Celastraceae) is widely cultivated in China for its economic value and landscape benefits. Euonymus alatus dieback occurs due to members of Cytospora and has become one of the most severe diseases affecting its cultivation in China. In this study, we examined the causal agent of bough dieback on campuses of University Road, Beijing, China. Among the strains, three were morphologically consistent with Cytospora, showing hyaline and allantoid conidia. Based on phylogenetic analyses of the concatenated actin (ACT), internal transcribed spacer (ITS), RNA polymerase II second largest subunit (RPB2), translation elongation factor 1-alpha (TEF1-α) and beta-tubulin (TUB2) gene sequences, along with morphological and physiological features, we propose C. haidianensis as a novel species. It was confirmed as a causal agent of dieback of E. alatus by pathogenicity tests. Mycelial growth of Cytospora haidianensis occurred at pH values ranging from 3.0 to 11.0, with optimum growth at 8.3, and at temperatures from 5 to 35 °C, with optimum growth at 19.8 °C. We also tested the growth of C. haidianensis in the presence of six carbon sources. Sucrose, maltose and glucose were highly efficient and xylose was the least. The ability of C. haidianensis to grow at 19.8 °C may help to explain its occurrence causing dieback of E. alatus in Beijing during the autumn season.
Collapse
|
45
|
Li WJ, McKenzie EHC, Liu JK(J, Bhat DJ, Dai DQ, Camporesi E, Tian Q, Maharachchikumbura SSN, Luo ZL, Shang QJ, Zhang JF, Tangthirasunun N, Karunarathna SC, Xu JC, Hyde KD. Taxonomy and phylogeny of hyaline-spored coelomycetes. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00440-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EBG, Liu NG, Abeywickrama PD, Mapook A, Wei D, Perera RH, Manawasinghe IS, Pem D, Bundhun D, Karunarathna A, Ekanayaka AH, Bao DF, Li J, Samarakoon MC, Chaiwan N, Lin CG, Phutthacharoen K, Zhang SN, Senanayake IC, Goonasekara ID, Thambugala KM, Phukhamsakda C, Tennakoon DS, Jiang HB, Yang J, Zeng M, Huanraluek N, Liu JK(J, Wijesinghe SN, Tian Q, Tibpromma S, Brahmanage RS, Boonmee S, Huang SK, Thiyagaraja V, Lu YZ, Jayawardena RS, Dong W, Yang EF, Singh SK, Singh SM, Rana S, Lad SS, Anand G, Devadatha B, Niranjan M, Sarma VV, Liimatainen K, Aguirre-Hudson B, Niskanen T, Overall A, Alvarenga RLM, Gibertoni TB, Pfliegler WP, Horváth E, Imre A, Alves AL, da Silva Santos AC, Tiago PV, Bulgakov TS, Wanasinghe DN, Bahkali AH, Doilom M, Elgorban AM, Maharachchikumbura SSN, Rajeshkumar KC, Haelewaters D, Mortimer PE, Zhao Q, Lumyong S, Xu J, Sheng J. Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00439-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa, as well as providing new information of fungal taxa worldwide. This article is the 11th contribution to the fungal diversity notes series, in which 126 taxa distributed in two phyla, six classes, 24 orders and 55 families are described and illustrated. Taxa in this study were mainly collected from Italy by Erio Camporesi and also collected from China, India and Thailand, as well as in some other European, North American and South American countries. Taxa described in the present study include two new families, 12 new genera, 82 new species, five new combinations and 25 new records on new hosts and new geographical distributions as well as sexual-asexual reports. The two new families are Eriomycetaceae (Dothideomycetes, family incertae sedis) and Fasciatisporaceae (Xylariales, Sordariomycetes). The twelve new genera comprise Bhagirathimyces (Phaeosphaeriaceae), Camporesiomyces (Tubeufiaceae), Eriocamporesia (Cryphonectriaceae), Eriomyces (Eriomycetaceae), Neomonodictys (Pleurotheciaceae), Paraloratospora (Phaeosphaeriaceae), Paramonodictys (Parabambusicolaceae), Pseudoconlarium (Diaporthomycetidae, genus incertae sedis), Pseudomurilentithecium (Lentitheciaceae), Setoapiospora (Muyocopronaceae), Srinivasanomyces (Vibrisseaceae) and Xenoanthostomella (Xylariales, genera incertae sedis). The 82 new species comprise Acremonium chiangraiense, Adustochaete nivea, Angustimassarina camporesii, Bhagirathimyces himalayensis, Brunneoclavispora camporesii, Camarosporidiella camporesii, Camporesiomyces mali, Camposporium appendiculatum, Camposporium multiseptatum, Camposporium septatum, Canalisporium aquaticium, Clonostachys eriocamporesiana, Clonostachys eriocamporesii, Colletotrichum hederiicola, Coniochaeta vineae, Conioscypha verrucosa, Cortinarius ainsworthii, Cortinarius aurae, Cortinarius britannicus, Cortinarius heatherae, Cortinarius scoticus, Cortinarius subsaniosus, Cytospora fusispora, Cytospora rosigena, Diaporthe camporesii, Diaporthe nigra, Diatrypella yunnanensis, Dictyosporium muriformis, Didymella camporesii, Diutina bernali, Diutina sipiczkii, Eriocamporesia aurantia, Eriomyces heveae, Ernakulamia tanakae, Falciformispora uttaraditensis, Fasciatispora cocoes, Foliophoma camporesii, Fuscostagonospora camporesii, Helvella subtinta, Kalmusia erioi, Keissleriella camporesiana, Keissleriella camporesii, Lanspora cylindrospora, Loratospora arezzoensis, Mariannaea atlantica, Melanographium phoenicis, Montagnula camporesii, Neodidymelliopsis camporesii, Neokalmusia kunmingensis, Neoleptosporella camporesiana, Neomonodictys muriformis, Neomyrmecridium guizhouense, Neosetophoma camporesii, Paraloratospora camporesii, Paramonodictys solitarius, Periconia palmicola, Plenodomus triseptatus, Pseudocamarosporium camporesii, Pseudocercospora maetaengensis, Pseudochaetosphaeronema kunmingense, Pseudoconlarium punctiforme, Pseudodactylaria camporesiana, Pseudomurilentithecium camporesii, Pseudotetraploa rajmachiensis, Pseudotruncatella camporesii, Rhexocercosporidium senecionis, Rhytidhysteron camporesii, Rhytidhysteron erioi, Septoriella camporesii, Setoapiospora thailandica, Srinivasanomyces kangrensis, Tetraploa dwibahubeeja, Tetraploa pseudoaristata, Tetraploa thrayabahubeeja, Torula camporesii, Tremateia camporesii, Tremateia lamiacearum, Uzbekistanica pruni, Verruconis mangrovei, Wilcoxina verruculosa, Xenoanthostomella chromolaenae and Xenodidymella camporesii. The five new combinations are Camporesiomyces patagoniensis, Camporesiomyces vaccinia, Camposporium lycopodiellae, Paraloratospora gahniae and Rhexocercosporidium microsporum. The 22 new records on host and geographical distribution comprise Arthrinium marii, Ascochyta medicaginicola, Ascochyta pisi, Astrocystis bambusicola, Camposporium pellucidum, Dendryphiella phitsanulokensis, Diaporthe foeniculina, Didymella macrostoma, Diplodia mutila, Diplodia seriata, Heterosphaeria patella, Hysterobrevium constrictum, Neodidymelliopsis ranunculi, Neovaginatispora fuckelii, Nothophoma quercina, Occultibambusa bambusae, Phaeosphaeria chinensis, Pseudopestalotiopsis theae, Pyxine berteriana, Tetraploa sasicola, Torula gaodangensis and Wojnowiciella dactylidis. In addition, the sexual morphs of Dissoconium eucalypti and Phaeosphaeriopsis pseudoagavacearum are reported from Laurus nobilis and Yucca gloriosa in Italy, respectively. The holomorph of Diaporthe cynaroidis is also reported for the first time.
Collapse
|
47
|
Zhu H, Pan M, Bezerra JD, Tian C, Fan X. Discovery of Cytospora species associated with canker disease of tree hosts from Mount Dongling of China. MycoKeys 2020; 62:97-121. [PMID: 32076384 PMCID: PMC7010847 DOI: 10.3897/mycokeys.62.47854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/11/2020] [Indexed: 01/20/2023] Open
Abstract
Members of Cytospora encompass important plant pathogens, saprobes and endophytes on a wide range of woody hosts with a worldwide distribution. In the current study, we obtained seven representative isolates from six tree hosts of Betulaceae, Juglandaceae, Rosaceae, Tiliaceae and Ulmaceae in Mount Dongling of China. Based on morphological comparison and phylogenetic analyses using partial ITS, LSU, act, rpb2, tef1-α and tub2 gene sequences, we identified two known species (Cytospora leucostoma and C. pruinopsis) and two novel species (C. coryli and C. spiraeicola). These results represent the first study on Cytospora species associated with canker disease from Mount Dongling of China.
Collapse
Affiliation(s)
- Haiyan Zhu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, ChinaInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaUniversity of Chinese Academy of SciencesBeijingChina
| | - Meng Pan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Jadson D.P. Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás, Rua 235, s/n, Setor Universitário, CEP: 7460505, Goiânia, Goiás, BrazilUniversidade Federal de GoiásGoiâniaBrazil
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
48
|
Nouri MT, Lawrence DP, Kallsen CE, Trouillas FP. Macrophomina Crown and Root Rot of Pistachio in California. PLANTS (BASEL, SWITZERLAND) 2020; 9:E134. [PMID: 31973206 PMCID: PMC7076687 DOI: 10.3390/plants9020134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022]
Abstract
In this study, declining pistachio rootstocks were detected in newly planted commercial pistachio orchards in Kern County, California. Symptoms were characterized by wilted foliage combined with crown rot in the rootstock. From diseased trees, 42 isolates were obtained, and all had similar cultural and morphological characteristics of Macrophomina phaseolina. Analyses of nucleotide sequences of three gene fragments, the internal transcribed spacer region (ITS1-5.8S-ITS2), partial sequences of β-tubulin, and translation elongation factor 1-α (TEF1) confirmed this identification, and 20 representative isolates are presented in the phylogenetic study. Testing of Koch's postulates showed that M. phaseolina, when inoculated to stems and roots of the pistachio rootstocks using mycelial plugs or a microsclerotial suspension, is indeed pathogenic to this host. The widely used clonal University of California Berkeley I (UCBI) rootstock appeared highly susceptible to M. phaseolina, suggesting that this pathogen is an emerging threat to the production of pistachio in California. This study confirmed the association of M. phaseolina with the decline of pistachio trees and represents the first description of this fungus as a crown rot-causing agent of pistachio in California.
Collapse
Affiliation(s)
- Mohamed T. Nouri
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648, USA;
- Department of Plant Pathology, University of California, Davis, CA 95616, USA;
| | - Daniel P. Lawrence
- Department of Plant Pathology, University of California, Davis, CA 95616, USA;
| | - Craig E. Kallsen
- University of California Cooperative Extension Kern County, Bakersfield, CA 93307, USA;
| | - Florent P. Trouillas
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648, USA;
- Department of Plant Pathology, University of California, Davis, CA 95616, USA;
| |
Collapse
|
49
|
Jiang N, Yang Q, Fan XL, Tian CM. Identification of six Cytospora species on Chinese chestnut in China. MycoKeys 2020; 62:1-25. [PMID: 31988618 PMCID: PMC6971133 DOI: 10.3897/mycokeys.62.47425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022] Open
Abstract
Chinese chestnut (Castanea mollissima) is an important crop tree species in China. In the present study, Cytospora specimens were collected from Chinese chestnut trees and identified using molecular data of combined ITS, LSU, ACT and RPB2 loci, as well as morphological features. As a result, two new Cytospora species and four new host records were confirmed, viz. C. kuanchengensis sp. nov., C. xinglongensis sp. nov., C. ceratospermopsis, C. leucostoma, C. myrtagena and C. schulzeri.
Collapse
Affiliation(s)
- Ning Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education,Beijing Forestry UniversityBeijingChina
| | - Qin Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education,Beijing Forestry UniversityBeijingChina
- Beijing Forestry University, Beijing 100083, ChinaCentral South University of Forestry and TechnologyChangshaChina
| | - Xin-Lei Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education,Beijing Forestry UniversityBeijingChina
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education,Beijing Forestry UniversityBeijingChina
| |
Collapse
|
50
|
Trouillas FP, Nouri MT, Lawrence DP, Moral J, Travadon R, Aegerter BJ, Lightle D. Identification and Characterization of Neofabraea kienholzii and Phlyctema vagabunda Causing Leaf and Shoot Lesions of Olive in California. PLANT DISEASE 2019; 103:3018-3030. [PMID: 31545699 DOI: 10.1094/pdis-02-19-0277-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
California produces over 95% of the olives grown in the United States. In 2017, California's total bearing acreage for olives was 14,570 hectares producing 192,000 tons of olives valued at $186.6 million. During the early spring of 2016, unusual leaf and shoot lesions were detected in olive trees from superhigh-density orchards in the Northern San Joaquin and Sacramento valleys of California. Affected trees displayed numerous leaf and shoot lesions developing at wounds created by mechanical harvesters. The 'Arbosana' cultivar was highly affected by the disease, whereas the disease was sporadic in 'Arbequina' and not found in 'Koroneiki' cultivar. Two fungal species, Neofabraea kienholzii and Phlyctema vagabunda, were found to be consistently associated with the disease, and Koch's postulates were completed. Species identity was confirmed by morphology and molecular data of the partial large subunit rDNA, the internal transcribed spacer region, and partial beta-tubulin region. The disease signs and symptoms are described and illustrated.
Collapse
Affiliation(s)
- Florent P Trouillas
- University of California, Davis, Department of Plant Pathology, Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Mohamed T Nouri
- University of California, Davis, Department of Plant Pathology, Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Daniel P Lawrence
- University of California, Davis, Department of Plant Pathology, Davis, CA 95616
| | - Juan Moral
- University of California, Davis, Department of Plant Pathology, Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Renaud Travadon
- University of California, Davis, Department of Plant Pathology, Davis, CA 95616
| | - Brenna J Aegerter
- University of California Cooperative Extension, San Joaquin County, Stockton, CA 95206
| | - Danielle Lightle
- University of California Cooperative Extension, Glenn County, Orland, CA 95963
| |
Collapse
|