1
|
Dell'Angelo D, Jurković A, Klačić T, Foucaud Y, Badawi M, Sayede A, Begović T. Unravelling the cleavage-rate relationship from both the experimental and theoretical standpoint: The instance of fluorite dissolution. J Colloid Interface Sci 2025; 684:844-855. [PMID: 39837190 DOI: 10.1016/j.jcis.2024.12.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/23/2025]
Abstract
The phenomenon of solid dissolution into a solution constitutes a fundamental aspect in both natural and industrial contexts. Nevertheless, its intricate nature at the microscale poses a significant challenge for precise quantitative characterization at a foundational level. In this work, the influence across three specific cleavage planes, namely (100), (111), and (110) on the dissolution kinetics of fluorite in aqueous environments was examined from both experimental and theoretical standpoints. For the very first time, the surface potential of fluorite planes during dissolution was measured by means of a fluorite single-crystal electrode. Experimental results indicate that the dissolution of fluorite leads to a marked increase in surface roughness as well as an augmentation in the surface area of all analyzed surfaces. The most significant alteration in roughness is observed on the (111) plane, whereas the most substantial increase in surface area occurs on the (110) plane. In comparison to the (100) crystallographic plane, which demonstrates the slowest dissolution kinetics, the (111) and (110) planes display dissolution at a comparatively expedited rate. Theoretical simulations corroborate this trend, concurrently facilitating an effective examination of the system's free-energy landscape to analyze the dynamics and rates associated with the attachment and detachment of ions to the fluorite surface. Notably, the presence of interfacial defects has the potential to influence the free energy landscape, thereby altering the transition of ions into the bulk solution. Ultimately, the interplay of correlations and discrepancies between experimental findings and theoretical predictions is critically examined.
Collapse
Affiliation(s)
- David Dell'Angelo
- Université de Lorraine, CNRS, Laboratoire Lorrain de Chimie Moléculaire, Metz, F-57000, Lorraine, France.
| | - Ana Jurković
- University of Zagreb, Faculty of Science, Department of Chemistry, Zagreb, HR-10000, Croatia
| | - Tin Klačić
- University of Zagreb, Faculty of Science, Department of Chemistry, Zagreb, HR-10000, Croatia.
| | - Yann Foucaud
- Université de Lorraine, CNRS, GeoRessources, Nancy, F-54000, Lorraine, France
| | - Michael Badawi
- Université de Lorraine, CNRS, Laboratoire Lorrain de Chimie Moléculaire, Metz, F-57000, Lorraine, France
| | - Adlane Sayede
- UCCS, CNRS, Université d'Artois, Faculté des Sciences Jean Perrin, Lens, 62307, Hauts-de-France, France
| | - Tajana Begović
- University of Zagreb, Faculty of Science, Department of Chemistry, Zagreb, HR-10000, Croatia
| |
Collapse
|
2
|
Quattrocelli P, Piccirillo C, Kuramae EE, Pullar RC, Ercoli L, Pellegrino E. Synergistic interaction of phosphate nanoparticles from fish by-products and phosphate-solubilizing bacterial consortium on maize growth and phosphorus cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179082. [PMID: 40107140 DOI: 10.1016/j.scitotenv.2025.179082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Phosphate nanomaterials, such as hydroxyapatite/β-tricalcium nanoparticles (nHAs) derived from food industry by-products, offer a sustainable alternative to enhance P-use efficiency in agriculture. However, their limited solubility remains a challenge. This study first investigated the mechanisms of P solubilization of salmon and tuna bones (SnHAs and TnHAs) in fifteen strains of phosphate-solubilizing bacteria (PSB) by an in vitro system. Then, best-performing strains were assembled in a consortium and tested in vivo on maize. We hypothesized that combining nHAs and the PSB consortium inoculated as seed coating (SC) outperforms single treatments alone in promoting plant growth and P cycling, and ensures the establishment in plant-soil system without a bacterial reinforcement (BR) by an additional inoculum suspension. The synergistic effect of nHAs and PSB was proved, improving maize root (+22 %) and total plant biomass (+29 %), as well as P (+32 %) and K (66 %) uptake compared to single treatments. With nHAs and SC, P-use efficiency and recovery increased by 25 % and three-fold, respectively, compared to nHAs alone or with bacterial reinforcement. Consistently, root and substrate bacterial biomass were associated with nHAs plus SC, while nHAs alone or with PSB upregulated PHT1;1 and PHT1;2 transporter genes in maize. Finally, linking the in vitro and in vivo system, we demonstrated that propionic acid production and P-solubilization efficiency of PSB co-applied with nHAs are key drivers of maize growth and P uptake. Our findings indicated that co-applying nHAs and PSB through SC offers a sustainable strategy to improve maize P-use efficiency.
Collapse
Affiliation(s)
- Piera Quattrocelli
- Institute of Crop Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| | - Clara Piccirillo
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands; Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Robert C Pullar
- Department of Molecular Science and Nanosystems (DSMN), Università Ca' Foscari Venezia, Venezia Mestre, Venezia, VE 30172, Italy
| | - Laura Ercoli
- Institute of Crop Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Elisa Pellegrino
- Institute of Crop Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
3
|
Müller S, Fiutowski J, Rasmussen MB, Balic Zunic T, Rubahn HG, Posth NR. Nanoplastic in aqueous environments: The role of chemo-electric properties for nanoplastic-mineral interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178529. [PMID: 39848159 DOI: 10.1016/j.scitotenv.2025.178529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.5). These conditions minimize potential chemical effects from ions in solution, isolating the impact of mineral complexity. Surface-modified polystyrene nanoparticles (-COOH and -NH2 functional groups) are proxies for degradation products and organic associations found in environmental plastics. Experimental results are compared with theoretical predictions using DLVO (Derjaguin-Landau-Verwey-Overbeek) double-layer force models. Despite all studied minerals maintaining negative surface charges across varying pH, electrostatic double-layer (EDL) interactions played a minor role in NP attachment. Instead, mechanisms such as specific ion-binding interactions (mediated by trace metal ions), bridging via divalent ions, and hydrogen bonding were more significant. Evidence suggests that kinetic effects for most mineral-NP combinations persist beyond 24 h. This study highlights the critical role of biogeochemical and mineralogical composition in controlling NP attachment and release in subsurface environments, with implications for their transport and fate in aquifers.
Collapse
Affiliation(s)
- Sascha Müller
- Department of Biology, Functional Ecology, Lund University, Sweden; Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark.
| | - Jacek Fiutowski
- Mads Clausen Institute, NanoSYD, University Southern Denmark (SDU), Denmark
| | - Maja Bar Rasmussen
- Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark
| | - Tonci Balic Zunic
- Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark
| | | | - Nicole R Posth
- Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark
| |
Collapse
|
4
|
Marković M, Kuzmanović M, Pašti I, Bajuk-Bogdanović D, Ranković D, Dimić D. Comprehensive spectroscopic and morphological analysis of the effects exerted by different acids on Pig bone: Forensic aspect. Forensic Sci Int 2025; 366:112310. [PMID: 39616736 DOI: 10.1016/j.forsciint.2024.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/08/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Demineralization of the chemically treated pig shoulder bone in hydrochloric, hydrofluoric, and acetic acid was monitored by ATR-FTIR, Raman, and LIBS spectroscopies and SEM-EDX technique. SEM-EDX analysis showed reduced calcium and phosphorus content after the treatment with acids and erosion of the overall morphology of the bone compared to the sample kept in water. Alterations in bone structure during the 14-day-long immersion in acid solutions indicated significant chemical changes in the obtained spectra. Fourier deconvolution applied in the amide I (1700-1600 cm-1), phosphate (900-1200 cm-1), and carbonate (500-650 cm-1) region indicated the presence of different components in the bone sample, depending on the environment and acid concentration, providing information about the composition. Parameters such as mineral-to-matrix ratio, crystallinity index, and carbonate-to-phosphate ratio were calculated and compared using ATR-FTIR and Raman data. These parameters were also correlated with calcium ionic-to-atomic and phosphorous-to-carbon line intensities obtained from LIBS spectra. Calcium and phosphorus atomic contents obtained by SEM-EDX analysis were in agreement with LIBS data. The results suggested that an increase in acid concentration has primarily affected the phosphate band's intensity and structure, as the phosphate content was more susceptible to demineralization. Hydrochloric acid was proven to be a more powerful demineralization agent than hydrofluoric and acetic acids. The results of this study could be further applied to the investigation of the bone remains at the crime scene, especially when their removal is attempted by immersion in acid solutions.
Collapse
Affiliation(s)
- Milica Marković
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia.
| | - Miroslav Kuzmanović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia.
| | - Igor Pašti
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia.
| | - Danica Bajuk-Bogdanović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia.
| | - Dragan Ranković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia.
| | - Dušan Dimić
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade 11000, Serbia.
| |
Collapse
|
5
|
Rezki B, Essamlali Y, Amadine O, Sair S, Aadil M, Zahouily M. Microwave-driven oleic acid esterification over chlorosulfonic acid-treated hydroxyapatite: synergism for intensified biodiesel production. RSC Adv 2024; 14:33019-33033. [PMID: 39434997 PMCID: PMC11492102 DOI: 10.1039/d4ra05862c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Treating hydroxyapatite (HAP) with sulfonic acid without structural destruction remains challenging owing to the sensitivity of HAP to acidic pH. In this work, natural derived HAP was prepared using natural phosphate via a dissolution/precipitation process. Notwithstanding the challenge, the prepared HAP was treated with three concentrations of chlorosulfonic acid in dichloromethane to prepare HAP-S1, HAP-S2 and HAP-S3 depending on the acid content under carefully controlled conditions. The treatment of HAP with the lowest acid concentration led to the preservation of the apatite framework with surface modification of sulfonic acid groups. As the acid concentration increased, HAP, CaHPO4 and CaSO4 were obtained. A further increase in the acid concentration led to the formation of CaSO4 with the coexistence of Ca(H2PO4)2·H2O. Subsequently, the catalytic activity of HAP-S1 was evaluated in oleic acid esterification under microwave irradiation, resulting in a yield of up to 87% under optimized conditions of 10 wt% of catalyst to oleic acid weight, 10 : 1 methanol to oleic acid molar ratio, and 40 min reaction duration under microwave irradiation at 150 °C. The activity of HAP-S1 was attributed to the active S[double bond, length as m-dash]O and S-O-H functional groups, and a possible mechanism of acid-catalyzed esterification is proposed. The catalyst was also tested in the transesterification reaction of rapeseed oil, achieving a conversion of 40.2% after 60 min reaction duration under microwave irradiation. Furthermore, the catalyst was evaluated in a two-step esterification reaction to investigate its activity towards acidified feedstocks. Results showed that after two successive runs, acidity was reduced by 79.6% with a total FAME yield of 40.13%. The obtained results indicate that this catalyst, being an acid catalyst, is more suitable for direct esterification.
Collapse
Affiliation(s)
- Boutaina Rezki
- Faculty of Sciences and Technology, Laboratory of Materials, Catalysis and Natural Resources Valorization, Hassan II University of Casablanca 20650 Mohammedia Casablanca-Settat Morocco
| | - Younes Essamlali
- Moroccan Foundation for Advance Science Innovation and Research, VARENA Center, Mohammed VI Polytechnic University Ben Guerir Morocco
| | - Othmane Amadine
- Moroccan Foundation for Advance Science Innovation and Research, VARENA Center, Mohammed VI Polytechnic University Ben Guerir Morocco
| | - Said Sair
- Moroccan Foundation for Advance Science Innovation and Research, VARENA Center, Mohammed VI Polytechnic University Ben Guerir Morocco
| | - Mina Aadil
- Faculty of Sciences and Technology, Laboratory of Materials, Catalysis and Natural Resources Valorization, Hassan II University of Casablanca 20650 Mohammedia Casablanca-Settat Morocco
| | - Mohamed Zahouily
- Faculty of Sciences and Technology, Laboratory of Materials, Catalysis and Natural Resources Valorization, Hassan II University of Casablanca 20650 Mohammedia Casablanca-Settat Morocco
- Moroccan Foundation for Advance Science Innovation and Research, VARENA Center, Mohammed VI Polytechnic University Ben Guerir Morocco
| |
Collapse
|
6
|
Meyer F, Schulze zur Wiesche E, Amaechi BT, Limeback H, Enax J. Caries Etiology and Preventive Measures. Eur J Dent 2024; 18:766-776. [PMID: 38555649 PMCID: PMC11290927 DOI: 10.1055/s-0043-1777051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Caries is a widespread disease in both children and adults. Caries is caused by the conversion of fermentable carbohydrates by plaque bacteria into acids on the tooth surface. Thus, it is important to focus on sugar reduction and plaque control. For efficient plaque removal/control, state-of-the-art toothpastes contain various active ingredients such as antimicrobial agents (e.g., chlorhexidine, stannous salts, and zinc salts), abrasives (e.g., calcium carbonate, calcium phosphates, and hydrated silica), surfactants (e.g., sodium lauryl sulfate and sodium methyl cocoyl taurate), and natural compounds (e.g., polyphenols and xylitol). Agents with pH-buffering and calcium-releasing properties (e.g., calcium carbonate and calcium phosphates) and biomimetic actives (e.g., hydroxyapatite) reverse the effects of the acids. Additionally, modern toothbrushes (i.e., electric toothbrushes) as well as dental floss and interdental brushes significantly help remove plaque from dental surfaces including interproximal surfaces. In conclusion, modern concepts in caries prevention should focus not only on tooth remineralization alone but also on the control of all the key factors involved in caries development.
Collapse
Affiliation(s)
- Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | | | - Bennett T. Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas, United States
| | - Hardy Limeback
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| |
Collapse
|
7
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
8
|
Souza VTFS, Cortez TV, Paschoini-Costa VL, Borsatto MC, Corona SAM, Souza-Gabriel AE. Effect of the calcium silicate and sodium phosphate remineralizing products on bleached enamel. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:577-583. [PMID: 38989498 PMCID: PMC11232766 DOI: 10.4103/jcde.jcde_167_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 07/12/2024]
Abstract
Context and Aims This study evaluated the effect of calcium silicate and sodium phosphate (CSSP) dentifrice and serum on the surface of enamel bleached with hydrogen peroxide (H2O2). Materials and Methods A total of 160 bovine enamel slabs were bleached with 35% H2O2 and treated with sodium fluoride (NaF) dentifrice-GI, CSSP dentifrice-GII; CSSP dentifrice + CSSP serum-GIII, or NaF dentifrice + NaF gel-GIV. The dentifrices were applied using a brushing machine three times daily for 7 days. After brushing, sodium phosphate gel and CSSP serum were applied. The microhardness (KNH, n = 14), surface roughness (Ra, n = 14), energy dispersive spectroscopy (n = 6), and scanning electron microscopy (n = 6) were assessed at t0 (before bleaching), t1 (after bleaching), and t2 (after postbleaching treatments). Statistical Analysis Used The data were subjected to a two-way analysis of variance and Bonferroni's test. Results The KNH decreased at t1 (P < 0.001) but recovered at t2 for all treatments, although only GII showed restored baseline values (P = 0.0109). The surface roughness increased at t1 (P < 0.001) and reduced at t2 (P < 0.001) for all groups, with no significant differences among groups. Enamel composition and morphology did not differ after the treatments, except for silicon accumulation in GIII. Conclusions Postbleaching treatment with CSSP dentifrice and serum yielded superior remineralizing effects on bleached enamel.
Collapse
Affiliation(s)
| | - Thiago Vinicius Cortez
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Maria Cristina Borsatto
- Department of Pediatric Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
9
|
Seredin P, Goloshchapov D, Emelyanova A, Eremeev K, Peshkov Y, Shikhaliev K, Potapov A, Ippolitov Y, Kashkarov V, Nesterov D, Shapiro K, Freitas RO, Mahdy IA. Rapid Deposition of the Biomimetic Hydroxyapatite-Polydopamine-Amino Acid Composite Layers onto the Natural Enamel. ACS OMEGA 2024; 9:17012-17027. [PMID: 38645322 PMCID: PMC11024970 DOI: 10.1021/acsomega.3c08491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
In this work, we developed a technology that enables rapid deposition of biomimetic composite films onto natural enamel slices (known as biotemplates). These films are composed of polydopamine (PDA) and nanocrystalline carbonate-substituted hydroxyapatite (nano-cHAp) that have been functionalized with amino acid l-Arginine. We utilized atomic force microscopy (AFM) and scattering scanning near-field optical microscopy (s-SNOM) combined with infrared (IR) synchrotron to achieve nanoscale spatial resolution for both IR absorption and topography analyses. This combined analytical modality allowed us to understand how morphology connects to local changes in the chemical environment on the biotemplate surface during the deposition of the bioinspired coating. Our findings revealed that when using the proposed technology and after the deposition of the first PDA layer, the film formed on the enamel surface nearly covers the entire surface of the specimen whose thickness is larger on the surface of the emerging enamel prisms. Calculation of the crystallinity index for the biomimetic layer showed a multiple increase compared with natural enamel. This indicates regular and dense aggregation of nano-cHAp into larger crystals, imitating the morphology of natural enamel rods. The microhardness of the formed PDA-based biomimetic layer mineralized with nano-cHAp functionalized with amino acid l-Arginine deposited on natural enamel was practically the same as that of natural enamel. The characterization of nano-cHAp-amino acid-PDA layers using IR and Raman microspectroscopy showed that l-arginine acts as a conjunction agent in the formation of mineralized biomimetic composite coatings. The uniformity of the mechanisms of PDA layer formation under different deposition conditions and substrate types allows for the formation of coatings regardless of the macro- and micromorphology of the template. Therefore, the results obtained in this work have a high potential for future clinical applications in dental practice.
Collapse
Affiliation(s)
- Pavel Seredin
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | | | - Anna Emelyanova
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | | | - Yaroslav Peshkov
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | | | - Andrey Potapov
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | - Yury Ippolitov
- Department
of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, Voronezh 394006, Russia
| | | | - Dmitry Nesterov
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | - Kirill Shapiro
- Voronezh
State University, University sq.1, Voronezh 394018, Russia
| | - Raul O. Freitas
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian
Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil
| | - Iman. A. Mahdy
- Physics
Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754 Cairo, Egypt
| |
Collapse
|
10
|
Topolska JM, Jagielska A, Motyl S, Kozub-Budzyń GA, Kępa L, Wagner B, Wątor K. Metal leakage from orthodontic appliances chemically alters enamel surface during experimental in vitro simulated treatment. Sci Rep 2024; 14:5412. [PMID: 38443566 PMCID: PMC10914722 DOI: 10.1038/s41598-024-56111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
Human enamel is composed mainly of apatite. This mineral of sorption properties is susceptible to chemical changes, which in turn affect its resistance to dissolution. This study aimed to investigate whether metal leakage from orthodontic appliances chemically alters the enamel surface during an in vitro simulated orthodontic treatment. Totally 107 human enamel samples were subjected to the simulation involving metal appliances and cyclic pH fluctuations over a period of 12 months in four complimentary experiments. The average concentrations and distribution of Fe, Cr, Ni, Ti and Cu within the enamel before and after the experiments were examined using ICP‒MS and LA‒ICP‒MS techniques. The samples exposed to the interaction with metal appliances exhibited a significant increase in average Fe, Cr and Ni (Kruskal-Wallis, p < 0.002) content in comparison to the control group. The outer layer, narrow fissures and points of contact with the metal components showed increased concentrations of Fe, Ti, Ni and Cr after simulated treatment, conversely to the enamel sealed with an adhesive system. It has been concluded that metal leakage from orthodontic appliances chemically alters enamel surface and microlesions during experimental in vitro simulated treatment.
Collapse
Affiliation(s)
- Justyna M Topolska
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, 30-059, Krakow, Poland.
| | - Agata Jagielska
- Laboratory of Theoretical Aspects of Analytical Chemistry, Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-089, Warsaw, Poland
| | - Sylwia Motyl
- Department of Oral and Maxillofacial Surgery, Rydygier Hospital, 31-826, Krakow, Poland
| | - Gabriela A Kozub-Budzyń
- Department of Geology of Mineral Deposits and Mining Geology, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, 30-059, Krakow, Poland
| | - Luiza Kępa
- Laboratory of Theoretical Aspects of Analytical Chemistry, Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-089, Warsaw, Poland
| | - Barbara Wagner
- Laboratory of Theoretical Aspects of Analytical Chemistry, Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-089, Warsaw, Poland
| | - Katarzyna Wątor
- Department of Hydrogeology and Engineering Geology, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, 30-059, Krakow, Poland
| |
Collapse
|
11
|
Easson M, Wong S, Moody M, Schmidt TA, Deymier A. Physiochemical effects of acid exposure on bone composition and function. J Mech Behav Biomed Mater 2024; 150:106304. [PMID: 38096610 DOI: 10.1016/j.jmbbm.2023.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/04/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
Bone is primarily composed of collagen and apatite, two materials which exhibit a high sensitivity to pH dysregulation. As a result, acid exposure of bone, both clinically and in the laboratory is expected to cause compositional and mechanical changes to the tissue. Clinically, Metabolic acidosis (MA), a condition characterized by a reduced physiological pH, has been shown to have negative implications on bone health, including a decrease in bone mineral density and volume as well as increased fracture risk. The addition of bone-like apatite to ionic solutions such as phosphate buffered saline (PBS) and media has been shown to acidify the solution leading to bone acid exposure. Therefore, is it essential to understand how reduced pH physiochemically affects bone composition and in turn its mechanical properties. This study investigates the specific changes in bone due to physiochemical dissolution in acid. Excised murine bones were placed in PBS solutions at different pHs: a homeostatic pH level (pH 7.4), an acidosis equivalent (pH 7.0), and an extreme acidic solution (pH 5.5). After 5 days, the bones were removed from the solutions and characterized to determine compositional and material changes. We found that bones, without cells, were able to regulate pH via buffering, leading to a decrease in bone mineral content and an increase in collagen denaturation. Both of these compositional changes contributed to an increase in bone toughness by creating a more ductile bone surface and preventing crack propagation. Therefore, we conclude that the skeletal systems' physiochemical response to acid exposure includes multifaceted and spatially variable compositional changes that affect bone mechanics.
Collapse
Affiliation(s)
- Margaret Easson
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephanie Wong
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Mikayla Moody
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Tannin A Schmidt
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Alix Deymier
- Dept. of Biomedical Engineering, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
12
|
Nifant'ev IE, Tavtorkin AN, Ryndyk MP, Gavrilov DE, Lukina YS, Bionyshev-Abramov LL, Serejnikova NB, Smolentsev DV, Ivchenko PV. Crystalline Micro-Sized Carbonated Apatites: Chemical Anisotropy of the Crystallite Surfaces, Biocompatibility, Osteoconductivity, and Osteoinductive Effect Enhanced by Poly(ethylene phosphoric acid). ACS APPLIED BIO MATERIALS 2023; 6:5067-5077. [PMID: 37943148 DOI: 10.1021/acsabm.3c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Carbonated hydroxyapatites (CAp) are very close to natural bone apatite in chemical composition and are regarded as a prospective bone mineral substitute for bone surgery and orthopedics. However, until now, the studies and applications of CAp were limited because of the amorphous nature of the synthetic CAp. In the present work, microsized highly crystalline carbonated apatites with uniform hexagonal (hCAp) or platelike (pCAp) morphology have been studied for the first time in vitro and in vivo, comparing against commercial hydroxyapatite (HAp) and β-tricalcuim phosphate (βTCP). In vitro experiments on dissolution of those calcium phosphate ceramics (CPCs) in acetate (pH 5.5) and Tris (pH 7.3) buffer solutions showed the following rank order of the dissolution rates: βTCP > hCAp > pCAp > HAp. The higher dissolution rate of hCAp in comparison with pCAp is explained by chemical anisotropy of the crystallite surfaces, which was proven by SEM studies of the changes in the morphology of hCAp and pCAp crystallites during hydrolysis. A 5-week experiment on subcutaneous implantation of CPC species showed the following rank order of bioresorption rates: βTCP > pCAp > hCAp > HAp. pCAp matrixes exhibited the highest biocompatibility, confirmed by histomorphological analysis. Three-month bone regeneration experiments involving a rat tibial defect model were conducted with 250-500 μm granules of pCAp and pCAp-PEPA [pCAp, pretreated with 2 wt % poly(ethylene phosphoric acid)]. Notably, pCAp-PEPA implants were resorbed at higher rates and induced the formation of more mature osseous tissue, a compact bone with Haversian systems.
Collapse
Affiliation(s)
- Ilya E Nifant'ev
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- Department of Chemistry, M.V. Lomonosov Moscow University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
- Faculty of Chemistry, National Research University Higher School of Economics, Myasnitskaya st. 20, 101100 Moscow, Russian Federation
| | - Alexander N Tavtorkin
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
| | - Maria P Ryndyk
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- Faculty of Chemistry, National Research University Higher School of Economics, Myasnitskaya st. 20, 101100 Moscow, Russian Federation
| | - Dmitry E Gavrilov
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- Department of Chemistry, M.V. Lomonosov Moscow University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Yulia S Lukina
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- N.N. Priorov National Medical Research Center for Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Priorova st. 10, 127299 Moscow, Russian Federation
- Faculty of Digital Technologies and Chemical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russian Federation
| | - Leonid L Bionyshev-Abramov
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- N.N. Priorov National Medical Research Center for Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Priorova st. 10, 127299 Moscow, Russian Federation
| | - Natalya B Serejnikova
- N.N. Priorov National Medical Research Center for Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Priorova st. 10, 127299 Moscow, Russian Federation
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University, Trubetskaya st. 8, 119991 Moscow, Russian Federation
| | - Dmitriiy V Smolentsev
- N.N. Priorov National Medical Research Center for Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Priorova st. 10, 127299 Moscow, Russian Federation
| | - Pavel V Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- Department of Chemistry, M.V. Lomonosov Moscow University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| |
Collapse
|
13
|
Szałaj U, Chodara A, Gierlotka S, Wojnarowicz J, Łojkowski W. Enhanced Release of Calcium Ions from Hydroxyapatite Nanoparticles with an Increase in Their Specific Surface Area. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6397. [PMID: 37834536 PMCID: PMC10573918 DOI: 10.3390/ma16196397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Synthetic calcium phosphates, e.g., hydroxyapatite (HAP) and tricalcium phosphate (TCP), are the most commonly used bone-graft materials due to their high chemical similarity to the natural hydroxyapatite-the inorganic component of bones. Calcium in the form of a free ion or bound complexes plays a key role in many biological functions, including bone regeneration. This paper explores the possibility of increasing the Ca2+-ion release from HAP nanoparticles (NPs) by reducing their size. Hydroxyapatite nanoparticles were obtained through microwave hydrothermal synthesis. Particles with a specific surface area ranging from 51 m2/g to 240 m2/g and with sizes of 39, 29, 19, 11, 10, and 9 nm were used in the experiment. The structure of the nanomaterial was also studied by means of helium pycnometry, X-ray diffraction (XRD), and transmission-electron microscopy (TEM). The calcium-ion release into phosphate-buffered saline (PBS) was studied. The highest release of Ca2+ ions, i.e., 18 mg/L, was observed in HAP with a specific surface area 240 m2/g and an average nanoparticle size of 9 nm. A significant increase in Ca2+-ion release was also observed with specific surface areas of 183 m2/g and above, and with nanoparticle sizes of 11 nm and below. No substantial size dependence was observed for the larger particle sizes.
Collapse
Affiliation(s)
- Urszula Szałaj
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, 01-142 Warsaw, Poland; (S.G.); (J.W.); (W.Ł.)
- Faculty of Materials Engineering, Warsaw University of Technology, Wołoska 41, 02-507 Warsaw, Poland
| | | | - Stanisław Gierlotka
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, 01-142 Warsaw, Poland; (S.G.); (J.W.); (W.Ł.)
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, 01-142 Warsaw, Poland; (S.G.); (J.W.); (W.Ł.)
| | - Witold Łojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, 01-142 Warsaw, Poland; (S.G.); (J.W.); (W.Ł.)
| |
Collapse
|
14
|
Nicholson JW, Sidhu SK, Czarnecka B. Fluoride exchange by glass-ionomer dental cements and its clinical effects: a review. Biomater Investig Dent 2023; 10:2244982. [PMID: 37615013 PMCID: PMC10444020 DOI: 10.1080/26415275.2023.2244982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
The topic of fluoride release and uptake by glass-ionomer (glass polyalkenoate) dental cements is reviewed. The study was based on a literature search carried out using PubMed. The main key words used were glass-ionomer and fluoride, and further refinements were made by adding the keywords anti-microbial, anti-caries and remineralization. Papers were selected from the initial search, which concentrated on fundamental aspects of fluoride release, including kinetics and the influence of the cement composition, and resulting clinical performance against caries. Other relevant papers were cited where they added useful and relevant data. From these published papers, it was possible to explain the detailed mechanism of fluoride release by glass-ionomer cements and also its uptake. Fluoride release has been shown to be a two-step process. In neutral solutions, the steps can be divided into early wash-out and long-term diffusion. In acid conditions, the early wash-out remains, though with greater amounts of fluoride released, and the long-term release becomes one of slow dissolution. The effect of fluoride on the viability of oral micro-organisms has been described, and glass-ionomers have been shown to release sufficient fluoride to reduce the size and viability of adjacent populations of oral bacteria. The effect of low levels of fluoride on the remineralization of tooth tissue has been considered. Levels needed to increase remineralization are much lower than those needed to adversely affect oral bacteria, from which we conclude that glass-ionomers release sufficient fluoride to promote remineralization. Despite this, there remains uncertainty about their overall contribution to sound oral health, given the widespread use of other sources of fluoride, such as toothpastes.
Collapse
Affiliation(s)
- John W. Nicholson
- Dental Materials Unit, Bart’s and the London Institute of Dentistry, Queen Mary University of London, London, UK
- Bluefield Centre for Biomaterials, London, UK
| | - Sharanbir K. Sidhu
- Centre for Oral Bioengineering, Institute of Dentistry, Bart’s & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Beata Czarnecka
- Department of Biomaterials and Experimental Dentistry, University of Medical Sciences, Poznań, Poland
| |
Collapse
|
15
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
16
|
Ghafari F, Karbasi S, Eslaminejad MB, Sayahpour FA, Kalantari N. Biological evaluation and osteogenic potential of polyhydroxybutyrate-keratin/Al 2O 3 electrospun nanocomposite scaffold: A novel bone regeneration construct. Int J Biol Macromol 2023; 242:124602. [PMID: 37141963 DOI: 10.1016/j.ijbiomac.2023.124602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
In this study, the effect of alumina nanowire on the physical and biological properties of polyhydroxybutyrate-keratin (PHB-K) electrospun scaffold was investigated. First, PHB-K/alumina nanowire nanocomposite scaffolds were made with an optimal concentration of 3 wt% alumina nanowire by using the electrospinning method. The samples were examined in terms of morphology, porosity, tensile strength, contact angle, biodegradability, bioactivity, cell viability, ALP activity, mineralization ability, and gene expression. The nanocomposite scaffold provided a porosity of >80 % and a tensile strength of about 6.72 Mpa, which were noticeable for an electrospun scaffold. AFM images showed an increase in the surface roughness with the presence of alumina nanowires. This led to an improvement in the degradation rate and bioactivity of PHB-K/alumina nanowire scaffolds. The viability of mesenchymal cells, alkaline phosphatase secretion, and mineralization significantly increased with the presence of alumina nanowire compared to PHB and PHB-K scaffolds. In addition, the expression level of collagen I, osteocalcin, and RUNX2 genes in nanocomposite scaffolds increased significantly compared to other groups. In general, this nanocomposite scaffold could be a novel and interesting construct for osteogenic induction in bone tissue engineering.
Collapse
Affiliation(s)
- Fereshte Ghafari
- Department of Tissue Engineering, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advance Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Tissue Engineering, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran; Department of Stem Cells and Departmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Forough Azam Sayahpour
- Department of Stem Cells and Departmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Kalantari
- Department of Stem Cells and Departmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Barbosa RM, da Rocha DN, Bombaldi de Souza RF, Santos JL, Ferreira JRM, Moraes ÂM. Cell-Friendly Chitosan-Xanthan Gum Membranes Incorporating Hydroxyapatite Designed for Periodontal Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15020705. [PMID: 36840027 PMCID: PMC9962096 DOI: 10.3390/pharmaceutics15020705] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
In this work, a simple method was proposed to produce dense composite polysaccharide-based membranes to be used for guided tissue and guided bone regeneration. The mucoadhesive polysaccharides chitosan (C) and xanthan gum (X) were used to produce polyelectrolyte-based complex membranes. Hydroxyapatite (HA) was added to the formulation as a potential drug carrier, in C:X:HA mass proportions equal to 1:1:0.4, 1:1:2, and 1:1:10, and also to improve membranes bioactivity and biomimetic properties. FTIR analysis indicated successful incorporation of HA in the membranes and XRD analysis showed that no changes in the HA crystalline structure were observed after incorporation. The residual mass evaluated by TGA was higher for the formulation produced at the proportion 1:1:10. The membranes produced showed asymmetrical surfaces, with distinct roughness. Increasing the HA concentration increased the surface roughness. Greater in vitro proliferation of dental pulp mesenchymal stem cells was observed on the surface of the membrane with 1:1:10 C:X:HA proportion. However, the 1:1:2 formulation showed the most adequate balance of mechanical and biological properties. These results suggest that adding HA to the membranes can influence mechanical parameters as well as cell adhesion and proliferation, supporting the potential application of these materials in regenerative techniques and the treatment of periodontal lesions.
Collapse
Affiliation(s)
- Rafael Maza Barbosa
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
- Department of Bioengineering, R-Crio Criogenia S.A., Campinas 13098-324, SP, Brazil
| | | | - Renata Francielle Bombaldi de Souza
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Jheison Lopes Santos
- Department of Physics, Federal Rural University of Rio de Janeiro, Rio de Janeiro 23890-000, RJ, Brazil
| | | | - Ângela Maria Moraes
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
- Correspondence:
| |
Collapse
|
18
|
Wen H, Pan Z, Wang X, Li K, Wang Q, Luo J, Fu H, Zhang L, Wang Z. Dissolution behaviors of a visible-light-responsive photocatalyst BiVO 4: Measurements and chemical equilibrium modeling. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130187. [PMID: 36327834 DOI: 10.1016/j.jhazmat.2022.130187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Despite of the extensive research in semiconductor photocatalysis with respect to material and device innovations, much of the fundamental aquatic chemistry of those new materials that governs their environmental hazard and implications remains poorly understood. BiVO4 has long been recognized as a promising visible-light-responsive photocatalyst. However, the solubility product (Ksp) of BiVO4 and the mechanistic understanding of the non-stoichiometric dissolution of BiVO4 remain unclear. Here, we investigated the solubility of BiVO4 via the observation on its non-stoichiometric dissolution in the pH range of 4-9. Combining dissolution experiments, adsorption behavior and thermodynamic equilibrium calculations, the Ksp of BiVO4 was determined to be 10-35.81±0.51. The solubility and stability of BiVO4 were strongly pH-dependent, with the lowest solubility and highest stability near pH 5. Furthermore, we tested the effect of illumination on the dissolution of BiVO4, which was significantly enhanced by light. Under both dark and illumination conditions, adsorption of dissolved bismuth by BiVO4 solids was the main reason for the non-stoichiometric dissolution of BiVO4, and could be modeled by including an additional surface complexation reaction. Thus, the results highlighted the importance of considering the dissolution of photocatalysts, and presented a feasible method to evaluate environmental stability and risks of other semiconductor materials.
Collapse
Affiliation(s)
- Hongbiao Wen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| | - Xingxing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Kejian Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Qihuang Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Fu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
19
|
Tay N, Gan H, de Sousa FB, Shen L, Nóbrega DF, Peng C, Kilpatrick-Liverman L, Wang W, Lavender S, Pilch S, Han J. Improved mineralization of dental enamel by electrokinetic delivery of F - and Ca 2+ ions. Sci Rep 2023; 13:516. [PMID: 36627315 PMCID: PMC9832158 DOI: 10.1038/s41598-022-26423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
This in vitro study evaluated the effects of the infiltration of F- and Ca2+ ions into human enamel by electrokinetic flow (EKF) on the enamel microhardness and F- content. Sound human enamel ground sections of unerupted third molars were infiltrated with de-ionized water by EKF and with F- ion by EKF respectively. All samples were submitted to two successive transverse acid-etch biopsies (etching times of 30 s and 20 min) to quantify F- ion infiltrated deep into enamel. Remarkably, sound enamel showed a large increase in microhardness (MH) after infiltration of NaF (p < 0.00001) and CaCl2 (p = 0.013) by EKF. Additionally, NaF-EKF increased the remineralization in the lesion body of artificial enamel caries lesions compared to controls (p < 0.01). With the enamel biopsy technique, at both etching times, more F- ions were found in the EKF-treated group than the control group (p << 0.05), and more fluoride was extracted from deeper biopsies in the NaF-EKF group. In conclusion, our results show that EKF treatment is superior in transporting Ca2+ and F- ions into sound enamel when compared to molecular diffusion, enhancing both the mineralization of sound enamel and the remineralization of artificial enamel caries.
Collapse
Affiliation(s)
- NamBeng Tay
- grid.486188.b0000 0004 1790 4399Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683 Singapore
| | - HiongYap Gan
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore.
| | - Frederico Barbosa de Sousa
- grid.411216.10000 0004 0397 5145Department of Morphology and Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, Cidade Universitaria, Paraíba, Brazil
| | - Lu Shen
- grid.486188.b0000 0004 1790 4399Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683 Singapore
| | | | - Chenhui Peng
- grid.56061.340000 0000 9560 654XDepartment of Physics and Materials Science, University of Memphis, Memphis, TN USA
| | | | - Wei Wang
- grid.418753.c0000 0004 4685 452XColgate-Palmolive Technology Center, Piscataway, NJ USA
| | - Stacey Lavender
- grid.418753.c0000 0004 4685 452XColgate-Palmolive Technology Center, Piscataway, NJ USA
| | - Shira Pilch
- grid.418753.c0000 0004 4685 452XColgate-Palmolive Technology Center, Piscataway, NJ USA
| | - Jongyoon Han
- Department of Electric Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Ruiz-Aguilar C. Porous phosphate-based bioactive glass /β-TCP scaffold for tooth remineralization. PLoS One 2023; 18:e0284885. [PMID: 37200370 DOI: 10.1371/journal.pone.0284885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
The total or partial loss of teeth in the Mexican population due to periodontal diseases and trauma causes the development of other conditions, such as limitations in chewing and grinding food, pronunciation difficulties, and oral aesthetic alterations. In Mexico, oral diseases have been described to affect 87% of the population, according to reports by the health services, emphasizing that pregnant women and patients with diabetes mellitus have the highest risk of presenting with severe periodontal diseases or tooth loss, according to findings by the Mexican Health Department's Specific Action Program for the prevention, detection, and control of oral health problems (2013-2018). There was a 92.6% prevalence of dental caries in the population examined, and the prevalence of periodontal problems, mainly in 40-year-olds, was above 95%. The objective of this investigation was to manufacture and characterize porous 3D scaffolds with innovative chemical compositions, using phosphate-based bioactive glass, beta-phase tricalcium phosphate, and zirconium oxide, in variable quantities. The scaffold manufacturing method combined two techniques: powder metallurgy and polymer foaming. The results obtained in this research were promising since the mechanically tested scaffolds showed values of compressive strength and modulus of elasticity in the range of human trabecular bone. On the other hand, the in vitro evaluation of the samples immersed in artificial saliva at days 7 and 14 presented the calcium/phosphorus ratio = 1.6; this value is identical to the reported state-of-the-art figure, corresponding to the mineral phase of the bones and teeth. Likewise, the precipitation of the flower-like morphology was observed on the entire surface of the scaffold without zirconia; this morphology is characteristic of hydroxyapatite. On the other hand, the samples with 0.5 and 1.0 mol% zirconia showed less hydroxyapatite formation, with a direct correlation between scaffold dissolution and the amount of zirconia added.
Collapse
Affiliation(s)
- Criseida Ruiz-Aguilar
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autónoma de México, Juriquilla, Queretaro, México
| |
Collapse
|
21
|
Asl MA, Karbasi S, Beigi-Boroujeni S, Benisi SZ, Saeed M. Polyhydroxybutyrate-starch/carbon nanotube electrospun nanocomposite: A highly potential scaffold for bone tissue engineering applications. Int J Biol Macromol 2022; 223:524-542. [PMID: 36356869 DOI: 10.1016/j.ijbiomac.2022.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Blend nanofibers composed of synthetic and natural polymers with carbon nanomaterial, have a great potential for bone tissue engineering. In this study, the electrospun nanocomposite scaffolds based on polyhydroxybutyrate(PHB)-Starch-multiwalled carbon nanotubes (MWCNTs) were fabricated with different concentrations of MWCNTs including 0.5, 0.75 and 1 wt%. The synthesized scaffolds were characterized in terms of morphology, porosity, thermal and mechanical properties, biodegradation, bioactivity, and cell behavior. The effect of the developed structures on MG63 cells was determined by real-time PCR quantification of collagen type I, osteocalcin, osteopontin and osteonectin genes. Our results showed that the scaffold containing 1 wt% MWCNTs presented the lowest fiber diameter (124 ± 44 nm) with a porosity percentage above 80 % and the highest tensile strength (24.37 ± 0.22 MPa). The addition of MWCNTs has a positive effect on surface roughness and hydrophilicity. The formation of calcium phosphate sediments on the surface of the scaffolds after immersion in SBF is observed by SEM and verified by EDS and XRD analysis.MG63 cells were well cultured on the scaffold containing MWCNTs and presented more cell viability, ALP secretion, calcium deposition and gene expression compared to the scaffolds without MWCNTs. The PHB-starch-1wt.%MWCNTs scaffold can be considerable for studies of supplemental bone tissue engineering applications.
Collapse
Affiliation(s)
- Maryam Abdollahi Asl
- Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 1469669191, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur, Monterrey 2501, N.L., Mexico; Hard Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Saeed
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Głąb M, Kudłacik-Kramarczyk S, Drabczyk A, Kordyka A, Godzierz M, Wróbel PS, Tomala A, Tyliszczak B, Sobczak-Kupiec A. Evaluation of the impact of pH of the reaction mixture, type of the stirring, and the reagents' concentration in the wet precipitation method on physicochemical properties of hydroxyapatite so as to enhance its biomedical application potential. J Biomed Mater Res B Appl Biomater 2022; 110:2649-2666. [PMID: 35816273 DOI: 10.1002/jbm.b.35118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Hydroxyapatite (HAp) constitutes a significant inorganic compound which due to its osteoinductivity, osteoconductivity as well as the ability to promote bone growth and regeneration is widely applied in development of biomaterials designed for bone tissue engineering. In this work, various synthesis methodologies of HAp based on the wet precipitation technique were applied, and the impact of pH of the reaction mixture, the concentration of individual reagents as well as the type of stirring applied (mechanical/magnetic) on the properties of final powders was discussed. Spectroscopic methods (Fourier transform infrared, Raman) and X-ray diffraction allowed to verify the synthesis parameters leading to obtaining calcium phosphate with 96% HAp in phase which indicated higher homogeneity of obtained powder (93.4%) than commercial HAp. Powders' morphology was evaluated using microscopic techniques while specific surface area was determined via Brunauer-Emmett-Teller analysis. Particle size distribution, porosity of powders, and stability of HAp suspensions were also characterized. It was proved that synthesis at pH = 11.0 using mechanical stirring resulted in calcium phosphate with a high phase homogeneity and homogeneous pore size distribution (6-20 nm). Moreover, obtained HAp powder showed 71.8% more specific surface area than commercial material-that is, 110 m3 /g for synthetic HAp and 64 m3 /g in the case of commercial powder-which, in turn, is significant in terms of its potential application as carrier of active substances. Thus it was demonstrated that by applying appropriate conditions of HAp synthesis it is possible to obtain powder with properties enhancing its application potential for medical purposes.
Collapse
Affiliation(s)
- Magdalena Głąb
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Aleksandra Kordyka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Paweł S Wróbel
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Agnieszka Tomala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| |
Collapse
|
23
|
Weinand WR, Cruz JA, Medina AN, Lima WM, Sato F, da Silva Palacios R, Gibin MS, Volnistem EA, Rosso JM, Santos IA, Rohling JH, Bento AC, Baesso ML, da Silva CG, Dos Santos EX, Scatolim DB, Gavazzoni A, Queiroz AF, Companhoni MVP, Nakamura TU, Hernandes L, Bonadio TGM, Miranda LCM. Dynamics of the natural genesis of β-TCP/HAp phases in postnatal fishbones towards gold standard biocomposites for bone regeneration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121407. [PMID: 35636138 DOI: 10.1016/j.saa.2022.121407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The search for gold-standard materials for bone regeneration is still a challenge in reconstruction surgery. The ratio between hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) in biphasic calcium phosphate ceramics (BCPs) is one of the most important factors in osteoinduction promotion and controlled biodegradability, configurating what is currently considered as a possible gold standard material for bone substitution in reconstructive surgery. Exploring the natural genesis of the HAp and β-TCP phases in fishbones during their postnatal growth, this study developed a biphasic bioceramic obtained from the calcination of Nile tilapia (Oreochromis niloticus) bones as a function of their ages. The natural genesis dynamics of the structural evolution of the β-TCP and HAp phases were characterized by physicochemical methods, taking into account of the age of the fish and the material processing conditions. Thermal analysis (TGA / DTA) showed complete removal of the organic matter and transitions associated with the transformation of carbonated hydroxyapatite (CDHA) to HAp and β-TCP phases. After calcination at 900 °C, the material was characterized by: X-ray diffraction (XRD) and refinement by the Rietveld method; Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR); Raman spectroscopy; Scanning Electron Microscopy (SEM) and Flame Atomic Absorption Spectroscopy (FAAS). The analysis allowed identification and quantitative estimate of the variations of the HAp and β-TCP phases in the formation of the BCPs. The results showed that the decrease in β-TCP against the increase in the HAp phases is symmetrical to the dynamics of the natural genesis of these phases, surprisingly maintaining the balanced phase proportion even when bones of young fishes were used. The microstructure analysis confirms the observed transformation. In addition, in vivo tests demonstrated the osteoinductive potential of BCP scaffolds implanted in an ectopic site, and their remarkable regenerative functionality, as bone graft, was demonstrated in alveolar bone after tooth extraction. MTT cytotoxicity assay for BCP samples for MC3T3-E1 pre-osteoblasts and L929 fibroblasts cells showed viability equal or higher than 100%. A logistic empirical model is presented to explain the three stages of HAp natural formation with fish age and it is also compared to the fish size evolution.
Collapse
Affiliation(s)
- Wilson Ricardo Weinand
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - José Adauto Cruz
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Antonio Neto Medina
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Walter Moreira Lima
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francielle Sato
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Raquel da Silva Palacios
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Mariana Sversut Gibin
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Eduardo Azzolini Volnistem
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Jaciele Marcia Rosso
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Ivair Aparecido Santos
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Jurandir Hillmann Rohling
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Antonio Carlos Bento
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Mauro Luciano Baesso
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil.
| | - Camila Girotto da Silva
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Erika Xavier Dos Santos
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Douglas Bolzon Scatolim
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Alessandro Gavazzoni
- Departamento de Odontologia, Universidade Estadual de Maringá, Av. Mandacarú, 1550, 87083-170 Maringá, Paraná, Brazil
| | - Alfredo Franco Queiroz
- Departamento de Odontologia, Universidade Estadual de Maringá, Av. Mandacarú, 1550, 87083-170 Maringá, Paraná, Brazil
| | | | - Tania Ueda Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Luzmarina Hernandes
- Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, Paraná, Brazil
| | - Taiana Gabriela Moretti Bonadio
- Departamento de Física, Universidade Estadual do Centro Oeste, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, Paraná, Brazil
| | | |
Collapse
|
24
|
Almulhim KS, Syed MR, Alqahtani N, Alamoudi M, Khan M, Ahmed SZ, Khan AS. Bioactive Inorganic Materials for Dental Applications: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6864. [PMID: 36234205 PMCID: PMC9573037 DOI: 10.3390/ma15196864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Over time, much attention has been given to the use of bioceramics for biomedical applications; however, the recent trend has been gaining traction to apply these materials for dental restorations. The bioceramics (mainly bioactive) are exceptionally biocompatible and possess excellent bioactive and biological properties due to their similar chemical composition to human hard tissues. However, concern has been noticed related to their mechanical properties. All dental materials based on bioactive materials must be biocompatible, long-lasting, mechanically strong enough to bear the masticatory and functional load, wear-resistant, easily manipulated, and implanted. This review article presents the basic structure, properties, and dental applications of different bioactive materials i.e., amorphous calcium phosphate, hydroxyapatite, tri-calcium phosphate, mono-calcium phosphate, calcium silicate, and bioactive glass. The advantageous properties and limitations of these materials are also discussed. In the end, future directions and proposals are given to improve the physical and mechanical properties of bioactive materials-based dental materials.
Collapse
Affiliation(s)
- Khalid S. Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mariam Raza Syed
- UWA Dental School, The University of Western Australia, Crawley 6009, Australia
| | - Norah Alqahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Marwah Alamoudi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54600, Pakistan
| | - Syed Zubairuddin Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
25
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
26
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
27
|
Rohr N, Brunner C, Bellon B, Fischer J, de Wild M. Characterization of a cotton-wool like composite bone graft material. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:61. [PMID: 35849225 PMCID: PMC9293850 DOI: 10.1007/s10856-022-06682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bone graft materials are applied in patients to augment bone defects and enable the insertion of an implant in its ideal position. However, the currently available augmentation materials do not meet the requirements of being completely resorbed and replaced by new bone within 3 to 6 months. A novel electrospun cotton-wool like material (Bonewool®, Zurich Biomaterials LLC, Zurich, Switzerland) consisting of biodegradable poly(lactic-co-glycolic) acid (PLGA) fibers with incorporated amorphous ß-tricalcium phosphate (ß-TCP) nanoparticles has been compared to a frequently used bovine derived hydroxyapatite (Bio-Oss®, Geistlich Pharma, Wolhusen, Switzerland) in vitro. The material composition was determined and the degradation behavior (calcium release and pH in different solutions) as well as bioactivity has been measured. Degradation behavior of PLGA/ß-TCP was generally more progressive than for Bio-Oss®, indicating that this material is potentially completely resorbable. Graphical abstract.
Collapse
Affiliation(s)
- Nadja Rohr
- Biomaterials and Technology, Clinic for Reconstructive Dentistry, University Center for Dental Medicine Basel, Basel, Switzerland.
| | - Claudia Brunner
- Biomaterials and Technology, Clinic for Reconstructive Dentistry, University Center for Dental Medicine Basel, Basel, Switzerland
- Private Practice, Oberentfelden, Switzerland
| | - Benjamin Bellon
- Department of Preclinical and Translational Research, Institut Straumann AG, Basel, Switzerland
| | - Jens Fischer
- Biomaterials and Technology, Clinic for Reconstructive Dentistry, University Center for Dental Medicine Basel, Basel, Switzerland
| | - Michael de Wild
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics IM², University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
28
|
Hernández-Barreto D, Hernández-Cocoletzi H, Moreno-Piraján JC. Biogenic Hydroxyapatite Obtained from Bone Wastes Using CO 2-Assisted Pyrolysis and Its Interaction with Glyphosate: A Computational and Experimental Study. ACS OMEGA 2022; 7:23265-23275. [PMID: 35847317 PMCID: PMC9280975 DOI: 10.1021/acsomega.2c01379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, biogenic hydroxyapatite (BHap) obtained from cattle bone waste is proposed as an adsorbent of this dangerous pollutant. Density functional theory (DFT) and calorimetric studies were developed to study the interaction between BHap and glyphosate (GLY). A strong interaction was found in the experiments through the measurement of immersion enthalpy, confirmed by the exothermic chemisorption obtained with DFT calculations. These results suggest that hydroxyapatite is a promising adsorbent material for GLY adsorption in aqueous solutions. In addition, it was determined that the GLY-hydroxyapatite interaction is greater than the water-hydroxyapatite interaction, which favors the GLY adsorption into this material.
Collapse
Affiliation(s)
- Diego
F. Hernández-Barreto
- Departamento
de Química—Facultad de Ciencias, Universidad de Los Andes, Cra. 1a No. 18A—10, Bogotá D.C. 11711, Colombia
| | - Heriberto Hernández-Cocoletzi
- Facultad
de Ingeniería Química, Benemérita
Universidad Autónoma de Puebla, Avenue San Claudio y 18 sur S/N Edificio FIQ7 CU
San Manuel, Puebla C.P. 72570, Mexico
| | - Juan Carlos Moreno-Piraján
- Departamento
de Química—Facultad de Ciencias, Universidad de Los Andes, Cra. 1a No. 18A—10, Bogotá D.C. 11711, Colombia
| |
Collapse
|
29
|
Carrillo-González R, González-Chávez MCA, Cazares GO, Luna JL. Trace element adsorption from acid mine drainage and mine residues on nanometric hydroxyapatite. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:280. [PMID: 35292869 DOI: 10.1007/s10661-022-09887-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Mining Ag, Cu, Pb, and Zn sulfides by flotation produces great volume of residues, which oxidized through time and release acid solutions. Leachates from tailing heaps are a concern due to the risk of surface water pollution. Hydroxyapatite nanoparticles may remove trace elements from acid leachate collected from an oxidized tailing heap (pH ranged 1.69 ± 0.3 to 2.23 ± 0.16; [SO42-] = 58 ± 0.67 to 60.69 ± 0.39 mmol). Based on the batch experiments under standard conditions, the average removal efficiency was 96%, 92%, 86%, and 67% for Cd, Pb, Zn, and Cu, respectively. The Zn adsorption was modeled by the Freundlich equation, but Cd, Cu, and Pb isotherms do not fit to Freundlich nor Lagmuir equations. Adsorption and other mechanisms occur during trace elements removal by hydroxyapatite. In the polymetallic system, trace elements saturate the specific surface of hydroxyapatite in the following order Zn, Cd, Cu, and Pb. The pH values must be higher than 7.5 to adsorb trace elements. The dose of 3.8% of hydroxyapatite to acid mine drainage removed efficiently > 80% of the soluble Fe, Cu, Mn, Zn, Cd, Ni, and Pb: 4020.0, 37.3, 34.8, 432.0, 4.4, 0.7, and 0.11 mg L-1 from leachate A and 3357.1, 46.6, 27.8, 569.0, 4.7, 0.6, and 1.7 from leachate B, respectively. The application of 0.7% of hydroxyapatite decreased the extractable Pb in unoxidized tailing heaps from 272 to 100 mg kg-1. It is likely to use hydroxyapatite to control trace element mobility from mine residues to surrounding soils and surface water.
Collapse
Affiliation(s)
- Rogelio Carrillo-González
- Programa de Edafología, Colegio de Postgraduados, Carretera México-Texcoco km 36.5, 56106, Texcoco, Mexico.
| | - M C A González-Chávez
- Programa de Edafología, Colegio de Postgraduados, Carretera México-Texcoco km 36.5, 56106, Texcoco, Mexico
| | - G Ortiz Cazares
- Programa de Edafología, Colegio de Postgraduados, Carretera México-Texcoco km 36.5, 56106, Texcoco, Mexico
| | - J López Luna
- Instituto de Estudios Ambientales, Universidad de La Sierra Juárez, 68725, Ixtlán de Juárez, Oaxaca, Mexico
| |
Collapse
|
30
|
Morgado M, Ascenso C, Carmo J, Mendes JJ, Manso AC. pH analysis of still and carbonated bottled water: Potential influence on dental erosion. Clin Exp Dent Res 2022; 8:552-560. [PMID: 35191217 PMCID: PMC9033543 DOI: 10.1002/cre2.535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Objective To assess pH values to characterize bottled water in Portugal, being able to provide information for both patients and clinicians about its erosive potential, as a tool to prevent the ingrowing prevalence of dental erosion and its progression, especially in patients who are at greater risk, such as those with dry mouth syndrome, making the dissemination of this knowledge a fundamental tool for clinical decision. Materials and Methods One hundred and five common brands of bottled water (n = 105), commercialized in Portugal, were analyzed. Of these, 73 were smooth water (Group A) and 32 carbonated water (Group B). All pH values were assessed by potentiometric measurement with a calibrated electrode. For each brand, five independent measurements were recorded at 25°C for further calculation of the mean pH value and standard deviation. Results Focusing on the mean pH values from Group A, one had a pH mean value lower than 5.2, four between 5.2 and 5.5, thirty‐seven between 5.5 and 6.8, and thirty‐one higher than 6.8. In Group B, ten had a mean pH value lower than 5.2, ten between 5.2 and 5.5, twelve between 5.5 and 6.8, and none above 6.8. Conclusions Bottled water, commercialized in Portugal, has different mean pH values, some below the critical threshold of enamel and/or dentin, suggesting that they may have a greater risk of consumption than others, only with respect to the pH parameter of erosive potential. Further investigation concerning this area is needed for wider conclusions.
Collapse
Affiliation(s)
- Mariana Morgado
- Clinical Research Unit, Egas Moniz Higher Education School Centro de investigação interdisciplinar Egas Moniz (CiiEM) Caparica Portugal
| | - Carla Ascenso
- Clinical Research Unit, Egas Moniz Higher Education School Centro de investigação interdisciplinar Egas Moniz (CiiEM) Caparica Portugal
| | - Joana Carmo
- Clinical Research Unit, Egas Moniz Higher Education School Centro de investigação interdisciplinar Egas Moniz (CiiEM) Caparica Portugal
| | - José João Mendes
- Clinical Research Unit, Egas Moniz Higher Education School Centro de investigação interdisciplinar Egas Moniz (CiiEM) Caparica Portugal
| | - Ana Cristina Manso
- Clinical Research Unit, Egas Moniz Higher Education School Centro de investigação interdisciplinar Egas Moniz (CiiEM) Caparica Portugal
| |
Collapse
|
31
|
de Melo CCDSB, Cassiano FB, Bronze-Uhle ÉS, Stuani VDT, Bordini EAF, Gallinari MDO, de Souza Costa CA, Soares DG. Mineral-induced bubbling effect and biomineralization as strategies to create highly porous and bioactive scaffolds for dentin tissue engineering. J Biomed Mater Res B Appl Biomater 2022; 110:1757-1770. [PMID: 35138034 DOI: 10.1002/jbm.b.35032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 12/15/2022]
Abstract
The objective of the study was to assess the biological and mechanical characteristics of chitosan-based scaffolds enriched by mineral phases and biomineralized in simulated body fluid (SBF) as a possible biomaterial for dentin regeneration. Thus, porous chitosan scaffolds were prepared by the mineral-induced bubbling-effect technique and subjected to biomineralization to create biomimetic scaffolds for dentin tissue engineering. Suspensions containing calcium hydroxide, nanohydroxyapatite, or β-tricalcium phosphate were added to the chitosan (CH) solution and subjected to gradual freezing and freeze-drying to obtain CHCa, CHnHA, and CHβTCP porous scaffolds, respectively, by the bubbling effect. Then, scaffolds were incubated in SBF for 5 days at 37°C, under constant stirring, to promote calcium-phosphate (CaP) biomineralization. Scanning electron microscopy revealed increased pore size and porosity degree on mineral-containing scaffolds, with CHCa and CHnHA presenting as round, well-distributed, and with an interconnected pore network. Nevertheless, incubation in SBF disrupted the porous architecture, except for CHCaSBF , leading to the deposition of CaP coverage, confirmed by Fourier Transform Infrared Spectroscopy analyses. All mineral-containing and SBF-treated formulations presented controlled degradation profiles and released calcium throughout 28 days. When human dental pulp cells (HDPCs) were seeded onto scaffold structures, the porous and interconnected architecture of CHCa, CHnHA, and CHCaSBF allowed cells to infiltrate and spread throughout the scaffold structure, whereas in other formulations cells were dispersed or agglomerated. It was possible to determine a positive effect on cell proliferation and odontogenic differentiation for mineral-containing formulations, intensely improved by biomineralization. A significant increase in mineralized matrix deposition (by 8.4 to 18.9 times) was observed for CHCaSBF , CHnHASBF , and CHβTCPSBF in comparison with plain CH. The bioactive effect on odontoblastic marker expression (ALP activity and mineralized matrix) was also observed for HDPCs continuously cultivated with conditioned medium obtained from scaffolds. Therefore, biomineralization of chitosan scaffolds containing different mineral phases was responsible for increasing the capacity for mineralized matrix deposition by pulpal cells, with potential for use in dentin tissue engineering.
Collapse
Affiliation(s)
- Camila Correa da Silva Braga de Melo
- Department of Operative Dentistry, Endodontics and Dental Materials, Sao Paulo University-USP, Bauru School of Dentistry, Bauru, Sao Paulo, Brazil
| | - Fernanda Balestrero Cassiano
- Department of Operative Dentistry, Endodontics and Dental Materials, Sao Paulo University-USP, Bauru School of Dentistry, Bauru, Sao Paulo, Brazil
| | - Érika Soares Bronze-Uhle
- Department of Operative Dentistry, Endodontics and Dental Materials, Sao Paulo University-USP, Bauru School of Dentistry, Bauru, Sao Paulo, Brazil
| | - Vitor de Toledo Stuani
- Department of Operative Dentistry, Endodontics and Dental Materials, Sao Paulo University-USP, Bauru School of Dentistry, Bauru, Sao Paulo, Brazil
| | - Ester Alves Ferreira Bordini
- Department of Operative Dentistry, Endodontics and Dental Materials, Sao Paulo University-USP, Bauru School of Dentistry, Bauru, Sao Paulo, Brazil
| | - Marjorie de Oliveira Gallinari
- Department of Physiology and Pathology, Univ. Estadual Paulista-UNESP, Araraquara School of Dentistry, Araraquara, Sao Paulo, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, Univ. Estadual Paulista-UNESP, Araraquara School of Dentistry, Araraquara, Sao Paulo, Brazil
| | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, Sao Paulo University-USP, Bauru School of Dentistry, Bauru, Sao Paulo, Brazil
| |
Collapse
|
32
|
Gruselle M, Tõnsuaadu K, Gredin P, Len C. Apatites based catalysts: A tentative classification. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Becerra J, Rodriguez M, Leal D, Noris-Suarez K, Gonzalez G. Chitosan-collagen-hydroxyapatite membranes for tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:18. [PMID: 35072812 PMCID: PMC8786760 DOI: 10.1007/s10856-022-06643-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/05/2022] [Indexed: 05/17/2023]
Abstract
Tissue engineering is growing in developing new technologies focused on providing effective solutions to degenerative pathologies that affect different types of connective tissues. The search for biocompatible, bioactive, biodegradable, and multifunctional materials has grown significantly in recent years. Chitosan, calcium phosphates collagen, and their combination as composite materials fulfill the required properties and could result in biostimulation for tissue regeneration. In the present work, the chitosan/collagen/hydroxyapatite membranes were prepared with different concentrations of collagen and hydroxyapatite. Cell adhesion was evaluated by MTS assay for two in vitro models. Additionally, cytotoxicity of the different membranes employing hemolysis of erythrocytes isolated from human blood was carried out. The structure of the membranes was analyzed by X-rays diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermal stability properties by thermogravimetric methods (TGA). The highest cell adhesion after 48 h was obtained for chitosan membranes with the highest hydroxyapatite and collagen content. All composite membranes showed good cell adhesion and low cytotoxicity, suggesting that these materials have a significant potential to be used as biomaterials for tissue engineering. Graphical abstract.
Collapse
Affiliation(s)
- José Becerra
- Instituto de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo, Ecuador
- Lab. de Materiales, Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela
| | | | - Dayana Leal
- Instituto de Ciencias Básicas, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | | | - Gema Gonzalez
- Lab. de Materiales, Centro de Ingeniería de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.
- Yachay Tech University, School of Physical Sciences and Nanotechnology, Urcuqui, 100119, Ecuador.
| |
Collapse
|
34
|
Fabritius-Vilpoux K, Enax J, Mayweg D, Meyer F, Herbig M, Raabe D, Fabritius HO. Ultrastructural changes of bovine tooth surfaces under erosion in presence of biomimetic hydroxyapatite. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.21.00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enamel and dentin are susceptible to acids from food sources leading to dental erosion, a global problem affecting millions of individuals. Particulate hydroxyapatite (HAP) on the tooth surface can influence the effects of acid attacks. Standardized bovine enamel and dentin samples with artificial saliva are used in an in vitro cyclic demineralization–remineralization protocol to analyze the structural changes experienced by tooth surfaces using high-resolution scanning electron microscopy and to evaluate the potential of a HAP-based oral care gel in the protection of teeth from erosive attacks. The interfaces between HAP particle and enamel HAP crystallites are investigated using focused ion beam preparation and transmission electron microscopy. The results show that erosion with phosphoric acid severely affects enamel crystallites and dentin tubules, while artificial saliva leads to remineralization effects. The HAP-gel forms a microscopic layer on both enamel and dentin surfaces. Upon acid exposure, this layer is sacrificed before the native tooth tissues are affected, leading to significantly lower degrees of demineralization compared to the controls. This demonstrates that the use of particulate HAP as a biomaterial in oral care formulations can help protect enamel and dentin surfaces from erosive attacks during meals using a simple and effective protection principle.
Collapse
Affiliation(s)
- Kathia Fabritius-Vilpoux
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - David Mayweg
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Michael Herbig
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Dierk Raabe
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Helge-Otto Fabritius
- Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany; Bionics and Materials Development, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| |
Collapse
|
35
|
Aarab I, Derqaoui M, El Amari K, Yaacoubi A, Abidi A, Etahiri A, Baçaoui A. Influence of surface dissolution on reagents’ adsorption on low-grade phosphate ore and its flotation selectivity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Jokisaari JR, Hu X, Mukherjee A, Uskoković V, Klie RF. Hydroxyapatite as a scavenger of reactive radiolysis species in graphene liquid cells for in situelectron microscopy. NANOTECHNOLOGY 2021; 32:485707. [PMID: 34407513 DOI: 10.1088/1361-6528/ac1ebb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Liquid cell electron microscopy is an imaging technique allowing for the investigation of the interaction of liquids and solids at nanoscopic length scales. Suchin situobservations are increasingly in-demand in an array of fields, from biological sciences to medicine to batteries. Graphene liquid cells (GLCs), in particular, have generated a great interest as a low-scattering window material with the potential for increasing the quality of both imaging and spectroscopy. However, preserving the stability of the liquid and of the sample in the GLC remains a considerable challenge. In the present work we encapsulate water and hydroxyapatite (HAP), a pH-sensitive biological material, in GLCs to observe the interactions between the graphene, HAP, and the electron beam. HAP was chosen for several reasons. One is its ubiquity in biological specimens such as bones and teeth, and the second is the presence of phosphate ions in common buffer solutions. Finally, there is its sensitivity to changes in pH, which result from beam-induced hydrolysis in liquid cells. A dynamic process of dissolution and recrystallization of HAP was observed, which correlated with the production of H+ions by the beam during imaging. In addition, a large increase in the stability of the GLC under irradiation was noted. Specifically, no stable hydrogen bubbles were detected under the electron fluxes routinely exceeding 170 e-Å-2s-1. With the measured threshold dose for the bubble formation in pure water equaling 9 e-Å-2s-1, it was concluded that the presence of HAP increases the resistance of water against radiolysis in the GLC by more than an order of magnitude. These results confirm the possibility of using biological materials, such as HAP, as stabilizers in liquid cell electron microscopy. They outline a potential route for stabilization of specimens in liquid cells through the addition of a scavenger of reactive species generated by the beam-induced hydrolysis of water. These improvements are essential for enhancing both the resolution of imaging and the available imaging time, as well as avoiding the beam-induced artifacts.
Collapse
Affiliation(s)
- Jacob R Jokisaari
- Department of Physics, University of Illinois, Chicago, IL, United States of America
| | - Xuan Hu
- Department of Physics, University of Illinois, Chicago, IL, United States of America
| | - Arijita Mukherjee
- Department of Physics, University of Illinois, Chicago, IL, United States of America
| | - Vuk Uskoković
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, United States of America
- TardigradeNano LLC, Irvine, CA, United States of America
| | - Robert F Klie
- Department of Physics, University of Illinois, Chicago, IL, United States of America
| |
Collapse
|
37
|
A New Perspective on Fluorapatite Dissolution in Hydrochloric Acid: Thermodynamic Calculations and Experimental Study. INORGANICS 2021. [DOI: 10.3390/inorganics9080065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Apatite (Ap) dissolution in diluted acids is well described in the literature, but in technological processes which use more concentrated acids, the reaction is fast, and it is complicated to follow the process kinetics. The relationship between pH change and the apatite dissolution rate depending on HCl concentration was studied by thermodynamic calculations and experiments with synthetic fluorapatite (FAp). On the basis of experimental pH measurements, the kinetics of dissolution was analyzed. The solution composition (P, Ca, F) was determined by wet chemical methods and the solid part was characterized by XRD and FTIR. It was shown that the amount of HCl needed for FAp dissolution depends on acid concentration. FAp dissolution rate cannot be deduced from solubility data of P, Ca or F as the secondary reactions of CaF2 and CaHPO4 formation take place simultaneously. It was found that the Ap dissolution rate can be followed by pH change.
Collapse
|
38
|
Shashkova IL, Kitikova NV, Ivanets AI. Features of the Behavior of Calcium and Magnesium Phosphate Sorbents in Water and Electrolyte Solutions. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221050086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Janusz W, Skwarek E. Adsorption of the Tartrate Ions in the Hydroxyapatite/Aqueous Solution of NaCl System. MATERIALS 2021; 14:ma14113039. [PMID: 34204933 PMCID: PMC8199740 DOI: 10.3390/ma14113039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/16/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
The research on the interaction of tartrate ions with the surface of hydroskyapatite was presented, including the measurements of the kinetics of tartrate ion adsorption and tartrate ion adsorption as a function of pH. The adsorption of tartrate ions was calculated from the loss of tartrate concentration in the solution as measured by a radioisotope method using C-14 labeled tartaric acid. In order to explain the mechanism of interaction of tartrate ions with hydroxyapatite, supplementary measurements were carried out, i.e., potentiometric measurements of the balance of released/consumed ions in the hydroxyapatite/electrolyte solution system, zeta potential measurements, FTIR spectrophotometric measurements and the hydroxyapatite crystal structure and particle size distribution were characterized. It was found that the adsorption of tartrate ions occurs as a result of the exchange of these ions with hydroxyl, phosphate and carbonate ions. Replacing the ions with the abovementioned tartrate ions leads to the appearance of a negative charge on the surface of the hydroxapatite. On the basis of XRD study and particle size distribution, a decrease in the size of crystallites and the diameter of hydroxyapatite particles in contact with a solution of 0.001 mol/dm3 of tartaric acid was found.
Collapse
|
40
|
Beyond dissolution: Xerostomia rinses affect composition and structure of biomimetic dental mineral in vitro. PLoS One 2021; 16:e0250822. [PMID: 33901259 PMCID: PMC8075190 DOI: 10.1371/journal.pone.0250822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/14/2021] [Indexed: 11/24/2022] Open
Abstract
Xerostomia, known as dry mouth, is caused by decreased salivary flow. Treatment with lubricating oral rinses provides temporary relief of dry mouth discomfort; however, it remains unclear how their composition affects mineralized dental tissues. Therefore, the objective of this study was to analyze the effects of common components in xerostomia oral rinses on biomimetic apatite with varying carbonate contents. Carbonated apatite was synthesized and exposed to one of the following solutions for 72 hours at varying pHs: water-based, phosphorus-containing (PBS), mucin-like containing (MLC), or fluoride-containing (FC) solutions. Post-exposure results indicated that apatite mass decreased irrespective of pH and solution composition, while solution buffering was pH dependent. Raman and X-ray diffraction analysis showed that the addition of phosphorus, mucin-like molecules, and fluoride in solution decreases mineral carbonate levels and changed the lattice spacing and crystallinity of bioapatite, indicative of dissolution/recrystallization processes. The mineral recrystallized into a less-carbonated apatite in the PBS and MLC solutions, and into fluorapatite in FC. Tap water did not affect the apatite lattice structure suggesting formation of a labile carbonate surface layer on apatite. These results reveal that solution composition can have varied and complex effects on dental mineral beyond dissolution, which can have long term consequences on mineral solubility and mechanics. Therefore, clinicians should consider these factors when advising treatments for xerostomia patients.
Collapse
|
41
|
Biswas PP, Liang B, Turner-Walker G, Rathod J, Lee YC, Wang CC, Chang CK. Systematic changes of bone hydroxyapatite along a charring temperature gradient: An integrative study with dissolution behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142601. [PMID: 33071118 DOI: 10.1016/j.scitotenv.2020.142601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The applicability of bone char as a long-term phosphorus nutrient source was assessed by integrating their mineral transformation and physicochemical properties with their dissolution behavior. We have explored synchrotron-based spectroscopic and imaging techniques (FTIR, XRD, and TXM) to investigate the physicochemical changes of bone and bone char along a charring temperature gradient (300-1200 °C) and used a lab incubation experiment to study their dissolution behaviors in solutions of different pH (4, 6, and 6.9). The thermal decomposition of inorganic carbonate (CO32-) and the loss of organic components rendered a crystallographic rearrangement (blueshift of the PO43- peak) and mineral transformation with increasing temperatures. The mineral transformation from B-type to AB- and A-type carbonate substitution occurred mainly at <700 °C, while the transformation from carbonated hydroxyapatite (CHAp) to more mineralogically and chemically stable HAp occurred at >800 °C. The loss of inorganic carbonate and the increase of structural OH- with increasing temperatures explained the change of pH buffering capacity and increase of pH and their dissolution behaviors. The higher peak area ratios of phosphate to carbonate and phosphate to amide I band with increasing temperatures corroborated the higher stability and resistivity to acidic dissolution by bone chars made at higher temperatures. Our findings suggest that bone char made at low to intermediate temperatures can be a substantial source of phosphorus for soil fertility via waste management and recycling. The bone char made at 500 °C exhibited a high pH buffering capacity in acidic and near-neutral solutions. The 700 °C bone char was proposed as a suitable liming agent for raising the soil pH and abating soil acidity. Our study has underpinned the systematic changes of bone char and interlinked the charring effect with their dissolution behavior, providing a scientific base for understanding the applicability of different bone chars as suitable P-fertilizers.
Collapse
Affiliation(s)
| | - Biqing Liang
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Gordon Turner-Walker
- Department of Cultural Heritage Conservation, National Yunlin University of Science & Technology, Douliu, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Chang Lee
- Life Science Group, National Synchrotron Radiation Research Center, Hsinchu, Taiwan; Department of Optics and Photonics, National Central University, Chung-Li, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Chieh Wang
- X-ray Imaging Group, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chung-Kai Chang
- Material Science Group, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| |
Collapse
|
42
|
Improved osteogenesis and angiogenesis of theranostic ions doped calcium phosphates (CaPs) by a simple surface treatment process: A state-of-the-art study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112082. [PMID: 33947573 DOI: 10.1016/j.msec.2021.112082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Surface treatment of biomaterials could enable reliable and quick cellular responses and accelerate the healing of the host tissue. Here, a series of calcium phosphates (CaPs) were surface treated by hydrogen peroxide (H2O2) and the treatment effects were physicochemically and biologically evaluated. For this aim, as-synthesized CaPs doped with strontium (Sr2+), iron (Fe2+), silicon (Si4+), and titanium (Ti4+) ions were sonicated in H2O2 media. The results showed that the specific surface area and zeta potential values of the surface-treated CaPs were increased by ~50% and 25%, respectively. Moreover, the particle size and the band-gap (Eg) values of the surface-treated CaPs were decreased by ~25% and ~2-10%, respectively. The concentration of oxygen vacancies was increased in the surface-treated samples, which was confirmed by the result of ultraviolet (UV), photoluminescence (PL), Commission Internationale de l'éclairage (CIE 1931), and X-ray photoelectron spectroscopy (XPS) analyses. In vitro cellular assessments of surface-treated CaPs exhibited an improvement in cytocompatibility, reactive oxygen species generation (ROS) capacity, bone nodule formation, and the migration of cells up to ~8%, 20%, 35%, and 13%, respectively. Based on the obtained data, it can be stated that improved physicochemical properties of H2O2-treated CaPs could increase the ROS generation and subsequently enhance the biological activities. In summary, the results demonstrate the notable effect of the H2O2 surface treatment method on improving surface properties and biological performance of CaPs.
Collapse
|
43
|
Choki K, Li S, Ye A, Jameson GB, Singh H. Fate of hydroxyapatite nanoparticles during dynamic in vitro gastrointestinal digestion: the impact of milk as a matrix. Food Funct 2021; 12:2760-2771. [PMID: 33683238 DOI: 10.1039/d0fo02702b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated the behavior of nano-sized particles of hydroxyapatite (nHA) during dynamic in vitro gastrointestinal digestion, alone or dispersed within skim milk. The dissolution and the structural changes of nHA were investigated by analyzing the dissolution of calcium and using transmission electron microscopy and X-ray diffraction. The dissolution of nHA during gastric digestion involved a rapid early stage and a much slower later stage. It was incomplete by the end of gastric digestion, both with and without milk. However, there was no sign of nHA recrystallization in the intestinal phase. X-ray diffraction analysis of digesta showed the breakdown of the crystalline structure of nHA and the formation of potentially new calcium phosphate phases during digestion. Skim milk formed a structural clot and significantly retarded the dissolution of nHA during gastric digestion. Possible mechanisms leading to the incomplete dissolution of nHA and the matrix effect of milk are discussed.
Collapse
Affiliation(s)
- Kinley Choki
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | | | | | | | | |
Collapse
|
44
|
Effects of acidosis on the structure, composition, and function of adult murine femurs. Acta Biomater 2021; 121:484-496. [PMID: 33242638 DOI: 10.1016/j.actbio.2020.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Physiologic pH is maintained in a narrow range through multiple systemic buffering systems. Metabolic Acidosis (MA) is an acid-base disorder clinically characterized by a decrease in systemic pH and bicarbonate (HCO3-) levels. Acidosis affects millions annually, resulting in decreased bone mineral density and bone volume and an increased rate of fracture. We developed an adult murine model of diet-induced metabolic acidosis via graded NH4Cl administration that successfully decreased systemic pH over a 14 day period to elucidate the effects of acidosis on the skeletal system. Blood gas analyses measured an increase in blood calcium and sodium levels indicating a skeletal response to 14 days of acidosis. MA also significantly decreased femur ultimate strength, likely due to modifications in bone morphology as determined from decreased microcomputed tomography values of centroid distance and area moment of inertia. These structural changes may be caused by aberrant remodeling based on histological data evidencing altered OCL activity in acidosis. Additionally, we found that acidosis significantly decreased bone CO3 content in a site-specific manner similar to the bone phenotype observed in human MA. We determined that MA decreased bone strength thus increasing fracture risk, which is likely caused by alterations in bone shape and compounded by changes in bone composition. Additionally, we suggest the temporal regulation of cell-mediated remodeling in MA is more complex than current literature suggests. We conclude that our model reliably induces MA and has deleterious effects on skeletal form and function, presenting similarly to the MA bone phenotype in humans.
Collapse
|
45
|
Clark BC, Kolb VM. Macrobiont: Cradle for the Origin of Life and Creation of a Biosphere. Life (Basel) 2020; 10:life10110278. [PMID: 33198206 PMCID: PMC7697624 DOI: 10.3390/life10110278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Although the cellular microorganism is the fundamental unit of biology, the origin of life (OoL) itself is unlikely to have occurred in a microscale environment. The macrobiont (MB) is the macro-scale setting where life originated. Guided by the methodologies of Systems Analysis, we focus on subaerial ponds of scale 3 to 300 m diameter. Within such ponds, there can be substantial heterogeneity, on the vertical, horizontal, and temporal scales, which enable multi-pot prebiotic chemical evolution. Pond size-sensitivities for several figures of merit are mathematically formulated, leading to the expectation that the optimum pond size for the OoL is intermediate, but biased toward smaller sizes. Sensitivities include relative access to nutrients, energy sources, and catalysts, as sourced from geological, atmospheric, hydrospheric, and astronomical contributors. Foreshores, especially with mudcracks, are identified as a favorable component for the success of the macrobiont. To bridge the gap between inanimate matter and a planetary-scale biosphere, five stages of evolution within the macrobiont are hypothesized: prebiotic chemistry → molecular replicator → protocell → macrobiont cell → colonizer cell. Comparison of ponds with other macrobionts, including hydrothermal and meteorite settings, allows a conclusion that more than one possible macrobiont locale could enable an OoL.
Collapse
Affiliation(s)
- Benton C. Clark
- Space Science Institute, Boulder, CO 80301, USA
- Correspondence:
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| |
Collapse
|
46
|
Biggemann J, Müller P, Köllner D, Simon S, Hoffmann P, Heik P, Lee JH, Fey T. Hierarchical Surface Texturing of Hydroxyapatite Ceramics: Influence on the Adhesive Bonding Strength of Polymeric Polycaprolactone. J Funct Biomater 2020; 11:jfb11040073. [PMID: 33023048 PMCID: PMC7712268 DOI: 10.3390/jfb11040073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
The tailored manipulation of ceramic surfaces gained recent interest to optimize the performance and lifetime of composite materials used as implants. In this work, a hierarchical surface texturing of hydroxyapatite (HAp) ceramics was developed to improve the poor adhesive bonding strength in hydroxyapatite and polycaprolactone (HAp/PCL) composites. Four different types of periodic surface morphologies (grooves, cylindric pits, linear waves and Gaussian hills) were realized by a ceramic micro-transfer molding technique in the submillimeter range. A subsequent surface roughening and functionalization on a micron to nanometer scale was obtained by two different etchings with hydrochloric and tartaric acid. An ensuing silane coupling with 3-aminopropyltriethoxysilane (APTES) enhanced the chemical adhesion between the HAp surface and PCL on the nanometer scale by the formation of dipole-dipole interactions and covalent bonds. The adhesive bonding strengths of the individual and combined surface texturings were investigated by performing single-lap compressive shear tests. All individual texturing types (macro, micro and nano) showed significantly improved HAp/PCL interface strengths compared to the non-textured HAp reference, based on an enhanced mechanical, physical and chemical adhesion. The independent effect mechanisms allow the deliberately hierarchical combination of all texturing types without negative influences. The hierarchical surface-textured HAp showed a 6.5 times higher adhesive bonding strength (7.7 ± 1.5 MPa) than the non-textured reference, proving that surface texturing is an attractive method to optimize the component adhesion in composites for potential medical implants.
Collapse
Affiliation(s)
- Jonas Biggemann
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
- Correspondence: (J.B.); (T.F.); Tel.: +49-9131-8527561 (J.B.); +49-9131-8527546 (T.F.)
| | - Philipp Müller
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
| | - David Köllner
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
| | - Swantje Simon
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
| | - Patrizia Hoffmann
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
| | - Paula Heik
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
| | - Jung Heon Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon 16149, Korea;
| | - Tobias Fey
- Department of Materials Science (Institute of Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, D-91058 Erlangen, Germany; (P.M.); (D.K.); (S.S.); (P.H.); (P.H.)
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Correspondence: (J.B.); (T.F.); Tel.: +49-9131-8527561 (J.B.); +49-9131-8527546 (T.F.)
| |
Collapse
|
47
|
Synthesis of Calcium Orthophosphates by Chemical Precipitation in Aqueous Solutions: The Effect of the Acidity, Ca/P Molar Ratio, and Temperature on the Phase Composition and Solubility of Precipitates. Processes (Basel) 2020. [DOI: 10.3390/pr8091009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Studies on chemical precipitation of the calcium orthophosphates have shown that their phase compositions do not vary depending on molar ratio Ca/P but are sensitive to solutions acidity and temperature. These are two key factors that determine the phase transformation progress of metastable phases into less soluble precipitates of the phosphates. It was proposed to compare calcium orthophosphates solubility products with calcium cations quantities in their formulas. It was found that there was a linear correlation between calcium orthophosphates specific solubility products and their molar ratios Ca/P if hydroxyapatite and its Ca-deficient forms were excluded from consideration. It was concluded that the relatively large deviations of their solubility products from the found correlation should be thought of as erroneous data. That is why solubility products were changed in accordance with correlation dependence: pKS for hydroxyapatite was 155, pKS for Ca-deficient hydroxyapatites was 114–155. The solubility isotherms, which were calculated on the basis of the corrected pKS values, coincided with the experimental data on solid-phase titration by Pan and Darvell.
Collapse
|
48
|
Narotzky E, Jerome ME, Horner JR, Rashid DJ. An Ion-exchange Bone Demineralization Method for Improved Time, Expense, and Tissue Preservation. J Histochem Cytochem 2020; 68:607-620. [PMID: 32794420 DOI: 10.1369/0022155420951286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we describe an ethylenediaminetetraacetic acid (EDTA)-based bone demineralization procedure that uses cation-exchange resin and dialysis tubing. This method does not require solution changes or special equipment, is faster than EDTA alone, is cost-effective, and is environmentally friendly. Like other EDTA-based methods, this procedure yields superior tissue preservation than formic acid demineralization. Greater protein antigenicity using EDTA as opposed to formic acid has been described, but we also find significant improvements in carbohydrate-based histological staining. Histological staining using this method reveals cartilage layers that are not distinguishable with formic acid demineralization. Carbohydrate preservation is relevant to many applications of bone demineralization, including the assessment of osteoarthritis from bone biopsies and the use of demineralized bone powder for tissue culture and surgical implants. The improvements in time, expense, and tissue quality indicate this method is a practical and often superior alternative to formic acid demineralization.
Collapse
Affiliation(s)
- Emma Narotzky
- American Studies Graduate Program, Montana State University, Bozeman, MT
| | - Maria E Jerome
- Histology Core Facility, Montana State University, Bozeman, MT
| | | | - Dana J Rashid
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT
| |
Collapse
|
49
|
Kosowska K, Domalik-Pyzik P, Sekuła-Stryjewska M, Noga S, Jagiełło J, Baran M, Lipińska L, Zuba-Surma E, Chłopek J. Gradient Chitosan Hydrogels Modified with Graphene Derivatives and Hydroxyapatite: Physiochemical Properties and Initial Cytocompatibility Evaluation. Int J Mol Sci 2020; 21:E4888. [PMID: 32664452 PMCID: PMC7404139 DOI: 10.3390/ijms21144888] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we investigated preparation of gradient chitosan-matrix hydrogels through a novel freezing-gelling-thawing method. The influence of three types of graphene family materials (GFM), i.e., graphene oxide (GO), reduced graphene oxide (rGO), and poly(ethylene glycol) grafted graphene oxide (GO-PEG), as well as hydroxyapatite (HAp) on the physicochemical and biological properties of the composite hydrogels was examined in view of their potential applicability as tissue engineering scaffolds. The substrates and the hydrogel samples were thoroughly characterized by X-ray photoelectron spectroscopy, X-ray diffractometry, infrared spectroscopy, digital and scanning electron microscopy, rheological and mechanical analysis, in vitro chemical stability and bioactivity assays, as well as initial cytocompatibility evaluation with human umbilical cord Wharton's jelly mesenchymal stem cells (hUC-MSCs). We followed the green-chemistry approach and avoided toxic cross-linking agents, using instead specific interactions of our polymer matrix with tannic acid, non-toxic physical cross-linker, and graphene derivatives. It was shown that the most promising are the gradient hydrogels modified with GO-PEG and HAp.
Collapse
Affiliation(s)
- Karolina Kosowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland; (K.K.); (J.C.)
| | - Patrycja Domalik-Pyzik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland; (K.K.); (J.C.)
| | | | - Sylwia Noga
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.S.-S.); (S.N.)
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Joanna Jagiełło
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network—Institute of Electronic Materials Technology, 01-919 Warsaw, Poland; (J.J.); (M.B.); (L.L.)
| | - Magdalena Baran
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network—Institute of Electronic Materials Technology, 01-919 Warsaw, Poland; (J.J.); (M.B.); (L.L.)
| | - Ludwika Lipińska
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network—Institute of Electronic Materials Technology, 01-919 Warsaw, Poland; (J.J.); (M.B.); (L.L.)
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Jan Chłopek
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland; (K.K.); (J.C.)
| |
Collapse
|
50
|
Amino hydroxyapatite/chitosan hybrids reticulated with glutaraldehyde at different pH values and their use for diclofenac removal. Carbohydr Polym 2020; 236:116036. [DOI: 10.1016/j.carbpol.2020.116036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/10/2019] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
|